MR electrical properties mapping using vision transformers and canny edge detectors
We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the objec...
Saved in:
Published in | Magnetic resonance in medicine Vol. 93; no. 3; pp. 1117 - 1131 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.30338 |
Cover
Abstract | We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.
Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer.
The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values.
We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols. |
---|---|
AbstractList | PurposeWe developed a 3D vision transformer‐based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.Theory and MethodsOur network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue‐mimicking phantoms and fine‐tuned it on a dataset of 11 000 realistic head models. We assessed performance in‐distribution simulated data and out‐of‐distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer.ResultsThe conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground‐truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe‐measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values.ConclusionWe introduced a new learning‐based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically‐usable in vivo EP reconstruction protocols. We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer. The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values. We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols. We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.PURPOSEWe developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer.THEORY AND METHODSOur network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer.The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values.RESULTSThe conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values.We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols.CONCLUSIONWe introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols. |
Author | Lakshmanan, Karthik Cruz Serrallés, José E. Lattanzi, Riccardo Carluccio, Giuseppe Keerthivasan, Mahesh B. De Moura, Hector L. Giannakopoulos, Ilias I. Koerzdoerfer, Gregor |
AuthorAffiliation | 3 Siemens Medical Solutions, New York, New York, USA 2 Universita di Napoli Federico II, Napoli, Italy 1 The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI 2 R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA |
AuthorAffiliation_xml | – name: 3 Siemens Medical Solutions, New York, New York, USA – name: 2 Universita di Napoli Federico II, Napoli, Italy – name: 1 The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI 2 R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA |
Author_xml | – sequence: 1 givenname: Ilias I. orcidid: 0000-0003-2180-5898 surname: Giannakopoulos fullname: Giannakopoulos, Ilias I. organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA – sequence: 2 givenname: Giuseppe orcidid: 0000-0001-5376-3843 surname: Carluccio fullname: Carluccio, Giuseppe organization: Universita di Napoli Federico II Napoli Italy – sequence: 3 givenname: Mahesh B. orcidid: 0000-0002-7841-9333 surname: Keerthivasan fullname: Keerthivasan, Mahesh B. organization: Siemens Medical Solutions New York New York USA – sequence: 4 givenname: Gregor surname: Koerzdoerfer fullname: Koerzdoerfer, Gregor organization: Siemens Medical Solutions New York New York USA – sequence: 5 givenname: Karthik surname: Lakshmanan fullname: Lakshmanan, Karthik organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA – sequence: 6 givenname: Hector L. orcidid: 0000-0002-6620-9814 surname: De Moura fullname: De Moura, Hector L. organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA – sequence: 7 givenname: José E. orcidid: 0000-0002-3323-5688 surname: Cruz Serrallés fullname: Cruz Serrallés, José E. organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA – sequence: 8 givenname: Riccardo orcidid: 0000-0002-8240-5903 surname: Lattanzi fullname: Lattanzi, Riccardo organization: The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology New York University Grossman School of Medicine New York New York USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39415436$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkU1LHTEUhoMoerUu_AMl4KYuxubzZrKSImoLSsG265BJztxGZpJpMiP475urVtpuchZ5eHjPeQ_RbkwREDqh5JwSwj6OeTznhPN2B62oZKxhUotdtCJKkIZTLQ7QYSkPhBCtldhHB1wLKgVfr9C3u3sMA7g5B2cHPOU0QZ4DFDzaaQpxg5eyfR9DCSniOdtY-pRHyAXb6LGzMT5h8BvAHubqSbm8Q3u9HQocv84j9OP66vvl5-b2682Xy0-3jeNMzw0D0pOuY9xRRqgDAqqTlLVU-9b3vOso00p5EKJrPe-lkFb10ktFZU88c_wIXbx4p6UbwTuINd5gphxGm59MssH8-xPDT7NJj4ZSLeuZRDV8eDXk9GuBMpsxFAfDYCOkpRhOqVpTxaWu6Ol_6ENacqz7VUrotSCy3Qrf_x3pLcufg1fg7AVwOZWSoX9DKDHbMk0t0zyXyX8DA1OSXw |
Cites_doi | 10.1038/s41598-024-59705-0 10.1109/TBME.2022.3186235 10.1002/mrm.21782 10.1007/s00366-023-01883-y 10.1002/cmr.10030 10.1088/0031-9155/50/6/002 10.1088/1361-6560/ab9356 10.1109/RBME.2017.2722420 10.1109/TMI.2015.2404944 10.1088/0143-0815/13/1/006 10.1002/mrm.28398 10.1109/WACV.2017.58 10.1007/s11517-019-02109-4 10.1109/TIP.2003.819861 10.1109/TAP.2020.3044685 10.1088/0031-9155/54/19/019 10.1109/TMI.2022.3147426 10.1038/s41597-024-03073-x 10.1038/s41598-019-45382-x 10.1109/TMI.2009.2015757 10.1109/TMI.2016.2535302 10.1002/mrm.20896 10.1016/0730-725X(93)90078-R 10.1615/CritRevBiomedEng.2015012486 10.1002/mrm.25276 10.1002/mrm.1910400610 10.1002/mrm.28285 10.3390/diagnostics12112627 10.1109/TCI.2021.3050266 10.3390/app11073237 10.1109/TBME.2020.2991399 10.1109/TBME.2019.2907442 10.1007/s10548-020-00813-1 10.1002/mrm.22845 10.1002/mrm.1910150117 10.1002/nbm.4211 10.1002/hbm.26421 10.4236/jcc.2019.73002 10.3109/02656736.2015.1129440 10.1002/nbm.5137 10.1002/mrm.24637 10.1109/TPAMI.2005.173 10.1002/jmri.24803 10.1088/0031-9155/53/16/R01 10.1038/s41598-023-35104-9 10.1002/9780471740360.ebs0403 10.1016/j.mri.2013.12.005 10.1002/mrm.27004 10.1016/S1361-8415(02)00061-0 10.1063/1.4822961 10.1109/RBME.2013.2297206 10.1002/mrm.22995 10.1002/mrm.27005 10.3109/02656736.2015.1032370 |
ContentType | Journal Article |
Copyright | 2024 International Society for Magnetic Resonance in Medicine. 2025 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2024 International Society for Magnetic Resonance in Medicine. – notice: 2025 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
DOI | 10.1002/mrm.30338 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1131 |
ExternalDocumentID | PMC11955224 39415436 10_1002_mrm_30338 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: P41 EB017183 – fundername: NIH HHS grantid: P41 EB017183 – fundername: NIH HHS grantid: R01 EB024536 – fundername: NIBIB NIH HHS grantid: R01 EB024536 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 5PM |
ID | FETCH-LOGICAL-c329t-2e0f0bb23c1201ce0e7b512819d8df3bb12977de44b8d3f545a7f5d5715f0d2c3 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Aug 21 18:39:49 EDT 2025 Fri Sep 05 13:04:22 EDT 2025 Fri Jul 25 12:06:27 EDT 2025 Mon Jul 21 05:28:02 EDT 2025 Tue Jul 01 04:27:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | vision transformers transfer learning electrical properties mapping electromagnetic simulations |
Language | English |
License | 2024 International Society for Magnetic Resonance in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c329t-2e0f0bb23c1201ce0e7b512819d8df3bb12977de44b8d3f545a7f5d5715f0d2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6620-9814 0000-0001-5376-3843 0000-0002-7841-9333 0000-0002-8240-5903 0000-0002-3323-5688 0000-0003-2180-5898 |
PMID | 39415436 |
PQID | 3149640584 |
PQPubID | 1016391 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11955224 proquest_miscellaneous_3117617359 proquest_journals_3149640584 pubmed_primary_39415436 crossref_primary_10_1002_mrm_30338 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_73_1 Xinling Y (e_1_2_9_79_1) 2023; 9 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_54_1 F Chun‐Mei (e_1_2_9_64_1) 2021 Phillip I (e_1_2_9_26_1) 2017 Giannakopoulos Ilias I (e_1_2_9_33_1) 2024 Naohiro E (e_1_2_9_74_1) 2021; 41 Dan H (e_1_2_9_49_1) 2016 Augustus O (e_1_2_9_71_1) 2016; 1 Soraya G (e_1_2_9_45_1) 2020; 83 Robin R (e_1_2_9_72_1) 2022 e_1_2_9_14_1 Giuseppe C (e_1_2_9_37_1) 2023 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 Xide Xia (e_1_2_9_68_1) 2017 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 Ilias G (e_1_2_9_63_1) 2020; 28 e_1_2_9_60_1 e_1_2_9_2_1 Kingma Diederik P (e_1_2_9_53_1) 2014 e_1_2_9_28_1 e_1_2_9_47_1 Jackson John David (e_1_2_9_4_1) 2021 Jieneng C (e_1_2_9_48_1) 2021 e_1_2_9_30_1 Ethan P (e_1_2_9_51_1) 2018 e_1_2_9_11_1 Nitish S (e_1_2_9_50_1) 2014; 15 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 Andreas C (e_1_2_9_34_1) 2009; 55 e_1_2_9_76_1 Alexey Dosovitskiy (e_1_2_9_61_1) 2020 e_1_2_9_70_1 Dianlin H (e_1_2_9_66_1) 2022; 71 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Jure Z (e_1_2_9_80_1) 2021 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 Olaf R (e_1_2_9_62_1) 2015 Hao L (e_1_2_9_55_1) 2020 e_1_2_9_3_1 Xu B (e_1_2_9_52_1) 2015 Karthik L (e_1_2_9_39_1) 2013 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – start-page: 307 volume-title: Medical image computing and computer assisted intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI 24 year: 2021 ident: e_1_2_9_64_1 – volume: 41 start-page: 1400 year: 2021 ident: e_1_2_9_74_1 article-title: A method for electrical property tomography based on a three‐dimensional integral representation of the electric field publication-title: IEEE Trans Med Imaging – ident: e_1_2_9_67_1 doi: 10.1038/s41598-024-59705-0 – year: 2021 ident: e_1_2_9_48_1 article-title: Transunet: transformers make strong encoders for medical image segmentation publication-title: arXiv preprint:2102(04306) – ident: e_1_2_9_6_1 doi: 10.1109/TBME.2022.3186235 – start-page: 234 volume-title: Medical Image Computing and Computer‐Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18 year: 2015 ident: e_1_2_9_62_1 – ident: e_1_2_9_7_1 doi: 10.1002/mrm.21782 – ident: e_1_2_9_77_1 doi: 10.1007/s00366-023-01883-y – ident: e_1_2_9_40_1 doi: 10.1002/cmr.10030 – ident: e_1_2_9_35_1 doi: 10.1088/0031-9155/50/6/002 – start-page: 12310 volume-title: International Conference on Machine Learning year: 2021 ident: e_1_2_9_80_1 – ident: e_1_2_9_31_1 doi: 10.1088/1361-6560/ab9356 – ident: e_1_2_9_36_1 doi: 10.1109/RBME.2017.2722420 – ident: e_1_2_9_24_1 doi: 10.1109/TMI.2015.2404944 – year: 2020 ident: e_1_2_9_55_1 article-title: Rethinking the hyperparameters for fine‐tuning publication-title: arXiv preprint:2002(11770) – ident: e_1_2_9_11_1 doi: 10.1088/0143-0815/13/1/006 – ident: e_1_2_9_5_1 doi: 10.1002/mrm.28398 – ident: e_1_2_9_54_1 doi: 10.1109/WACV.2017.58 – ident: e_1_2_9_47_1 doi: 10.1007/s11517-019-02109-4 – ident: e_1_2_9_56_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_9_41_1 doi: 10.1109/TAP.2020.3044685 – ident: e_1_2_9_12_1 doi: 10.1088/0031-9155/54/19/019 – year: 2017 ident: e_1_2_9_68_1 article-title: W‐net: A deep model for fully unsupervised image segmentation publication-title: arXiv preprint: 1711(08506) – ident: e_1_2_9_65_1 doi: 10.1109/TMI.2022.3147426 – ident: e_1_2_9_73_1 doi: 10.1038/s41597-024-03073-x – ident: e_1_2_9_25_1 doi: 10.1038/s41598-019-45382-x – ident: e_1_2_9_57_1 doi: 10.1109/TMI.2009.2015757 – volume: 71 start-page: 1 year: 2022 ident: e_1_2_9_66_1 article-title: Trans‐net: Transformer‐enhanced residual‐error alternative suppression network for MRI reconstruction publication-title: IEEE Trans Instrum Meas – ident: e_1_2_9_70_1 doi: 10.1109/TMI.2016.2535302 – volume: 9 start-page: 49 year: 2023 ident: e_1_2_9_79_1 article-title: PIFON‐EPT: MR‐based electrical property tomography using physics‐informed Fourier networks publication-title: IEEE J Multiscale Multiphysics Comput Tech – ident: e_1_2_9_43_1 doi: 10.1002/mrm.20896 – ident: e_1_2_9_44_1 doi: 10.1016/0730-725X(93)90078-R – ident: e_1_2_9_8_1 doi: 10.1615/CritRevBiomedEng.2015012486 – ident: e_1_2_9_13_1 doi: 10.1002/mrm.25276 – ident: e_1_2_9_19_1 doi: 10.1002/mrm.1910400610 – ident: e_1_2_9_30_1 doi: 10.1002/mrm.28285 – ident: e_1_2_9_78_1 doi: 10.3390/diagnostics12112627 – start-page: 186 volume-title: Proc. ISMRM year: 2024 ident: e_1_2_9_33_1 – ident: e_1_2_9_69_1 doi: 10.1109/TCI.2021.3050266 – volume: 83 start-page: 590 year: 2020 ident: e_1_2_9_45_1 article-title: Transceive phase mapping using the PLANET method and its application for conductivity mapping in the brain publication-title: Magn Reson Imaging – ident: e_1_2_9_58_1 doi: 10.3390/app11073237 – ident: e_1_2_9_23_1 doi: 10.1109/TBME.2020.2991399 – start-page: 133 volume-title: 2023 IEEE EMBS special topic conference on data science and engineering in healthcare, medicine and biology year: 2023 ident: e_1_2_9_37_1 – ident: e_1_2_9_22_1 doi: 10.1109/TBME.2019.2907442 – ident: e_1_2_9_16_1 doi: 10.1007/s10548-020-00813-1 – ident: e_1_2_9_3_1 doi: 10.1002/mrm.22845 – ident: e_1_2_9_46_1 doi: 10.1002/mrm.1910150117 – ident: e_1_2_9_76_1 doi: 10.1002/nbm.4211 – ident: e_1_2_9_29_1 doi: 10.1002/hbm.26421 – volume: 28 start-page: 3193 year: 2020 ident: e_1_2_9_63_1 article-title: On the usage of deep neural networks as a tensor‐to‐tensor translation between MR measurements and electrical properties publication-title: Proc. Intl. Soc. Mag. Reson. Med – ident: e_1_2_9_60_1 doi: 10.4236/jcc.2019.73002 – ident: e_1_2_9_10_1 doi: 10.3109/02656736.2015.1129440 – ident: e_1_2_9_28_1 doi: 10.1002/nbm.5137 – year: 2016 ident: e_1_2_9_49_1 article-title: Gaussian error linear units (gelus) publication-title: arXiv preprint:1606(08415) – year: 2014 ident: e_1_2_9_53_1 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint:1412(6980) – ident: e_1_2_9_20_1 doi: 10.1002/mrm.24637 – volume-title: Classical electrodynamics year: 2021 ident: e_1_2_9_4_1 – start-page: 10684 volume-title: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition year: 2022 ident: e_1_2_9_72_1 – ident: e_1_2_9_32_1 doi: 10.1109/TPAMI.2005.173 – ident: e_1_2_9_14_1 doi: 10.1002/jmri.24803 – volume: 1 year: 2016 ident: e_1_2_9_71_1 article-title: Deconvolution and checkerboard artifacts publication-title: Distill – ident: e_1_2_9_2_1 doi: 10.1088/0031-9155/53/16/R01 – ident: e_1_2_9_27_1 doi: 10.1038/s41598-023-35104-9 – ident: e_1_2_9_38_1 doi: 10.1002/9780471740360.ebs0403 – volume: 55 start-page: N23 year: 2009 ident: e_1_2_9_34_1 article-title: The Virtual Family‐development of surface‐based anatomical models of two adults and two children for dosimetric simulations publication-title: Phys Med Biol – ident: e_1_2_9_17_1 doi: 10.1016/j.mri.2013.12.005 – ident: e_1_2_9_21_1 doi: 10.1002/mrm.27004 – start-page: 2754 volume-title: Proceedings of the 21st Annual Meeting of ISMRM year: 2013 ident: e_1_2_9_39_1 – volume: 15 start-page: 1929 year: 2014 ident: e_1_2_9_50_1 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: e_1_2_9_75_1 doi: 10.1016/S1361-8415(02)00061-0 – volume-title: Proceedings of the AAAI conference on artificial intelligence year: 2018 ident: e_1_2_9_51_1 – ident: e_1_2_9_59_1 doi: 10.1063/1.4822961 – ident: e_1_2_9_15_1 doi: 10.1109/RBME.2013.2297206 – ident: e_1_2_9_18_1 doi: 10.1002/mrm.22995 – ident: e_1_2_9_42_1 doi: 10.1002/mrm.27005 – year: 2015 ident: e_1_2_9_52_1 article-title: Empirical evaluation of rectified activations in convolutional network publication-title: arXiv preprint:1505(00853) – start-page: 1125 volume-title: Proceedings of the IEEE conference on computer vision and pattern recognition year: 2017 ident: e_1_2_9_26_1 – ident: e_1_2_9_9_1 doi: 10.3109/02656736.2015.1032370 – year: 2020 ident: e_1_2_9_61_1 article-title: An image is worth 16x16 words: Transformers for image recognition at scale publication-title: arXiv preprint:2010(11929) |
SSID | ssj0009974 |
Score | 2.4936836 |
Snippet | We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.
Our network uses the... PurposeWe developed a 3D vision transformer‐based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.Theory and... We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements.PURPOSEWe developed a... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 1117 |
SubjectTerms | Algorithms Brain - diagnostic imaging Coils Datasets Electric Conductivity Electrical properties Head - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional Lesions Magnetic properties Magnetic resonance Magnetic Resonance Imaging - instrumentation Neural networks Neural Networks, Computer Permittivity Phantoms, Imaging Reconstruction |
Title | MR electrical properties mapping using vision transformers and canny edge detectors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39415436 https://www.proquest.com/docview/3149640584 https://www.proquest.com/docview/3117617359 https://pubmed.ncbi.nlm.nih.gov/PMC11955224 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIhAXBMursCCDuEUtiR036REQ7C4oHMqutLfIr2wj2jRqGiT2t_BjGdtpkm45LFysKombx3wefzOeGSP0NvNJpk3YYEwDNgqJkCMhCDRKE25M6NjmwiTfJifn4ZcLdjEY_O5FLdUbMZZXf80r-R-pwjGQq8mS_QfJtn8KB-A3yBdakDC0N5JxMvPcNjb2S5fGr742BVK9JS9tHlRtPQEuf9zsBuE4qsnZtelsvCh-ecah5im9se77qk9WE35ZaFfj2RB2owLyYm81_hgAVvAfq3JVL1zM3uki55V3Ou7WN9aLWsrcemWP87rSZak7TQ_PPM9_8sq5YhM-19Xc-9D2_rrS6ysFTebQ5bJq-t4KwrpwrUapRaHR-25j47FulC4YxGCGhX2t7PZNbNBHeyoWlHPUm66DwM0ie1OBKy27XC_HMEu7CjK75bavTYNtcKIr5ExS6JrarrfQbRIBMzOUe9YVJ5tOXY3v7Rtt61b55F171122s2fCXI_E7VGbswfofmOT4PcOYA_RQBeH6G7SyPkQ3bFhwrJ6hL4nM9whDneIww3isEUcdojDfcRhQBy2iMMGcbhF3GN0_vnT2ceTUbMtx0hSMt2MiPYzHwY0lQGwR6l9HQlmF2RVrDIqBFDIKFI6DEWsaAYUnUcZUywKWOYrIukTdFCsCv0MYaYnGijxxNcyC30qY5lRJhSY2IIzRaIherP9fGnpqq-ke-IZoqPth02bwVmlFCz_CRgjcThEr9vToDrNehgv9Ko21wQREHjKpkP01MmhvQudArOFJxuieEdC7QWmLPvumSKf2_LspogiIDp8fpOHf4HudcPkCB1s1rV-CTR3I15ZtP0BvmCu2A |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MR+electrical+properties+mapping+using+vision+transformers+and+canny+edge+detectors&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Giannakopoulos%2C+Ilias+I.&rft.au=Carluccio%2C+Giuseppe&rft.au=Keerthivasan%2C+Mahesh+B.&rft.au=Koerzdoerfer%2C+Gregor&rft.date=2025-03-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=3&rft.spage=1117&rft.epage=1131&rft_id=info:doi/10.1002%2Fmrm.30338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30338 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |