Micromagnetic simulations of the size dependence of the Curie temperature in ferromagnetic nanowires and nanolayers
We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size Δx (T→TΔx/aeff, where aeff i...
Saved in:
Published in | Journal of magnetism and magnetic materials Vol. 598; p. 172040 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.05.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0304-8853 1873-4766 1873-4766 |
DOI | 10.1016/j.jmmm.2024.172040 |
Cover
Abstract | We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size Δx (T→TΔx/aeff, where aeff is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures TC that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size d of the system. We show that the difference between the computed finite-size TC and the bulk TC follows a power-law of the type: (ξ0/d)λ, where ξ0 is the correlation length at zero temperature, and λ is a critical exponent. We obtain values of ξ0 in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to λ=2 for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally.
•Simulation of temperature effects using a stochastic Landau-Lifshitz-Gilbert equation.•Accurate determination of the Curie temperature for Cobalt, Nickel, and Iron.•Determination of the scaling law of the Curie temperature with the size of the system, for nanowire and nanolayer geometries. |
---|---|
AbstractList | We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size ∆x (T → T ∆x/a_{eff} , where a eff is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures T_C that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size d of the system. We show that the difference between the computed finite-size T_C and the bulk T_C follows a power-law of the type: (ξ_0 /d)^{λ} , where ξ_0 is the correlation length at zero temperature, and λ is a critical exponent. We obtain values of ξ_0 in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to λ = 2 for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally. We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose variance is proportional to the temperature. By rescaling the temperature proportionally to the computational cell size Δx (T→TΔx/aeff, where aeff is the lattice constant) [M. B. Hahn, J. Phys. Comm., 3:075009, 2019], we obtain Curie temperatures TC that are in line with the experimental values for cobalt, iron and nickel. For finite-sized objects such as nanowires (1D) and nanolayers (2D), the Curie temperature varies with the smallest size d of the system. We show that the difference between the computed finite-size TC and the bulk TC follows a power-law of the type: (ξ0/d)λ, where ξ0 is the correlation length at zero temperature, and λ is a critical exponent. We obtain values of ξ0 in the nanometer range, also in accordance with other simulations and experiments. The computed critical exponent is close to λ=2 for all considered materials and geometries. This is the expected result for a mean-field approach, but slightly larger than the values observed experimentally. •Simulation of temperature effects using a stochastic Landau-Lifshitz-Gilbert equation.•Accurate determination of the Curie temperature for Cobalt, Nickel, and Iron.•Determination of the scaling law of the Curie temperature with the size of the system, for nanowire and nanolayer geometries. |
ArticleNumber | 172040 |
Author | Boileau, Matthieu Hervieux, Paul-Antoine Côte, Raphaël Manfredi, Giovanni Courtès, Clémentine |
Author_xml | – sequence: 1 givenname: Clémentine surname: Courtès fullname: Courtès, Clémentine email: clementine.courtes@unistra.fr organization: University of Strasbourg CNRS, IRMA, UMR 7501, F-67000 Strasbourg, France – sequence: 2 givenname: Matthieu orcidid: 0000-0002-9191-6000 surname: Boileau fullname: Boileau, Matthieu email: matthieu.boileau@math.unistra.fr organization: University of Strasbourg CNRS, IRMA, UMR 7501, F-67000 Strasbourg, France – sequence: 3 givenname: Raphaël surname: Côte fullname: Côte, Raphaël email: raphael.cote@unistra.fr organization: University of Strasbourg CNRS, IRMA, UMR 7501, F-67000 Strasbourg, France – sequence: 4 givenname: Paul-Antoine surname: Hervieux fullname: Hervieux, Paul-Antoine email: paul-antoine.hervieux@ipcms.unistra.fr organization: University of Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France – sequence: 5 givenname: Giovanni surname: Manfredi fullname: Manfredi, Giovanni email: giovanni.manfredi@ipcms.unistra.fr organization: University of Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France |
BackLink | https://hal.science/hal-04364178$$DView record in HAL |
BookMark | eNqNkE9Lw0AQxRdRsFa_gKdcPaTO_kmyBS9S1AoVL3peNrsTuyXZlN1UqZ_exCh6Ek_DPN57w_xOyKFvPRJyTmFGgeaXm9mmaZoZAyZmtGAg4IBMqCx4Koo8PyQT4CBSKTN-TE5i3AAAFTKfkPjgTGgb_eKxcyaJrtnVunOtj0lbJd0ae-kdE4tb9Ba9wW95sQsOkw6bLQbd7QImzicVhl9lXvv2zQWMifb2c6v1HkM8JUeVriOefc0peb69eVos09Xj3f3iepUazuZdyithWJnbUnJRVpksykJmc15KYbiUgqHUEiCz1giqNfDewObWZlBCbvOM8inhY-_Ob_X-Tde12gbX6LBXFNTATW3UwE0N3NTIrU9djKm1_vG32qnl9UoNGgieC1rIV9Z72ejtGcYYsPrfgasxhP3vrw6DisYNaG3PynTKtu6v-Adzjpjx |
Cites_doi | 10.1103/PhysRevLett.28.1516 10.1063/1.2169472 10.1007/s10884-019-09769-8 10.1103/PhysRevB.91.144425 10.1063/1.352477 10.1063/1.1846411 10.1103/PhysRev.130.1677 10.1103/PhysRevB.81.064105 10.1016/j.physb.2005.10.066 10.1103/PhysRevB.84.174440 10.1088/0022-3727/47/34/345004 10.1063/1.4740075 10.1109/TMAG.2009.2021856 10.1103/PhysRevB.47.14260 10.1103/PhysRevLett.86.2665 10.1103/PhysRevLett.64.1059 10.1088/2399-6528/ab31e6 10.1103/PhysRevB.74.094436 10.1088/1361-6463/50/3/033003 10.1103/PhysRevLett.90.207201 10.1137/0719041 10.1103/PhysRevB.99.174414 10.1051/jphyscol:1988818 10.1109/TMAG.2004.836740 10.1063/1.4899186 10.1103/PhysRevLett.68.1208 10.1088/1367-2630/11/10/103031 10.1103/PhysRevB.61.R6463 10.1016/j.actamat.2005.03.039 10.1103/PhysRev.25.753 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY |
DOI | 10.1016/j.jmmm.2024.172040 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Mathematics |
EISSN | 1873-4766 |
ExternalDocumentID | oai:HAL:hal-04364178v2 oai_HAL_hal_04364178v2 10_1016_j_jmmm_2024_172040 S0304885324003317 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SEW SPC SPCBC SPD SSQ SSZ T5K XPP ZMT ~02 ~G- 29K 5VS AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION D-I EFKBS EFLBG EJD FGOYB G-2 HMV HZ~ NDZJH R2- SMS SPG WUQ XXG ~HD 1XC AGCQF VOOES ADTOC UNPAY |
ID | FETCH-LOGICAL-c329t-3f4c2b6db834bf587b78593b84c38842e8a8005ddc41aa0387b29dd50b06d6513 |
IEDL.DBID | .~1 |
ISSN | 0304-8853 1873-4766 |
IngestDate | Sun Sep 07 11:19:21 EDT 2025 Fri Sep 12 12:36:12 EDT 2025 Wed Oct 01 01:57:23 EDT 2025 Sat May 11 15:32:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanowire Micromagnetism Landau-Lifshitz-Gilbert equation Finite-size effect Nanolayer Curie temperature Finite-size effects |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c329t-3f4c2b6db834bf587b78593b84c38842e8a8005ddc41aa0387b29dd50b06d6513 |
ORCID | 0000-0002-9191-6000 0000-0002-4965-9709 0000-0003-3029-0283 0000-0002-5214-8707 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-04364178 |
ParticipantIDs | unpaywall_primary_10_1016_j_jmmm_2024_172040 hal_primary_oai_HAL_hal_04364178v2 crossref_primary_10_1016_j_jmmm_2024_172040 elsevier_sciencedirect_doi_10_1016_j_jmmm_2024_172040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-15 |
PublicationDateYYYYMMDD | 2024-05-15 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of magnetism and magnetic materials |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Yang, Jiang (b20) 2005; 53 Hertel (b4) 2023 Ragusa, d’Aquino, Serpico, Xie, Repetto, Bertotti, Ansalone (b29) 2009; 45 d’Aquino, Serpico, Coppola, Mayergoyz, Bertotti (b28) 2006; 99 Li, Baberschke (b15) 1992; 68 Kittel, McEuen (b24) 2018 Evans, Atxitia, Chantrell (b33) 2015; 91 Evans, Meilak, Naden, Biternas (b1) 2018 Kirschner, Schrefl, Hrkac, Dorfbauer, Suess, Fidler (b8) 2006; 372 Donahue, Porter (b2) 1999 Zhang, Willis (b17) 2001; 86 Gilbert (b23) 2004; 40 Almahmoud, Kornev, Bellaiche (b19) 2010; 81 Davey (b25) 1925; 25 Vansteenkiste, Leliaert, Dvornik, Helsen, Garcia-Sanchez, Van Waeyenberge (b3) 2014; 4 Penny, Muxworthy, Fabian (b22) 2019; 99 Maurat, Hervieux (b35) 2009; 11 Schneider, Bressler, Schuster, Kirschner, de Miguel, Miranda (b13) 1990; 64 Chubykalo-Fesenko, Nowak, Chantrell, Garanin (b10) 2006; 74 Klughertz (b32) 2016 Ono, Maeta (b26) 1988; 49 Evans, Fan, Chureemart, Ostler, Ellis, Chantrell (b34) 2014; 26 Huang, Mankey, Kief, Willis (b14) 1993; 73 Klughertz, Hervieux, Manfredi (b27) 2014; 47 Rüemelin (b31) 1982; 19 Wang, Wu, Zhao, Zhao (b18) 2011; 84 Labbé, Lelong (b30) 2020; 32 Fisher, Barber (b12) 1972; 28 Peczak, Landau (b36) 1993; 47 Brown (b5) 1963; 130 Hovorka, Devos, Coopman, Fan, Aas, Evans, Chen, Ju, Chantrell (b21) 2012; 101 Grinstein, Koch (b6) 2003; 90 Kirschner, Schrefl, Dorfbauer, Hrkac, Suess, Fidler (b7) 2005; 97 Atxitia, Hinzke, Nowak (b11) 2016; 50 Hahn (b9) 2019; 3 Sun, Searson, Chien (b16) 2000; 61 Hertel (10.1016/j.jmmm.2024.172040_b4) 2023 Sun (10.1016/j.jmmm.2024.172040_b16) 2000; 61 Yang (10.1016/j.jmmm.2024.172040_b20) 2005; 53 Evans (10.1016/j.jmmm.2024.172040_b1) 2018 Klughertz (10.1016/j.jmmm.2024.172040_b32) 2016 Brown (10.1016/j.jmmm.2024.172040_b5) 1963; 130 Huang (10.1016/j.jmmm.2024.172040_b14) 1993; 73 Ragusa (10.1016/j.jmmm.2024.172040_b29) 2009; 45 Vansteenkiste (10.1016/j.jmmm.2024.172040_b3) 2014; 4 Hovorka (10.1016/j.jmmm.2024.172040_b21) 2012; 101 Gilbert (10.1016/j.jmmm.2024.172040_b23) 2004; 40 Grinstein (10.1016/j.jmmm.2024.172040_b6) 2003; 90 Labbé (10.1016/j.jmmm.2024.172040_b30) 2020; 32 Li (10.1016/j.jmmm.2024.172040_b15) 1992; 68 Kirschner (10.1016/j.jmmm.2024.172040_b7) 2005; 97 Rüemelin (10.1016/j.jmmm.2024.172040_b31) 1982; 19 Ono (10.1016/j.jmmm.2024.172040_b26) 1988; 49 Penny (10.1016/j.jmmm.2024.172040_b22) 2019; 99 Peczak (10.1016/j.jmmm.2024.172040_b36) 1993; 47 Hahn (10.1016/j.jmmm.2024.172040_b9) 2019; 3 Wang (10.1016/j.jmmm.2024.172040_b18) 2011; 84 Kirschner (10.1016/j.jmmm.2024.172040_b8) 2006; 372 Chubykalo-Fesenko (10.1016/j.jmmm.2024.172040_b10) 2006; 74 Davey (10.1016/j.jmmm.2024.172040_b25) 1925; 25 Klughertz (10.1016/j.jmmm.2024.172040_b27) 2014; 47 Donahue (10.1016/j.jmmm.2024.172040_b2) 1999 Almahmoud (10.1016/j.jmmm.2024.172040_b19) 2010; 81 Zhang (10.1016/j.jmmm.2024.172040_b17) 2001; 86 Maurat (10.1016/j.jmmm.2024.172040_b35) 2009; 11 Schneider (10.1016/j.jmmm.2024.172040_b13) 1990; 64 Evans (10.1016/j.jmmm.2024.172040_b33) 2015; 91 Fisher (10.1016/j.jmmm.2024.172040_b12) 1972; 28 Atxitia (10.1016/j.jmmm.2024.172040_b11) 2016; 50 d’Aquino (10.1016/j.jmmm.2024.172040_b28) 2006; 99 Kittel (10.1016/j.jmmm.2024.172040_b24) 2018 Evans (10.1016/j.jmmm.2024.172040_b34) 2014; 26 |
References_xml | – volume: 32 start-page: 1273 year: 2020 end-page: 1290 ident: b30 article-title: Stochastic modelling of thermal effects on a ferromagnetic nano particle publication-title: J. Dyn. Differ. Equ. – volume: 4 year: 2014 ident: b3 article-title: The design and verification of MuMax3 publication-title: AIP Adv. – volume: 73 start-page: 6760 year: 1993 end-page: 6762 ident: b14 article-title: Finite-size scaling behavior of ferromagnetic thin films publication-title: J. Appl. Phys. – volume: 81 year: 2010 ident: b19 article-title: Dependence of Curie temperature on the thickness of an ultrathin ferroelectric film publication-title: Phys. Rev. B – volume: 50 year: 2016 ident: b11 article-title: Fundamentals and applications of the Landau-Lifshitz-Bloch equation publication-title: J. Phys. D: Appl. Phys. – volume: 86 start-page: 2665 year: 2001 end-page: 2668 ident: b17 article-title: Thickness-dependent Curie temperatures of ultrathin magnetic films: Effect of the range of spin-spin interactions publication-title: Phys. Rev. Lett. – year: 2016 ident: b32 article-title: Ultrafast Magnetization Dynamics in Magnetic Nanoparticles – volume: 91 year: 2015 ident: b33 article-title: Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium properties of elemental ferromagnets publication-title: Phys. Rev. B – volume: 25 start-page: 753 year: 1925 end-page: 761 ident: b25 article-title: Precision measurements of the lattice constants of twelve common metals publication-title: Phys. Rev. – volume: 68 start-page: 1208 year: 1992 end-page: 1211 ident: b15 article-title: Dimensional crossover in ultrathin Ni(111) films on W(110) publication-title: Phys. Rev. Lett. – volume: 101 year: 2012 ident: b21 article-title: The Curie temperature distribution of FePt granular magnetic recording media publication-title: Appl. Phys. Lett. – volume: 26 year: 2014 ident: b34 article-title: Atomistic spin model simulations of magnetic nanomaterials publication-title: J. Phys.: Condens. Matter – volume: 61 start-page: 6463(4) year: 2000 ident: b16 article-title: Finite-size effects in nickel nanowire arrays publication-title: Phys. Rev. B – volume: 99 start-page: 08B905 year: 2006 ident: b28 article-title: Midpoint numerical technique for stochastic Landau-Lifshitz-Gilbert dynamics publication-title: J. Appl. Phys. – volume: 74 year: 2006 ident: b10 article-title: Dynamic approach for micromagnetics close to the Curie temperature publication-title: Phys. Rev. B – volume: 99 year: 2019 ident: b22 article-title: Mean-field modelling of magnetic nanoparticles: The effect of particle size and shape on the Curie temperature publication-title: Phys. Rev. B – volume: 19 start-page: 604 year: 1982 end-page: 613 ident: b31 article-title: Numerical treatment of stochastic differential equations publication-title: SIAM J. Numer. Anal. – volume: 49 start-page: C8 year: 1988 end-page: 63 ident: b26 article-title: Determination of lattice parameters in Hcp cobalt by using X-Ray bond’s method publication-title: J. Phys. Colloques – volume: 97 start-page: 10E301 year: 2005 ident: b7 article-title: Cell size corrections for nonzero-temperature micromagnetics publication-title: J. Appl. Phys. – volume: 47 start-page: 14260 year: 1993 end-page: 14266 ident: b36 article-title: Dynamical critical behavior of the three-dimensional Heisenberg model publication-title: Phys. Rev. B – volume: 130 start-page: 1677 year: 1963 ident: b5 article-title: Thermal fluctuations of a single-domain particle publication-title: Phys. Rev. – volume: 84 year: 2011 ident: b18 article-title: Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model publication-title: Phys. Rev. B – year: 2018 ident: b1 article-title: VAMPIRE, User Manual – volume: 53 start-page: 3305 year: 2005 end-page: 3311 ident: b20 article-title: Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals publication-title: Acta Mater. – volume: 11 year: 2009 ident: b35 article-title: Thermal properties of open-shell metal clusters publication-title: New J. Phys. – year: 2023 ident: b4 article-title: Tetmag – volume: 28 start-page: 1516 year: 1972 end-page: 1519 ident: b12 article-title: Scaling theory for finite-size effects in the critical region publication-title: Phys. Rev. Lett. – volume: 64 start-page: 1059 year: 1990 end-page: 1062 ident: b13 article-title: Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces publication-title: Phys. Rev. Lett. – year: 1999 ident: b2 article-title: OOMMF User’s Guide, Version 1.0, Interagency Report 6376 – volume: 90 year: 2003 ident: b6 article-title: Coarse graining in micromagnetics publication-title: Phys. Rev. Lett. – volume: 40 start-page: 3443 year: 2004 end-page: 3449 ident: b23 article-title: A phenomenological theory of damping in ferromagnetic materials publication-title: IEEE Trans. Magn. – volume: 3 year: 2019 ident: b9 article-title: Temperature in micromagnetism : cell size and scaling effects of the stochastic Landau–Lifshitz equation publication-title: J. Phys. Commun. – year: 2018 ident: b24 article-title: Introduction to Solid State Physics – volume: 47 year: 2014 ident: b27 article-title: Autoresonant control of the magnetization switching in single-domain nanoparticules publication-title: J. Phys. D: Appl. Phys. – volume: 372 start-page: 277 year: 2006 end-page: 281 ident: b8 article-title: Relaxation times and cell size in nonzero-temperature micromagnetics publication-title: Physica B – volume: 45 start-page: 10 year: 2009 ident: b29 article-title: Full micromagnetic numerical simulations of thermal fluctuations publication-title: IEEE Trans. Magnet. – volume: 28 start-page: 1516 year: 1972 ident: 10.1016/j.jmmm.2024.172040_b12 article-title: Scaling theory for finite-size effects in the critical region publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.28.1516 – volume: 99 start-page: 08B905 year: 2006 ident: 10.1016/j.jmmm.2024.172040_b28 article-title: Midpoint numerical technique for stochastic Landau-Lifshitz-Gilbert dynamics publication-title: J. Appl. Phys. doi: 10.1063/1.2169472 – volume: 32 start-page: 1273 year: 2020 ident: 10.1016/j.jmmm.2024.172040_b30 article-title: Stochastic modelling of thermal effects on a ferromagnetic nano particle publication-title: J. Dyn. Differ. Equ. doi: 10.1007/s10884-019-09769-8 – volume: 91 year: 2015 ident: 10.1016/j.jmmm.2024.172040_b33 article-title: Quantitative simulation of temperature-dependent magnetization dynamics and equilibrium properties of elemental ferromagnets publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.144425 – volume: 73 start-page: 6760 issue: 10 year: 1993 ident: 10.1016/j.jmmm.2024.172040_b14 article-title: Finite-size scaling behavior of ferromagnetic thin films publication-title: J. Appl. Phys. doi: 10.1063/1.352477 – volume: 97 start-page: 10E301 year: 2005 ident: 10.1016/j.jmmm.2024.172040_b7 article-title: Cell size corrections for nonzero-temperature micromagnetics publication-title: J. Appl. Phys. doi: 10.1063/1.1846411 – volume: 130 start-page: 1677 year: 1963 ident: 10.1016/j.jmmm.2024.172040_b5 article-title: Thermal fluctuations of a single-domain particle publication-title: Phys. Rev. doi: 10.1103/PhysRev.130.1677 – year: 2018 ident: 10.1016/j.jmmm.2024.172040_b1 – volume: 81 year: 2010 ident: 10.1016/j.jmmm.2024.172040_b19 article-title: Dependence of Curie temperature on the thickness of an ultrathin ferroelectric film publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.064105 – year: 2023 ident: 10.1016/j.jmmm.2024.172040_b4 – volume: 26 issue: 10 year: 2014 ident: 10.1016/j.jmmm.2024.172040_b34 article-title: Atomistic spin model simulations of magnetic nanomaterials publication-title: J. Phys.: Condens. Matter – volume: 372 start-page: 277 issue: 1 year: 2006 ident: 10.1016/j.jmmm.2024.172040_b8 article-title: Relaxation times and cell size in nonzero-temperature micromagnetics publication-title: Physica B doi: 10.1016/j.physb.2005.10.066 – volume: 84 year: 2011 ident: 10.1016/j.jmmm.2024.172040_b18 article-title: Finite-size scaling behavior and intrinsic critical exponents of nickel: Comparison with the three-dimensional Heisenberg model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.174440 – volume: 47 year: 2014 ident: 10.1016/j.jmmm.2024.172040_b27 article-title: Autoresonant control of the magnetization switching in single-domain nanoparticules publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/47/34/345004 – volume: 101 issue: 5 year: 2012 ident: 10.1016/j.jmmm.2024.172040_b21 article-title: The Curie temperature distribution of FePt granular magnetic recording media publication-title: Appl. Phys. Lett. doi: 10.1063/1.4740075 – year: 2018 ident: 10.1016/j.jmmm.2024.172040_b24 – volume: 45 start-page: 10 year: 2009 ident: 10.1016/j.jmmm.2024.172040_b29 article-title: Full micromagnetic numerical simulations of thermal fluctuations publication-title: IEEE Trans. Magnet. doi: 10.1109/TMAG.2009.2021856 – volume: 47 start-page: 14260 year: 1993 ident: 10.1016/j.jmmm.2024.172040_b36 article-title: Dynamical critical behavior of the three-dimensional Heisenberg model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.14260 – volume: 86 start-page: 2665 year: 2001 ident: 10.1016/j.jmmm.2024.172040_b17 article-title: Thickness-dependent Curie temperatures of ultrathin magnetic films: Effect of the range of spin-spin interactions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.86.2665 – volume: 64 start-page: 1059 year: 1990 ident: 10.1016/j.jmmm.2024.172040_b13 article-title: Curie temperature of ultrathin films of fcc-cobalt epitaxially grown on atomically flat Cu(100) surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.1059 – year: 1999 ident: 10.1016/j.jmmm.2024.172040_b2 – volume: 3 year: 2019 ident: 10.1016/j.jmmm.2024.172040_b9 article-title: Temperature in micromagnetism : cell size and scaling effects of the stochastic Landau–Lifshitz equation publication-title: J. Phys. Commun. doi: 10.1088/2399-6528/ab31e6 – volume: 74 year: 2006 ident: 10.1016/j.jmmm.2024.172040_b10 article-title: Dynamic approach for micromagnetics close to the Curie temperature publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.094436 – volume: 50 issue: 3 year: 2016 ident: 10.1016/j.jmmm.2024.172040_b11 article-title: Fundamentals and applications of the Landau-Lifshitz-Bloch equation publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/50/3/033003 – volume: 90 issue: 20 year: 2003 ident: 10.1016/j.jmmm.2024.172040_b6 article-title: Coarse graining in micromagnetics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.207201 – volume: 19 start-page: 604 issue: 3 year: 1982 ident: 10.1016/j.jmmm.2024.172040_b31 article-title: Numerical treatment of stochastic differential equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/0719041 – volume: 99 year: 2019 ident: 10.1016/j.jmmm.2024.172040_b22 article-title: Mean-field modelling of magnetic nanoparticles: The effect of particle size and shape on the Curie temperature publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.174414 – volume: 49 start-page: C8 issue: C8 year: 1988 ident: 10.1016/j.jmmm.2024.172040_b26 article-title: Determination of lattice parameters in Hcp cobalt by using X-Ray bond’s method publication-title: J. Phys. Colloques doi: 10.1051/jphyscol:1988818 – volume: 40 start-page: 3443 issue: 6 year: 2004 ident: 10.1016/j.jmmm.2024.172040_b23 article-title: A phenomenological theory of damping in ferromagnetic materials publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2004.836740 – volume: 4 year: 2014 ident: 10.1016/j.jmmm.2024.172040_b3 article-title: The design and verification of MuMax3 publication-title: AIP Adv. doi: 10.1063/1.4899186 – volume: 68 start-page: 1208 year: 1992 ident: 10.1016/j.jmmm.2024.172040_b15 article-title: Dimensional crossover in ultrathin Ni(111) films on W(110) publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.68.1208 – volume: 11 issue: 10 year: 2009 ident: 10.1016/j.jmmm.2024.172040_b35 article-title: Thermal properties of open-shell metal clusters publication-title: New J. Phys. doi: 10.1088/1367-2630/11/10/103031 – year: 2016 ident: 10.1016/j.jmmm.2024.172040_b32 – volume: 61 start-page: 6463(4) issue: 10 year: 2000 ident: 10.1016/j.jmmm.2024.172040_b16 article-title: Finite-size effects in nickel nanowire arrays publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.R6463 – volume: 53 start-page: 3305 issue: 11 year: 2005 ident: 10.1016/j.jmmm.2024.172040_b20 article-title: Size and interface effects on critical temperatures of ferromagnetic, ferroelectric and superconductive nanocrystals publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.03.039 – volume: 25 start-page: 753 year: 1925 ident: 10.1016/j.jmmm.2024.172040_b25 article-title: Precision measurements of the lattice constants of twelve common metals publication-title: Phys. Rev. doi: 10.1103/PhysRev.25.753 |
SSID | ssj0001486 ssib019626450 |
Score | 2.4667091 |
Snippet | We solve the Landau-Lifshitz-Gilbert equation in the finite-temperature regime, where thermal fluctuations are modeled by a random magnetic field whose... |
SourceID | unpaywall hal crossref elsevier |
SourceType | Open Access Repository Index Database Publisher |
StartPage | 172040 |
SubjectTerms | Condensed Matter Curie temperature Finite-size effect Landau-Lifshitz-Gilbert equation Mathematics Micromagnetism Nanolayer Nanowire Numerical Analysis Physics Strongly Correlated Electrons |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ohuiLd3HeCOKbZqxtmqaPQ5QhTnxwoE8lSVNvWyZ2U_TXm9OLiKDoWxN6Cf1C8oXzne8AHPgyMiITAVVp2KFMcU2lMIoa5hvNgkiV4vH-Be8N2Nl1eD0DpM6FuXOMs1r78ZqiQzrzIjELTY4hpAY0BxeX3ZsyOMCoEIXRpCeigLKI8yovppRwPYxGmGzus7aHtVg6P-09s3cogpyf2if59iqHwy87zOlSqXTMC2NCFJY8tqcT1dbv32wbfxv8MixW9JJ0y_mwAjPGrsJcIfPU-Rrk_UJ_J28t5i6S_H5UVe_KyTgjjgu6rndD6sq42tTdx1jZjqCPVWXCTO4tyczzl5dZacdofJwTadOiNZTI59dhcHpyddyjVdkFqgM_ntAgY9pXPFUiYCoLRaQiNEVTgulACIehkI5lhmmqmSclhr-VH6cOatXhKQ-9YAMadmzNJhB3nMoydwD0uGOZwsTKi3UsMPSaOl4W6hYc1oAkT6W7RlLLzh4ShC9B-JISvhaENWZJ9ZvLfT9xy_-vz-07ND4_gIbave55gn01Qi9-C44-8f_DWLb-d_s2LGALZQdeuAONyfPU7Do2M1F71YT-ABjo8KY priority: 102 providerName: Unpaywall |
Title | Micromagnetic simulations of the size dependence of the Curie temperature in ferromagnetic nanowires and nanolayers |
URI | https://dx.doi.org/10.1016/j.jmmm.2024.172040 https://hal.science/hal-04364178 |
UnpaywallVersion | submittedVersion |
Volume | 598 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001486 issn: 0304-8853 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-4766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001486 issn: 0304-8853 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-4766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001486 issn: 0304-8853 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001486 issn: 0304-8853 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4766 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001486 issn: 0304-8853 databaseCode: AKRWK dateStart: 19751001 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qRfQiPrE-yiLeNG2TbJLNsRRLfbQIWqinsLvZaEu7LU2r6MHf7k4etR4U8RR2yGOZWWa-MN_MIHRmMU_SiNoGD52aQbgrDEYlNySxpCC2x1PyeLvjtrrkuuf0CqiR18IArTLz_alPT7x1Jqlm2qxO-v3qPST1qI42wIK0dRiECnbiAq2v8vFF89BwP81X1ogBd2eFMynHazAaQTW6RSomDGup_RScVp6BJbk-VxP29sqGw6UQ1NxCmxl2xPV0e9uoINUOWks4nCLeRXE7IdexJwWFiTjuj7LRXDEeR1gDPS16lzgfeytkLm7A2DoMTaqyDsu4r3Akp0svU0yNoatxjJkKk9WQAVjfQ93m5UOjZWQzFQxhW_7MsCMiLO6GnNqERw71uAcdzzglwqZUG4gyDSGdMBTEZAxy29zyQ21HXnND1zHtfVRUYyUPENb_SlGk_-5MV0NIKn1u-sKnkFcNNehyRAmd58oMJmnrjCDnlA0CUH0Aqg9S1ZeQk-s7-HYAAu3bf33uVBtn8QHolt2q3wYgg-76xPToi1VCFwvb_WEvh__cyxHagBWQC0znGBVn07k80ZhlxsvJoSyj1frVTaujr93OXf3xE6Je7CY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5BEWIv08YPrWxjFtrbCG0SO3Eeq2oojLYvgMSbZTsOFLVuRQoI_np8jVPBA9O0x1zkxLqz7j7rvrsD-BnJ1PCSx4EqWDegKtGB5EYFhkZG0zhVNXl8OEryS_rnil2tQb-phUFapff9tU9femsv6Xhtdubjcecck3rcRRtkQcYuDK7DBmXOJ7dgo3d6lo9WDtkh_jpl2aUBLvC1MzXN63Y6xYL0iB6HOK-l-158Wr9BouTWvZ3Lp0c5mbyKQief4KOHj6RX7_AzrBm7DZtLGqeudqAaLvl18tpibSKpxlM_nasis5I4rOdEz4Y0k2-1acR9nFxHsE-Vb7JMxpaU5u7Vx6y0M2xsXBFpi-XTRCJe34XLk98X_TzwYxUCHUfZIohLqiOVFIrHVJWMpyrFpmeKUx1z7mzEpUORrCg0DaXE9LaKssKZUnWTImFhvActO7PmCxB3XSpLd8ELE4ciuclUmOmMY2q1cLiL6Tb8apQp5nX3DNHQym4Fql6g6kWt-jawRt_izRkQzr3_dd2hM87qB9gwO-8NBMqwwT4NU_4QteFoZbt_2Mv-f-7lB2zlF8OBGJyOzr7CB3yDXIOQfYPW4u7efHcQZqEO_BF9AUlE7SE |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7ohuiLd3HeCOKbZqxtmqaPQ5QhTnxwoE8lSVNvWyZ2U_TXm9OLiKDoWxN6Cf1C8oXzne8AHPgyMiITAVVp2KFMcU2lMIoa5hvNgkiV4vH-Be8N2Nl1eD0DpM6FuXOMs1r78ZqiQzrzIjELTY4hpAY0BxeX3ZsyOMCoEIXRpCeigLKI8yovppRwPYxGmGzus7aHtVg6P-09s3cogpyf2if59iqHwy87zOlSqXTMC2NCFJY8tqcT1dbv32wbfxv8MixW9JJ0y_mwAjPGrsJcIfPU-Rrk_UJ_J28t5i6S_H5UVe_KyTgjjgu6rndD6sq42tTdx1jZjqCPVWXCTO4tyczzl5dZacdofJwTadOiNZTI59dhcHpyddyjVdkFqgM_ntAgY9pXPFUiYCoLRaQiNEVTgulACIehkI5lhmmqmSclhr-VH6cOatXhKQ-9YAMadmzNJhB3nMoydwD0uGOZwsTKi3UsMPSaOl4W6hYc1oAkT6W7RlLLzh4ShC9B-JISvhaENWZJ9ZvLfT9xy_-vz-07ND4_gIbave55gn01Qi9-C44-8f_DWLb-d_s2LGALZQdeuAONyfPU7Do2M1F71YT-ABjo8KY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Micromagnetic+simulations+of+the+size+dependence+of+the+Curie+temperature+in+ferromagnetic+nanowires+and+nanolayers&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Court%C3%A8s%2C+Cl%C3%A9mentine&rft.au=Boileau%2C+Matthieu&rft.au=C%C3%B4te%2C+Rapha%C3%ABl&rft.au=Hervieux%2C+Paul-Antoine&rft.date=2024-05-15&rft.issn=0304-8853&rft.volume=598&rft.spage=172040&rft_id=info:doi/10.1016%2Fj.jmmm.2024.172040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmmm_2024_172040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon |