Applying the improved Chen and Han’s algorithm to different versions of shortest path problems on a polyhedral surface
The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact algorithms for the “single source, any destination” shortest path problem. One is proposed by Mitchell et al. (1987) [1]. The other is by Chen and Ha...
        Saved in:
      
    
          | Published in | Computer aided design Vol. 42; no. 10; pp. 942 - 951 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.10.2010
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0010-4485 1879-2685  | 
| DOI | 10.1016/j.cad.2010.05.009 | 
Cover
| Abstract | The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact algorithms for the “single source, any destination” shortest path problem. One is proposed by Mitchell et al. (1987)
[1]. The other is by Chen and Han (1990)
[11]. Recently, Xin and Wang (2009)
[9] improved the CH algorithm by exploiting a filtering theorem and achieved a practical method that outperforms both the CH algorithm and the MMP algorithm whether in time or in space.
In this paper, we apply the improved CH algorithm to different versions of shortest path problems. The contributions of this paper include: (1) For a surface point
p
∈
△
v
1
v
2
v
3
, we present an unfolding technique for estimating the distance value at p using the distances at
v
1
,
v
2
and
v
3
. (2) We show that the improved CH algorithm can be naturally extended to the “multiple sources, any destination” version. Also, introducing a well-chosen heuristic factor into the improved CH algorithm will induce an exact solution to the “single source, single destination” version. (3) At the conclusion of multi-source shortest path algorithms, we can use the distance values at vertices to approximately compute the geodesic-distance-based offsets, the Voronoi diagram and the Delaunay triangulation in
O
(
n
)
time. (4) By importing a precision parameter
λ
, we obtain a precision controlled approximant which varies from the improved CH algorithm to Dijkstra’s algorithm as
λ
increases from
0
to
1
. Thus, an interesting relationship between them can be naturally established. | 
    
|---|---|
| AbstractList | The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact algorithms for the "single source, any destination" shortest path problem. One is proposed by Mitchell et al. (1987) [1]. The other is by Chen and Han (1990) [11]. Recently, Xin and Wang (2009) [9] improved the CH algorithm by exploiting a filtering theorem and achieved a practical method that outperforms both the CH algorithm and the MMP algorithm whether in time or in space. In this paper, we apply the improved CH algorithm to different versions of shortest path problems. The contributions of this paper include: (1) For a surface point p[set membership, variant][big up triangle, open]v sub(1)v sub(2)v sub(3), we present an unfolding technique for estimating the distance value at p using the distances at v sub(1),v sub(2) and v sub(3). (2) We show that the improved CH algorithm can be naturally extended to the "multiple sources, any destination" version. Also, introducing a well-chosen heuristic factor into the improved CH algorithm will induce an exact solution to the "single source, single destination" version. (3) At the conclusion of multi-source shortest path algorithms, we can use the distance values at vertices to approximately compute the geodesic-distance-based offsets, the Voronoi diagram and the Delaunay triangulation in O(n) time. (4) By importing a precision parameter l, we obtain a precision controlled approximant which varies from the improved CH algorithm to Dijkstra's algorithm as l increases from 0 to 1. Thus, an interesting relationship between them can be naturally established. The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact algorithms for the “single source, any destination” shortest path problem. One is proposed by Mitchell et al. (1987) [1]. The other is by Chen and Han (1990) [11]. Recently, Xin and Wang (2009) [9] improved the CH algorithm by exploiting a filtering theorem and achieved a practical method that outperforms both the CH algorithm and the MMP algorithm whether in time or in space. In this paper, we apply the improved CH algorithm to different versions of shortest path problems. The contributions of this paper include: (1) For a surface point p ∈ △ v 1 v 2 v 3 , we present an unfolding technique for estimating the distance value at p using the distances at v 1 , v 2 and v 3 . (2) We show that the improved CH algorithm can be naturally extended to the “multiple sources, any destination” version. Also, introducing a well-chosen heuristic factor into the improved CH algorithm will induce an exact solution to the “single source, single destination” version. (3) At the conclusion of multi-source shortest path algorithms, we can use the distance values at vertices to approximately compute the geodesic-distance-based offsets, the Voronoi diagram and the Delaunay triangulation in O ( n ) time. (4) By importing a precision parameter λ , we obtain a precision controlled approximant which varies from the improved CH algorithm to Dijkstra’s algorithm as λ increases from 0 to 1 . Thus, an interesting relationship between them can be naturally established.  | 
    
| Author | Wang, Guo-Jin Xin, Shi-Qing  | 
    
| Author_xml | – sequence: 1 givenname: Shi-Qing surname: Xin fullname: Xin, Shi-Qing email: xinshiqing@163.com – sequence: 2 givenname: Guo-Jin surname: Wang fullname: Wang, Guo-Jin email: wanggj@zju.edu.cn  | 
    
| BookMark | eNp9kL1OwzAUhS1UJFrgAdi8MaXYjlMSMVUVfxISC8yWY98QV44dbLeiG6_B6_EkGJWJodPV1T3f0T1nhibOO0DogpI5JXRxtZ4rqeeM5J1Uc0KaIzSl9XVTsEVdTdCU5EvBeV2doFmMa0IIo2UzRR_LcbQ7495w6gGbYQx-CxqvenBYOo0fpPv-_IpY2jcfTOoHnDzWpusggEt4CyEa7yL2HY69DwliwqNMPc5GrYUhX7IRHr3d9aCDtDhuQicVnKHjTtoI53_zFL3e3b6sHoqn5_vH1fKpUCVrUlHXqlaE1RxygI7mwVXLqaILDqAXrKScStVWDVDCQLYdLVvKeFvJlpe6hPIUXe5980Pvm_yeGExUYK104DdR1IxVtGGcZeX1XqmCjzFAJ5RJMuV4KUhjBSXit2qxFrlq8Vu1IJXIVWeS_iPHYAYZdgeZmz0DOfzWQBBRGXAKtAmgktDeHKB_AONUm4E | 
    
| CitedBy_id | crossref_primary_10_1016_j_cad_2022_103333 crossref_primary_10_1080_02331934_2023_2241496 crossref_primary_10_1016_j_cad_2012_07_015 crossref_primary_10_1016_j_cag_2021_04_029 crossref_primary_10_1109_TWC_2014_2341585 crossref_primary_10_1016_j_cad_2014_02_013 crossref_primary_10_1109_TVCG_2021_3109042 crossref_primary_10_1016_j_cad_2019_05_023 crossref_primary_10_1145_3144567 crossref_primary_10_1016_j_cad_2020_102943 crossref_primary_10_1016_j_cam_2012_03_028  | 
    
| Cites_doi | 10.1007/BF01386390 10.1016/j.cad.2007.08.001 10.1007/s11263-006-6859-3 10.1109/SFCS.1997.646107 10.1137/0215014 10.1109/12.663776 10.1007/978-3-540-45077-1_23 10.1137/S0097539797325223 10.1137/S0036144598347059 10.1145/1559755.1559761 10.21236/ADA166246 10.1137/0216045 10.1145/336154.336213 10.1145/1073204.1073228 10.1007/PL00009417 10.1145/263867.263869  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2010 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2010 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1016/j.cad.2010.05.009 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1879-2685 | 
    
| EndPage | 951 | 
    
| ExternalDocumentID | 10_1016_j_cad_2010_05_009 S0010448510001223  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABFRF ABMAC ABXDB ABYKQ ACAZW ACBEA ACDAQ ACGFO ACGFS ACIWK ACKIV ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA K-O KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TAE TN5 TWZ VOH WUQ XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD F28 FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c329t-88c8c0284e010f14e04cb41c164eed623141acb59e102eabf13b124b5ab43d3e3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0010-4485 | 
    
| IngestDate | Sun Sep 28 01:47:04 EDT 2025 Wed Oct 01 06:54:29 EDT 2025 Thu Apr 24 23:12:23 EDT 2025 Fri Feb 23 02:28:10 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | Discrete geodesic problem Computational geometry Voronoi diagram  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c329t-88c8c0284e010f14e04cb41c164eed623141acb59e102eabf13b124b5ab43d3e3 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 822519242 | 
    
| PQPubID | 23500 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_822519242 crossref_citationtrail_10_1016_j_cad_2010_05_009 crossref_primary_10_1016_j_cad_2010_05_009 elsevier_sciencedirect_doi_10_1016_j_cad_2010_05_009  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-10-01 | 
    
| PublicationDateYYYYMMDD | 2010-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2010 text: 2010-10-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Computer aided design | 
    
| PublicationYear | 2010 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Xin, Wang (br000115) 2007; 39 Har-Peled (br000100) 1999; 21 Maheshwari, Wuhrer (br000030) 2009 Mount DM. On finding shortest paths on convex polyhedra. Tech. Rep. 1495. Computer Science Dept. Univ. of Maryland, College Park, Md. 1984. Dijkstra (br000060) 1959; 1 Chen, Han (br000055) 1990 Varadarajan KR, Agarwal PK. Approximating shortest paths on a nonconvex polyhedron. In: IEEE symposium on Foundations of Computer Science. 1997. p. 182–91. Xin, Wang (br000045) 2009; 28 Har-Peled (br000095) 1999; 28 Surazhsky, Surazhsky, Kirsanov, Gortler, Hoppe (br000035) 2005; 24 Peyré, Cohen (br000125) 2006; 69 Leibon, Letscher (br000120) 2000 Agarwal, Har-Peled, Sharir, Varadarajan (br000080) 1997; 44 Mitchell (br000020) 1998 Sethian (br000010) 1999; 41 Barbehenn (br000090) 1998; 47 Mitchell, Sharir (br000025) 2004 Agarwal PK, Har-Peled S, Karia M. Computing approximate shortest paths on convex polytopes. In: Symposium on computational geometry. 2000. p. 270–9. Kanai, Suzuki (br000105) 2000 Yan DM, Levy B, Liu Y, Sun F, Wang W. Isotropic remeshing with fast and exact computation of restricted voronoi diagram. Comput Graph Forum. Kaneva B, O’Rourke J. An implementation of Chen & Han’s shortest paths algorithm. In: CCCG. 2000. Hershberger, Suri (br000070) 1995 Aleksandrov L, Maheshwari A, Sack JR. An improved approximation algorithm for computing geometric shortest paths. In: FCT. 2003. p. 246–57. Mitchell, Mount, Papadimitriou (br000005) 1987; 16 O’Rourke (br000135) 1998 Lanthier, Maheshwari, Rudiger Sack (br000085) 1997 Sharir, Schorr (br000040) 1986; 15 Sharir (10.1016/j.cad.2010.05.009_br000040) 1986; 15 Har-Peled (10.1016/j.cad.2010.05.009_br000100) 1999; 21 Mitchell (10.1016/j.cad.2010.05.009_br000020) 1998 Mitchell (10.1016/j.cad.2010.05.009_br000025) 2004 10.1016/j.cad.2010.05.009_br000065 Peyré (10.1016/j.cad.2010.05.009_br000125) 2006; 69 Mitchell (10.1016/j.cad.2010.05.009_br000005) 1987; 16 Hershberger (10.1016/j.cad.2010.05.009_br000070) 1995 Dijkstra (10.1016/j.cad.2010.05.009_br000060) 1959; 1 Har-Peled (10.1016/j.cad.2010.05.009_br000095) 1999; 28 Agarwal (10.1016/j.cad.2010.05.009_br000080) 1997; 44 Leibon (10.1016/j.cad.2010.05.009_br000120) 2000 Maheshwari (10.1016/j.cad.2010.05.009_br000030) 2009 Surazhsky (10.1016/j.cad.2010.05.009_br000035) 2005; 24 O’Rourke (10.1016/j.cad.2010.05.009_br000135) 1998 10.1016/j.cad.2010.05.009_br000015 Xin (10.1016/j.cad.2010.05.009_br000045) 2009; 28 Sethian (10.1016/j.cad.2010.05.009_br000010) 1999; 41 10.1016/j.cad.2010.05.009_br000110 10.1016/j.cad.2010.05.009_br000075 10.1016/j.cad.2010.05.009_br000130 Lanthier (10.1016/j.cad.2010.05.009_br000085) 1997 10.1016/j.cad.2010.05.009_br000050 Barbehenn (10.1016/j.cad.2010.05.009_br000090) 1998; 47 Chen (10.1016/j.cad.2010.05.009_br000055) 1990 Xin (10.1016/j.cad.2010.05.009_br000115) 2007; 39 Kanai (10.1016/j.cad.2010.05.009_br000105) 2000  | 
    
| References_xml | – reference: Yan DM, Levy B, Liu Y, Sun F, Wang W. Isotropic remeshing with fast and exact computation of restricted voronoi diagram. Comput Graph Forum. – start-page: 241 year: 2000 ident: br000105 article-title: Approximate shortest path on polyhedral surface based on selective refinement of the discrete graph and its applications publication-title: GMP’00: proceedings of the geometric modeling and processing 2000 – reference: Mount DM. On finding shortest paths on convex polyhedra. Tech. Rep. 1495. Computer Science Dept. Univ. of Maryland, College Park, Md. 1984. – reference: Aleksandrov L, Maheshwari A, Sack JR. An improved approximation algorithm for computing geometric shortest paths. In: FCT. 2003. p. 246–57. – reference: Kaneva B, O’Rourke J. An implementation of Chen & Han’s shortest paths algorithm. In: CCCG. 2000. – volume: 39 start-page: 1081 year: 2007 end-page: 1090 ident: br000115 article-title: Efficiently determining a locally exact shortest path on polyhedral surfaces publication-title: Comput Aided Des – start-page: 341 year: 2000 end-page: 349 ident: br000120 article-title: Delaunay triangulations and voronoi diagrams for riemannian manifolds publication-title: SCG’00: Proceedings of the sixteenth annual symposium on computational geometry – volume: 41 start-page: 199 year: 1999 end-page: 235 ident: br000010 article-title: Fast marching methods publication-title: SIAM Rev – volume: 47 start-page: 263 year: 1998 ident: br000090 article-title: A note on the complexity of dijkstra’s algorithm for graphs with weighted vertices publication-title: IEEE Trans Comput – year: 2009 ident: br000030 article-title: Geodesic paths on 3d surfaces: survey and open problems – volume: 21 start-page: 217 year: 1999 end-page: 231 ident: br000100 article-title: Approximate shortest paths and geodesic diameter on a convex polytope in three dimensions publication-title: Discrete Comput Geom – start-page: 124 year: 2004 end-page: 133 ident: br000025 article-title: New results on shortest paths in three dimensions publication-title: SCG’04: proceedings of the twentieth annual symposium on computational geometry – reference: Agarwal PK, Har-Peled S, Karia M. Computing approximate shortest paths on convex polytopes. In: Symposium on computational geometry. 2000. p. 270–9. – volume: 24 start-page: 553 year: 2005 end-page: 560 ident: br000035 article-title: Fast exact and approximate geodesics on meshes publication-title: ACM Trans Graph – start-page: 274 year: 1997 end-page: 283 ident: br000085 article-title: Approximating weighted shortest paths on polyhedral surfaces publication-title: In 6th annual video review of computational geometry, proc. 13th acm symp. computational geometry – reference: Varadarajan KR, Agarwal PK. Approximating shortest paths on a nonconvex polyhedron. In: IEEE symposium on Foundations of Computer Science. 1997. p. 182–91. – volume: 28 start-page: 1182 year: 1999 end-page: 1197 ident: br000095 article-title: Constructing approximate shortest path maps in three dimensions publication-title: SIAM J Comput – start-page: 447 year: 1995 end-page: 456 ident: br000070 article-title: Practical methods for approximating shortest paths on a convex polytope in r3 publication-title: SODA’95: proceedings of the sixth annual ACM-SIAM symposium on discrete algorithms – volume: 16 start-page: 647 year: 1987 end-page: 668 ident: br000005 article-title: The discrete geodesic problem publication-title: SIAM J Comput – start-page: 633 year: 1998 end-page: 701 ident: br000020 article-title: Geometric shortest paths and network optimization publication-title: Handbook of computational geometry – volume: 1 start-page: 269 year: 1959 end-page: 271 ident: br000060 article-title: A note on two problems in connection with graphs publication-title: Numer Math – start-page: 360 year: 1990 end-page: 369 ident: br000055 article-title: Shortest paths on a polyhedron publication-title: SCG’90: proceedings of the sixth annual symposium on computational geometry – volume: 69 start-page: 145 year: 2006 end-page: 156 ident: br000125 article-title: Geodesic remeshing using front propagation publication-title: Int J Comput Vis – volume: 15 start-page: 193 year: 1986 end-page: 215 ident: br000040 article-title: On shortest paths in polyhedral spaces publication-title: SIAM J Comput – volume: 28 year: 2009 ident: br000045 article-title: Improving Chen & Han’s algorithm on the discrete geodesic problem publication-title: ACM Trans Graph – volume: 44 start-page: 567 year: 1997 end-page: 584 ident: br000080 article-title: Approximating shortest paths on a convex polytope in three dimensions publication-title: J Assoc Comput Mach – year: 1998 ident: br000135 article-title: Computational geometry in C – volume: 1 start-page: 269 year: 1959 ident: 10.1016/j.cad.2010.05.009_br000060 article-title: A note on two problems in connection with graphs publication-title: Numer Math doi: 10.1007/BF01386390 – volume: 39 start-page: 1081 issue: 12 year: 2007 ident: 10.1016/j.cad.2010.05.009_br000115 article-title: Efficiently determining a locally exact shortest path on polyhedral surfaces publication-title: Comput Aided Des doi: 10.1016/j.cad.2007.08.001 – start-page: 124 year: 2004 ident: 10.1016/j.cad.2010.05.009_br000025 article-title: New results on shortest paths in three dimensions – year: 1998 ident: 10.1016/j.cad.2010.05.009_br000135 – volume: 69 start-page: 145 issue: 1 year: 2006 ident: 10.1016/j.cad.2010.05.009_br000125 article-title: Geodesic remeshing using front propagation publication-title: Int J Comput Vis doi: 10.1007/s11263-006-6859-3 – ident: 10.1016/j.cad.2010.05.009_br000075 doi: 10.1109/SFCS.1997.646107 – start-page: 633 year: 1998 ident: 10.1016/j.cad.2010.05.009_br000020 article-title: Geometric shortest paths and network optimization – start-page: 274 year: 1997 ident: 10.1016/j.cad.2010.05.009_br000085 article-title: Approximating weighted shortest paths on polyhedral surfaces – volume: 15 start-page: 193 issue: 1 year: 1986 ident: 10.1016/j.cad.2010.05.009_br000040 article-title: On shortest paths in polyhedral spaces publication-title: SIAM J Comput doi: 10.1137/0215014 – volume: 47 start-page: 263 issue: 2 year: 1998 ident: 10.1016/j.cad.2010.05.009_br000090 article-title: A note on the complexity of dijkstra’s algorithm for graphs with weighted vertices publication-title: IEEE Trans Comput doi: 10.1109/12.663776 – year: 2009 ident: 10.1016/j.cad.2010.05.009_br000030 – ident: 10.1016/j.cad.2010.05.009_br000110 doi: 10.1007/978-3-540-45077-1_23 – volume: 28 start-page: 1182 issue: 4 year: 1999 ident: 10.1016/j.cad.2010.05.009_br000095 article-title: Constructing approximate shortest path maps in three dimensions publication-title: SIAM J Comput doi: 10.1137/S0097539797325223 – start-page: 241 year: 2000 ident: 10.1016/j.cad.2010.05.009_br000105 article-title: Approximate shortest path on polyhedral surface based on selective refinement of the discrete graph and its applications – volume: 41 start-page: 199 issue: 2 year: 1999 ident: 10.1016/j.cad.2010.05.009_br000010 article-title: Fast marching methods publication-title: SIAM Rev doi: 10.1137/S0036144598347059 – volume: 28 issue: 4 year: 2009 ident: 10.1016/j.cad.2010.05.009_br000045 article-title: Improving Chen & Han’s algorithm on the discrete geodesic problem publication-title: ACM Trans Graph doi: 10.1145/1559755.1559761 – ident: 10.1016/j.cad.2010.05.009_br000130 – start-page: 360 year: 1990 ident: 10.1016/j.cad.2010.05.009_br000055 article-title: Shortest paths on a polyhedron – ident: 10.1016/j.cad.2010.05.009_br000050 doi: 10.21236/ADA166246 – ident: 10.1016/j.cad.2010.05.009_br000065 – start-page: 447 year: 1995 ident: 10.1016/j.cad.2010.05.009_br000070 article-title: Practical methods for approximating shortest paths on a convex polytope in r3 – start-page: 341 year: 2000 ident: 10.1016/j.cad.2010.05.009_br000120 article-title: Delaunay triangulations and voronoi diagrams for riemannian manifolds – volume: 16 start-page: 647 issue: 4 year: 1987 ident: 10.1016/j.cad.2010.05.009_br000005 article-title: The discrete geodesic problem publication-title: SIAM J Comput doi: 10.1137/0216045 – ident: 10.1016/j.cad.2010.05.009_br000015 doi: 10.1145/336154.336213 – volume: 24 start-page: 553 issue: 3 year: 2005 ident: 10.1016/j.cad.2010.05.009_br000035 article-title: Fast exact and approximate geodesics on meshes publication-title: ACM Trans Graph doi: 10.1145/1073204.1073228 – volume: 21 start-page: 217 issue: 2 year: 1999 ident: 10.1016/j.cad.2010.05.009_br000100 article-title: Approximate shortest paths and geodesic diameter on a convex polytope in three dimensions publication-title: Discrete Comput Geom doi: 10.1007/PL00009417 – volume: 44 start-page: 567 year: 1997 ident: 10.1016/j.cad.2010.05.009_br000080 article-title: Approximating shortest paths on a convex polytope in three dimensions publication-title: J Assoc Comput Mach doi: 10.1145/263867.263869  | 
    
| SSID | ssj0002139 | 
    
| Score | 2.0456038 | 
    
| Snippet | The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 942 | 
    
| SubjectTerms | Algorithms Computational geometry Dijkstra's algorithm Discrete geodesic problem Estimating Exact solutions Filtering Filtration Shortest-path problems Theorems Voronoi diagram  | 
    
| Title | Applying the improved Chen and Han’s algorithm to different versions of shortest path problems on a polyhedral surface | 
    
| URI | https://dx.doi.org/10.1016/j.cad.2010.05.009 https://www.proquest.com/docview/822519242  | 
    
| Volume | 42 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-2685 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002139 issn: 0010-4485 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2685 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002139 issn: 0010-4485 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2685 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002139 issn: 0010-4485 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2685 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002139 issn: 0010-4485 databaseCode: AKRWK dateStart: 19680901 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wscqlJA9Kk59IQUun4kSo7VqtUWRE9U6s3yK-yiJVltslV7QfyN_j1-CePEqaASPXCKlMSW43FmPo-_mQE4YZw76XmWGLIGiXRZCFZ2WVKWmQnZv_PchWjkz1fZ9Fp-vElvNmAyxMIEWmXU_b1O77R1vHMaZ_N0OZ-HGF_aSkhCDJ03hYtN2CL7k-cj2Dq7_DS9elTInIkeBZPKCQ2Gw82O5mW1iwSv4Fwp_mWenijqzvpc7MB2hI141o_sFWz4ahde_pFM8DXcBUAZgpaQMB3OO2eBdziZ-Qp15XCqq18_HxrUi6_1at7OvmNb41AfpcXb3nHWYF1iMwsU3KbFUK8YY80ZekId4bJe3M-8W9FomvWq1Na_geuL8y-TaRLrKiRW8KJN8tzmlnCF9PTdJaOLtEYySzsnspiEh5hk2pq08IQ-vDYlE4ZggEm1kcIJL97CqKor_w7QeG7GXurC80JqEbLVj3WqhWOOoIsu9mA8TKeyMel4qH2xUAO77JsiCaggATVOFUlgD94_Nln2GTeee1kOMlJ_LRtFFuG5ZjjIU9HvFM5IdOXrdaMIL6VhT8r3_6_nA3jR8Qs6ut8hjNrV2h8RbGnNMWx--MGO4-L8DQ7x7TU | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHFoOCFoQj1LmwKlSYGM7ITlWK9CW1wkkbpZfYRctyWqTrcoF9W_07_FLmMkDWiQ4cIqU2FbicWa-sb-ZYWw35NxJz-PAoDUIpIspWNnFQZbFhrJ_J4mjaOSz83hwKY-voqs51u9iYYhW2er-RqfX2rq9s9_O5v5kNKIYX3QlJCKGejeFiw9sQUb8gDywvftnngcPRYOBUeFQ8-5osyZ5We1aehdtraSvGacXarq2PUfLbKkFjfCjea8VNufzz2zxn1SCX9hvgpMUsgSI6GBUbxV4B_2hz0HnDgY6f_jztwQ9vi6mo2p4C1UBXXWUCn4122YlFBmUQyLglhVQtWJoK87gExwIJsX4bujdFN-mnE0zbf0quzw6vOgPgraqQmAFT6sgSWxiEVVIj9-dhXiR1sjQot-E9hLRUChDbU2UesQeXpssFAZBgIm0kcIJL9bYfF7kfp2B8dz0vNSp56nUgnLV93SkhQsdAhedbrBeN53KtinHqfLFWHXcshuFElAkAdWLFEpgg31_6jJp8m281Vh2MlL_LRqF9uCtbtDJU-HPRCckOvfFrFSIliLySPnm-0beYR8HF2en6vTn-ckW-1QzDWri31c2X01nfhsBTGW-1Qv0EQp37f0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+the+improved+Chen+and+Han%27s+algorithm+to+different+versions+of+shortest+path+problems+on+a+polyhedral+surface&rft.jtitle=Computer+aided+design&rft.au=Xin%2C+Shi-Qing&rft.au=Wang%2C+Guo-Jin&rft.date=2010-10-01&rft.issn=0010-4485&rft.volume=42&rft.issue=10&rft.spage=942&rft.epage=951&rft_id=info:doi/10.1016%2Fj.cad.2010.05.009&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon |