Optimal Berry–Esseen bound for parameter estimation of SPDE with small noise

We investigate a rate of convergence on asymptotic normality of the maximum likelihood estimator (MLE) for parameter θ appearing in parabolic SPDEs of the form duϵ(t,x)=(A0+θA1)uϵ(t,x)dt+ϵdW(t,x),where A0 andA1 are partial differential operators, W is a cylindrical Brownian motion (CBM) and ϵ↓0. We...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Statistical Society Vol. 47; no. 3; pp. 364 - 378
Main Authors Kim, Yoon Tae, Park, Hyun Suk
Format Journal Article
LanguageEnglish
Published Singapore Elsevier B.V 01.09.2018
Springer Singapore
한국통계학회
Subjects
Online AccessGet full text
ISSN1226-3192
2005-2863
DOI10.1016/j.jkss.2018.04.003

Cover

More Information
Summary:We investigate a rate of convergence on asymptotic normality of the maximum likelihood estimator (MLE) for parameter θ appearing in parabolic SPDEs of the form duϵ(t,x)=(A0+θA1)uϵ(t,x)dt+ϵdW(t,x),where A0 andA1 are partial differential operators, W is a cylindrical Brownian motion (CBM) and ϵ↓0. We find an optimal Berry–Esseen bound for central limit theorem (CLT) of the MLE. It is proved by developing techniques based on combining Malliavin calculus and Stein’s method.
ISSN:1226-3192
2005-2863
DOI:10.1016/j.jkss.2018.04.003