Functional reservoir microcapsules generated via microfluidic fabrication for long-term cardiovascular therapeutics

Cardiovascular disease is a chronic disease that leads to impaired cardiac function and requires long-term management to control its progression. Despite the importance of hydrogels for therapeutic applications, a contradiction between the size of a hydrogel and the amount of loaded drug has been en...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip Vol. 20; no. 15; pp. 2756 - 2764
Main Authors Dinh, Ngoc-Duy, Kukumberg, Marek, Nguyen, Anh-Tuan, Keramati, Hamed, Guo, Song, Phan, Dinh-Tuan, Ja'Afar, Nurdiyana B., Birgersson, Erik, Leo, Hwa Liang, Huang, Ruby Yun-Ju, Kofidis, Theodoros, Rufaihah, Abdul Jalil, Chen, Chia-Hung
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.08.2020
Subjects
Online AccessGet full text
ISSN1473-0197
1473-0189
1473-0189
DOI10.1039/D0LC00296H

Cover

Abstract Cardiovascular disease is a chronic disease that leads to impaired cardiac function and requires long-term management to control its progression. Despite the importance of hydrogels for therapeutic applications, a contradiction between the size of a hydrogel and the amount of loaded drug has been encountered when using conventional fabrication methods. In this study, biocompatible reservoir microcapsules (diameter ∼100 μm) with a large liquid core and polymeric shell were fabricated via a one-step phase separation of poly(ethylene glycol)diacrylate (PEGDA) and dextran within pre-gel droplets through microfluidics. By controlling the process of phase separation, high drug-loading efficiency (∼80%) for long-term release (30 days) of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) was achieved. Drug molecules were dispersed within the liquid core at a concentration above saturation solubility for sustained delivery via regulation of the shells. Effective therapeutic enhancement of human umbilical vein endothelial cell (HUVEC) and umbilical artery smooth muscle cell (SMC) proliferation and tube formation in vitro promoted rapid cell proliferation and increased the number of migrated cells by ∼1.7 times. Moreover, in vivo blood vessel regeneration for cardiovascular control induced by sustained dual-drug (VEGF and PDGF) delivery to the rat heart was achieved, showing the effectiveness of long-term protein delivery in improving cardiac function and significantly reducing ventricular wall thickness and fibrosis of the infarct region. The ratio of heart tissue scarring was reduced to 11.2% after microcapsule treatment compared with 21.4% after saline treatment in the rat model. By using these reservoir microcapsules, similar sustained delivery of proteins, mRNAs and biologic drugs could be developed for the treatment of a range of long-term chronic diseases and regenerative medicine.
AbstractList Cardiovascular disease is a chronic disease that leads to impaired cardiac function and requires long-term management to control its progression. Despite the importance of hydrogels for therapeutic applications, a contradiction between the size of a hydrogel and the amount of loaded drug has been encountered when using conventional fabrication methods. In this study, biocompatible reservoir microcapsules (diameter ∼100 μm) with a large liquid core and polymeric shell were fabricated via a one-step phase separation of poly(ethylene glycol)diacrylate (PEGDA) and dextran within pre-gel droplets through microfluidics. By controlling the process of phase separation, high drug-loading efficiency (∼80%) for long-term release (30 days) of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) was achieved. Drug molecules were dispersed within the liquid core at a concentration above saturation solubility for sustained delivery via regulation of the shells. Effective therapeutic enhancement of human umbilical vein endothelial cell (HUVEC) and umbilical artery smooth muscle cell (SMC) proliferation and tube formation in vitro promoted rapid cell proliferation and increased the number of migrated cells by ∼1.7 times. Moreover, in vivo blood vessel regeneration for cardiovascular control induced by sustained dual-drug (VEGF and PDGF) delivery to the rat heart was achieved, showing the effectiveness of long-term protein delivery in improving cardiac function and significantly reducing ventricular wall thickness and fibrosis of the infarct region. The ratio of heart tissue scarring was reduced to 11.2% after microcapsule treatment compared with 21.4% after saline treatment in the rat model. By using these reservoir microcapsules, similar sustained delivery of proteins, mRNAs and biologic drugs could be developed for the treatment of a range of long-term chronic diseases and regenerative medicine.
Cardiovascular disease is a chronic disease that leads to impaired cardiac function and requires long-term management to control its progression. Despite the importance of hydrogels for therapeutic applications, a contradiction between the size of a hydrogel and the amount of loaded drug has been encountered when using conventional fabrication methods. In this study, biocompatible reservoir microcapsules (diameter ∼100 μm) with a large liquid core and polymeric shell were fabricated via a one-step phase separation of poly(ethylene glycol)diacrylate (PEGDA) and dextran within pre-gel droplets through microfluidics. By controlling the process of phase separation, high drug-loading efficiency (∼80%) for long-term release (30 days) of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) was achieved. Drug molecules were dispersed within the liquid core at a concentration above saturation solubility for sustained delivery via regulation of the shells. Effective therapeutic enhancement of human umbilical vein endothelial cell (HUVEC) and umbilical artery smooth muscle cell (SMC) proliferation and tube formation in vitro promoted rapid cell proliferation and increased the number of migrated cells by ∼1.7 times. Moreover, in vivo blood vessel regeneration for cardiovascular control induced by sustained dual-drug (VEGF and PDGF) delivery to the rat heart was achieved, showing the effectiveness of long-term protein delivery in improving cardiac function and significantly reducing ventricular wall thickness and fibrosis of the infarct region. The ratio of heart tissue scarring was reduced to 11.2% after microcapsule treatment compared with 21.4% after saline treatment in the rat model. By using these reservoir microcapsules, similar sustained delivery of proteins, mRNAs and biologic drugs could be developed for the treatment of a range of long-term chronic diseases and regenerative medicine.
Cardiovascular disease is a chronic disease that leads to impaired cardiac function and requires long-term management to control its progression. Despite the importance of hydrogels for therapeutic applications, a contradiction between the size of a hydrogel and the amount of loaded drug has been encountered when using conventional fabrication methods. In this study, biocompatible reservoir microcapsules (diameter ∼100 μm) with a large liquid core and polymeric shell were fabricated via a one-step phase separation of poly(ethylene glycol)diacrylate (PEGDA) and dextran within pre-gel droplets through microfluidics. By controlling the process of phase separation, high drug-loading efficiency (∼80%) for long-term release (30 days) of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) was achieved. Drug molecules were dispersed within the liquid core at a concentration above saturation solubility for sustained delivery via regulation of the shells. Effective therapeutic enhancement of human umbilical vein endothelial cell (HUVEC) and umbilical artery smooth muscle cell (SMC) proliferation and tube formation in vitro promoted rapid cell proliferation and increased the number of migrated cells by ∼1.7 times. Moreover, in vivo blood vessel regeneration for cardiovascular control induced by sustained dual-drug (VEGF and PDGF) delivery to the rat heart was achieved, showing the effectiveness of long-term protein delivery in improving cardiac function and significantly reducing ventricular wall thickness and fibrosis of the infarct region. The ratio of heart tissue scarring was reduced to 11.2% after microcapsule treatment compared with 21.4% after saline treatment in the rat model. By using these reservoir microcapsules, similar sustained delivery of proteins, mRNAs and biologic drugs could be developed for the treatment of a range of long-term chronic diseases and regenerative medicine.Cardiovascular disease is a chronic disease that leads to impaired cardiac function and requires long-term management to control its progression. Despite the importance of hydrogels for therapeutic applications, a contradiction between the size of a hydrogel and the amount of loaded drug has been encountered when using conventional fabrication methods. In this study, biocompatible reservoir microcapsules (diameter ∼100 μm) with a large liquid core and polymeric shell were fabricated via a one-step phase separation of poly(ethylene glycol)diacrylate (PEGDA) and dextran within pre-gel droplets through microfluidics. By controlling the process of phase separation, high drug-loading efficiency (∼80%) for long-term release (30 days) of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) was achieved. Drug molecules were dispersed within the liquid core at a concentration above saturation solubility for sustained delivery via regulation of the shells. Effective therapeutic enhancement of human umbilical vein endothelial cell (HUVEC) and umbilical artery smooth muscle cell (SMC) proliferation and tube formation in vitro promoted rapid cell proliferation and increased the number of migrated cells by ∼1.7 times. Moreover, in vivo blood vessel regeneration for cardiovascular control induced by sustained dual-drug (VEGF and PDGF) delivery to the rat heart was achieved, showing the effectiveness of long-term protein delivery in improving cardiac function and significantly reducing ventricular wall thickness and fibrosis of the infarct region. The ratio of heart tissue scarring was reduced to 11.2% after microcapsule treatment compared with 21.4% after saline treatment in the rat model. By using these reservoir microcapsules, similar sustained delivery of proteins, mRNAs and biologic drugs could be developed for the treatment of a range of long-term chronic diseases and regenerative medicine.
Author Huang, Ruby Yun-Ju
Leo, Hwa Liang
Chen, Chia-Hung
Birgersson, Erik
Rufaihah, Abdul Jalil
Ja'Afar, Nurdiyana B.
Phan, Dinh-Tuan
Kukumberg, Marek
Dinh, Ngoc-Duy
Keramati, Hamed
Nguyen, Anh-Tuan
Guo, Song
Kofidis, Theodoros
Author_xml – sequence: 1
  givenname: Ngoc-Duy
  orcidid: 0000-0002-4964-7038
  surname: Dinh
  fullname: Dinh, Ngoc-Duy
  organization: Department of Biomedical Engineering, National University of Singapore, Singapore
– sequence: 2
  givenname: Marek
  surname: Kukumberg
  fullname: Kukumberg, Marek
  organization: Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 3
  givenname: Anh-Tuan
  surname: Nguyen
  fullname: Nguyen, Anh-Tuan
  organization: Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 4
  givenname: Hamed
  orcidid: 0000-0002-0156-9739
  surname: Keramati
  fullname: Keramati, Hamed
  organization: NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), National University of Singapore, Singapore, Singapore
– sequence: 5
  givenname: Song
  orcidid: 0000-0003-1975-8981
  surname: Guo
  fullname: Guo, Song
  organization: Department of Biomedical Engineering, National University of Singapore, Singapore
– sequence: 6
  givenname: Dinh-Tuan
  orcidid: 0000-0001-7060-0173
  surname: Phan
  fullname: Phan, Dinh-Tuan
  organization: Department of Biomedical Engineering, National University of Singapore, Singapore
– sequence: 7
  givenname: Nurdiyana B.
  surname: Ja'Afar
  fullname: Ja'Afar, Nurdiyana B.
  organization: NUS Graduate School for Integrative Sciences and Engineering (NGS), Centre for Life Sciences (CeLS), National University of Singapore, Singapore, Singapore
– sequence: 8
  givenname: Erik
  surname: Birgersson
  fullname: Birgersson, Erik
  organization: Department of Mechanical Engineering, National University of Singapore, Singapore
– sequence: 9
  givenname: Hwa Liang
  surname: Leo
  fullname: Leo, Hwa Liang
  organization: Department of Biomedical Engineering, National University of Singapore, Singapore
– sequence: 10
  givenname: Ruby Yun-Ju
  surname: Huang
  fullname: Huang, Ruby Yun-Ju
  organization: Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, School of Medicine, College of Medicine
– sequence: 11
  givenname: Theodoros
  surname: Kofidis
  fullname: Kofidis, Theodoros
  organization: Department of Cardiac, Thoracic & Vascular Surgery, National University Heart Centre, Singapore (NUHCS), Singapore
– sequence: 12
  givenname: Abdul Jalil
  surname: Rufaihah
  fullname: Rufaihah, Abdul Jalil
  organization: Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
– sequence: 13
  givenname: Chia-Hung
  orcidid: 0000-0001-5097-3968
  surname: Chen
  fullname: Chen, Chia-Hung
  organization: Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, China
BookMark eNptkEFLwzAYhoNMcJte_AUBLyJUk6Zpk6NM54SBFz2X9Gs6M9JmJunAf2_rRGF4-j54n_c9PDM06VynEbqk5JYSJu8eyHpBSCrz1Qma0qxgCaFCTn5_WZyhWQhbQijPcjFFYdl3EI3rlMVeB-33znjcGvAO1C70Vge80Z32Kuoa7406ZI3tTW0AN6ryBtQ4gBvnsXXdJonatxiUr43bqwC9VR7H92Fip_toIJyj00bZoC9-7hy9LR9fF6tk_fL0vLhfJ8BSGRMmJeeUVhUntMhrLkkOIq8YVEQzIblQEoCxKhPNkDKSyUYVugKR0lRAI9gcXR92d9599DrEsjUBtLWq064PZZoNPign-YheHaFb1_tBykilBWeCp2Sgbg7UYCAEr5ty502r_GdJSTn6L__8DzA5gsHEb1PRK2P_q3wBHDWLUg
CitedBy_id crossref_primary_10_1166_mex_2021_1996
crossref_primary_10_1016_j_trechm_2022_10_009
crossref_primary_10_1039_D1CS00465D
crossref_primary_10_1002_adfm_202103339
crossref_primary_10_1021_acs_chemrev_0c01289
crossref_primary_10_1038_s41378_021_00245_2
crossref_primary_10_1039_D1LC00618E
crossref_primary_10_1016_j_bbe_2021_05_003
crossref_primary_10_1039_D1BM01974K
crossref_primary_10_1088_2752_5724_ac39ff
crossref_primary_10_1039_D3SM00208J
crossref_primary_10_1089_ten_tec_2022_0029
crossref_primary_10_1016_j_biomaterials_2022_121631
crossref_primary_10_1515_revce_2022_0060
crossref_primary_10_1021_acs_chemrev_1c00798
crossref_primary_10_1002_smll_202206007
crossref_primary_10_1039_D3MH01641B
crossref_primary_10_1039_D0LC00660B
crossref_primary_10_1016_j_biopha_2023_115301
crossref_primary_10_3390_cells10102538
crossref_primary_10_1002_adfm_202417921
crossref_primary_10_1039_D2TB02287G
crossref_primary_10_1016_j_jconrel_2024_12_041
crossref_primary_10_1016_j_colsurfa_2023_130978
crossref_primary_10_1002_smll_202200180
crossref_primary_10_1039_D2LC00196A
Cites_doi 10.1039/C7LC00242D
10.1038/35025215
10.1016/j.jconrel.2011.10.006
10.1152/physrev.00006.2013
10.1021/acs.nanolett.7b00026
10.1089/ars.2012.4849
10.1161/01.CIR.94.5.1074
10.1021/la500930x
10.1038/srep20784
10.1136/hrt.2009.180414
10.1002/anie.201606960
10.1038/nm0603-653
10.1016/j.addr.2015.07.003
10.1002/admt.201900847
10.1002/adma.201204657
10.1039/b806706f
10.1016/j.biomaterials.2013.07.031
10.1021/acs.jced.5b00901
10.1161/01.CIR.0000061911.47710.8A
10.1016/j.polymer.2003.09.026
10.1002/smll.201700684
10.1089/ten.teb.2011.0678
10.1067/mcp.2002.126179
10.1038/ncomms7111
10.1021/ja401422r
10.1126/science.aaf7447
10.1016/j.actbio.2016.10.013
10.1088/0022-3727/46/11/114002
10.1038/nature10144
10.1016/j.addr.2012.02.005
10.1002/adfm.201401302
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
7SP
7TB
7U5
8FD
FR3
L7M
7X8
DOI 10.1039/D0LC00296H
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
EISSN 1473-0189
EndPage 2764
ExternalDocumentID 10_1039_D0LC00296H
GroupedDBID ---
0-7
0R~
29L
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGKEF
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
CS3
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDZ
J3I
L-8
M4U
N9A
O9-
R56
R7B
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SLH
VH6
7SP
7TB
7U5
8FD
FR3
L7M
7X8
ID FETCH-LOGICAL-c329t-3995511bb50176d5906c86b3cb0e38958a9cc33b48f6d53049fa7ebc82128cf83
ISSN 1473-0197
1473-0189
IngestDate Fri Jul 11 10:07:30 EDT 2025
Sun Jun 29 16:23:14 EDT 2025
Tue Jul 01 01:52:43 EDT 2025
Thu Apr 24 23:01:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-3995511bb50176d5906c86b3cb0e38958a9cc33b48f6d53049fa7ebc82128cf83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7060-0173
0000-0003-1975-8981
0000-0002-0156-9739
0000-0001-5097-3968
0000-0002-4964-7038
PQID 2427538520
PQPubID 2047488
PageCount 9
ParticipantIDs proquest_miscellaneous_2419715068
proquest_journals_2427538520
crossref_primary_10_1039_D0LC00296H
crossref_citationtrail_10_1039_D0LC00296H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-07
PublicationDateYYYYMMDD 2020-08-07
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-07
  day: 07
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Lab on a chip
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Henry (D0LC00296H-(cit2)/*[position()=1]) 2003; 107
Xie (D0LC00296H-(cit18)/*[position()=1]) 2017; 17
Lazarous (D0LC00296H-(cit4)/*[position()=1]) 1996; 94
Zachary (D0LC00296H-(cit6)/*[position()=1]) 2011; 97
Nunes (D0LC00296H-(cit15)/*[position()=1]) 2013; 46
Eppler (D0LC00296H-(cit5)/*[position()=1]) 2002; 72
Choi (D0LC00296H-(cit16)/*[position()=1]) 2013; 25
Dinh (D0LC00296H-(cit31)/*[position()=1]) 2017; 13
Atefi (D0LC00296H-(cit25)/*[position()=1]) 2014; 30
Siepmann (D0LC00296H-(cit12)/*[position()=1]) 2012; 161
Silvestre (D0LC00296H-(cit8)/*[position()=1]) 2013; 93
Windbergs (D0LC00296H-(cit17)/*[position()=1]) 2013; 135
Carmeliet (D0LC00296H-(cit20)/*[position()=1]) 2003; 9
Zhang (D0LC00296H-(cit19)/*[position()=1]) 2016; 55
Stevenson (D0LC00296H-(cit11)/*[position()=1]) 2012; 64
Jiang (D0LC00296H-(cit10)/*[position()=1]) 2016; 6
Atefi (D0LC00296H-(cit26)/*[position()=1]) 2014; 24
Atefi (D0LC00296H-(cit24)/*[position()=1]) 2016; 61
Tillman (D0LC00296H-(cit3)/*[position()=1]) 2013; 19
Rufaihah (D0LC00296H-(cit29)/*[position()=1]) 2017; 48
Golub (D0LC00296H-(cit9)/*[position()=1]) 2010; 298
Rufaihah (D0LC00296H-(cit28)/*[position()=1]) 2013; 34
McHugh (D0LC00296H-(cit13)/*[position()=1]) 2017; 357
Yang (D0LC00296H-(cit1)/*[position()=1]) 2020
Krishna Vedula (D0LC00296H-(cit32)/*[position()=1]) 2015; 6
Liu (D0LC00296H-(cit14)/*[position()=1]) 2017; 17
Holtze (D0LC00296H-(cit23)/*[position()=1]) 2008; 8
Cochain (D0LC00296H-(cit22)/*[position()=1]) 2013; 18
Kwok (D0LC00296H-(cit30)/*[position()=1]) 2003; 44
Yancopoulos (D0LC00296H-(cit7)/*[position()=1]) 2000; 407
Rufaihah (D0LC00296H-(cit27)/*[position()=1]) 2016; 96
Carmeliet (D0LC00296H-(cit21)/*[position()=1]) 2011; 473
References_xml – volume: 17
  start-page: 1856
  year: 2017
  ident: D0LC00296H-(cit14)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/C7LC00242D
– volume: 407
  start-page: 242
  year: 2000
  ident: D0LC00296H-(cit7)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/35025215
– volume: 161
  start-page: 351
  year: 2012
  ident: D0LC00296H-(cit12)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2011.10.006
– volume: 93
  start-page: 1743
  year: 2013
  ident: D0LC00296H-(cit8)/*[position()=1]
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00006.2013
– volume: 17
  start-page: 2015
  year: 2017
  ident: D0LC00296H-(cit18)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00026
– volume: 18
  start-page: 1100
  year: 2013
  ident: D0LC00296H-(cit22)/*[position()=1]
  publication-title: Antioxid. Redox Signaling
  doi: 10.1089/ars.2012.4849
– volume: 94
  start-page: 1074
  year: 1996
  ident: D0LC00296H-(cit4)/*[position()=1]
  publication-title: Circulation
  doi: 10.1161/01.CIR.94.5.1074
– volume: 30
  start-page: 9691
  year: 2014
  ident: D0LC00296H-(cit25)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la500930x
– volume: 6
  start-page: 20784
  year: 2016
  ident: D0LC00296H-(cit10)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep20784
– volume: 97
  start-page: 181
  year: 2011
  ident: D0LC00296H-(cit6)/*[position()=1]
  publication-title: Heart
  doi: 10.1136/hrt.2009.180414
– volume: 55
  start-page: 13470
  year: 2016
  ident: D0LC00296H-(cit19)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606960
– volume: 9
  start-page: 653
  year: 2003
  ident: D0LC00296H-(cit20)/*[position()=1]
  publication-title: Nat. Med.
  doi: 10.1038/nm0603-653
– volume: 96
  start-page: 31
  year: 2016
  ident: D0LC00296H-(cit27)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2015.07.003
– volume: 298
  start-page: H1959
  year: 2010
  ident: D0LC00296H-(cit9)/*[position()=1]
  publication-title: Am. J. Physiol.: Heart Circ. Physiol.
– start-page: 1900847
  year: 2020
  ident: D0LC00296H-(cit1)/*[position()=1]
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201900847
– volume: 25
  start-page: 2536
  year: 2013
  ident: D0LC00296H-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204657
– volume: 8
  start-page: 1632
  year: 2008
  ident: D0LC00296H-(cit23)/*[position()=1]
  publication-title: Lab Chip
  doi: 10.1039/b806706f
– volume: 34
  start-page: 8195
  year: 2013
  ident: D0LC00296H-(cit28)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.07.031
– volume: 61
  start-page: 1531
  year: 2016
  ident: D0LC00296H-(cit24)/*[position()=1]
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.5b00901
– volume: 107
  start-page: 1359
  year: 2003
  ident: D0LC00296H-(cit2)/*[position()=1]
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000061911.47710.8A
– volume: 44
  start-page: 7335
  year: 2003
  ident: D0LC00296H-(cit30)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2003.09.026
– volume: 13
  start-page: 1700684
  year: 2017
  ident: D0LC00296H-(cit31)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201700684
– volume: 19
  start-page: 99
  year: 2013
  ident: D0LC00296H-(cit3)/*[position()=1]
  publication-title: Tissue Eng., Part B
  doi: 10.1089/ten.teb.2011.0678
– volume: 72
  start-page: 20
  year: 2002
  ident: D0LC00296H-(cit5)/*[position()=1]
  publication-title: Clin. Pharmacol. Ther.
  doi: 10.1067/mcp.2002.126179
– volume: 6
  start-page: 6111
  year: 2015
  ident: D0LC00296H-(cit32)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7111
– volume: 135
  start-page: 7933
  year: 2013
  ident: D0LC00296H-(cit17)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401422r
– volume: 357
  start-page: 1138
  year: 2017
  ident: D0LC00296H-(cit13)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaf7447
– volume: 48
  start-page: 58
  year: 2017
  ident: D0LC00296H-(cit29)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.10.013
– volume: 46
  start-page: 114002
  year: 2013
  ident: D0LC00296H-(cit15)/*[position()=1]
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/11/114002
– volume: 473
  start-page: 298
  year: 2011
  ident: D0LC00296H-(cit21)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature10144
– volume: 64
  start-page: 1590
  year: 2012
  ident: D0LC00296H-(cit11)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/j.addr.2012.02.005
– volume: 24
  start-page: 6509
  year: 2014
  ident: D0LC00296H-(cit26)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401302
SSID ssj0015468
Score 2.462119
Snippet Cardiovascular disease is a chronic disease that leads to impaired cardiac function and requires long-term management to control its progression. Despite the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2756
SubjectTerms Biocompatibility
Blood vessels
Cardiac function
Chronic illnesses
Diameters
Drug delivery systems
Endothelial cells
Ethylene glycol
Fibrosis
Growth factors
Health services
Hydrogels
Microfluidics
Muscles
Phase separation
Platelet-derived growth factor
Proteins
Regeneration (physiology)
Scars
Tissue engineering
Vascular endothelial growth factor
Wall thickness
Title Functional reservoir microcapsules generated via microfluidic fabrication for long-term cardiovascular therapeutics
URI https://www.proquest.com/docview/2427538520
https://www.proquest.com/docview/2419715068
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegEwIOCAqIwkBGcEFTtixOHOc4da0Ki8ollXqLbNfpIrJkaptJ46_nOXE-KnoYXKLKdpOo79fnn98nQl-5oAkNHAXaj1DLZZRZXNieJUTgcCDIcIauonzndLZwfyy9ZWfQr7JLduJU_j6YV_I_UoUxkKvOkv0HybY3hQH4DPKFK0gYrg-S8RQ2JWPL01lEm7si3Zzc6BA7yeH0m6mt7pCsyyYDrbxLeT2XZGW6SuVJwsXGWOyqYMOsyNeW1tS6XHU_SLWXo7Xtk9mQC-1r4Doj_LZlxGleWWrm60Jal2Vrsb8qf1XNR9YmQ0i1KULzdXmvTCWDaysqO7xewXM1o672R35j8rCMjcKpI-T8nlp1fR21VTcLOlUHxowuduw-5ry-ZvXrAuR_qXyb6IqpKzuT2sNIr7uNrXHmz3_G00UYxtFkGT1GR44PLGuAji4m0few9Th5bp022bxVU8qWBGfdvffJy_7eXRGS6CV6YU4S-KKGxSv0SOVD9KTuLXo_RE_HTSu_IXreqzr5Gm072OAWNngPNriFDQbY4D5scA82GGCDW9jgfdjgPmzeoMV0Eo1nlum9YUniBDtLZzwDFxfCA5VNV15gU8moIFLYCjiux3ggJSHCZQnMal9twn0lJAMqxGTCyFs0yItcvUMYvkSlL6Q4V8RdgcZggnlOICmXZBU4bIS-NT9qLE1het0fJYurAAkSxJd2OK4EMBuhL-3a27ocy8FVx41sYvN33cbAReFoDk-2R-hzOw2C0B4ynqui1GvOA1_X3GTvH7DmA3rWgf0YDXabUn0EiroTnwy6_gDLRpkX
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+reservoir+microcapsules+generated+via+microfluidic+fabrication+for+long-term+cardiovascular+therapeutics&rft.jtitle=Lab+on+a+chip&rft.au=Dinh%2C+Ngoc-Duy&rft.au=Kukumberg%2C+Marek&rft.au=Nguyen%2C+Anh-Tuan&rft.au=Keramati%2C+Hamed&rft.date=2020-08-07&rft.issn=1473-0189&rft.eissn=1473-0189&rft.volume=20&rft.issue=15&rft.spage=2756&rft_id=info:doi/10.1039%2Fd0lc00296h&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1473-0197&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1473-0197&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1473-0197&client=summon