MRI Brain Tumour Segmentation Using Hybrid Clustering and Classification by Back Propagation Algorithm

Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image segmentation is the challenging task in medical applications, due to contrary image, local observations of an image, noise image, non uniform textur...

Full description

Saved in:
Bibliographic Details
Published inAsian Pacific journal of cancer prevention : APJCP Vol. 19; no. 11; pp. 3257 - 3263
Main Authors M, Malathi, P, Sinthia
Format Journal Article
LanguageEnglish
Published Thailand West Asia Organization for Cancer Prevention 29.11.2018
Subjects
Online AccessGet full text
ISSN1513-7368
2476-762X
2476-762X
DOI10.31557/APJCP.2018.19.11.3257

Cover

Abstract Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image segmentation is the challenging task in medical applications, due to contrary image, local observations of an image, noise image, non uniform texture of the images and so on. Many techniques are available for image segmentation, but still it requires to introduce an efficient, fast medical image segmentation methods. This research article introduces an efficient image segmentation method based on K means clustering integrated with a spatial Fuzzy C means clustering algorithms. The suggested technique combines the advantages of the two methods. K means segmentation requires minimum computation time, but spatial Fuzzy C means provides high accuracy for image segmentation. The performance of the proposed method is evaluated in terms of accuracy, PSNR and processing time. It also provides good implementation results for MRI brain image segmentation with high accuracy and minimal execution time. After completing the segmentation the of abnormal part of the input MRI brain image, it is compulsory to classify the image is normal or abnormal. There are many classifiers like a self organizing map, Back propagation algorithm, support vector machine etc., The algorithm helps to classify the abnormalities like benign or malignant brain tumour in case of MRI brain image. The abnormality is detected based on the extracted features from an input image. Discrete wavelet transform helps to find the hidden information from the MRI brain image. The extracted features are trained by Back Propagation Algorithm to classify the abnormalities of MRI brain image.
AbstractList Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image segmentation is the challenging task in medical applications, due to contrary image, local observations of an image, noise image, non uniform texture of the images and so on. Many techniques are available for image segmentation, but still it requires to introduce an efficient, fast medical image segmentation methods. This research article introduces an efficient image segmentation method based on K means clustering integrated with a spatial Fuzzy C means clustering algorithms. The suggested technique combines the advantages of the two methods. K means segmentation requires minimum computation time, but spatial Fuzzy C means provides high accuracy for image segmentation. The performance of the proposed method is evaluated in terms of accuracy, PSNR and processing time. It also provides good implementation results for MRI brain image segmentation with high accuracy and minimal execution time. After completing the segmentation the of abnormal part of the input MRI brain image, it is compulsory to classify the image is normal or abnormal. There are many classifiers like a self organizing map, Back propagation algorithm, support vector machine etc., The algorithm helps to classify the abnormalities like benign or malignant brain tumour in case of MRI brain image. The abnormality is detected based on the extracted features from an input image. Discrete wavelet transform helps to find the hidden information from the MRI brain image. The extracted features are trained by Back Propagation Algorithm to classify the abnormalities of MRI brain image.
Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image segmentation is the challenging task in medical applications, due to contrary image, local observations of an image, noise image, non uniform texture of the images and so on. Many techniques are available for image segmentation, but still it requires to introduce an efficient, fast medical image segmentation methods. This research article introduces an efficient image segmentation method based on K means clustering integrated with a spatial Fuzzy C means clustering algorithms. The suggested technique combines the advantages of the two methods. K means segmentation requires minimum computation time, but spatial Fuzzy C means provides high accuracy for image segmentation. The performance of the proposed method is evaluated in terms of accuracy, PSNR and processing time. It also provides good implementation results for MRI brain image segmentation with high accuracy and minimal execution time. After completing the segmentation the of abnormal part of the input MRI brain image, it is compulsory to classify the image is normal or abnormal. There are many classifiers like a self organizing map, Back propagation algorithm, support vector machine etc., The algorithm helps to classify the abnormalities like benign or malignant brain tumour in case of MRI brain image. The abnormality is detected based on the extracted features from an input image. Discrete wavelet transform helps to find the hidden information from the MRI brain image. The extracted features are trained by Back Propagation Algorithm to classify the abnormalities of MRI brain image.
Author P, Sinthia
M, Malathi
AuthorAffiliation Department of Electronics and Instrumentation, Saveetha Engineering College, Chennai, India
AuthorAffiliation_xml – name: Department of Electronics and Instrumentation, Saveetha Engineering College, Chennai, India
Author_xml – sequence: 1
  givenname: Malathi
  surname: M
  fullname: M, Malathi
  email: malathiyoga08@gmail.com
  organization: Department of Electronics and Instrumentation, Saveetha Engineering College, Chennai, India. Email: malathiyoga08@gmail.com
– sequence: 2
  givenname: Sinthia
  surname: P
  fullname: P, Sinthia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30486629$$D View this record in MEDLINE/PubMed
BookMark eNpVkMtOwzAQRS0EglL4BZQfSPArtrNBKhVPgaigSOysSWIHQ-JETgPq39NSnqvR3JlzF2cfbfvWG4SOCE4YSVN5PJldT2cJxUQlJEsISRhN5RYaUS5FLAV92kYjkhIWSybUHtrv-xeMeapkuov2GOZKCJqNkL29v4pOAzgfzYemHUL0YKrG-AUsXOujx975Krpc5sGV0bQe-oUJ6wT8eoW-d9YVm9d8GZ1C8RrNQttBtckmddUGt3huDtCOhbo3h19zjB7Pz-bTy_jm7uJqOrmJC0YzGdtSiYJxWWZWcq64zU2OOS3AUMspL0HklGMrc5BcYiuUUYJLyFhZkjKVho2R3PQOvoPlO9S17oJrICw1wfrTnIbupej02pwmmSZEr82tyJMN2Q15Y8pipSDAL92C0_8v3j3rqn3TghHFMr4qOPpb8EN-u2YfEnyFgA
CitedBy_id crossref_primary_10_3390_jimaging8110301
crossref_primary_10_3390_app11041675
crossref_primary_10_1080_00051144_2022_2103771
crossref_primary_10_1016_j_heliyon_2025_e41835
crossref_primary_10_1155_2021_1667024
crossref_primary_10_1016_j_compbiomed_2024_108412
crossref_primary_10_1088_1742_6596_1921_1_012007
crossref_primary_10_1155_2022_4558702
crossref_primary_10_1002_ima_22736
crossref_primary_10_1016_j_eswa_2022_119435
crossref_primary_10_3390_nano11081876
crossref_primary_10_1016_j_bbe_2020_01_006
crossref_primary_10_1155_2021_6662779
crossref_primary_10_1007_s00521_024_09475_7
crossref_primary_10_2174_2211555204666220131112639
crossref_primary_10_1016_j_aej_2023_05_080
crossref_primary_10_1016_j_compbiomed_2022_105273
crossref_primary_10_3389_fneur_2021_701946
crossref_primary_10_1007_s11042_021_10873_5
crossref_primary_10_11648_j_wcmc_20251201_12
crossref_primary_10_1007_s11042_022_12162_1
crossref_primary_10_20473_jisebi_9_1_1_15
ContentType Journal Article
Copyright Creative Commons Attribution License
Copyright: © Asian Pacific Journal of Cancer Prevention 2018
Copyright_xml – notice: Creative Commons Attribution License
– notice: Copyright: © Asian Pacific Journal of Cancer Prevention 2018
DBID CGR
CUY
CVF
ECM
EIF
NPM
5PM
ADTOC
UNPAY
DOI 10.31557/APJCP.2018.19.11.3257
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2476-762X
EndPage 3263
ExternalDocumentID 10.31557/apjcp.2018.19.11.3257
PMC6318394
30486629
Genre Journal Article
GroupedDBID CGR
CUY
CVF
ECM
EIF
NPM
---
23N
2WC
53G
5GY
5PM
9ZL
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
E3Z
EBS
EJD
F5P
FRJ
GROUPED_DOAJ
GX1
HYE
JDI
OK1
OVT
RPM
TR2
W2D
WOW
.UV
ADTOC
C1A
UNPAY
ID FETCH-LOGICAL-c3297-fd86c347d9f74484fbeb042cae2f424da6b240f7ba7470f68e8647a93dd1d57e3
IEDL.DBID UNPAY
ISSN 1513-7368
2476-762X
IngestDate Wed Oct 29 12:19:57 EDT 2025
Thu Aug 21 13:58:40 EDT 2025
Thu Apr 03 07:01:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Fuzzy C means clustering
discrete wavelet transform
spatial fuzzy C means
K means clustering
Language English
License Creative Commons Attribution License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3297-fd86c347d9f74484fbeb042cae2f424da6b240f7ba7470f68e8647a93dd1d57e3
OpenAccessLink https://proxy.k.utb.cz/login?url=http://journal.waocp.org/article_75647_664ffbe533ee06b824746e8b3105eb36.pdf
PMID 30486629
PageCount 7
ParticipantIDs unpaywall_primary_10_31557_apjcp_2018_19_11_3257
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6318394
pubmed_primary_30486629
PublicationCentury 2000
PublicationDate 2018-Nov-29
PublicationDateYYYYMMDD 2018-11-29
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-Nov-29
  day: 29
PublicationDecade 2010
PublicationPlace Thailand
PublicationPlace_xml – name: Thailand
– name: Iran
PublicationTitle Asian Pacific journal of cancer prevention : APJCP
PublicationTitleAlternate Asian Pac J Cancer Prev
PublicationYear 2018
Publisher West Asia Organization for Cancer Prevention
Publisher_xml – name: West Asia Organization for Cancer Prevention
SSID ssj0045875
Score 2.3816416
Snippet Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image...
Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image...
SourceID unpaywall
pubmedcentral
pubmed
SourceType Open Access Repository
Index Database
StartPage 3257
SubjectTerms Algorithms
Brain Neoplasms - diagnosis
Brain Neoplasms - diagnostic imaging
Early Detection of Cancer - methods
Fuzzy Logic
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Signal Processing, Computer-Assisted
Support Vector Machine
Wavelet Analysis
Title MRI Brain Tumour Segmentation Using Hybrid Clustering and Classification by Back Propagation Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/30486629
https://pubmed.ncbi.nlm.nih.gov/PMC6318394
http://journal.waocp.org/article_75647_664ffbe533ee06b824746e8b3105eb36.pdf
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2476-762X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0045875
  issn: 1513-7368
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2476-762X
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0045875
  issn: 1513-7368
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagKwEX3o_yWPnA1aGJHTs-dlesClKrCrZSOUV-dh9pGlWNVuXXM45DYeGExCVSnHEk26OZb5KZbxB6b4VV1EpLqEodYcZxUkhlCYBxqxX4I05DcfJ0xicL9nmZL3-1A-o3MLlRG9NEmuC4gaXIORMl58x77QCjODfiusiYYNwVGkBKDmEhTxrr76IjngMwH6CjxWw-_tYxpqaUCNoVxsEUTsAELGO9MAWHKj6o5soE9sq0SFIJZiShWXBYB6f0Z8Lk_bZu1P5GVdVv3ujsEap-1vTEJJTrpN3pxHz_m-Lxfyz0MXrYo1Y8jpOfoDuuforuTfv_8s-Qn375hE9Ctwl83q5BGn91q3Vf1lTjLi8BT_ahOgyfVm0gZwgjqg63AN9DvlIU1Xt8osw1nm8hml_FsXG12mwvdxfr52hx9vH8dEL6Dg7E0EwK4m3BDWXCSi8gDmSwIg1WwiiXeZYxq7gGROGFVhDVjDwvXAGLV5Jam9pcOPoCDepN7V4hTLlhuYb3wXtDexApWepUAWgHrI6xfIhexjMqm0jTUdLAJgjiQyRund5BIDBr335SX150DNs8WDrJhmh0OOfDLIiaOp0pO50pg86UqYRIqgw68_rfp7xBD8JIKHDM5Fs02G1b9w6Qzk4fd18I4DqbT497bf4BF2b82Q
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBa2FNh62Xtt9oIOu8qLLVmyjmmxIhuQotgaIDsZeqZdHccIYhTprx9leVnbnQbsaJk0IIkgP8LkR4Q-WmEVtdISqlJHmHGcFFJZAmDcagXxiNPQnDw95ZMZ-zrP53_GAfUHmFyrlWkiTXA8wFLknImSc-a9doBRnBtxXWRMMO4KDSAlh7SQJ431D9EezwGYD9De7PRs_KNjTE0pEbRrjAMVTsAFzGO_MIWAKj6p5qcJ7JVpkaQS3EhCsxCwdkHpfsHk47Zu1PZaVdWtaHTyFFW_e3piEcpV0m50Ym7-pnj8Hxt9hp70qBWPo_Jz9MDVL9Cjaf9f_iXy029f8FGYNoHP2yVI4-9usezbmmrc1SXgyTZ0h-Hjqg3kDGFF1eER4HuoV4qieouPlLnCZ2vI5hdxbVwtVuvLzcXyFZqdfD4_npB-ggMxNJOCeFtwQ5mw0gvIAxnsSIOXMMplnmXMKq4BUXihFWQ1I88LV8DmlaTWpjYXjr5Gg3pVu0OEKTcs1_A9-G4YDyIlS50qAO2A1zGWD9FBvKOyiTQdJQ1sgiA-ROLO7e0EArP23Tf15UXHsM2Dp5NsiEa7e95pQdbU2UzZ2UwZbKZMJWRSZbCZN_-u8hbth5XQ4JjJd2iwWbfuPSCdjf7QW_AvTgr62A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+Brain+Tumour+Segmentation+Using+Hybrid+Clustering+and+Classification+by+Back+Propagation+Algorithm&rft.jtitle=Asian+Pacific+journal+of+cancer+prevention+%3A+APJCP&rft.au=M%2C+Malathi&rft.au=P%2C+Sinthia&rft.date=2018-11-29&rft.pub=West+Asia+Organization+for+Cancer+Prevention&rft.issn=1513-7368&rft.eissn=2476-762X&rft.volume=19&rft.issue=11&rft.spage=3257&rft.epage=3263&rft_id=info:doi/10.31557%2FAPJCP.2018.19.11.3257&rft_id=info%3Apmid%2F30486629&rft.externalDocID=PMC6318394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1513-7368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1513-7368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1513-7368&client=summon