Optimal Berry–Esseen bound for parameter estimation of SPDE with small noise
We investigate a rate of convergence on asymptotic normality of the maximum likelihood estimator (MLE) for parameter θ appearing in parabolic SPDEs of the form duϵ(t,x)=(A0+θA1)uϵ(t,x)dt+ϵdW(t,x),where A0 andA1 are partial differential operators, W is a cylindrical Brownian motion (CBM) and ϵ↓0. We...
Saved in:
Published in | Journal of the Korean Statistical Society Vol. 47; no. 3; pp. 364 - 378 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Singapore
Elsevier B.V
01.09.2018
Springer Singapore 한국통계학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1226-3192 2005-2863 |
DOI | 10.1016/j.jkss.2018.04.003 |
Cover
Summary: | We investigate a rate of convergence on asymptotic normality of the maximum likelihood estimator (MLE) for parameter θ appearing in parabolic SPDEs of the form duϵ(t,x)=(A0+θA1)uϵ(t,x)dt+ϵdW(t,x),where A0 andA1 are partial differential operators, W is a cylindrical Brownian motion (CBM) and ϵ↓0. We find an optimal Berry–Esseen bound for central limit theorem (CLT) of the MLE. It is proved by developing techniques based on combining Malliavin calculus and Stein’s method. |
---|---|
ISSN: | 1226-3192 2005-2863 |
DOI: | 10.1016/j.jkss.2018.04.003 |