Applying the improved Chen and Han’s algorithm to different versions of shortest path problems on a polyhedral surface

The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact algorithms for the “single source, any destination” shortest path problem. One is proposed by Mitchell et al. (1987) [1]. The other is by Chen and Ha...

Full description

Saved in:
Bibliographic Details
Published inComputer aided design Vol. 42; no. 10; pp. 942 - 951
Main Authors Xin, Shi-Qing, Wang, Guo-Jin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2010
Subjects
Online AccessGet full text
ISSN0010-4485
1879-2685
DOI10.1016/j.cad.2010.05.009

Cover

Abstract The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact algorithms for the “single source, any destination” shortest path problem. One is proposed by Mitchell et al. (1987) [1]. The other is by Chen and Han (1990) [11]. Recently, Xin and Wang (2009) [9] improved the CH algorithm by exploiting a filtering theorem and achieved a practical method that outperforms both the CH algorithm and the MMP algorithm whether in time or in space. In this paper, we apply the improved CH algorithm to different versions of shortest path problems. The contributions of this paper include: (1) For a surface point p ∈ △ v 1 v 2 v 3 , we present an unfolding technique for estimating the distance value at p using the distances at v 1 , v 2 and v 3 . (2) We show that the improved CH algorithm can be naturally extended to the “multiple sources, any destination” version. Also, introducing a well-chosen heuristic factor into the improved CH algorithm will induce an exact solution to the “single source, single destination” version. (3) At the conclusion of multi-source shortest path algorithms, we can use the distance values at vertices to approximately compute the geodesic-distance-based offsets, the Voronoi diagram and the Delaunay triangulation in O ( n ) time. (4) By importing a precision parameter λ , we obtain a precision controlled approximant which varies from the improved CH algorithm to Dijkstra’s algorithm as λ increases from 0 to 1 . Thus, an interesting relationship between them can be naturally established.
AbstractList The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact algorithms for the "single source, any destination" shortest path problem. One is proposed by Mitchell et al. (1987) [1]. The other is by Chen and Han (1990) [11]. Recently, Xin and Wang (2009) [9] improved the CH algorithm by exploiting a filtering theorem and achieved a practical method that outperforms both the CH algorithm and the MMP algorithm whether in time or in space. In this paper, we apply the improved CH algorithm to different versions of shortest path problems. The contributions of this paper include: (1) For a surface point p[set membership, variant][big up triangle, open]v sub(1)v sub(2)v sub(3), we present an unfolding technique for estimating the distance value at p using the distances at v sub(1),v sub(2) and v sub(3). (2) We show that the improved CH algorithm can be naturally extended to the "multiple sources, any destination" version. Also, introducing a well-chosen heuristic factor into the improved CH algorithm will induce an exact solution to the "single source, single destination" version. (3) At the conclusion of multi-source shortest path algorithms, we can use the distance values at vertices to approximately compute the geodesic-distance-based offsets, the Voronoi diagram and the Delaunay triangulation in O(n) time. (4) By importing a precision parameter l, we obtain a precision controlled approximant which varies from the improved CH algorithm to Dijkstra's algorithm as l increases from 0 to 1. Thus, an interesting relationship between them can be naturally established.
The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact algorithms for the “single source, any destination” shortest path problem. One is proposed by Mitchell et al. (1987) [1]. The other is by Chen and Han (1990) [11]. Recently, Xin and Wang (2009) [9] improved the CH algorithm by exploiting a filtering theorem and achieved a practical method that outperforms both the CH algorithm and the MMP algorithm whether in time or in space. In this paper, we apply the improved CH algorithm to different versions of shortest path problems. The contributions of this paper include: (1) For a surface point p ∈ △ v 1 v 2 v 3 , we present an unfolding technique for estimating the distance value at p using the distances at v 1 , v 2 and v 3 . (2) We show that the improved CH algorithm can be naturally extended to the “multiple sources, any destination” version. Also, introducing a well-chosen heuristic factor into the improved CH algorithm will induce an exact solution to the “single source, single destination” version. (3) At the conclusion of multi-source shortest path algorithms, we can use the distance values at vertices to approximately compute the geodesic-distance-based offsets, the Voronoi diagram and the Delaunay triangulation in O ( n ) time. (4) By importing a precision parameter λ , we obtain a precision controlled approximant which varies from the improved CH algorithm to Dijkstra’s algorithm as λ increases from 0 to 1 . Thus, an interesting relationship between them can be naturally established.
Author Wang, Guo-Jin
Xin, Shi-Qing
Author_xml – sequence: 1
  givenname: Shi-Qing
  surname: Xin
  fullname: Xin, Shi-Qing
  email: xinshiqing@163.com
– sequence: 2
  givenname: Guo-Jin
  surname: Wang
  fullname: Wang, Guo-Jin
  email: wanggj@zju.edu.cn
BookMark eNp9kL1OwzAUhS1UJFrgAdi8MaXYjlMSMVUVfxISC8yWY98QV44dbLeiG6_B6_EkGJWJodPV1T3f0T1nhibOO0DogpI5JXRxtZ4rqeeM5J1Uc0KaIzSl9XVTsEVdTdCU5EvBeV2doFmMa0IIo2UzRR_LcbQ7495w6gGbYQx-CxqvenBYOo0fpPv-_IpY2jcfTOoHnDzWpusggEt4CyEa7yL2HY69DwliwqNMPc5GrYUhX7IRHr3d9aCDtDhuQicVnKHjTtoI53_zFL3e3b6sHoqn5_vH1fKpUCVrUlHXqlaE1RxygI7mwVXLqaILDqAXrKScStVWDVDCQLYdLVvKeFvJlpe6hPIUXe5980Pvm_yeGExUYK104DdR1IxVtGGcZeX1XqmCjzFAJ5RJMuV4KUhjBSXit2qxFrlq8Vu1IJXIVWeS_iPHYAYZdgeZmz0DOfzWQBBRGXAKtAmgktDeHKB_AONUm4E
CitedBy_id crossref_primary_10_1016_j_cad_2022_103333
crossref_primary_10_1080_02331934_2023_2241496
crossref_primary_10_1016_j_cad_2012_07_015
crossref_primary_10_1016_j_cag_2021_04_029
crossref_primary_10_1109_TWC_2014_2341585
crossref_primary_10_1016_j_cad_2014_02_013
crossref_primary_10_1109_TVCG_2021_3109042
crossref_primary_10_1016_j_cad_2019_05_023
crossref_primary_10_1145_3144567
crossref_primary_10_1016_j_cad_2020_102943
crossref_primary_10_1016_j_cam_2012_03_028
Cites_doi 10.1007/BF01386390
10.1016/j.cad.2007.08.001
10.1007/s11263-006-6859-3
10.1109/SFCS.1997.646107
10.1137/0215014
10.1109/12.663776
10.1007/978-3-540-45077-1_23
10.1137/S0097539797325223
10.1137/S0036144598347059
10.1145/1559755.1559761
10.21236/ADA166246
10.1137/0216045
10.1145/336154.336213
10.1145/1073204.1073228
10.1007/PL00009417
10.1145/263867.263869
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Copyright_xml – notice: 2010 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cad.2010.05.009
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2685
EndPage 951
ExternalDocumentID 10_1016_j_cad_2010_05_009
S0010448510001223
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACAZW
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TAE
TN5
TWZ
VOH
WUQ
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
F28
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c329t-88c8c0284e010f14e04cb41c164eed623141acb59e102eabf13b124b5ab43d3e3
IEDL.DBID AIKHN
ISSN 0010-4485
IngestDate Sun Sep 28 01:47:04 EDT 2025
Wed Oct 01 06:54:29 EDT 2025
Thu Apr 24 23:12:23 EDT 2025
Fri Feb 23 02:28:10 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Discrete geodesic problem
Computational geometry
Voronoi diagram
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c329t-88c8c0284e010f14e04cb41c164eed623141acb59e102eabf13b124b5ab43d3e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 822519242
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_822519242
crossref_citationtrail_10_1016_j_cad_2010_05_009
crossref_primary_10_1016_j_cad_2010_05_009
elsevier_sciencedirect_doi_10_1016_j_cad_2010_05_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer aided design
PublicationYear 2010
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xin, Wang (br000115) 2007; 39
Har-Peled (br000100) 1999; 21
Maheshwari, Wuhrer (br000030) 2009
Mount DM. On finding shortest paths on convex polyhedra. Tech. Rep. 1495. Computer Science Dept. Univ. of Maryland, College Park, Md. 1984.
Dijkstra (br000060) 1959; 1
Chen, Han (br000055) 1990
Varadarajan KR, Agarwal PK. Approximating shortest paths on a nonconvex polyhedron. In: IEEE symposium on Foundations of Computer Science. 1997. p. 182–91.
Xin, Wang (br000045) 2009; 28
Har-Peled (br000095) 1999; 28
Surazhsky, Surazhsky, Kirsanov, Gortler, Hoppe (br000035) 2005; 24
Peyré, Cohen (br000125) 2006; 69
Leibon, Letscher (br000120) 2000
Agarwal, Har-Peled, Sharir, Varadarajan (br000080) 1997; 44
Mitchell (br000020) 1998
Sethian (br000010) 1999; 41
Barbehenn (br000090) 1998; 47
Mitchell, Sharir (br000025) 2004
Agarwal PK, Har-Peled S, Karia M. Computing approximate shortest paths on convex polytopes. In: Symposium on computational geometry. 2000. p. 270–9.
Kanai, Suzuki (br000105) 2000
Yan DM, Levy B, Liu Y, Sun F, Wang W. Isotropic remeshing with fast and exact computation of restricted voronoi diagram. Comput Graph Forum.
Kaneva B, O’Rourke J. An implementation of Chen & Han’s shortest paths algorithm. In: CCCG. 2000.
Hershberger, Suri (br000070) 1995
Aleksandrov L, Maheshwari A, Sack JR. An improved approximation algorithm for computing geometric shortest paths. In: FCT. 2003. p. 246–57.
Mitchell, Mount, Papadimitriou (br000005) 1987; 16
O’Rourke (br000135) 1998
Lanthier, Maheshwari, Rudiger Sack (br000085) 1997
Sharir, Schorr (br000040) 1986; 15
Sharir (10.1016/j.cad.2010.05.009_br000040) 1986; 15
Har-Peled (10.1016/j.cad.2010.05.009_br000100) 1999; 21
Mitchell (10.1016/j.cad.2010.05.009_br000020) 1998
Mitchell (10.1016/j.cad.2010.05.009_br000025) 2004
10.1016/j.cad.2010.05.009_br000065
Peyré (10.1016/j.cad.2010.05.009_br000125) 2006; 69
Mitchell (10.1016/j.cad.2010.05.009_br000005) 1987; 16
Hershberger (10.1016/j.cad.2010.05.009_br000070) 1995
Dijkstra (10.1016/j.cad.2010.05.009_br000060) 1959; 1
Har-Peled (10.1016/j.cad.2010.05.009_br000095) 1999; 28
Agarwal (10.1016/j.cad.2010.05.009_br000080) 1997; 44
Leibon (10.1016/j.cad.2010.05.009_br000120) 2000
Maheshwari (10.1016/j.cad.2010.05.009_br000030) 2009
Surazhsky (10.1016/j.cad.2010.05.009_br000035) 2005; 24
O’Rourke (10.1016/j.cad.2010.05.009_br000135) 1998
10.1016/j.cad.2010.05.009_br000015
Xin (10.1016/j.cad.2010.05.009_br000045) 2009; 28
Sethian (10.1016/j.cad.2010.05.009_br000010) 1999; 41
10.1016/j.cad.2010.05.009_br000110
10.1016/j.cad.2010.05.009_br000075
10.1016/j.cad.2010.05.009_br000130
Lanthier (10.1016/j.cad.2010.05.009_br000085) 1997
10.1016/j.cad.2010.05.009_br000050
Barbehenn (10.1016/j.cad.2010.05.009_br000090) 1998; 47
Chen (10.1016/j.cad.2010.05.009_br000055) 1990
Xin (10.1016/j.cad.2010.05.009_br000115) 2007; 39
Kanai (10.1016/j.cad.2010.05.009_br000105) 2000
References_xml – reference: Yan DM, Levy B, Liu Y, Sun F, Wang W. Isotropic remeshing with fast and exact computation of restricted voronoi diagram. Comput Graph Forum.
– start-page: 241
  year: 2000
  ident: br000105
  article-title: Approximate shortest path on polyhedral surface based on selective refinement of the discrete graph and its applications
  publication-title: GMP’00: proceedings of the geometric modeling and processing 2000
– reference: Mount DM. On finding shortest paths on convex polyhedra. Tech. Rep. 1495. Computer Science Dept. Univ. of Maryland, College Park, Md. 1984.
– reference: Aleksandrov L, Maheshwari A, Sack JR. An improved approximation algorithm for computing geometric shortest paths. In: FCT. 2003. p. 246–57.
– reference: Kaneva B, O’Rourke J. An implementation of Chen & Han’s shortest paths algorithm. In: CCCG. 2000.
– volume: 39
  start-page: 1081
  year: 2007
  end-page: 1090
  ident: br000115
  article-title: Efficiently determining a locally exact shortest path on polyhedral surfaces
  publication-title: Comput Aided Des
– start-page: 341
  year: 2000
  end-page: 349
  ident: br000120
  article-title: Delaunay triangulations and voronoi diagrams for riemannian manifolds
  publication-title: SCG’00: Proceedings of the sixteenth annual symposium on computational geometry
– volume: 41
  start-page: 199
  year: 1999
  end-page: 235
  ident: br000010
  article-title: Fast marching methods
  publication-title: SIAM Rev
– volume: 47
  start-page: 263
  year: 1998
  ident: br000090
  article-title: A note on the complexity of dijkstra’s algorithm for graphs with weighted vertices
  publication-title: IEEE Trans Comput
– year: 2009
  ident: br000030
  article-title: Geodesic paths on 3d surfaces: survey and open problems
– volume: 21
  start-page: 217
  year: 1999
  end-page: 231
  ident: br000100
  article-title: Approximate shortest paths and geodesic diameter on a convex polytope in three dimensions
  publication-title: Discrete Comput Geom
– start-page: 124
  year: 2004
  end-page: 133
  ident: br000025
  article-title: New results on shortest paths in three dimensions
  publication-title: SCG’04: proceedings of the twentieth annual symposium on computational geometry
– reference: Agarwal PK, Har-Peled S, Karia M. Computing approximate shortest paths on convex polytopes. In: Symposium on computational geometry. 2000. p. 270–9.
– volume: 24
  start-page: 553
  year: 2005
  end-page: 560
  ident: br000035
  article-title: Fast exact and approximate geodesics on meshes
  publication-title: ACM Trans Graph
– start-page: 274
  year: 1997
  end-page: 283
  ident: br000085
  article-title: Approximating weighted shortest paths on polyhedral surfaces
  publication-title: In 6th annual video review of computational geometry, proc. 13th acm symp. computational geometry
– reference: Varadarajan KR, Agarwal PK. Approximating shortest paths on a nonconvex polyhedron. In: IEEE symposium on Foundations of Computer Science. 1997. p. 182–91.
– volume: 28
  start-page: 1182
  year: 1999
  end-page: 1197
  ident: br000095
  article-title: Constructing approximate shortest path maps in three dimensions
  publication-title: SIAM J Comput
– start-page: 447
  year: 1995
  end-page: 456
  ident: br000070
  article-title: Practical methods for approximating shortest paths on a convex polytope in r3
  publication-title: SODA’95: proceedings of the sixth annual ACM-SIAM symposium on discrete algorithms
– volume: 16
  start-page: 647
  year: 1987
  end-page: 668
  ident: br000005
  article-title: The discrete geodesic problem
  publication-title: SIAM J Comput
– start-page: 633
  year: 1998
  end-page: 701
  ident: br000020
  article-title: Geometric shortest paths and network optimization
  publication-title: Handbook of computational geometry
– volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: br000060
  article-title: A note on two problems in connection with graphs
  publication-title: Numer Math
– start-page: 360
  year: 1990
  end-page: 369
  ident: br000055
  article-title: Shortest paths on a polyhedron
  publication-title: SCG’90: proceedings of the sixth annual symposium on computational geometry
– volume: 69
  start-page: 145
  year: 2006
  end-page: 156
  ident: br000125
  article-title: Geodesic remeshing using front propagation
  publication-title: Int J Comput Vis
– volume: 15
  start-page: 193
  year: 1986
  end-page: 215
  ident: br000040
  article-title: On shortest paths in polyhedral spaces
  publication-title: SIAM J Comput
– volume: 28
  year: 2009
  ident: br000045
  article-title: Improving Chen & Han’s algorithm on the discrete geodesic problem
  publication-title: ACM Trans Graph
– volume: 44
  start-page: 567
  year: 1997
  end-page: 584
  ident: br000080
  article-title: Approximating shortest paths on a convex polytope in three dimensions
  publication-title: J Assoc Comput Mach
– year: 1998
  ident: br000135
  article-title: Computational geometry in C
– volume: 1
  start-page: 269
  year: 1959
  ident: 10.1016/j.cad.2010.05.009_br000060
  article-title: A note on two problems in connection with graphs
  publication-title: Numer Math
  doi: 10.1007/BF01386390
– volume: 39
  start-page: 1081
  issue: 12
  year: 2007
  ident: 10.1016/j.cad.2010.05.009_br000115
  article-title: Efficiently determining a locally exact shortest path on polyhedral surfaces
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2007.08.001
– start-page: 124
  year: 2004
  ident: 10.1016/j.cad.2010.05.009_br000025
  article-title: New results on shortest paths in three dimensions
– year: 1998
  ident: 10.1016/j.cad.2010.05.009_br000135
– volume: 69
  start-page: 145
  issue: 1
  year: 2006
  ident: 10.1016/j.cad.2010.05.009_br000125
  article-title: Geodesic remeshing using front propagation
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-006-6859-3
– ident: 10.1016/j.cad.2010.05.009_br000075
  doi: 10.1109/SFCS.1997.646107
– start-page: 633
  year: 1998
  ident: 10.1016/j.cad.2010.05.009_br000020
  article-title: Geometric shortest paths and network optimization
– start-page: 274
  year: 1997
  ident: 10.1016/j.cad.2010.05.009_br000085
  article-title: Approximating weighted shortest paths on polyhedral surfaces
– volume: 15
  start-page: 193
  issue: 1
  year: 1986
  ident: 10.1016/j.cad.2010.05.009_br000040
  article-title: On shortest paths in polyhedral spaces
  publication-title: SIAM J Comput
  doi: 10.1137/0215014
– volume: 47
  start-page: 263
  issue: 2
  year: 1998
  ident: 10.1016/j.cad.2010.05.009_br000090
  article-title: A note on the complexity of dijkstra’s algorithm for graphs with weighted vertices
  publication-title: IEEE Trans Comput
  doi: 10.1109/12.663776
– year: 2009
  ident: 10.1016/j.cad.2010.05.009_br000030
– ident: 10.1016/j.cad.2010.05.009_br000110
  doi: 10.1007/978-3-540-45077-1_23
– volume: 28
  start-page: 1182
  issue: 4
  year: 1999
  ident: 10.1016/j.cad.2010.05.009_br000095
  article-title: Constructing approximate shortest path maps in three dimensions
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539797325223
– start-page: 241
  year: 2000
  ident: 10.1016/j.cad.2010.05.009_br000105
  article-title: Approximate shortest path on polyhedral surface based on selective refinement of the discrete graph and its applications
– volume: 41
  start-page: 199
  issue: 2
  year: 1999
  ident: 10.1016/j.cad.2010.05.009_br000010
  article-title: Fast marching methods
  publication-title: SIAM Rev
  doi: 10.1137/S0036144598347059
– volume: 28
  issue: 4
  year: 2009
  ident: 10.1016/j.cad.2010.05.009_br000045
  article-title: Improving Chen & Han’s algorithm on the discrete geodesic problem
  publication-title: ACM Trans Graph
  doi: 10.1145/1559755.1559761
– ident: 10.1016/j.cad.2010.05.009_br000130
– start-page: 360
  year: 1990
  ident: 10.1016/j.cad.2010.05.009_br000055
  article-title: Shortest paths on a polyhedron
– ident: 10.1016/j.cad.2010.05.009_br000050
  doi: 10.21236/ADA166246
– ident: 10.1016/j.cad.2010.05.009_br000065
– start-page: 447
  year: 1995
  ident: 10.1016/j.cad.2010.05.009_br000070
  article-title: Practical methods for approximating shortest paths on a convex polytope in r3
– start-page: 341
  year: 2000
  ident: 10.1016/j.cad.2010.05.009_br000120
  article-title: Delaunay triangulations and voronoi diagrams for riemannian manifolds
– volume: 16
  start-page: 647
  issue: 4
  year: 1987
  ident: 10.1016/j.cad.2010.05.009_br000005
  article-title: The discrete geodesic problem
  publication-title: SIAM J Comput
  doi: 10.1137/0216045
– ident: 10.1016/j.cad.2010.05.009_br000015
  doi: 10.1145/336154.336213
– volume: 24
  start-page: 553
  issue: 3
  year: 2005
  ident: 10.1016/j.cad.2010.05.009_br000035
  article-title: Fast exact and approximate geodesics on meshes
  publication-title: ACM Trans Graph
  doi: 10.1145/1073204.1073228
– volume: 21
  start-page: 217
  issue: 2
  year: 1999
  ident: 10.1016/j.cad.2010.05.009_br000100
  article-title: Approximate shortest paths and geodesic diameter on a convex polytope in three dimensions
  publication-title: Discrete Comput Geom
  doi: 10.1007/PL00009417
– volume: 44
  start-page: 567
  year: 1997
  ident: 10.1016/j.cad.2010.05.009_br000080
  article-title: Approximating shortest paths on a convex polytope in three dimensions
  publication-title: J Assoc Comput Mach
  doi: 10.1145/263867.263869
SSID ssj0002139
Score 2.0456038
Snippet The computation of shortest paths on a polyhedral surface is a common operation in many computer graphics applications. There are two best known exact...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 942
SubjectTerms Algorithms
Computational geometry
Dijkstra's algorithm
Discrete geodesic problem
Estimating
Exact solutions
Filtering
Filtration
Shortest-path problems
Theorems
Voronoi diagram
Title Applying the improved Chen and Han’s algorithm to different versions of shortest path problems on a polyhedral surface
URI https://dx.doi.org/10.1016/j.cad.2010.05.009
https://www.proquest.com/docview/822519242
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-2685
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002139
  issn: 0010-4485
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2685
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002139
  issn: 0010-4485
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2685
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002139
  issn: 0010-4485
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2685
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002139
  issn: 0010-4485
  databaseCode: AKRWK
  dateStart: 19680901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wscqlJA9Kk59IQUun4kSo7VqtUWRE9U6s3yK-yiJVltslV7QfyN_j1-CePEqaASPXCKlMSW43FmPo-_mQE4YZw76XmWGLIGiXRZCFZ2WVKWmQnZv_PchWjkz1fZ9Fp-vElvNmAyxMIEWmXU_b1O77R1vHMaZ_N0OZ-HGF_aSkhCDJ03hYtN2CL7k-cj2Dq7_DS9elTInIkeBZPKCQ2Gw82O5mW1iwSv4Fwp_mWenijqzvpc7MB2hI141o_sFWz4ahde_pFM8DXcBUAZgpaQMB3OO2eBdziZ-Qp15XCqq18_HxrUi6_1at7OvmNb41AfpcXb3nHWYF1iMwsU3KbFUK8YY80ZekId4bJe3M-8W9FomvWq1Na_geuL8y-TaRLrKiRW8KJN8tzmlnCF9PTdJaOLtEYySzsnspiEh5hk2pq08IQ-vDYlE4ZggEm1kcIJL97CqKor_w7QeG7GXurC80JqEbLVj3WqhWOOoIsu9mA8TKeyMel4qH2xUAO77JsiCaggATVOFUlgD94_Nln2GTeee1kOMlJ_LRtFFuG5ZjjIU9HvFM5IdOXrdaMIL6VhT8r3_6_nA3jR8Qs6ut8hjNrV2h8RbGnNMWx--MGO4-L8DQ7x7TU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHFoOCFoQj1LmwKlSYGM7ITlWK9CW1wkkbpZfYRctyWqTrcoF9W_07_FLmMkDWiQ4cIqU2FbicWa-sb-ZYWw35NxJz-PAoDUIpIspWNnFQZbFhrJ_J4mjaOSz83hwKY-voqs51u9iYYhW2er-RqfX2rq9s9_O5v5kNKIYX3QlJCKGejeFiw9sQUb8gDywvftnngcPRYOBUeFQ8-5osyZ5We1aehdtraSvGacXarq2PUfLbKkFjfCjea8VNufzz2zxn1SCX9hvgpMUsgSI6GBUbxV4B_2hz0HnDgY6f_jztwQ9vi6mo2p4C1UBXXWUCn4122YlFBmUQyLglhVQtWJoK87gExwIJsX4bujdFN-mnE0zbf0quzw6vOgPgraqQmAFT6sgSWxiEVVIj9-dhXiR1sjQot-E9hLRUChDbU2UesQeXpssFAZBgIm0kcIJL9bYfF7kfp2B8dz0vNSp56nUgnLV93SkhQsdAhedbrBeN53KtinHqfLFWHXcshuFElAkAdWLFEpgg31_6jJp8m281Vh2MlL_LRqF9uCtbtDJU-HPRCckOvfFrFSIliLySPnm-0beYR8HF2en6vTn-ckW-1QzDWri31c2X01nfhsBTGW-1Qv0EQp37f0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+the+improved+Chen+and+Han%27s+algorithm+to+different+versions+of+shortest+path+problems+on+a+polyhedral+surface&rft.jtitle=Computer+aided+design&rft.au=Xin%2C+Shi-Qing&rft.au=Wang%2C+Guo-Jin&rft.date=2010-10-01&rft.issn=0010-4485&rft.volume=42&rft.issue=10&rft.spage=942&rft.epage=951&rft_id=info:doi/10.1016%2Fj.cad.2010.05.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4485&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4485&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4485&client=summon