MR electrical properties mapping using vision transformers and canny edge detectors

We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the objec...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 93; no. 3; pp. 1117 - 1131
Main Authors Giannakopoulos, Ilias I., Carluccio, Giuseppe, Keerthivasan, Mahesh B., Koerzdoerfer, Gregor, Lakshmanan, Karthik, De Moura, Hector L., Cruz Serrallés, José E., Lattanzi, Riccardo
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2025
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30338

Cover

Abstract We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer. The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values. We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols.
AbstractList PurposeWe developed a 3D vision transformer‐based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.Theory and MethodsOur network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue‐mimicking phantoms and fine‐tuned it on a dataset of 11 000 realistic head models. We assessed performance in‐distribution simulated data and out‐of‐distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer.ResultsThe conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground‐truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe‐measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values.ConclusionWe introduced a new learning‐based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically‐usable in vivo EP reconstruction protocols.
We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer. The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values. We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols.
We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.PURPOSEWe developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer.THEORY AND METHODSOur network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer.The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values.RESULTSThe conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values.We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols.CONCLUSIONWe introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols.
Author Lakshmanan, Karthik
Cruz Serrallés, José E.
Lattanzi, Riccardo
Carluccio, Giuseppe
Keerthivasan, Mahesh B.
De Moura, Hector L.
Giannakopoulos, Ilias I.
Koerzdoerfer, Gregor
AuthorAffiliation 3 Siemens Medical Solutions, New York, New York, USA
2 Universita di Napoli Federico II, Napoli, Italy
1 The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI 2 R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
AuthorAffiliation_xml – name: 3 Siemens Medical Solutions, New York, New York, USA
– name: 2 Universita di Napoli Federico II, Napoli, Italy
– name: 1 The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI 2 R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
Author_xml – sequence: 1
  givenname: Ilias I.
  orcidid: 0000-0003-2180-5898
  surname: Giannakopoulos
  fullname: Giannakopoulos, Ilias I.
  organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA
– sequence: 2
  givenname: Giuseppe
  orcidid: 0000-0001-5376-3843
  surname: Carluccio
  fullname: Carluccio, Giuseppe
  organization: Universita di Napoli Federico II Napoli Italy
– sequence: 3
  givenname: Mahesh B.
  orcidid: 0000-0002-7841-9333
  surname: Keerthivasan
  fullname: Keerthivasan, Mahesh B.
  organization: Siemens Medical Solutions New York New York USA
– sequence: 4
  givenname: Gregor
  surname: Koerzdoerfer
  fullname: Koerzdoerfer, Gregor
  organization: Siemens Medical Solutions New York New York USA
– sequence: 5
  givenname: Karthik
  surname: Lakshmanan
  fullname: Lakshmanan, Karthik
  organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA
– sequence: 6
  givenname: Hector L.
  orcidid: 0000-0002-6620-9814
  surname: De Moura
  fullname: De Moura, Hector L.
  organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA
– sequence: 7
  givenname: José E.
  orcidid: 0000-0002-3323-5688
  surname: Cruz Serrallés
  fullname: Cruz Serrallés, José E.
  organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA
– sequence: 8
  givenname: Riccardo
  orcidid: 0000-0002-8240-5903
  surname: Lattanzi
  fullname: Lattanzi, Riccardo
  organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39415436$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1LHTEUhoMoerUu_AMl4KYuxubzZrKSImoLSsG265BJztxGZpJpMiP475urVtpuchZ5eHjPeQ_RbkwREDqh5JwSwj6OeTznhPN2B62oZKxhUotdtCJKkIZTLQ7QYSkPhBCtldhHB1wLKgVfr9C3u3sMA7g5B2cHPOU0QZ4DFDzaaQpxg5eyfR9DCSniOdtY-pRHyAXb6LGzMT5h8BvAHubqSbm8Q3u9HQocv84j9OP66vvl5-b2682Xy0-3jeNMzw0D0pOuY9xRRqgDAqqTlLVU-9b3vOso00p5EKJrPe-lkFb10ktFZU88c_wIXbx4p6UbwTuINd5gphxGm59MssH8-xPDT7NJj4ZSLeuZRDV8eDXk9GuBMpsxFAfDYCOkpRhOqVpTxaWu6Ol_6ENacqz7VUrotSCy3Qrf_x3pLcufg1fg7AVwOZWSoX9DKDHbMk0t0zyXyX8DA1OSXw
Cites_doi 10.1038/s41598-024-59705-0
10.1109/TBME.2022.3186235
10.1002/mrm.21782
10.1007/s00366-023-01883-y
10.1002/cmr.10030
10.1088/0031-9155/50/6/002
10.1088/1361-6560/ab9356
10.1109/RBME.2017.2722420
10.1109/TMI.2015.2404944
10.1088/0143-0815/13/1/006
10.1002/mrm.28398
10.1109/WACV.2017.58
10.1007/s11517-019-02109-4
10.1109/TIP.2003.819861
10.1109/TAP.2020.3044685
10.1088/0031-9155/54/19/019
10.1109/TMI.2022.3147426
10.1038/s41597-024-03073-x
10.1038/s41598-019-45382-x
10.1109/TMI.2009.2015757
10.1109/TMI.2016.2535302
10.1002/mrm.20896
10.1016/0730-725X(93)90078-R
10.1615/CritRevBiomedEng.2015012486
10.1002/mrm.25276
10.1002/mrm.1910400610
10.1002/mrm.28285
10.3390/diagnostics12112627
10.1109/TCI.2021.3050266
10.3390/app11073237
10.1109/TBME.2020.2991399
10.1109/TBME.2019.2907442
10.1007/s10548-020-00813-1
10.1002/mrm.22845
10.1002/mrm.1910150117
10.1002/nbm.4211
10.1002/hbm.26421
10.4236/jcc.2019.73002
10.3109/02656736.2015.1129440
10.1002/nbm.5137
10.1002/mrm.24637
10.1109/TPAMI.2005.173
10.1002/jmri.24803
10.1088/0031-9155/53/16/R01
10.1038/s41598-023-35104-9
10.1002/9780471740360.ebs0403
10.1016/j.mri.2013.12.005
10.1002/mrm.27004
10.1016/S1361-8415(02)00061-0
10.1063/1.4822961
10.1109/RBME.2013.2297206
10.1002/mrm.22995
10.1002/mrm.27005
10.3109/02656736.2015.1032370
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
2025 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
– notice: 2025 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
DOI 10.1002/mrm.30338
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1131
ExternalDocumentID PMC11955224
39415436
10_1002_mrm_30338
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: P41 EB017183
– fundername: NIH HHS
  grantid: P41 EB017183
– fundername: NIH HHS
  grantid: R01 EB024536
– fundername: NIBIB NIH HHS
  grantid: R01 EB024536
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
5PM
ID FETCH-LOGICAL-c329t-2e0f0bb23c1201ce0e7b512819d8df3bb12977de44b8d3f545a7f5d5715f0d2c3
ISSN 0740-3194
1522-2594
IngestDate Thu Aug 21 18:39:49 EDT 2025
Fri Sep 05 13:04:22 EDT 2025
Fri Jul 25 12:06:27 EDT 2025
Mon Jul 21 05:28:02 EDT 2025
Tue Jul 01 04:27:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords vision transformers
transfer learning
electrical properties mapping
electromagnetic simulations
Language English
License 2024 International Society for Magnetic Resonance in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c329t-2e0f0bb23c1201ce0e7b512819d8df3bb12977de44b8d3f545a7f5d5715f0d2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6620-9814
0000-0001-5376-3843
0000-0002-7841-9333
0000-0002-8240-5903
0000-0002-3323-5688
0000-0003-2180-5898
PMID 39415436
PQID 3149640584
PQPubID 1016391
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11955224
proquest_miscellaneous_3117617359
proquest_journals_3149640584
pubmed_primary_39415436
crossref_primary_10_1002_mrm_30338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_73_1
Xinling Y (e_1_2_9_79_1) 2023; 9
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_54_1
F Chun‐Mei (e_1_2_9_64_1) 2021
Phillip I (e_1_2_9_26_1) 2017
Giannakopoulos Ilias I (e_1_2_9_33_1) 2024
Naohiro E (e_1_2_9_74_1) 2021; 41
Dan H (e_1_2_9_49_1) 2016
Augustus O (e_1_2_9_71_1) 2016; 1
Soraya G (e_1_2_9_45_1) 2020; 83
Robin R (e_1_2_9_72_1) 2022
e_1_2_9_14_1
Giuseppe C (e_1_2_9_37_1) 2023
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
Xide Xia (e_1_2_9_68_1) 2017
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
Ilias G (e_1_2_9_63_1) 2020; 28
e_1_2_9_60_1
e_1_2_9_2_1
Kingma Diederik P (e_1_2_9_53_1) 2014
e_1_2_9_28_1
e_1_2_9_47_1
Jackson John David (e_1_2_9_4_1) 2021
Jieneng C (e_1_2_9_48_1) 2021
e_1_2_9_30_1
Ethan P (e_1_2_9_51_1) 2018
e_1_2_9_11_1
Nitish S (e_1_2_9_50_1) 2014; 15
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
Andreas C (e_1_2_9_34_1) 2009; 55
e_1_2_9_76_1
Alexey Dosovitskiy (e_1_2_9_61_1) 2020
e_1_2_9_70_1
Dianlin H (e_1_2_9_66_1) 2022; 71
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Jure Z (e_1_2_9_80_1) 2021
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
Olaf R (e_1_2_9_62_1) 2015
Hao L (e_1_2_9_55_1) 2020
e_1_2_9_3_1
Xu B (e_1_2_9_52_1) 2015
Karthik L (e_1_2_9_39_1) 2013
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – start-page: 307
  volume-title: Medical image computing and computer assisted intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI 24
  year: 2021
  ident: e_1_2_9_64_1
– volume: 41
  start-page: 1400
  year: 2021
  ident: e_1_2_9_74_1
  article-title: A method for electrical property tomography based on a three‐dimensional integral representation of the electric field
  publication-title: IEEE Trans Med Imaging
– ident: e_1_2_9_67_1
  doi: 10.1038/s41598-024-59705-0
– year: 2021
  ident: e_1_2_9_48_1
  article-title: Transunet: transformers make strong encoders for medical image segmentation
  publication-title: arXiv preprint:2102(04306)
– ident: e_1_2_9_6_1
  doi: 10.1109/TBME.2022.3186235
– start-page: 234
  volume-title: Medical Image Computing and Computer‐Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18
  year: 2015
  ident: e_1_2_9_62_1
– ident: e_1_2_9_7_1
  doi: 10.1002/mrm.21782
– ident: e_1_2_9_77_1
  doi: 10.1007/s00366-023-01883-y
– ident: e_1_2_9_40_1
  doi: 10.1002/cmr.10030
– ident: e_1_2_9_35_1
  doi: 10.1088/0031-9155/50/6/002
– start-page: 12310
  volume-title: International Conference on Machine Learning
  year: 2021
  ident: e_1_2_9_80_1
– ident: e_1_2_9_31_1
  doi: 10.1088/1361-6560/ab9356
– ident: e_1_2_9_36_1
  doi: 10.1109/RBME.2017.2722420
– ident: e_1_2_9_24_1
  doi: 10.1109/TMI.2015.2404944
– year: 2020
  ident: e_1_2_9_55_1
  article-title: Rethinking the hyperparameters for fine‐tuning
  publication-title: arXiv preprint:2002(11770)
– ident: e_1_2_9_11_1
  doi: 10.1088/0143-0815/13/1/006
– ident: e_1_2_9_5_1
  doi: 10.1002/mrm.28398
– ident: e_1_2_9_54_1
  doi: 10.1109/WACV.2017.58
– ident: e_1_2_9_47_1
  doi: 10.1007/s11517-019-02109-4
– ident: e_1_2_9_56_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_9_41_1
  doi: 10.1109/TAP.2020.3044685
– ident: e_1_2_9_12_1
  doi: 10.1088/0031-9155/54/19/019
– year: 2017
  ident: e_1_2_9_68_1
  article-title: W‐net: A deep model for fully unsupervised image segmentation
  publication-title: arXiv preprint: 1711(08506)
– ident: e_1_2_9_65_1
  doi: 10.1109/TMI.2022.3147426
– ident: e_1_2_9_73_1
  doi: 10.1038/s41597-024-03073-x
– ident: e_1_2_9_25_1
  doi: 10.1038/s41598-019-45382-x
– ident: e_1_2_9_57_1
  doi: 10.1109/TMI.2009.2015757
– volume: 71
  start-page: 1
  year: 2022
  ident: e_1_2_9_66_1
  article-title: Trans‐net: Transformer‐enhanced residual‐error alternative suppression network for MRI reconstruction
  publication-title: IEEE Trans Instrum Meas
– ident: e_1_2_9_70_1
  doi: 10.1109/TMI.2016.2535302
– volume: 9
  start-page: 49
  year: 2023
  ident: e_1_2_9_79_1
  article-title: PIFON‐EPT: MR‐based electrical property tomography using physics‐informed Fourier networks
  publication-title: IEEE J Multiscale Multiphysics Comput Tech
– ident: e_1_2_9_43_1
  doi: 10.1002/mrm.20896
– ident: e_1_2_9_44_1
  doi: 10.1016/0730-725X(93)90078-R
– ident: e_1_2_9_8_1
  doi: 10.1615/CritRevBiomedEng.2015012486
– ident: e_1_2_9_13_1
  doi: 10.1002/mrm.25276
– ident: e_1_2_9_19_1
  doi: 10.1002/mrm.1910400610
– ident: e_1_2_9_30_1
  doi: 10.1002/mrm.28285
– ident: e_1_2_9_78_1
  doi: 10.3390/diagnostics12112627
– start-page: 186
  volume-title: Proc. ISMRM
  year: 2024
  ident: e_1_2_9_33_1
– ident: e_1_2_9_69_1
  doi: 10.1109/TCI.2021.3050266
– volume: 83
  start-page: 590
  year: 2020
  ident: e_1_2_9_45_1
  article-title: Transceive phase mapping using the PLANET method and its application for conductivity mapping in the brain
  publication-title: Magn Reson Imaging
– ident: e_1_2_9_58_1
  doi: 10.3390/app11073237
– ident: e_1_2_9_23_1
  doi: 10.1109/TBME.2020.2991399
– start-page: 133
  volume-title: 2023 IEEE EMBS special topic conference on data science and engineering in healthcare, medicine and biology
  year: 2023
  ident: e_1_2_9_37_1
– ident: e_1_2_9_22_1
  doi: 10.1109/TBME.2019.2907442
– ident: e_1_2_9_16_1
  doi: 10.1007/s10548-020-00813-1
– ident: e_1_2_9_3_1
  doi: 10.1002/mrm.22845
– ident: e_1_2_9_46_1
  doi: 10.1002/mrm.1910150117
– ident: e_1_2_9_76_1
  doi: 10.1002/nbm.4211
– ident: e_1_2_9_29_1
  doi: 10.1002/hbm.26421
– volume: 28
  start-page: 3193
  year: 2020
  ident: e_1_2_9_63_1
  article-title: On the usage of deep neural networks as a tensor‐to‐tensor translation between MR measurements and electrical properties
  publication-title: Proc. Intl. Soc. Mag. Reson. Med
– ident: e_1_2_9_60_1
  doi: 10.4236/jcc.2019.73002
– ident: e_1_2_9_10_1
  doi: 10.3109/02656736.2015.1129440
– ident: e_1_2_9_28_1
  doi: 10.1002/nbm.5137
– year: 2016
  ident: e_1_2_9_49_1
  article-title: Gaussian error linear units (gelus)
  publication-title: arXiv preprint:1606(08415)
– year: 2014
  ident: e_1_2_9_53_1
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint:1412(6980)
– ident: e_1_2_9_20_1
  doi: 10.1002/mrm.24637
– volume-title: Classical electrodynamics
  year: 2021
  ident: e_1_2_9_4_1
– start-page: 10684
  volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition
  year: 2022
  ident: e_1_2_9_72_1
– ident: e_1_2_9_32_1
  doi: 10.1109/TPAMI.2005.173
– ident: e_1_2_9_14_1
  doi: 10.1002/jmri.24803
– volume: 1
  year: 2016
  ident: e_1_2_9_71_1
  article-title: Deconvolution and checkerboard artifacts
  publication-title: Distill
– ident: e_1_2_9_2_1
  doi: 10.1088/0031-9155/53/16/R01
– ident: e_1_2_9_27_1
  doi: 10.1038/s41598-023-35104-9
– ident: e_1_2_9_38_1
  doi: 10.1002/9780471740360.ebs0403
– volume: 55
  start-page: N23
  year: 2009
  ident: e_1_2_9_34_1
  article-title: The Virtual Family‐development of surface‐based anatomical models of two adults and two children for dosimetric simulations
  publication-title: Phys Med Biol
– ident: e_1_2_9_17_1
  doi: 10.1016/j.mri.2013.12.005
– ident: e_1_2_9_21_1
  doi: 10.1002/mrm.27004
– start-page: 2754
  volume-title: Proceedings of the 21st Annual Meeting of ISMRM
  year: 2013
  ident: e_1_2_9_39_1
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_9_50_1
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: e_1_2_9_75_1
  doi: 10.1016/S1361-8415(02)00061-0
– volume-title: Proceedings of the AAAI conference on artificial intelligence
  year: 2018
  ident: e_1_2_9_51_1
– ident: e_1_2_9_59_1
  doi: 10.1063/1.4822961
– ident: e_1_2_9_15_1
  doi: 10.1109/RBME.2013.2297206
– ident: e_1_2_9_18_1
  doi: 10.1002/mrm.22995
– ident: e_1_2_9_42_1
  doi: 10.1002/mrm.27005
– year: 2015
  ident: e_1_2_9_52_1
  article-title: Empirical evaluation of rectified activations in convolutional network
  publication-title: arXiv preprint:1505(00853)
– start-page: 1125
  volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition
  year: 2017
  ident: e_1_2_9_26_1
– ident: e_1_2_9_9_1
  doi: 10.3109/02656736.2015.1032370
– year: 2020
  ident: e_1_2_9_61_1
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
  publication-title: arXiv preprint:2010(11929)
SSID ssj0009974
Score 2.4936836
Snippet We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. Our network uses the...
PurposeWe developed a 3D vision transformer‐based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.Theory and...
We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.PURPOSEWe developed a...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1117
SubjectTerms Algorithms
Brain - diagnostic imaging
Coils
Datasets
Electric Conductivity
Electrical properties
Head - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional
Lesions
Magnetic properties
Magnetic resonance
Magnetic Resonance Imaging - instrumentation
Neural networks
Neural Networks, Computer
Permittivity
Phantoms, Imaging
Reconstruction
Title MR electrical properties mapping using vision transformers and canny edge detectors
URI https://www.ncbi.nlm.nih.gov/pubmed/39415436
https://www.proquest.com/docview/3149640584
https://www.proquest.com/docview/3117617359
https://pubmed.ncbi.nlm.nih.gov/PMC11955224
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhAXBMursCCDuEUtiR036REQ7C4oHMqutLfIr2wj2jRqGiT2t_BjGdtpkm45LFysKombx3wefzOeGSP0NvNJpk3YYEwDNgqJkCMhCDRKE25M6NjmwiTfJifn4ZcLdjEY_O5FLdUbMZZXf80r-R-pwjGQq8mS_QfJtn8KB-A3yBdakDC0N5JxMvPcNjb2S5fGr742BVK9JS9tHlRtPQEuf9zsBuE4qsnZtelsvCh-ecah5im9se77qk9WE35ZaFfj2RB2owLyYm81_hgAVvAfq3JVL1zM3uki55V3Ou7WN9aLWsrcemWP87rSZak7TQ_PPM9_8sq5YhM-19Xc-9D2_rrS6ysFTebQ5bJq-t4KwrpwrUapRaHR-25j47FulC4YxGCGhX2t7PZNbNBHeyoWlHPUm66DwM0ie1OBKy27XC_HMEu7CjK75bavTYNtcKIr5ExS6JrarrfQbRIBMzOUe9YVJ5tOXY3v7Rtt61b55F171122s2fCXI_E7VGbswfofmOT4PcOYA_RQBeH6G7SyPkQ3bFhwrJ6hL4nM9whDneIww3isEUcdojDfcRhQBy2iMMGcbhF3GN0_vnT2ceTUbMtx0hSMt2MiPYzHwY0lQGwR6l9HQlmF2RVrDIqBFDIKFI6DEWsaAYUnUcZUywKWOYrIukTdFCsCv0MYaYnGijxxNcyC30qY5lRJhSY2IIzRaIherP9fGnpqq-ke-IZoqPth02bwVmlFCz_CRgjcThEr9vToDrNehgv9Ko21wQREHjKpkP01MmhvQudArOFJxuieEdC7QWmLPvumSKf2_LspogiIDp8fpOHf4HudcPkCB1s1rV-CTR3I15ZtP0BvmCu2A
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR+electrical+properties+mapping+using+vision+transformers+and+canny+edge+detectors&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Giannakopoulos%2C+Ilias+I.&rft.au=Carluccio%2C+Giuseppe&rft.au=Keerthivasan%2C+Mahesh+B.&rft.au=Koerzdoerfer%2C+Gregor&rft.date=2025-03-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=3&rft.spage=1117&rft.epage=1131&rft_id=info:doi/10.1002%2Fmrm.30338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon