MRI Brain Tumour Segmentation Using Hybrid Clustering and Classification by Back Propagation Algorithm
Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image segmentation is the challenging task in medical applications, due to contrary image, local observations of an image, noise image, non uniform textur...
Saved in:
| Published in | Asian Pacific journal of cancer prevention : APJCP Vol. 19; no. 11; pp. 3257 - 3263 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Thailand
West Asia Organization for Cancer Prevention
29.11.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1513-7368 2476-762X 2476-762X |
| DOI | 10.31557/APJCP.2018.19.11.3257 |
Cover
| Abstract | Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of
abnormality. Even though image segmentation is the challenging task in medical applications, due to contrary image,
local observations of an image, noise image, non uniform texture of the images and so on. Many techniques are available
for image segmentation, but still it requires to introduce an efficient, fast medical image segmentation methods. This
research article introduces an efficient image segmentation method based on K means clustering integrated with
a spatial Fuzzy C means clustering algorithms. The suggested technique combines the advantages of the two methods.
K means segmentation requires minimum computation time, but spatial Fuzzy C means provides high accuracy for
image segmentation. The performance of the proposed method is evaluated in terms of accuracy, PSNR and processing
time. It also provides good implementation results for MRI brain image segmentation with high accuracy and minimal
execution time. After completing the segmentation the of abnormal part of the input MRI brain image, it is compulsory
to classify the image is normal or abnormal. There are many classifiers like a self organizing map, Back propagation
algorithm, support vector machine etc., The algorithm helps to classify the abnormalities like benign or malignant brain
tumour in case of MRI brain image. The abnormality is detected based on the extracted features from an input image.
Discrete wavelet transform helps to find the hidden information from the MRI brain image. The extracted features are
trained by Back Propagation Algorithm to classify the abnormalities of MRI brain image. |
|---|---|
| AbstractList | Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of
abnormality. Even though image segmentation is the challenging task in medical applications, due to contrary image,
local observations of an image, noise image, non uniform texture of the images and so on. Many techniques are available
for image segmentation, but still it requires to introduce an efficient, fast medical image segmentation methods. This
research article introduces an efficient image segmentation method based on K means clustering integrated with
a spatial Fuzzy C means clustering algorithms. The suggested technique combines the advantages of the two methods.
K means segmentation requires minimum computation time, but spatial Fuzzy C means provides high accuracy for
image segmentation. The performance of the proposed method is evaluated in terms of accuracy, PSNR and processing
time. It also provides good implementation results for MRI brain image segmentation with high accuracy and minimal
execution time. After completing the segmentation the of abnormal part of the input MRI brain image, it is compulsory
to classify the image is normal or abnormal. There are many classifiers like a self organizing map, Back propagation
algorithm, support vector machine etc., The algorithm helps to classify the abnormalities like benign or malignant brain
tumour in case of MRI brain image. The abnormality is detected based on the extracted features from an input image.
Discrete wavelet transform helps to find the hidden information from the MRI brain image. The extracted features are
trained by Back Propagation Algorithm to classify the abnormalities of MRI brain image. Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image segmentation is the challenging task in medical applications, due to contrary image, local observations of an image, noise image, non uniform texture of the images and so on. Many techniques are available for image segmentation, but still it requires to introduce an efficient, fast medical image segmentation methods. This research article introduces an efficient image segmentation method based on K means clustering integrated with a spatial Fuzzy C means clustering algorithms. The suggested technique combines the advantages of the two methods. K means segmentation requires minimum computation time, but spatial Fuzzy C means provides high accuracy for image segmentation. The performance of the proposed method is evaluated in terms of accuracy, PSNR and processing time. It also provides good implementation results for MRI brain image segmentation with high accuracy and minimal execution time. After completing the segmentation the of abnormal part of the input MRI brain image, it is compulsory to classify the image is normal or abnormal. There are many classifiers like a self organizing map, Back propagation algorithm, support vector machine etc., The algorithm helps to classify the abnormalities like benign or malignant brain tumour in case of MRI brain image. The abnormality is detected based on the extracted features from an input image. Discrete wavelet transform helps to find the hidden information from the MRI brain image. The extracted features are trained by Back Propagation Algorithm to classify the abnormalities of MRI brain image. |
| Author | P, Sinthia M, Malathi |
| AuthorAffiliation | Department of Electronics and Instrumentation, Saveetha Engineering College, Chennai, India |
| AuthorAffiliation_xml | – name: Department of Electronics and Instrumentation, Saveetha Engineering College, Chennai, India |
| Author_xml | – sequence: 1 givenname: Malathi surname: M fullname: M, Malathi email: malathiyoga08@gmail.com organization: Department of Electronics and Instrumentation, Saveetha Engineering College, Chennai, India. Email: malathiyoga08@gmail.com – sequence: 2 givenname: Sinthia surname: P fullname: P, Sinthia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30486629$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkMtOwzAQRS0EglL4BZQfSPArtrNBKhVPgaigSOysSWIHQ-JETgPq39NSnqvR3JlzF2cfbfvWG4SOCE4YSVN5PJldT2cJxUQlJEsISRhN5RYaUS5FLAV92kYjkhIWSybUHtrv-xeMeapkuov2GOZKCJqNkL29v4pOAzgfzYemHUL0YKrG-AUsXOujx975Krpc5sGV0bQe-oUJ6wT8eoW-d9YVm9d8GZ1C8RrNQttBtckmddUGt3huDtCOhbo3h19zjB7Pz-bTy_jm7uJqOrmJC0YzGdtSiYJxWWZWcq64zU2OOS3AUMspL0HklGMrc5BcYiuUUYJLyFhZkjKVho2R3PQOvoPlO9S17oJrICw1wfrTnIbupej02pwmmSZEr82tyJMN2Q15Y8pipSDAL92C0_8v3j3rqn3TghHFMr4qOPpb8EN-u2YfEnyFgA |
| CitedBy_id | crossref_primary_10_3390_jimaging8110301 crossref_primary_10_3390_app11041675 crossref_primary_10_1080_00051144_2022_2103771 crossref_primary_10_1016_j_heliyon_2025_e41835 crossref_primary_10_1155_2021_1667024 crossref_primary_10_1016_j_compbiomed_2024_108412 crossref_primary_10_1088_1742_6596_1921_1_012007 crossref_primary_10_1155_2022_4558702 crossref_primary_10_1002_ima_22736 crossref_primary_10_1016_j_eswa_2022_119435 crossref_primary_10_3390_nano11081876 crossref_primary_10_1016_j_bbe_2020_01_006 crossref_primary_10_1155_2021_6662779 crossref_primary_10_1007_s00521_024_09475_7 crossref_primary_10_2174_2211555204666220131112639 crossref_primary_10_1016_j_aej_2023_05_080 crossref_primary_10_1016_j_compbiomed_2022_105273 crossref_primary_10_3389_fneur_2021_701946 crossref_primary_10_1007_s11042_021_10873_5 crossref_primary_10_11648_j_wcmc_20251201_12 crossref_primary_10_1007_s11042_022_12162_1 crossref_primary_10_20473_jisebi_9_1_1_15 |
| ContentType | Journal Article |
| Copyright | Creative Commons Attribution License Copyright: © Asian Pacific Journal of Cancer Prevention 2018 |
| Copyright_xml | – notice: Creative Commons Attribution License – notice: Copyright: © Asian Pacific Journal of Cancer Prevention 2018 |
| DBID | CGR CUY CVF ECM EIF NPM 5PM ADTOC UNPAY |
| DOI | 10.31557/APJCP.2018.19.11.3257 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2476-762X |
| EndPage | 3263 |
| ExternalDocumentID | 10.31557/apjcp.2018.19.11.3257 PMC6318394 30486629 |
| Genre | Journal Article |
| GroupedDBID | CGR CUY CVF ECM EIF NPM --- 23N 2WC 53G 5GY 5PM 9ZL ADBBV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV E3Z EBS EJD F5P FRJ GROUPED_DOAJ GX1 HYE JDI OK1 OVT RPM TR2 W2D WOW .UV ADTOC C1A UNPAY |
| ID | FETCH-LOGICAL-c3297-fd86c347d9f74484fbeb042cae2f424da6b240f7ba7470f68e8647a93dd1d57e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1513-7368 2476-762X |
| IngestDate | Wed Oct 29 12:19:57 EDT 2025 Thu Aug 21 13:58:40 EDT 2025 Thu Apr 03 07:01:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Fuzzy C means clustering discrete wavelet transform spatial fuzzy C means K means clustering |
| Language | English |
| License | Creative Commons Attribution License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3297-fd86c347d9f74484fbeb042cae2f424da6b240f7ba7470f68e8647a93dd1d57e3 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://journal.waocp.org/article_75647_664ffbe533ee06b824746e8b3105eb36.pdf |
| PMID | 30486629 |
| PageCount | 7 |
| ParticipantIDs | unpaywall_primary_10_31557_apjcp_2018_19_11_3257 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6318394 pubmed_primary_30486629 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Nov-29 |
| PublicationDateYYYYMMDD | 2018-11-29 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-Nov-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | Thailand |
| PublicationPlace_xml | – name: Thailand – name: Iran |
| PublicationTitle | Asian Pacific journal of cancer prevention : APJCP |
| PublicationTitleAlternate | Asian Pac J Cancer Prev |
| PublicationYear | 2018 |
| Publisher | West Asia Organization for Cancer Prevention |
| Publisher_xml | – name: West Asia Organization for Cancer Prevention |
| SSID | ssj0045875 |
| Score | 2.3816416 |
| Snippet | Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of
abnormality. Even though image... Generally the segmentation refers, the partitioning of an image into smaller regions to identify or locate the region of abnormality. Even though image... |
| SourceID | unpaywall pubmedcentral pubmed |
| SourceType | Open Access Repository Index Database |
| StartPage | 3257 |
| SubjectTerms | Algorithms Brain Neoplasms - diagnosis Brain Neoplasms - diagnostic imaging Early Detection of Cancer - methods Fuzzy Logic Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Signal Processing, Computer-Assisted Support Vector Machine Wavelet Analysis |
| Title | MRI Brain Tumour Segmentation Using Hybrid Clustering and Classification by Back Propagation Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30486629 https://pubmed.ncbi.nlm.nih.gov/PMC6318394 http://journal.waocp.org/article_75647_664ffbe533ee06b824746e8b3105eb36.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2476-762X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0045875 issn: 1513-7368 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2476-762X dateEnd: 20250902 omitProxy: true ssIdentifier: ssj0045875 issn: 1513-7368 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELagKwEX3o_yWPnA1aGJHTs-dlesClKrCrZSOUV-dh9pGlWNVuXXM45DYeGExCVSnHEk26OZb5KZbxB6b4VV1EpLqEodYcZxUkhlCYBxqxX4I05DcfJ0xicL9nmZL3-1A-o3MLlRG9NEmuC4gaXIORMl58x77QCjODfiusiYYNwVGkBKDmEhTxrr76IjngMwH6CjxWw-_tYxpqaUCNoVxsEUTsAELGO9MAWHKj6o5soE9sq0SFIJZiShWXBYB6f0Z8Lk_bZu1P5GVdVv3ujsEap-1vTEJJTrpN3pxHz_m-Lxfyz0MXrYo1Y8jpOfoDuuforuTfv_8s-Qn375hE9Ctwl83q5BGn91q3Vf1lTjLi8BT_ahOgyfVm0gZwgjqg63AN9DvlIU1Xt8osw1nm8hml_FsXG12mwvdxfr52hx9vH8dEL6Dg7E0EwK4m3BDWXCSi8gDmSwIg1WwiiXeZYxq7gGROGFVhDVjDwvXAGLV5Jam9pcOPoCDepN7V4hTLlhuYb3wXtDexApWepUAWgHrI6xfIhexjMqm0jTUdLAJgjiQyRund5BIDBr335SX150DNs8WDrJhmh0OOfDLIiaOp0pO50pg86UqYRIqgw68_rfp7xBD8JIKHDM5Fs02G1b9w6Qzk4fd18I4DqbT497bf4BF2b82Q |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9swDBa2FNh62Xtt9oIOu8qLLVmyjmmxIhuQotgaIDsZeqZdHccIYhTprx9leVnbnQbsaJk0IIkgP8LkR4Q-WmEVtdISqlJHmHGcFFJZAmDcagXxiNPQnDw95ZMZ-zrP53_GAfUHmFyrlWkiTXA8wFLknImSc-a9doBRnBtxXWRMMO4KDSAlh7SQJ431D9EezwGYD9De7PRs_KNjTE0pEbRrjAMVTsAFzGO_MIWAKj6p5qcJ7JVpkaQS3EhCsxCwdkHpfsHk47Zu1PZaVdWtaHTyFFW_e3piEcpV0m50Ym7-pnj8Hxt9hp70qBWPo_Jz9MDVL9Cjaf9f_iXy029f8FGYNoHP2yVI4-9usezbmmrc1SXgyTZ0h-Hjqg3kDGFF1eER4HuoV4qieouPlLnCZ2vI5hdxbVwtVuvLzcXyFZqdfD4_npB-ggMxNJOCeFtwQ5mw0gvIAxnsSIOXMMplnmXMKq4BUXihFWQ1I88LV8DmlaTWpjYXjr5Gg3pVu0OEKTcs1_A9-G4YDyIlS50qAO2A1zGWD9FBvKOyiTQdJQ1sgiA-ROLO7e0EArP23Tf15UXHsM2Dp5NsiEa7e95pQdbU2UzZ2UwZbKZMJWRSZbCZN_-u8hbth5XQ4JjJd2iwWbfuPSCdjf7QW_AvTgr62A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MRI+Brain+Tumour+Segmentation+Using+Hybrid+Clustering+and+Classification+by+Back+Propagation+Algorithm&rft.jtitle=Asian+Pacific+journal+of+cancer+prevention+%3A+APJCP&rft.au=M%2C+Malathi&rft.au=P%2C+Sinthia&rft.date=2018-11-29&rft.pub=West+Asia+Organization+for+Cancer+Prevention&rft.issn=1513-7368&rft.eissn=2476-762X&rft.volume=19&rft.issue=11&rft.spage=3257&rft.epage=3263&rft_id=info:doi/10.31557%2FAPJCP.2018.19.11.3257&rft_id=info%3Apmid%2F30486629&rft.externalDocID=PMC6318394 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1513-7368&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1513-7368&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1513-7368&client=summon |