Metric dimension of generalized wheels

In a graph G, a vertex w∈V(G) resolves a pair of vertices u,v∈V(G) if d(u,w)≠d(v,w). A resolving set of G is a set of vertices S such that every pair of distinct vertices in V(G) is resolved by some vertex in S. The minimum cardinality among all the resolving sets of G is called the metric dimension...

Full description

Saved in:
Bibliographic Details
Published inArab journal of mathematical sciences Vol. 25; no. 2; pp. 131 - 144
Main Authors Sooryanarayana, Badekara, Kunikullaya, Shreedhar, Swamy, Narahari Narasimha
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2019
Emerald Publishing
Subjects
Online AccessGet full text
ISSN1319-5166
2588-9214
DOI10.1016/j.ajmsc.2019.04.002

Cover

Abstract In a graph G, a vertex w∈V(G) resolves a pair of vertices u,v∈V(G) if d(u,w)≠d(v,w). A resolving set of G is a set of vertices S such that every pair of distinct vertices in V(G) is resolved by some vertex in S. The minimum cardinality among all the resolving sets of G is called the metric dimension of G, denoted by β(G). The metric dimension of a wheel has been obtained in an earlier paper (Shanmukha et al., 2002). In this paper, the metric dimension of the family of generalized wheels is obtained. Further, few properties of the metric dimension of the corona product of graphs have been discussed and some relations between the metric dimension of a graph and its generalized corona product are established.
AbstractList In a graph G, a vertex w∈V(G)resolves a pair of vertices u,v∈V(G)if d(u,w)≠d(v,w). A resolving set of G is a set of vertices S such that every pair of distinct vertices in V(G)is resolved by some vertex in S. The minimum cardinality among all the resolving sets of G is called the metric dimension of G, denoted by β(G). The metric dimension of a wheel has been obtained in an earlier paper (Shanmukha et al., 2002). In this paper, the metric dimension of the family of generalized wheels is obtained. Further, few properties of the metric dimension of the corona product of graphs have been discussed and some relations between the metric dimension of a graph and its generalized corona product are established. Keywords: Resolving set, Metric dimension, Generalized wheel, Corona product, Mathematics Subject Classification: 05C56, 05C12
In a graph G, a vertex w∈V(G) resolves a pair of vertices u,v∈V(G) if d(u,w)≠d(v,w). A resolving set of G is a set of vertices S such that every pair of distinct vertices in V(G) is resolved by some vertex in S. The minimum cardinality among all the resolving sets of G is called the metric dimension of G, denoted by β(G). The metric dimension of a wheel has been obtained in an earlier paper (Shanmukha et al., 2002). In this paper, the metric dimension of the family of generalized wheels is obtained. Further, few properties of the metric dimension of the corona product of graphs have been discussed and some relations between the metric dimension of a graph and its generalized corona product are established.
Author Kunikullaya, Shreedhar
Sooryanarayana, Badekara
Swamy, Narahari Narasimha
Author_xml – sequence: 1
  givenname: Badekara
  surname: Sooryanarayana
  fullname: Sooryanarayana, Badekara
  email: dr_bsnrao@dr-ait.org
  organization: Department of Mathematical & Computational Studies, Dr.Ambedkar Institute of Technology, Bengaluru, Karnataka State, Pin 560 056, India
– sequence: 2
  givenname: Shreedhar
  surname: Kunikullaya
  fullname: Kunikullaya, Shreedhar
  email: shreedhar.k@rediffmail.com
  organization: Department of Mathematics, K.V. G. College of Engineering, Sullia, Dakshina Kannada, Karnataka State, Pin 574 327, India
– sequence: 3
  givenname: Narahari Narasimha
  surname: Swamy
  fullname: Swamy, Narahari Narasimha
  email: narahari_nittur@yahoo.com
  organization: Department of Mathematics, University College of Science, Tumkur University, Tumakuru, Karnataka State, Pin 572 103, India
BookMark eNqNkDtPwzAQgD0UiecvYOnE1uDzI20GBoR4SSAWmK2LfVccpQmyAwh-PSlFDAzAdNJJ33e6b1dMur4jIQ5BFiChPG4KbFbZF0pCVUhTSKkmYgc0VDMLZbktDnJupJQw1wtQdkcc3dKQop-GuKIux76b9jxdUkcJ2_hOYfr6SNTmfbHF2GY6-Jp74uHi_P7sanZzd3l9dnoz81pVaoY-sGQdLMk5WgDPulaWNZY1KralNTUAz1mWtpa-AutDTRrVCJsSFqj3xPXGG3ps3FOKK0xvrsfoPhd9WjpMQ_QtuYrnhhdBsdfGSFQ1EENgNpa0KmseXWbjeu6e8O0V2_ZbCNKtc7nGfeZy61xOGjfmGrFqg_nU55yInY8DDmOaIWFs_2D1D_Z_F0821BiaXiIll32kzlOIifwwvh5_5T8A7Nmbkw
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3370472
crossref_primary_10_1109_ACCESS_2024_3516206
crossref_primary_10_1155_2024_3084976
crossref_primary_10_1137_21M1409512
crossref_primary_10_32604_iasc_2023_032930
Cites_doi 10.1023/A:1025745406160
10.1016/j.dam.2011.12.009
10.1016/S0166-218X(00)00198-0
10.1016/0166-218X(95)00106-2
ContentType Journal Article
Copyright 2019 King Saud University & Saudi Association for Mathematical Sciences
Copyright_xml – notice: 2019 King Saud University & Saudi Association for Mathematical Sciences
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.ajmsc.2019.04.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 144
ExternalDocumentID oai_doaj_org_article_9f74f8d2fc3440a2b1ef1dff45e326bf
10.1016/j.ajmsc.2019.04.002
10_1016_j_ajmsc_2019_04_002
S1319516617302323
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABJCF
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFKRA
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AUCOK
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
FDB
GEI
GROUPED_DOAJ
HCIFZ
HZ~
IPNFZ
IXB
KQ8
M41
M7S
NCXOZ
O-L
O9-
OK1
PIMPY
PTHSS
RIG
ROL
SES
SSZ
XDTOA
XH2
AAGBP
AAYWO
AAYXX
ABGJK
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
H13
PHGZM
PHGZT
PQGLB
PUEGO
ADTOC
UNPAY
ID FETCH-LOGICAL-c3292-acdf0f3d5e07a511cf3b25f3a6ba2f5654b11f7f065b0c915cdbe3a23294618a3
IEDL.DBID IXB
ISSN 1319-5166
2588-9214
IngestDate Wed Aug 27 01:24:42 EDT 2025
Tue Aug 19 22:31:18 EDT 2025
Wed Oct 01 01:20:37 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Fri Feb 23 02:25:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Resolving set
05C56
05C12
Generalized wheel
Corona product
Metric dimension
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3292-acdf0f3d5e07a511cf3b25f3a6ba2f5654b11f7f065b0c915cdbe3a23294618a3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1319516617302323
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_9f74f8d2fc3440a2b1ef1dff45e326bf
unpaywall_primary_10_1016_j_ajmsc_2019_04_002
crossref_citationtrail_10_1016_j_ajmsc_2019_04_002
crossref_primary_10_1016_j_ajmsc_2019_04_002
elsevier_sciencedirect_doi_10_1016_j_ajmsc_2019_04_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationTitle Arab journal of mathematical sciences
PublicationYear 2019
Publisher Elsevier B.V
Emerald Publishing
Publisher_xml – name: Elsevier B.V
– name: Emerald Publishing
References Sooryanarayana, Shreedhar, Narahari (b13) 2016; 4
Khuller, Raghavachari, Rosenfeld (b6) 1996; 70
Grigorious, Kalinowski, Ryan, Stephen (b4) 2017; 69
Shanmukha, Sooryanarayana, Harinath (b7) 2002; 8
Sooryanarayana, Shreedhar, Narahari (b14) 2016; 22
Harary, Melter (b5) 1976; 2
Sooryanarayana (b11) 2012
Shreedhar, Sooryanarayana, Hegde, Vishukumar (b8) 2010; 4
Sooryanarayana, Geetha (b12) 2014; 4
Cáceres, Hernando, Mora, Pelayo, Puertas (b2) 2009; 160
Slater (b9) 1975; 14
Buczkowski, Chartrand, Poisson, Zhang (b1) 2003; 46
Chartrand, Eroh, Johnson, Oellermann (b3) 2000; 105
Sooryanarayana (b10) 1998; 29
Shreedhar (10.1016/j.ajmsc.2019.04.002_b8) 2010; 4
Sooryanarayana (10.1016/j.ajmsc.2019.04.002_b13) 2016; 4
Cáceres (10.1016/j.ajmsc.2019.04.002_b2) 2009; 160
Khuller (10.1016/j.ajmsc.2019.04.002_b6) 1996; 70
Buczkowski (10.1016/j.ajmsc.2019.04.002_b1) 2003; 46
Grigorious (10.1016/j.ajmsc.2019.04.002_b4) 2017; 69
Slater (10.1016/j.ajmsc.2019.04.002_b9) 1975; 14
Sooryanarayana (10.1016/j.ajmsc.2019.04.002_b14) 2016; 22
Sooryanarayana (10.1016/j.ajmsc.2019.04.002_b11) 2012
Sooryanarayana (10.1016/j.ajmsc.2019.04.002_b12) 2014; 4
Harary (10.1016/j.ajmsc.2019.04.002_b5) 1976; 2
Sooryanarayana (10.1016/j.ajmsc.2019.04.002_b10) 1998; 29
Shanmukha (10.1016/j.ajmsc.2019.04.002_b7) 2002; 8
Chartrand (10.1016/j.ajmsc.2019.04.002_b3) 2000; 105
References_xml – volume: 8
  start-page: 217
  year: 2002
  end-page: 229
  ident: b7
  article-title: Metric dimension of wheels
  publication-title: Far East J. Appl. Math.
– volume: 2
  start-page: 191
  year: 1976
  end-page: 195
  ident: b5
  article-title: On the metric dimension of a graph
  publication-title: Ars Combin.
– volume: 69
  start-page: 417
  year: 2017
  end-page: 441
  ident: b4
  article-title: The metric dimension of the circulant graph
  publication-title: Australas. J. Comb.
– volume: 4
  start-page: 3
  year: 2010
  end-page: 148
  ident: b8
  article-title: Metric dimension of hexogonal cellular networks
  publication-title: Int. J. Math. Sci. Eng. Appl.
– volume: 4
  start-page: 118
  year: 2016
  end-page: 127
  ident: b13
  article-title: k-metric dimension of a graph
  publication-title: Int. J. Math. Comb.
– volume: 160
  start-page: 2618
  year: 2009
  end-page: 2626
  ident: b2
  article-title: On the metric dimension of infinite graphs
  publication-title: Discrete Appl. Math.
– volume: 29
  start-page: 413
  year: 1998
  end-page: 415
  ident: b10
  article-title: On the metric dimension of a graph
  publication-title: Indian J. Pure Appl. Math.
– volume: 46
  start-page: 9
  year: 2003
  end-page: 15
  ident: b1
  article-title: On
  publication-title: Period. Math. Hungar.
– volume: 14
  start-page: 549
  year: 1975
  end-page: 559
  ident: b9
  article-title: Leaves of trees
  publication-title: Congr. Numer.
– volume: 70
  start-page: 217
  year: 1996
  end-page: 229
  ident: b6
  article-title: Landmarks in graphs
  publication-title: Discrete Appl. Math.
– volume: 105
  start-page: 99
  year: 2000
  end-page: 113
  ident: b3
  article-title: Resolvability in graphs and the metric dimension of a graph
  publication-title: Discrete Appl. Math.
– volume: 22
  start-page: 82
  year: 2016
  end-page: 95
  ident: b14
  article-title: On the metric dimension of the total graph of a graph
  publication-title: Notes Number Theory Discrete Math.
– volume: 4
  start-page: 861
  year: 2014
  end-page: 878
  ident: b12
  article-title: On the k-metric dimension of graphs
  publication-title: J. Math. Comput. Sci.
– year: 2012
  ident: b11
  article-title: k-metric dimension of a graph
  publication-title: SIAM Conference of Discrete Mathematics, vol. 45
– volume: 22
  start-page: 82
  issue: 4
  year: 2016
  ident: 10.1016/j.ajmsc.2019.04.002_b14
  article-title: On the metric dimension of the total graph of a graph
  publication-title: Notes Number Theory Discrete Math.
– volume: 69
  start-page: 417
  issue: 3
  year: 2017
  ident: 10.1016/j.ajmsc.2019.04.002_b4
  article-title: The metric dimension of the circulant graph C(n,±{1,2,3,4})
  publication-title: Australas. J. Comb.
– volume: 46
  start-page: 9
  issue: 1
  year: 2003
  ident: 10.1016/j.ajmsc.2019.04.002_b1
  article-title: On k-dimensional metric dimension of graphs and their bases
  publication-title: Period. Math. Hungar.
  doi: 10.1023/A:1025745406160
– volume: 4
  start-page: 3
  issue: XI
  year: 2010
  ident: 10.1016/j.ajmsc.2019.04.002_b8
  article-title: Metric dimension of hexogonal cellular networks
  publication-title: Int. J. Math. Sci. Eng. Appl.
– volume: 14
  start-page: 549
  year: 1975
  ident: 10.1016/j.ajmsc.2019.04.002_b9
  article-title: Leaves of trees
  publication-title: Congr. Numer.
– volume: 29
  start-page: 413
  issue: 4
  year: 1998
  ident: 10.1016/j.ajmsc.2019.04.002_b10
  article-title: On the metric dimension of a graph
  publication-title: Indian J. Pure Appl. Math.
– volume: 4
  start-page: 118
  year: 2016
  ident: 10.1016/j.ajmsc.2019.04.002_b13
  article-title: k-metric dimension of a graph
  publication-title: Int. J. Math. Comb.
– volume: 8
  start-page: 217
  issue: 3
  year: 2002
  ident: 10.1016/j.ajmsc.2019.04.002_b7
  article-title: Metric dimension of wheels
  publication-title: Far East J. Appl. Math.
– volume: 2
  start-page: 191
  year: 1976
  ident: 10.1016/j.ajmsc.2019.04.002_b5
  article-title: On the metric dimension of a graph
  publication-title: Ars Combin.
– volume: 160
  start-page: 2618
  issue: 18
  year: 2009
  ident: 10.1016/j.ajmsc.2019.04.002_b2
  article-title: On the metric dimension of infinite graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2011.12.009
– year: 2012
  ident: 10.1016/j.ajmsc.2019.04.002_b11
  article-title: k-metric dimension of a graph
– volume: 105
  start-page: 99
  issue: 1–3
  year: 2000
  ident: 10.1016/j.ajmsc.2019.04.002_b3
  article-title: Resolvability in graphs and the metric dimension of a graph
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(00)00198-0
– volume: 70
  start-page: 217
  year: 1996
  ident: 10.1016/j.ajmsc.2019.04.002_b6
  article-title: Landmarks in graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(95)00106-2
– volume: 4
  start-page: 861
  issue: 5
  year: 2014
  ident: 10.1016/j.ajmsc.2019.04.002_b12
  article-title: On the k-metric dimension of graphs
  publication-title: J. Math. Comput. Sci.
SSID ssj0001738125
Score 2.0833218
Snippet In a graph G, a vertex w∈V(G) resolves a pair of vertices u,v∈V(G) if d(u,w)≠d(v,w). A resolving set of G is a set of vertices S such that every pair of...
In a graph G, a vertex w∈V(G)resolves a pair of vertices u,v∈V(G)if d(u,w)≠d(v,w). A resolving set of G is a set of vertices S such that every pair of distinct...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Corona product
Generalized wheel
Metric dimension
Resolving set
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF2BAPEV5KQNiIsJ27LgZAVFVSGWiUjfLr4NWJa2gVQW_HjuPKiyFgTVy4tN3Ue7z6fJ9CF2CtkpzgWOHiYkZUBJrmtIYO_DVzemOgNDQ7z-lvQF7HPJhw-orzISV8sAlcDcZCAYdS8EkjGFFNXFALADjzjMPDeHr68tY4zBVdFeEr0SF4yoJf-lwkqa15FAx3KXGbx9BwJBkhdBp1VSpy1Kh3v-jOm0u8pn6XKrJpFF9urtop6KN0W0Z7h7acPk-2m6ICR6gq34wxzKRDXr9oQcWTSF6KVWlR1_ORstX57c6RIPuw_N9L65cEGKT0IzGyljAkFjusFCeHhlINOWQqFQrCp6PMU0ICPBcQmOTEW6sdonyTCljKemo5Ai18mnujlFkiHX-AOVZjyUMMqEhBR4oHsfK8wbaRrQGQZpKIjw4VUxkPQs2lgVyMiAnMZMeuTa6Xt00KxUy1i-_C-iulgZ56-KCT7qski5_S3obpXVuZMUUSgbgHzVav3u8yuRfoj35j2hP0VYwqQ-NGyLOUGv-vnDnnsrM9UXx1n4DDXTuwg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMeD1IN48C1WVPYgnkxJsslu91hFKUKLBwv1FPIaX7Ut2iL205vsbksrUup1yWazMwnzz-s3CJ2DtkqLlGBHqMEcGMWaJQwTBz66OV1PISzot9pJs8PvuqJbcrbDXZiF_fv8HJZ6ff8MrEGa5UzSAI5cT8JuUgWtd9r3jcd8SkUzLGi-M8mE933GKJ8yhv6uZSEO5bj-hXC0Me4P1feX6vXmws3tdnGP-zOnFIZTJm-18UjXzOQXw3HFP9lBW6XsjBpFP9lFa66_hzbnYIT76KIVkmuZyAbef1hDiwYQPRVU6peJs9HXs_MtP0Cd25uH6yYusyhgE7OMYWUsEIitcCRVXl4ZiDUTEKtEKwZez3FNKaTgtYgmJqPCWO1i5ZVWxhNaV_EhqvQHfXeEIkOt8xMwr5os5ZClGhIQQSIKorzuYFXEpjaVpkSMh0wXPTk9S_YqcyPIYARJuPRGqKLL2UvDgrCxvPhVcNasaMBj5w-8rWU52mQGKYe6ZWBizolimjqgFoAL5-WqhipKpq6WpdIoFISv6mX51_GsY6zS2uN_lj9BldHH2J16oTPSZ2UH_wGDt_c2
  priority: 102
  providerName: Unpaywall
Title Metric dimension of generalized wheels
URI https://dx.doi.org/10.1016/j.ajmsc.2019.04.002
https://doi.org/10.1016/j.ajmsc.2019.04.002
https://doaj.org/article/9f74f8d2fc3440a2b1ef1dff45e326bf
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1319-5166
  databaseCode: KQ8
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0001738125
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  issn: 1319-5166
  databaseCode: IXB
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0001738125
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1319-5166
  databaseCode: AKRWK
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001738125
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqcgAOiKcIj2gPiBNWbK-9zh7TiqqiaoWAiHCy_JqSKiRRaVXBr2fG2Q3tpUJcR-Md67Pl-XZkf8PYGwjJB2MFz0JGrkFJHlSjuMiA2S2HsQUq6B-fNIdT_WFmZjtsv38LQ9cqu7N_c6aX07qzjDo0R-v5fPRZ4u4xEvOLpcY3ihQ_a23LI77Z3t86i8WcVHqvkj-nAb34ULnm5c9-_CQpQ9kWydOuvNInqKLjfyNP3b1crv2vK79YXMtDBw_Zg45AVpPNHB-xnbx8zO5fkxV8wt4eU5usWCVS7qdqWLWC6nSjLz3_nVN19T1jqKdsevD-y_4h7_oh8FirVnEfEwiok8nCeiRKEeqgDNS-CV4BMjMdpAQLyCqCiK00MYVce8Sm1Y0c-_oZ212ulvk5q6JMGX-lkP8kqaG1ARowRPaM8Mgg1ICpHgQXO7Fw6lmxcP2tsDNXkHOEnBPaIXID9m47aL3RyrjdfY_Q3bqS0HUxrM5PXbfSrgWrYZwUxFpr4VWQGWQC0CYj8QwwYE2_Nu7GvsFPzW-Pzrcr-S-zffG_gV6ye9Sinso20r5iuxfnl_k1EpmLMGR3Jkefvh4NSyFgWPYt2qYnHyff_gDSTvKP
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5RONAeEPQhUgrdQ9VTrdheezd7LAgUWsKlIOVm-TUQFJKIglD76zveRwoXhLh67bX1eTTz7Wj2G4Av6IJ1uuQscuGZQimYk4VkPCJFt-gGJaaE_ui0GJ6rH2M9XoGD7l-YVFbZ-v7Gp9feuh3pt2j2F5NJ_5cg69GC4kuZGt_I_BWsERvgqa7reLz_P9FSUlCqm6-mBSyt6NSH6jove3X9O2kZiqrWPG3zK12EqoX8HwWq9bvZwv65t9Ppg0B0tAkbLYPMvjeH3IKVOHsLbx7oCr6Dr6PUJ8tnIUn3p3RYNsfsohGYnvyNIbu_jLTVezg_Ojw7GLK2IQLzuawksz4gxzzoyEtLTMlj7qTG3BbOSiRqppwQWCLRCsd9JbQPLuaWwKlUIQY2_wCrs_ksbkPmRYj0LUUEKAiFVemwQJ3YnuaWKITsgexAML5VC09NK6amKwu7MjVyJiFnuDKEXA--LRctGrGMp6fvJ3SXU5PSdT0wv7kw7VWbCkuFgyDR50pxK52IKAKi0pGYp8MeFN3dmEeGQ6-aPL07W97kc0778aUbfYb14dnoxJwcn_7cgdfpSVPv-wlWb2_u4i6xmlu3V1vtPzF68Ww
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMeD1IN48C1WVPYgnkxJsslu91hFKUKLBwv1FPIaX7Ut2iL205vsbksrUup1yWazMwnzz-s3CJ2DtkqLlGBHqMEcGMWaJQwTBz66OV1PISzot9pJs8PvuqJbcrbDXZiF_fv8HJZ6ff8MrEGa5UzSAI5cT8JuUgWtd9r3jcd8SkUzLGi-M8mE933GKJ8yhv6uZSEO5bj-hXC0Me4P1feX6vXmws3tdnGP-zOnFIZTJm-18UjXzOQXw3HFP9lBW6XsjBpFP9lFa66_hzbnYIT76KIVkmuZyAbef1hDiwYQPRVU6peJs9HXs_MtP0Cd25uH6yYusyhgE7OMYWUsEIitcCRVXl4ZiDUTEKtEKwZez3FNKaTgtYgmJqPCWO1i5ZVWxhNaV_EhqvQHfXeEIkOt8xMwr5os5ZClGhIQQSIKorzuYFXEpjaVpkSMh0wXPTk9S_YqcyPIYARJuPRGqKLL2UvDgrCxvPhVcNasaMBj5w-8rWU52mQGKYe6ZWBizolimjqgFoAL5-WqhipKpq6WpdIoFISv6mX51_GsY6zS2uN_lj9BldHH2J16oTPSZ2UH_wGDt_c2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metric+dimension+of+generalized+wheels&rft.jtitle=Arab+journal+of+mathematical+sciences&rft.au=Sooryanarayana%2C+Badekara&rft.au=Kunikullaya%2C+Shreedhar&rft.au=Swamy%2C+Narahari+Narasimha&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=1319-5166&rft.volume=25&rft.issue=2&rft.spage=131&rft.epage=144&rft_id=info:doi/10.1016%2Fj.ajmsc.2019.04.002&rft.externalDocID=S1319516617302323
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-5166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-5166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-5166&client=summon