Multi-Objective Scheduling Method for Integrated Energy System Containing CCS+P2G System Using Q-Learning Adaptive Mutation Black-Winged Kite Algorithm
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to en...
        Saved in:
      
    
          | Published in | Sustainability Vol. 17; no. 13; p. 5709 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.07.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2071-1050 2071-1050  | 
| DOI | 10.3390/su17135709 | 
Cover
| Abstract | This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal scheduling model is established, incorporating a carbon capture system (CCS), power-to-gas (P2G), solar thermal, wind power, and energy storage to minimize economic costs and carbon emissions while maximizing energy efficiency. Second, the heat-to-power ratio of the cogeneration system is dynamically adjusted according to load demand, enabling flexible control of combined heat and power (CHP) output. The integration of CCS+P2G further reduces carbon emissions and wind curtailment, with the produced methane utilized in boilers and cogeneration systems. Hydrogen fuel cells (HFCs) are employed to mitigate cascading energy losses. Using forecasted load and renewable energy data from a specific region, dispatch experiments demonstrate that the proposed system reduces economic costs and CO2 emissions by 14.63% and 13.9%, respectively, while improving energy efficiency by 28.84%. Additionally, the adjustable heat-to-power ratio of CHP yields synergistic economic, energy, and environmental benefits. | 
    
|---|---|
| AbstractList | This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal scheduling model is established, incorporating a carbon capture system (CCS), power-to-gas (P2G), solar thermal, wind power, and energy storage to minimize economic costs and carbon emissions while maximizing energy efficiency. Second, the heat-to-power ratio of the cogeneration system is dynamically adjusted according to load demand, enabling flexible control of combined heat and power (CHP) output. The integration of CCS+P2G further reduces carbon emissions and wind curtailment, with the produced methane utilized in boilers and cogeneration systems. Hydrogen fuel cells (HFCs) are employed to mitigate cascading energy losses. Using forecasted load and renewable energy data from a specific region, dispatch experiments demonstrate that the proposed system reduces economic costs and CO[sub.2] emissions by 14.63% and 13.9%, respectively, while improving energy efficiency by 28.84%. Additionally, the adjustable heat-to-power ratio of CHP yields synergistic economic, energy, and environmental benefits. This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal scheduling model is established, incorporating a carbon capture system (CCS), power-to-gas (P2G), solar thermal, wind power, and energy storage to minimize economic costs and carbon emissions while maximizing energy efficiency. Second, the heat-to-power ratio of the cogeneration system is dynamically adjusted according to load demand, enabling flexible control of combined heat and power (CHP) output. The integration of CCS+P2G further reduces carbon emissions and wind curtailment, with the produced methane utilized in boilers and cogeneration systems. Hydrogen fuel cells (HFCs) are employed to mitigate cascading energy losses. Using forecasted load and renewable energy data from a specific region, dispatch experiments demonstrate that the proposed system reduces economic costs and CO2 emissions by 14.63% and 13.9%, respectively, while improving energy efficiency by 28.84%. Additionally, the adjustable heat-to-power ratio of CHP yields synergistic economic, energy, and environmental benefits.  | 
    
| Audience | Academic | 
    
| Author | Fan, Zuhao Yan, Xin Shi, Ruijuan Tu, Naiwei  | 
    
| Author_xml | – sequence: 1 givenname: Ruijuan surname: Shi fullname: Shi, Ruijuan – sequence: 2 givenname: Xin surname: Yan fullname: Yan, Xin – sequence: 3 givenname: Zuhao orcidid: 0009-0003-0847-6951 surname: Fan fullname: Fan, Zuhao – sequence: 4 givenname: Naiwei surname: Tu fullname: Tu, Naiwei  | 
    
| BookMark | eNp9kU1v1DAQhi1UJErphV9giRNUKf7Ih3NcolJW7KrAUnGMJskk6yVrb20H2F_C38XbBUEveA625n1mPHrnKTkx1iAhzzm7lLJkr_3ECy6zgpWPyKlgBU84y9jJP-8n5Nz7DYtHSl7y_JT8XE5j0MlNs8E26G9IV-0au2nUZqBLDGvb0d46OjcBBwcBO3pl0A17utr7gFtaWRNAmwNeVauLD-L6j3LrD8mPyQLB3euzDnb3XyynAEFbQ9-M0H5NvkQx9n2vA9LZOFinw3r7jDzuYfR4_vs-I7dvrz5X75LFzfW8mi2SVooyJMBUCgUvVYEgMimYyNJSKFSqadpGcYEFpKrJJevThqecY4Zd3uSgomGsAHlGLo59J7OD_XcYx3rn9BbcvuasPtha_7U10i-O9M7Zuwl9qDd2ciYOWEshoqFc5jJSl0dqgBFrbXobHLQxOtzqNu6s1zE_U2mR5UqVLBa8fFAQmYA_wgCT9_V89ekh--rIts5677D_37y_ANJypAo | 
    
| Cites_doi | 10.1016/j.ijhydene.2022.02.074 10.1016/j.ijepes.2024.109923 10.1016/j.apenergy.2023.120921 10.1016/j.energy.2020.118125 10.1016/j.apenergy.2022.120540 10.1080/21642583.2019.1708830 10.1007/s40565-017-0359-z 10.1016/j.asoc.2022.108640 10.1016/j.spc.2023.08.011 10.1016/j.epsr.2023.109215 10.1016/j.epsr.2022.108895 10.1007/s42835-023-01572-2 10.1007/s00521-020-04849-z 10.1155/2020/5980504 10.1016/j.enconman.2021.115073 10.1007/978-1-4471-7503-2_33 10.1016/j.ins.2024.120252 10.3390/su15054641 10.1016/j.energy.2024.130362 10.1016/j.apenergy.2022.120227 10.1016/j.renene.2023.119806 10.1038/s41598-022-15689-3 10.1134/S1075700718020156 10.1007/s10462-024-10723-4 10.3390/pr9020339 10.1016/j.rser.2023.113759 10.1016/j.enconman.2022.115541 10.1016/j.energy.2023.127526 10.1007/s10586-022-03589-0 10.1016/j.ijhydene.2024.01.337 10.1109/ICIBA56860.2023.10165106 10.1016/j.ins.2017.09.002 10.3390/en17133205 10.1108/IJICC-04-2022-0118 10.1016/j.egyr.2023.10.022 10.1016/j.energy.2022.125453 10.1016/j.energy.2023.126846 10.1016/j.engappai.2023.107230 10.1016/j.apenergy.2022.120268  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.3390/su17135709 | 
    
| DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Proquest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database University Readers ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| EISSN | 2071-1050 | 
    
| ExternalDocumentID | 10.3390/su17135709 A847568890 10_3390_su17135709  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV ADMLS AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION E3Z ECGQY ESTFP FRS GX1 IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PHGZM PHGZT PIMPY PROAC TR2 4U- ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c329t-a084a71987ea25320254928e88bbcb812e7a48b630f4b1411e5ed6b6a839007a3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2071-1050 | 
    
| IngestDate | Tue Aug 19 23:21:43 EDT 2025 Sat Aug 23 14:07:24 EDT 2025 Mon Oct 20 16:52:26 EDT 2025 Thu Oct 16 15:36:56 EDT 2025 Thu Oct 16 04:41:40 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c329t-a084a71987ea25320254928e88bbcb812e7a48b630f4b1411e5ed6b6a839007a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0009-0003-0847-6951 | 
    
| OpenAccessLink | https://www.proquest.com/docview/3229161363?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 3229161363 | 
    
| PQPubID | 2032327 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_su17135709 proquest_journals_3229161363 gale_infotracacademiconefile_A847568890 gale_incontextgauss_ISR_A847568890 crossref_primary_10_3390_su17135709  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-01 | 
    
| PublicationDateYYYYMMDD | 2025-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Sustainability | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Hu (ref_32) 2024; 58 Xue (ref_19) 2020; 8 Rana (ref_21) 2020; 32 Li (ref_27) 2023; 333 Li (ref_10) 2023; 41 Zaik (ref_11) 2023; 48 ref_36 ref_35 Li (ref_41) 2023; 16 Chen (ref_8) 2023; 262 Yu (ref_23) 2020; 2020 Pan (ref_7) 2023; 270 Dong (ref_29) 2024; 663 ref_15 Dong (ref_25) 2024; 127 Li (ref_22) 2022; 258 Yu (ref_42) 2022; 25 Kharitonov (ref_1) 2018; 29 Gao (ref_34) 2024; 221 Calise (ref_14) 2023; 187 Cui (ref_37) 2018; 422 Wang (ref_30) 2024; 57 Suo (ref_26) 2023; 276 Zhao (ref_5) 2023; 338 Saadaoui (ref_39) 2021; 12 Chen (ref_28) 2023; 214 Li (ref_12) 2023; 218 ref_24 Ren (ref_40) 2024; 292 Chen (ref_13) 2018; 6 ref_20 Hassan (ref_17) 2022; 252 Mohammad (ref_31) 2023; 329 ref_2 Meng (ref_9) 2024; 19 Stecca (ref_16) 2020; 1 Pourasl (ref_3) 2023; 10 Lin (ref_38) 2022; 120 Zou (ref_6) 2023; 329 Wu (ref_33) 2024; 158 ref_4 Song (ref_18) 2020; 206  | 
    
| References_xml | – volume: 48 start-page: 11628 year: 2023 ident: ref_11 article-title: Solar and wind energy in Poland as power sources for electrolysis process-A review of studies and experimental methodology publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.02.074 – volume: 158 start-page: 109923 year: 2024 ident: ref_33 article-title: Low carbon economic dispatch of integrated energy systems considering utilization of hydrogen and oxygen energy publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2024.109923 – volume: 338 start-page: 120921 year: 2023 ident: ref_5 article-title: A novel CCHP system based on a closed PEMEC-PEMFC loop with water self-supply publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120921 – volume: 206 start-page: 118125 year: 2020 ident: ref_18 article-title: Multi-objective optimization of a solar hybrid CCHP system based on different operation modes publication-title: Energy doi: 10.1016/j.energy.2020.118125 – volume: 333 start-page: 120540 year: 2023 ident: ref_27 article-title: Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: A deep reinforcement learning approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120540 – volume: 8 start-page: 22 year: 2020 ident: ref_19 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 – volume: 6 start-page: 495 year: 2018 ident: ref_13 article-title: Coordinated optimal dispatch and market equilibrium of integrated electric power and natural gas networks with P2G embedded publication-title: J. Mod. Power Syst. Clean Energy doi: 10.1007/s40565-017-0359-z – volume: 120 start-page: 108640 year: 2022 ident: ref_38 article-title: Particle swarm-differential evolution algorithm with multiple random mutation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.108640 – volume: 41 start-page: 228 year: 2023 ident: ref_10 article-title: Sustainability design and analysis of a regional energy supply CHP system by integrating biomass and solar energy publication-title: Sustain. Prod. Consum. doi: 10.1016/j.spc.2023.08.011 – volume: 218 start-page: 109215 year: 2023 ident: ref_12 article-title: Low-carbon optimal learning scheduling of the power system based on carbon capture system and carbon emission flow theory publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109215 – volume: 214 start-page: 108895 year: 2023 ident: ref_28 article-title: A Q-learning based optimization method of energy management for peak load control of residential areas with CCHP systems publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.108895 – volume: 19 start-page: 209 year: 2024 ident: ref_9 article-title: Economic optimization operation approach of integrated energy system considering wind power consumption and flexible load regulation publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-023-01572-2 – volume: 32 start-page: 16245 year: 2020 ident: ref_21 article-title: Whale optimization algorithm: A systematic review of contemporary applications, modifications and developments publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04849-z – volume: 2020 start-page: 5980504 year: 2020 ident: ref_23 article-title: A multiobjective particle swarm optimization algorithm based on competition mechanism and gaussian variation publication-title: Complexity doi: 10.1155/2020/5980504 – volume: 252 start-page: 115073 year: 2022 ident: ref_17 article-title: Investigation of a hybrid renewable-based grid-independent electricity-heat nexus: Impacts of recovery and thermally storing waste heat and electricity publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.115073 – ident: ref_20 doi: 10.1007/978-1-4471-7503-2_33 – volume: 663 start-page: 120252 year: 2024 ident: ref_29 article-title: A novel multi-objective optimization framework for optimal integrated energy system planning with demand response under multiple uncertainties publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120252 – ident: ref_2 doi: 10.3390/su15054641 – volume: 292 start-page: 130362 year: 2024 ident: ref_40 article-title: Design and analysis of solar hybrid combined cooling, heating and power system: A bi-level optimization model publication-title: Energy doi: 10.1016/j.energy.2024.130362 – volume: 12 start-page: 100129 year: 2021 ident: ref_39 article-title: Parameters optimization of solar PV cell/module using genetic algorithm based on non-uniform mutation publication-title: Energy Convers. Manag. X – volume: 329 start-page: 120227 year: 2023 ident: ref_6 article-title: A non-dominated sorting genetic approach using elite crossover for the combined cooling, heating, and power system with three energy storages publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120227 – volume: 221 start-page: 119806 year: 2024 ident: ref_34 article-title: Thermoelectric optimization of integrated energy system considering wind-photovoltaic uncertainty, two-stage power-to-gas and ladder-type carbon trading publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119806 – ident: ref_35 doi: 10.1038/s41598-022-15689-3 – volume: 29 start-page: 153 year: 2018 ident: ref_1 article-title: Forecasting the dynamics of the depletion of conventional energy resources publication-title: Stud. Russ. Econ. Dev. doi: 10.1134/S1075700718020156 – volume: 57 start-page: 98 year: 2024 ident: ref_30 article-title: Black-winged kite algorithm: A nature-inspired meta-heuristic for solving benchmark functions and engineering problems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10723-4 – volume: 1 start-page: 46 year: 2020 ident: ref_16 article-title: A comprehensive review of the integration of battery energy storage systems into distribution networks publication-title: IEEE Open J. Ind. Electron. Soc. – ident: ref_4 doi: 10.3390/pr9020339 – volume: 187 start-page: 113759 year: 2023 ident: ref_14 article-title: Dynamic simulation and thermoeconomic analysis of a power to gas system publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113759 – volume: 258 start-page: 115541 year: 2022 ident: ref_22 article-title: Performance evaluation of solar hybrid combined cooling, heating and power systems: A multi-objective arithmetic optimization algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2022.115541 – volume: 276 start-page: 127526 year: 2023 ident: ref_26 article-title: Wind speed prediction by a swarm intelligence based deep learning model via signal decomposition and parameter optimization using improved chimp optimization algorithm publication-title: Energy doi: 10.1016/j.energy.2023.127526 – volume: 25 start-page: 3591 year: 2022 ident: ref_42 article-title: An improved multi-objective imperialist competitive algorithm for surgical case scheduling problem with switching and preparation times publication-title: Clust. Comput. doi: 10.1007/s10586-022-03589-0 – volume: 58 start-page: 1429 year: 2024 ident: ref_32 article-title: Robust operation of hydrogen-fueled power-to-gas system within feasible operating zone considering carbon-dioxide recycling process publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.01.337 – ident: ref_24 doi: 10.1109/ICIBA56860.2023.10165106 – volume: 422 start-page: 122 year: 2018 ident: ref_37 article-title: Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.09.002 – ident: ref_15 doi: 10.3390/en17133205 – volume: 16 start-page: 250 year: 2023 ident: ref_41 article-title: Multi-objective particle swarm optimization algorithm using Cauchy mutation and improved crowding distance publication-title: Int. J. Intell. Comput. Cybern. doi: 10.1108/IJICC-04-2022-0118 – ident: ref_36 – volume: 10 start-page: 3474 year: 2023 ident: ref_3 article-title: Solar energy status in the world: A comprehensive review publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.10.022 – volume: 262 start-page: 125453 year: 2023 ident: ref_8 article-title: Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system publication-title: Energy doi: 10.1016/j.energy.2022.125453 – volume: 270 start-page: 126846 year: 2023 ident: ref_7 article-title: Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses publication-title: Energy doi: 10.1016/j.energy.2023.126846 – volume: 127 start-page: 107230 year: 2024 ident: ref_25 article-title: Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems with uncertainty in demand response and renewable energy publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107230 – volume: 329 start-page: 120268 year: 2023 ident: ref_31 article-title: Electrolyzer cell-methanation/Sabatier reactors integration for power-to-gas energy storage: Thermo-economic analysis and multi-objective optimization publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.120268  | 
    
| SSID | ssj0000331916 | 
    
| Score | 2.3728447 | 
    
| Snippet | This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing... | 
    
| SourceID | unpaywall proquest gale crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 5709 | 
    
| SubjectTerms | Adaptability Algorithms Alternative energy sources Carbon Cooling Efficiency Electricity Emission standards Emissions Energy conversion Energy management Energy management systems Energy resources Energy storage Fossil fuels Hydrogen Methods Optimization algorithms Renewable resources Scheduling Scheduling (Management) Systems stability Wind power  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9lA48ChULBRkQSUOyN04T_uEotWWFrSlUFa0p8hO7G1hya42Sav2j_B3GedBlx4QEudMFCeezHxjzfcNwLYwhuO2pzTLeEB95jOqjM-pZCZlBjFsFFm-8_gg3Jv474-D4xUWv22rxFL8rA7SLuY_jBOBM2DRgHlYvDtisMjM2_P2LIlZcXJXhJG4DWthgGi8B2uTg8P4xM6U6-5uVEk9rO5xd5mdSRfZ_sOVPHQzGt-F9SpfyMsLOZutpJvd-yC7hTZdJt93qlLtpFc3NBz_500ewL0Wi5K4cZ6HcEvnG7DeUZWLDdgcXdPg0LCNA8Uj-FnzdulH9a2Jl3jpFHOWpbaTcT2TmiAYJvudFkVGRjXHkDQC6cRqYjWjKchwePTm0H3XXalbGMgn2uq-TkmcyUX9iHHVdA2Q-syRfrXnkRn5gJCZxLPpfHlWnv54DJPd0ZfhHm1HPNDUc0VJpcN9GdmDDy1dO6PC1qsu15wrlSoEHzqSPleh5xhfoSMxHegsVKFEXIfoRnqb0MvnuX4CRGtEVqEfGG4QdmihhGaZyBBQKsdXQvThVbfhyaJR8kiwArJukVy7RR9eWl9IrDRGbntvprIqimT_6HMSYyIPQs6F04fXrZGZl0uZypbKgAuxalp_WG51PpW0waFIMIYiKGde6PVh-7ef_WVRT__N7BncsR-waSbegl65rPRzhEyletH-Fb8AUxsQbw priority: 102 providerName: Unpaywall  | 
    
| Title | Multi-Objective Scheduling Method for Integrated Energy System Containing CCS+P2G System Using Q-Learning Adaptive Mutation Black-Winged Kite Algorithm | 
    
| URI | https://www.proquest.com/docview/3229161363 https://www.mdpi.com/2071-1050/17/13/5709/pdf?version=1750429679  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Food Science Source (Ebsco) customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: A8Z dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2071-1050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331916 issn: 2071-1050 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6120PhgKBQsVAqCypxQBZxns4BobDaPkC7LC0rtqfIjp2t0JJdmqwQv4S_y0we3cKhx8hWEvkb25_HM98AHMV5LhH2jBsjA-4LX3Cd-5IrkWciRw4bRZTvPBqHp1P_4yyYbcG4y4WhsMpuTawXarPMyEf-Fg0PmYzwQu_96ienqlF0u9qV0FBtaQXzrpYY24Ydl5SxerDzYTienN94XRwPTU6EjU6ph-d9xFtQlbqIIhJv7Uz_r8_3YXddrNTvX2qxuLUBHT-EBy1zZEkD9SPYssUe7HaJxeUe7A83SWvYsZ215WP4U2fZ8s_6e7O6YdMV7jCUiM5GdQVphtSVnXXKEYYN64xA1siZM1KwagpJsMHg4s3EPela6oAD9oW3Kq1zlhi1qj8xWjd3_Kz2EPJv5D007BMOJksWcxzY6urHE5geD78OTnlbkIFnnhtXXDnSVxG5KaxyqaIEnS5daaXUOtNIFWykfKlDz8l9jbALG1gT6lAhC0Muorx96BXLwj4FZi3yoNAPcpkjSbCxjq0wsUH6px1fx3EfXnVgpKtGdyPF8wpBlm4g68NLwiklIYuCImXmal2W6dnFeZrgthuEUsZOH163nfJlda0y1SYe4I-Q9tU_PQ86vNN2KpfpxvD6cHRjA3f81LO73_Ic7tHANSG_B9Crrtf2BRKbSh-21noI2yczgU_T8SS5_AspIPt4 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9hB6QFCoCBRYQREHtKo_1vb6UKEQUhLShNIP0Zu7612nQsEJtaOqv4R_w29j1l43hUNvPXuzcfwmM2_W82YAtuMs4wh7SpXiAWUuc6nMGKfCzVI3Qw4bRUbvPBqH_RP25TQ4XYE_jRbGlFU2PrFy1GqWmjPyHTQ8ZDKuH_of5r-omRpl3q42IzSEHa2gdqsWY1bYMdRXl5jCFbuDT4j3W8_b6x13-9ROGaCp78UlFQ5nIjK5txaeGZNgUiaPa86lTCXGPx0JxmXoOxmT-FtcHWgVylAgtcAAK3zc9x6sMZ_FmPytfeyNDw6vT3kcH03cDeu-qD5-AO3LNVPxIlMBeSMS_h8P1qG1yOfi6lJMpzcC3t5DeGCZKunUpvUIVnS-Aa1GyFxswGZvKZLDhdZLFI_hd6XqpV_lj9qb4qVzjGhG-E5G1cRqglSZDJpOFYr0KgUiqdunE9Mxqx5cQbrdo_cH3ufmSlXgQL5R2xV2QjpKzKuvGC3qmgJSnUjS7-a0UpEhgkc60wkCWZ7_fAIndwLNJqzms1w_BaI18q6QBRnPkJToWMbaVbFCuikdJuO4DW8aMJJ53ecjwfzIQJYsIWvDa4NTYhpn5KYyZyIWRZEMjg6TDob5IOQ8dtrwzi7KZuWFSIUVOuCNmF5b_6zcavBOrOsokqWht2H72gZuualnt-_yClr949F-sj8YD5_DffMQ63LjLVgtLxb6BZKqUr60lkvg7K7_LH8BxGc0Fg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2VVqLlgKBQESiwgiIOaFV_e32oUEgTGkJCaKnozex6d1NVwQm1o6q_hP_Er2LWXjeFQ289e_35xjOzu_PeAOwkWjOEPaNSspAGbuBSoQNGuaszV2MOG8eG7zwcRQfHwaeT8GQF_jRcGFNW2fjEylHLWWbWyHfR8DCTcf3I39W2LGK833s__0VNBymz09q00-C2zYLcq-TGLMljoC4vcDpX7PX3Efs3ntfrfuscUNtxgGa-l5SUOyzgsZmHK-6Zlglm-uQxxZgQmcBYqGIeMBH5jg4EvperQiUjEXFMMzDYch-vewfWzOYXOom1D93R-PBqxcfx0dzdqNZI9fEEtDXXdMiLTTXktaj4f2y4B-uLfM4vL_h0ei349R7AfZu1knZtZg9hReWbsN6QmotN2OouCXM40HqM4hH8rhi-9Is4qz0rHjrF6GZI8GRYda8mmDaTfqNaIUm3YiOSWkqdGPWsuokF6XSO3o29j82RqtiBfKVWIXZC2pLPq1sMF3V9AalWJ-l3s3IpyQDBI-3pBIEsT38-huNbgWYLVvNZrp4AUQpzsCgINdOYoKhEJMqVicTUUziBSJIWvG7ASOe15keKcyUDWbqErAWvDE6pEdHIjTlO-KIo0v7RYdrGkB9GjCVOC97aQXpWnvOMW9IDPojR3fpn5HaDd2rdSJEujb4FO1c2cMNDPb35Ki_hLv406ef-aPAMNsw3rCuPt2G1PF-o55hfleKFNVwCP277X_kL9q04RQ | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9lA48ChULBRkQSUOyN04T_uEotWWFrSlUFa0p8hO7G1hya42Sav2j_B3GedBlx4QEudMFCeezHxjzfcNwLYwhuO2pzTLeEB95jOqjM-pZCZlBjFsFFm-8_gg3Jv474-D4xUWv22rxFL8rA7SLuY_jBOBM2DRgHlYvDtisMjM2_P2LIlZcXJXhJG4DWthgGi8B2uTg8P4xM6U6-5uVEk9rO5xd5mdSRfZ_sOVPHQzGt-F9SpfyMsLOZutpJvd-yC7hTZdJt93qlLtpFc3NBz_500ewL0Wi5K4cZ6HcEvnG7DeUZWLDdgcXdPg0LCNA8Uj-FnzdulH9a2Jl3jpFHOWpbaTcT2TmiAYJvudFkVGRjXHkDQC6cRqYjWjKchwePTm0H3XXalbGMgn2uq-TkmcyUX9iHHVdA2Q-syRfrXnkRn5gJCZxLPpfHlWnv54DJPd0ZfhHm1HPNDUc0VJpcN9GdmDDy1dO6PC1qsu15wrlSoEHzqSPleh5xhfoSMxHegsVKFEXIfoRnqb0MvnuX4CRGtEVqEfGG4QdmihhGaZyBBQKsdXQvThVbfhyaJR8kiwArJukVy7RR9eWl9IrDRGbntvprIqimT_6HMSYyIPQs6F04fXrZGZl0uZypbKgAuxalp_WG51PpW0waFIMIYiKGde6PVh-7ef_WVRT__N7BncsR-waSbegl65rPRzhEyletH-Fb8AUxsQbw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Objective+Scheduling+Method+for+Integrated+Energy+System+Containing+CCS%2BP2G+System+Using+Q-Learning+Adaptive+Mutation+Black-Winged+Kite+Algorithm&rft.jtitle=Sustainability&rft.au=Shi+Ruijuan&rft.au=Yan%2C+Xin&rft.au=Fan+Zuhao&rft.au=Tu+Naiwei&rft.date=2025-07-01&rft.pub=MDPI+AG&rft.eissn=2071-1050&rft.volume=17&rft.issue=13&rft.spage=5709&rft_id=info:doi/10.3390%2Fsu17135709&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |