Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm
This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irreg...
Saved in:
| Published in | Expert systems with applications Vol. 163; p. 113807 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
01.01.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2020.113807 |
Cover
| Abstract | This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irregular heartbeats. It is very essential to prevent a CAs, as they are the most common cause of natural death in all over the world. According to the health reports, more than 4.5 lakh cardiac patients fatalities annually in the United States alone. To diagnose cardiac diseases, patient’s reported qualitative symptoms can be useful. However, this strategy may fail sometimes due to less accuracy and false positive cases. Therefore in this work, we strive to find a quantitative basis for more reliable and accurate diagnosis of cardiac arrhythmias. This research used the openly available MIMIC-III database to obtain large quantities of clinical monitoring data from patients over the age of sixteen admitted to intensive care units (ICUs). The database was processed on the Health Sciences and Technology (HEST) Cluster, filtered with in a specified time frame(24hrs, 12hrs and 6hrs) and organized into a multi-class and a single-class and finally split into train, validation, and test sets with respective weights of 0.7, 0.2, and 0.1. We used random forest classifier model for the diagnosis of cardiac arrhythmia and measure the importance of different features like respiratory rate, blood pressure, sodium, potassium, calcium, among the other features. Hyperparameter optimization techniques like grid search and genetic algorithms are compared to find the maximum number and depth of trees in the forest. The model achieved, at its best, an Area Under the Receiver Operator Curve (AUC) score of 0.9787 and, thus, confirmed the importance of several previously suggested factors in the diagnosis of cardiac arrhythmias. We substantiated claims that each of sodium, calcium, potassium, respiratory rates and blood pressure can be used for the early diagnosis of cardiac arrhythmias.
•Cardiac arrhythmias are diagnosed based on patient-reported qualitative symptoms.•Random forest model supports in Cardiac arrhythmia diagnosis.•This model also helps to identify critical features of arrhythmia diagnosis.•The model achieved the best accuracy to confirm the features importance. |
|---|---|
| AbstractList | This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irregular heartbeats. It is very essential to prevent a CAs, as they are the most common cause of natural death in all over the world. According to the health reports, more than 4.5 lakh cardiac patients fatalities annually in the United States alone. To diagnose cardiac diseases, patient’s reported qualitative symptoms can be useful. However, this strategy may fail sometimes due to less accuracy and false positive cases. Therefore in this work, we strive to find a quantitative basis for more reliable and accurate diagnosis of cardiac arrhythmias. This research used the openly available MIMIC-III database to obtain large quantities of clinical monitoring data from patients over the age of sixteen admitted to intensive care units (ICUs). The database was processed on the Health Sciences and Technology (HEST) Cluster, filtered with in a specified time frame(24hrs, 12hrs and 6hrs) and organized into a multi-class and a single-class and finally split into train, validation, and test sets with respective weights of 0.7, 0.2, and 0.1. We used random forest classifier model for the diagnosis of cardiac arrhythmia and measure the importance of different features like respiratory rate, blood pressure, sodium, potassium, calcium, among the other features. Hyperparameter optimization techniques like grid search and genetic algorithms are compared to find the maximum number and depth of trees in the forest. The model achieved, at its best, an Area Under the Receiver Operator Curve (AUC) score of 0.9787 and, thus, confirmed the importance of several previously suggested factors in the diagnosis of cardiac arrhythmias. We substantiated claims that each of sodium, calcium, potassium, respiratory rates and blood pressure can be used for the early diagnosis of cardiac arrhythmias.
•Cardiac arrhythmias are diagnosed based on patient-reported qualitative symptoms.•Random forest model supports in Cardiac arrhythmia diagnosis.•This model also helps to identify critical features of arrhythmia diagnosis.•The model achieved the best accuracy to confirm the features importance. This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irregular heartbeats. It is very essential to prevent a CAs, as they are the most common cause of natural death in all over the world. According to the health reports, more than 4.5 lakh cardiac patients fatalities annually in the United States alone. To diagnose cardiac diseases, patient's reported qualitative symptoms can be useful. However, this strategy may fail sometimes due to less accuracy and false positive cases. Therefore in this work, we strive to find a quantitative basis for more reliable and accurate diagnosis of cardiac arrhythmias. This research used the openly available MIMIC-III database to obtain large quantities of clinical monitoring data from patients over the age of sixteen admitted to intensive care units (ICUs). The database was processed on the Health Sciences and Technology (HEST) Cluster, filtered with in a specified time frame(24hrs, 12hrs and 6hrs) and organized into a multi-class and a single-class and finally split into train, validation, and test sets with respective weights of 0.7, 0.2, and 0.1. We used random forest classifier model for the diagnosis of cardiac arrhythmia and measure the importance of different features like respiratory rate, blood pressure, sodium, potassium, calcium, among the other features. Hyperparameter optimization techniques like grid search and genetic algorithms are compared to find the maximum number and depth of trees in the forest. The model achieved, at its best, an Area Under the Receiver Operator Curve (AUC) score of 0.9787 and, thus, confirmed the importance of several previously suggested factors in the diagnosis of cardiac arrhythmias. We substantiated claims that each of sodium, calcium, potassium, respiratory rates and blood pressure can be used for the early diagnosis of cardiac arrhythmias. |
| ArticleNumber | 113807 |
| Author | Yadav, Samir S. Jadhav, Shivajirao M. |
| Author_xml | – sequence: 1 givenname: Samir S. surname: Yadav fullname: Yadav, Samir S. email: ssyadav@dbatu.ac.in – sequence: 2 givenname: Shivajirao M. surname: Jadhav fullname: Jadhav, Shivajirao M. email: smjadhav@dbatu.ac.in |
| BookMark | eNp9kE1PAyEQhonRxFr9A55IPG_lY3fZTbyY-pmYeNEzoezQUrtQh63Gfy9rPXnwBDO8zwDPCTkMMQAh55zNOOP15XoG6dPMBBO5wWXD1AGZ8EbJolatPCQT1laqKLkqj8lJSmvGuGJMTQjcwAB28DHQ6KiNfZ936NMbdcYOERN1EWnnzTLE5NNPyGCuLTWIq69h1XtDd8mHJe2NXfkAdAMGw9gwm2VEnyOn5MiZTYKz33VKXu9uX-YPxdPz_eP8-qmwUjRD4VzZNPn5uZBQKQOdZNCYVpZMOlOJVvKyVgtZLcqWAVOdcK0E1roauBuPp-RiP3eL8X0HadDruMOQr9SirKtSKSFkTol9ymJMCcHpLfre4JfmTI869VqPOvWoU-91Zqj5A1k_mFHcgMZv_kev9ijkr394QJ2sh2Ch85jd6y76__BvPmiS3Q |
| CitedBy_id | crossref_primary_10_1155_2021_6053824 crossref_primary_10_51537_chaos_1413955 crossref_primary_10_3390_healthcare10071303 crossref_primary_10_1109_JSEN_2024_3406780 crossref_primary_10_1007_s41635_023_00140_4 crossref_primary_10_35741_issn_0258_2724_59_2_8 crossref_primary_10_1016_j_compbiomed_2023_106998 crossref_primary_10_1016_j_eswa_2023_120969 crossref_primary_10_1016_j_compbiomed_2023_107025 crossref_primary_10_1007_s42600_024_00399_8 crossref_primary_10_1007_s11277_022_09585_2 crossref_primary_10_1007_s11227_021_04108_5 crossref_primary_10_1016_j_eswa_2023_121497 crossref_primary_10_1007_s11227_024_06036_6 crossref_primary_10_1016_j_cie_2024_110765 crossref_primary_10_1109_TCSS_2022_3151643 crossref_primary_10_32604_cmc_2023_036118 crossref_primary_10_1016_j_chemolab_2023_104820 crossref_primary_10_1007_s11042_024_18312_x crossref_primary_10_1016_j_asoc_2024_112056 crossref_primary_10_54392_irjmt24313 crossref_primary_10_1109_ACCESS_2024_3468163 crossref_primary_10_1142_S0218339023300014 crossref_primary_10_1016_j_ypmed_2023_107619 crossref_primary_10_2478_msr_2024_0017 |
| Cites_doi | 10.1016/j.imu.2018.06.002 10.1016/j.knosys.2019.104923 10.1155/2013/849674 10.1007/s00500-013-1079-6 10.1109/51.932724 10.14257/astl.2017.143.54 10.1016/j.jcct.2018.04.010 10.1016/j.jacc.2017.10.053 10.1016/S0092-8674(01)00243-4 10.1016/j.swevo.2017.10.002 10.1111/j.1755-5922.2010.00210.x 10.1093/bjaceaccp/mkm013 10.1016/j.eswa.2005.09.019 10.3390/s19235079 10.1016/j.eswa.2017.09.022 10.5120/6338-8532 10.1038/nature04710 10.1109/TNNLS.2011.2178447 10.1609/aaai.v29i1.9209 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jan 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.113807 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_113807 S0957417420306229 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-ff4881133283e57aed30e8a93403fa52931467b35b490e07d2f93e09f6e1f5293 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Sun Jul 13 03:53:57 EDT 2025 Sat Oct 25 05:19:00 EDT 2025 Thu Apr 24 22:49:22 EDT 2025 Fri Feb 23 02:47:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cardiac arrhythmia MIMIC-III database Random forest Electrocardiogram Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-ff4881133283e57aed30e8a93403fa52931467b35b490e07d2f93e09f6e1f5293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2465477223 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2465477223 crossref_primary_10_1016_j_eswa_2020_113807 crossref_citationtrail_10_1016_j_eswa_2020_113807 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113807 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Breiman, Cutler (b6) 2002 Koehrson (b30) 2018 Cretikos, Bellomo, Hillman, Chen, Finfer, Flabouris (b12) 2002; 188 Ghassemi, M., Pimentel, M. A., Naumann, T., Brennan, T., Clifton, D. A., Szolovits, P., & Feng, M. (2015). A multivariate time modeling approach to severity of illness assessment and forecasting in ICU with sparse. In Sanguinetti, Tristani-Firouzi (b47) 2006; 440 Kandala, Dhuli, Pławiak, Naik, Moeinzadeh, Gargiulo, Gunnam (b27) 2019; 19 Al-Khatib, Stevenson, Ackerman, Bryant, Callans, Curtis, Deal, Dickfeld, Field, Fonarow, Gillis, Granger, Hammill, Hlatky, Jogla, Kay, Matlock, Myerburg, Page (b1) 2018; 72 Splawski, Timothy, Decher, Kumar, Sachse, Beggs, Sanguinetti, Keating (b52) 2005; 102 Jadhav, Nalbalwar, Ghatol (b22) 2012; 44 Center for Disease Control and Prevention (b8) 2015 F.Fieselmann, Hendryx, Helms, Wakefield (b13) 1992; 8 Huikiri, Castellanos, Myerburg (b21) 2001; 345 Singh, Al’Aref, Assen, Kim, van Rosendael, Kolli, Dwivedi, Maliakal, Pandey, Wang, Do, Gummalla, Cecco, Min (b51) 2018 Churpek, Adhikari, Edelson (b11) 2016 Ayar, Sabamoniri (b5) 2018; 13 Pławiak (b41) 2018; 92 Tuncer, Dogan, Pławiak, Acharya (b57) 2019; 186 Tahsildar (b55) 2019 American College of Cardiology (b2) 2019 Foundation (b14) 2018 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b37) 2011; 12 Narkhede (b35) 2018 Jogla, Page, Caldwell, Calkins, Conti, Deal, III, Field, Goldberger, Hammill, Indik, Lindsay, Olshansky, Russo, Shen, Tracy, Al-Khatib (b24) 2015 Choi, Schuetz, Stewart, Sun (b10) 2016; 24 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b38) 2019 Remme, Bezzina (b46) 2010; 28 Pinnell, Turner, Howell (b39) 2007; 7 Singh (b50) 2018 . Huang (b20) 2018 Johnson, Pollard, Shen, Lehman, Feng, Ghassemi, Moody, Szolovits, Celi, Mark (b25) 2016 American Heart Association (b3) 2017 Kadam, Yadav, Jadhav (b26) 2018 Guvenir, Acar, Demiroz, Cekin (b18) 1997 Khare, Bhandari, Singh, Arora (b29) 2012 Polat, Şahan, Güneş (b44) 2006; 31 Keating, Sanguinetti (b28) 2001; 104 Yılmaz (b59) 2013; 2013 SciPy Organization (b48) 2019 The Cleveland Clinic (b56) 2019 Splawski, Timothy, Tateyama, Clancy, Malhotra, Beggs, Cappuccio, Sagnella, Kass, Keating (b53) 2017 Microsoft Azure (b33) 2019 Ghassemi, Brimmer, Tristan Naumann, Szolovits, Doshi-Velez, Rumshisky (b16) 2014 (2013). Cardiac Arrhythmias. Available at Pollard, Johnson (b45) 2016 Gao, Madden, Schukat, Chambers, Lyons (b15) 2004 Pławiak, Abdar (b42) 2020 Sean, Mak, Cheung (b49) 2017 Lee, Uhm, Lim (b31) 2007 Pławiak, Acharya (b43) 2019 Uyar, Gurgen (b58) 2007 Oveisi, Oveisi, Erfanian, Patras (b36) 2011; 23 Moody, Mark (b34) 2001; 20 Pławiak (b40) 2018; 39 Lerma, Simon, Sofronescu (b32) 2018 Choi, Bahadori, Schuetz, Stewart, Sun (b9) 2016; 56 (2019). ATPases. Available at Jadhav, Nalbalwar, Ghatol (b23) 2014; 18 (2019). SQLite Release (3.27.2) Han (b19) 2017; 143 Sean (10.1016/j.eswa.2020.113807_b49) 2017 Sanguinetti (10.1016/j.eswa.2020.113807_b47) 2006; 440 Koehrson (10.1016/j.eswa.2020.113807_b30) 2018 Tuncer (10.1016/j.eswa.2020.113807_b57) 2019; 186 Pławiak (10.1016/j.eswa.2020.113807_b42) 2020 Tahsildar (10.1016/j.eswa.2020.113807_b55) 2019 Pedregosa (10.1016/j.eswa.2020.113807_b38) 2019 Center for Disease Control and Prevention (10.1016/j.eswa.2020.113807_b8) 2015 Yılmaz (10.1016/j.eswa.2020.113807_b59) 2013; 2013 F.Fieselmann (10.1016/j.eswa.2020.113807_b13) 1992; 8 Oveisi (10.1016/j.eswa.2020.113807_b36) 2011; 23 Singh (10.1016/j.eswa.2020.113807_b51) 2018 Lee (10.1016/j.eswa.2020.113807_b31) 2007 Pollard (10.1016/j.eswa.2020.113807_b45) 2016 Johnson (10.1016/j.eswa.2020.113807_b25) 2016 Huang (10.1016/j.eswa.2020.113807_b20) 2018 Keating (10.1016/j.eswa.2020.113807_b28) 2001; 104 Lerma (10.1016/j.eswa.2020.113807_b32) 2018 Narkhede (10.1016/j.eswa.2020.113807_b35) 2018 Guvenir (10.1016/j.eswa.2020.113807_b18) 1997 Pinnell (10.1016/j.eswa.2020.113807_b39) 2007; 7 Kandala (10.1016/j.eswa.2020.113807_b27) 2019; 19 Pławiak (10.1016/j.eswa.2020.113807_b41) 2018; 92 Choi (10.1016/j.eswa.2020.113807_b10) 2016; 24 Microsoft Azure (10.1016/j.eswa.2020.113807_b33) 2019 Ayar (10.1016/j.eswa.2020.113807_b5) 2018; 13 Ghassemi (10.1016/j.eswa.2020.113807_b16) 2014 Jadhav (10.1016/j.eswa.2020.113807_b22) 2012; 44 Splawski (10.1016/j.eswa.2020.113807_b52) 2005; 102 Moody (10.1016/j.eswa.2020.113807_b34) 2001; 20 Polat (10.1016/j.eswa.2020.113807_b44) 2006; 31 Jogla (10.1016/j.eswa.2020.113807_b24) 2015 Han (10.1016/j.eswa.2020.113807_b19) 2017; 143 Jadhav (10.1016/j.eswa.2020.113807_b23) 2014; 18 Pedregosa (10.1016/j.eswa.2020.113807_b37) 2011; 12 Pławiak (10.1016/j.eswa.2020.113807_b43) 2019 10.1016/j.eswa.2020.113807_b7 10.1016/j.eswa.2020.113807_b4 Churpek (10.1016/j.eswa.2020.113807_b11) 2016 Khare (10.1016/j.eswa.2020.113807_b29) 2012 Al-Khatib (10.1016/j.eswa.2020.113807_b1) 2018; 72 Breiman (10.1016/j.eswa.2020.113807_b6) 2002 The Cleveland Clinic (10.1016/j.eswa.2020.113807_b56) 2019 American Heart Association (10.1016/j.eswa.2020.113807_b3) 2017 Choi (10.1016/j.eswa.2020.113807_b9) 2016; 56 Pławiak (10.1016/j.eswa.2020.113807_b40) 2018; 39 American College of Cardiology (10.1016/j.eswa.2020.113807_b2) 2019 Gao (10.1016/j.eswa.2020.113807_b15) 2004 10.1016/j.eswa.2020.113807_b17 Remme (10.1016/j.eswa.2020.113807_b46) 2010; 28 SciPy Organization (10.1016/j.eswa.2020.113807_b48) 2019 Splawski (10.1016/j.eswa.2020.113807_b53) 2017 Cretikos (10.1016/j.eswa.2020.113807_b12) 2002; 188 Huikiri (10.1016/j.eswa.2020.113807_b21) 2001; 345 Singh (10.1016/j.eswa.2020.113807_b50) 2018 Uyar (10.1016/j.eswa.2020.113807_b58) 2007 Kadam (10.1016/j.eswa.2020.113807_b26) 2018 10.1016/j.eswa.2020.113807_b54 Foundation (10.1016/j.eswa.2020.113807_b14) 2018 |
| References_xml | – start-page: 149 year: 2019 end-page: 648 ident: b38 article-title: Scikit-learn user guide – reference: Ghassemi, M., Pimentel, M. A., Naumann, T., Brennan, T., Clifton, D. A., Szolovits, P., & Feng, M. (2015). A multivariate time modeling approach to severity of illness assessment and forecasting in ICU with sparse. In – year: 2019 ident: b56 article-title: Sudden cardiac death – start-page: 433 year: 1997 end-page: 436 ident: b18 article-title: A supervised machine learning algorithm for arrhythmia analysis publication-title: Computers in Cardiology 1997 – year: 2019 ident: b2 article-title: Apple heart study identifies AFib in small group of apple watch wearers – volume: 8 year: 1992 ident: b13 article-title: Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients publication-title: Journal of General Internal Medicine – volume: 56 year: 2016 ident: b9 article-title: Doctor AI: Predicting clinical events via recurrent neural networks publication-title: Journal of Machine Learning Research (JMLR) – volume: 2013 year: 2013 ident: b59 article-title: An expert system based on Fisher score and LS-SVM for cardiac arrhythmia diagnosis publication-title: Computational and mathematical methods in medicine – start-page: 560 year: 2007 end-page: 565 ident: b58 article-title: Arrhythmia classification using serial fusion of support vector machines and logistic regression publication-title: 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications – volume: 31 start-page: 264 year: 2006 end-page: 269 ident: b44 article-title: A new method to medical diagnosis: Artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia publication-title: Expert Systems with Applications – year: 2018 ident: b50 article-title: Understanding the bias-Variance tradeoff – start-page: 22 year: 2007 end-page: 25 ident: b31 article-title: Extracting input features and fuzzy rules for detecting ECG arrhythmia based on NEWFM publication-title: 2007 International Conference on Intelligent and Advanced Systems – volume: 20 start-page: 45 year: 2001 end-page: 50 ident: b34 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Engineering in Medicine and Biology Magazine – start-page: 127 year: 2017 end-page: 132 ident: b49 article-title: Deep neural networks versus support vector machines for ECG arrhythmia classification publication-title: 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) – reference: (2013). Cardiac Arrhythmias. Available at: – year: 2017 ident: b53 article-title: Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia publication-title: Science – year: 2019 ident: b48 article-title: Numpy reference guide, version 1.16 – year: 2018 ident: b14 article-title: Python language reference, version 2.7 – year: 2014 ident: b16 article-title: Unfolding physiological state: Mortality modelling in intensive care units publication-title: KDD – year: 2015 ident: b8 article-title: International classification of diseases, ninth revision (ICD-9) – volume: 188 year: 2002 ident: b12 article-title: Respiratory rate: the neglected vital sign publication-title: Medical Journal of Australia – year: 2018 ident: b30 article-title: An implementation and explanation of the random forest in Python – start-page: 1 year: 2019 end-page: 25 ident: b43 article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals publication-title: Neural Computing and Applications – volume: 186 year: 2019 ident: b57 article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals publication-title: Knowledge-Based Systems – year: 2019 ident: b33 article-title: How to choose algorithms for azure machine learning studio – volume: 24 year: 2016 ident: b10 article-title: Using recurrent neural network models for early detection of heart failure onset publication-title: Journal of the American Medical Informatics Association – volume: 345 year: 2001 ident: b21 article-title: Sudden death due to cardiac arrhythmias publication-title: New England Journal of Medicine – reference: (2019). SQLite Release (3.27.2), – volume: 440 year: 2006 ident: b47 article-title: hERG potassium channels and cardiac arrhythmia publication-title: Nature – year: 2016 ident: b11 article-title: The value of vital sign trends for detecting clinical deterioration on the wards – volume: 104 year: 2001 ident: b28 article-title: Molecular and cellular mechanisms of cardiac arrhythmias publication-title: Cell – year: 2016 ident: b25 article-title: MIMIC-III, a freely accessible critical care database. – year: 2018 ident: b20 article-title: Multiple hypothesis testing and false discovery rate – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b37 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research (JMLR) – year: 2016 ident: b45 article-title: The MIMIC-III clinical database – volume: 92 start-page: 334 year: 2018 end-page: 349 ident: b41 article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system publication-title: Expert Systems with Applications – year: 2019 ident: b55 article-title: Random forest algorithm in trading using Python – volume: 39 start-page: 192 year: 2018 end-page: 208 ident: b40 article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals publication-title: Swarm and Evolutionary Computation – volume: 44 start-page: 8 year: 2012 end-page: 13 ident: b22 article-title: Artificial neural network models based cardiac arrhythmia disease diagnosis from ECG signal data publication-title: International Journal of Computer Applications – year: 2002 ident: b6 article-title: Random forests publication-title: Machine Learning Journal – year: 2017 ident: b3 article-title: Heath topics – volume: 7 start-page: 85 year: 2007 end-page: -88 ident: b39 article-title: Cardiac muscle physiology publication-title: Continuing Education in Anaesthesia Critical Care & Pain – start-page: 225 year: 2020 end-page: 272 ident: b42 article-title: Novel methodology for cardiac arrhythmias classification based on long-duration ECG signal fragments analysis publication-title: Biomedical Signal Processing – year: 2018 ident: b51 article-title: Machine learning in cardiac CT: Basic concepts and contemporary data publication-title: Journal of Cardiovascular Computed Tomograph – volume: 19 start-page: 5079 year: 2019 ident: b27 article-title: Towards real-time heartbeat classification: evaluation of nonlinear morphological features and voting method publication-title: Sensors – reference: (2019). ATPases. Available at: – volume: 13 start-page: 167 year: 2018 end-page: 175 ident: b5 article-title: An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm publication-title: Informatics in Medicine Unlocked – start-page: 965 year: 2018 end-page: 976 ident: b26 article-title: Soft-margin SVM incorporating feature selection using improved elitist GA for arrhythmia classification publication-title: International Conference on Intelligent Systems Design and Applications – year: 2018 ident: b32 article-title: Laboratory medicine – volume: 28 year: 2010 ident: b46 article-title: Sodium channel (dys)function and cardiac arrhythmias publication-title: Cardiovascular Therapeutics – volume: 143 start-page: 272 year: 2017 end-page: 275 ident: b19 article-title: Detecting an ECG arrhythmia using cascade architectures of fuzzy neural networks publication-title: Advanced Science and Technology Letters – volume: 72 year: 2018 ident: b1 article-title: 2017 AHA/ACC/HRS guideline for management of patients with Ventricular arrhythmias and the prevention of sudden cardiac death: executive summary publication-title: Journal of the American College of Cardiology – year: 2018 ident: b35 article-title: Understanding AUC-ROC curve – volume: 102 year: 2005 ident: b52 article-title: Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations publication-title: Proceedings of the National Academy of Sciences of the United States of America – reference: . – year: 2015 ident: b24 article-title: 2015 AHA/ACC/HRS guideline for management of patients with supraventricular tachycardia publication-title: Journal of the American College of Cardiology – volume: 23 start-page: 127 year: 2011 end-page: 137 ident: b36 article-title: Tree-structured feature extraction using mutual information publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2004 ident: b15 article-title: Arrhythmia identification from ECG signals with a neural network classifier based on a Bayesian framework publication-title: Proceedings of the 24th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence – volume: 18 start-page: 579 year: 2014 end-page: 587 ident: b23 article-title: Feature elimination based random subspace ensembles learning for ECG arrhythmia diagnosis publication-title: Soft Computing – start-page: 591 year: 2012 end-page: 598 ident: b29 article-title: Ecg arrhythmia classification using spearman rank correlation and support vector machine publication-title: Proceedings of the International Conference on Soft Computing for Problem Solving, SocProS 2011 December 20-22, 2011 – year: 2018 ident: 10.1016/j.eswa.2020.113807_b14 – year: 2015 ident: 10.1016/j.eswa.2020.113807_b24 article-title: 2015 AHA/ACC/HRS guideline for management of patients with supraventricular tachycardia publication-title: Journal of the American College of Cardiology – volume: 13 start-page: 167 year: 2018 ident: 10.1016/j.eswa.2020.113807_b5 article-title: An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm publication-title: Informatics in Medicine Unlocked doi: 10.1016/j.imu.2018.06.002 – year: 2014 ident: 10.1016/j.eswa.2020.113807_b16 article-title: Unfolding physiological state: Mortality modelling in intensive care units publication-title: KDD – year: 2017 ident: 10.1016/j.eswa.2020.113807_b3 – volume: 186 year: 2019 ident: 10.1016/j.eswa.2020.113807_b57 article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.104923 – volume: 8 year: 1992 ident: 10.1016/j.eswa.2020.113807_b13 article-title: Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients publication-title: Journal of General Internal Medicine – year: 2018 ident: 10.1016/j.eswa.2020.113807_b30 – volume: 2013 year: 2013 ident: 10.1016/j.eswa.2020.113807_b59 article-title: An expert system based on Fisher score and LS-SVM for cardiac arrhythmia diagnosis publication-title: Computational and mathematical methods in medicine doi: 10.1155/2013/849674 – volume: 188 year: 2002 ident: 10.1016/j.eswa.2020.113807_b12 article-title: Respiratory rate: the neglected vital sign publication-title: Medical Journal of Australia – year: 2018 ident: 10.1016/j.eswa.2020.113807_b50 – volume: 18 start-page: 579 issue: 3 year: 2014 ident: 10.1016/j.eswa.2020.113807_b23 article-title: Feature elimination based random subspace ensembles learning for ECG arrhythmia diagnosis publication-title: Soft Computing doi: 10.1007/s00500-013-1079-6 – volume: 20 start-page: 45 issue: 3 year: 2001 ident: 10.1016/j.eswa.2020.113807_b34 article-title: The impact of the MIT-BIH arrhythmia database publication-title: IEEE Engineering in Medicine and Biology Magazine doi: 10.1109/51.932724 – volume: 102 year: 2005 ident: 10.1016/j.eswa.2020.113807_b52 article-title: Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations publication-title: Proceedings of the National Academy of Sciences of the United States of America – start-page: 22 year: 2007 ident: 10.1016/j.eswa.2020.113807_b31 article-title: Extracting input features and fuzzy rules for detecting ECG arrhythmia based on NEWFM – volume: 143 start-page: 272 year: 2017 ident: 10.1016/j.eswa.2020.113807_b19 article-title: Detecting an ECG arrhythmia using cascade architectures of fuzzy neural networks publication-title: Advanced Science and Technology Letters doi: 10.14257/astl.2017.143.54 – year: 2018 ident: 10.1016/j.eswa.2020.113807_b51 article-title: Machine learning in cardiac CT: Basic concepts and contemporary data publication-title: Journal of Cardiovascular Computed Tomograph doi: 10.1016/j.jcct.2018.04.010 – year: 2018 ident: 10.1016/j.eswa.2020.113807_b35 – year: 2019 ident: 10.1016/j.eswa.2020.113807_b55 – year: 2015 ident: 10.1016/j.eswa.2020.113807_b8 – year: 2018 ident: 10.1016/j.eswa.2020.113807_b20 – year: 2004 ident: 10.1016/j.eswa.2020.113807_b15 article-title: Arrhythmia identification from ECG signals with a neural network classifier based on a Bayesian framework – volume: 72 year: 2018 ident: 10.1016/j.eswa.2020.113807_b1 article-title: 2017 AHA/ACC/HRS guideline for management of patients with Ventricular arrhythmias and the prevention of sudden cardiac death: executive summary publication-title: Journal of the American College of Cardiology doi: 10.1016/j.jacc.2017.10.053 – volume: 104 year: 2001 ident: 10.1016/j.eswa.2020.113807_b28 article-title: Molecular and cellular mechanisms of cardiac arrhythmias publication-title: Cell doi: 10.1016/S0092-8674(01)00243-4 – year: 2018 ident: 10.1016/j.eswa.2020.113807_b32 – volume: 39 start-page: 192 year: 2018 ident: 10.1016/j.eswa.2020.113807_b40 article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2017.10.002 – volume: 28 year: 2010 ident: 10.1016/j.eswa.2020.113807_b46 article-title: Sodium channel (dys)function and cardiac arrhythmias publication-title: Cardiovascular Therapeutics doi: 10.1111/j.1755-5922.2010.00210.x – ident: 10.1016/j.eswa.2020.113807_b7 – volume: 7 start-page: 85 year: 2007 ident: 10.1016/j.eswa.2020.113807_b39 article-title: Cardiac muscle physiology publication-title: Continuing Education in Anaesthesia Critical Care & Pain doi: 10.1093/bjaceaccp/mkm013 – year: 2019 ident: 10.1016/j.eswa.2020.113807_b48 – start-page: 965 year: 2018 ident: 10.1016/j.eswa.2020.113807_b26 article-title: Soft-margin SVM incorporating feature selection using improved elitist GA for arrhythmia classification – year: 2016 ident: 10.1016/j.eswa.2020.113807_b11 – volume: 345 year: 2001 ident: 10.1016/j.eswa.2020.113807_b21 article-title: Sudden death due to cardiac arrhythmias publication-title: New England Journal of Medicine – volume: 31 start-page: 264 issue: 2 year: 2006 ident: 10.1016/j.eswa.2020.113807_b44 article-title: A new method to medical diagnosis: Artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.019 – year: 2019 ident: 10.1016/j.eswa.2020.113807_b33 – ident: 10.1016/j.eswa.2020.113807_b54 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.eswa.2020.113807_b37 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research (JMLR) – year: 2017 ident: 10.1016/j.eswa.2020.113807_b53 article-title: Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia publication-title: Science – volume: 19 start-page: 5079 issue: 23 year: 2019 ident: 10.1016/j.eswa.2020.113807_b27 article-title: Towards real-time heartbeat classification: evaluation of nonlinear morphological features and voting method publication-title: Sensors doi: 10.3390/s19235079 – start-page: 433 year: 1997 ident: 10.1016/j.eswa.2020.113807_b18 article-title: A supervised machine learning algorithm for arrhythmia analysis – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.113807_b43 article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals publication-title: Neural Computing and Applications – year: 2016 ident: 10.1016/j.eswa.2020.113807_b25 – start-page: 560 year: 2007 ident: 10.1016/j.eswa.2020.113807_b58 article-title: Arrhythmia classification using serial fusion of support vector machines and logistic regression – start-page: 591 year: 2012 ident: 10.1016/j.eswa.2020.113807_b29 article-title: Ecg arrhythmia classification using spearman rank correlation and support vector machine – volume: 92 start-page: 334 year: 2018 ident: 10.1016/j.eswa.2020.113807_b41 article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.09.022 – year: 2019 ident: 10.1016/j.eswa.2020.113807_b56 – year: 2019 ident: 10.1016/j.eswa.2020.113807_b2 – ident: 10.1016/j.eswa.2020.113807_b4 – year: 2016 ident: 10.1016/j.eswa.2020.113807_b45 – volume: 44 start-page: 8 issue: 15 year: 2012 ident: 10.1016/j.eswa.2020.113807_b22 article-title: Artificial neural network models based cardiac arrhythmia disease diagnosis from ECG signal data publication-title: International Journal of Computer Applications doi: 10.5120/6338-8532 – volume: 440 year: 2006 ident: 10.1016/j.eswa.2020.113807_b47 article-title: hERG potassium channels and cardiac arrhythmia publication-title: Nature doi: 10.1038/nature04710 – volume: 24 year: 2016 ident: 10.1016/j.eswa.2020.113807_b10 article-title: Using recurrent neural network models for early detection of heart failure onset publication-title: Journal of the American Medical Informatics Association – volume: 56 year: 2016 ident: 10.1016/j.eswa.2020.113807_b9 article-title: Doctor AI: Predicting clinical events via recurrent neural networks publication-title: Journal of Machine Learning Research (JMLR) – volume: 23 start-page: 127 issue: 1 year: 2011 ident: 10.1016/j.eswa.2020.113807_b36 article-title: Tree-structured feature extraction using mutual information publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2011.2178447 – year: 2002 ident: 10.1016/j.eswa.2020.113807_b6 article-title: Random forests publication-title: Machine Learning Journal – start-page: 149 year: 2019 ident: 10.1016/j.eswa.2020.113807_b38 – start-page: 127 year: 2017 ident: 10.1016/j.eswa.2020.113807_b49 article-title: Deep neural networks versus support vector machines for ECG arrhythmia classification – start-page: 225 year: 2020 ident: 10.1016/j.eswa.2020.113807_b42 article-title: Novel methodology for cardiac arrhythmias classification based on long-duration ECG signal fragments analysis – ident: 10.1016/j.eswa.2020.113807_b17 doi: 10.1609/aaai.v29i1.9209 |
| SSID | ssj0017007 |
| Score | 2.4505482 |
| Snippet | This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113807 |
| SubjectTerms | Arrhythmia Blood pressure Calcium Cardiac arrhythmia Diagnosis Electrocardiogram Genetic algorithms Machine learning MIMIC-III database Optimization Optimization techniques Potassium Random forest Respiratory rate Risk analysis Signs and symptoms Test sets |
| Title | Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.113807 https://www.proquest.com/docview/2465477223 |
| Volume | 163 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4Ix6l8sCGQoMfTTxWBVRAdIFK3ayksdugvtQGIRZ-O3eOUwmEGBiTnKP4fL47R9_dR8iFyKRJlJRBqrI4EGmYgR-M00ClLG7FoVXGsSg89VrdvngYyEGNdKpaGIRVet9f-nTnrf2dptdmc5HnzWdIDiAcwtEO017GsIhPiAhZDK4-1zAPbD8Xlf32ogClfeFMifEyq3fsPcQctUmMlLK_B6cfbtrFnrtdsu2TRtouv2uP1Mxsn-xUhAzU788DYm5M4aBVMzq3FKYENkYRPE49rQ6FFJVmJbouXzkhZyFDmiyX449iPM0TilD4EZ06lKWhnlZiRJPJaL7MQeSQ9O9uXzrdwPMoBEPO4iKwFnYpTBAuuJFRYjIemjhRXITcJhICPrrLlMtUqNCEUcas4iZUtmWuLT4-Ihuz-cwcEwrJlBkKHmE3SgHrr7LUStB6JNBZ2PCEXFcK1EPfZBy5Lia6QpO9alS6RqXrUukn5HI9ZlG22PhTWlbror8ZioYY8Oe4erWI2m_TlWbYTQ7OF4yf_vO1Z2SLIcrF_ZSpk41i-WbOIU0p0oazwwbZbN8_dntfkW_l0g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhR-z4wA2Fpl6a-IhYVLZeoFJvVtLYbRCkqA1CXPh2ZhynEgj1wDHJOIrH41mi53mEnIhMmkRJGaQqiwORhhn4wTgNVMriVhxaZRyLwkOn1e6K257szZGL-iwMwiq97698uvPW_k7Da7PxlueNR0gOIBxCaYdpL2NqniwKySKswM6-pjgP7D8XVQ33ogDF_cmZCuRlJh_YfIg5bpMYOWX_jk6__LQLPtdrZMVnjfS8-rB1MmeKDbJaMzJQv0E3ibk0pcNWFXRkKcwJjIwiepx6Xh0KOSrNKnhdPnFCzkT6NBmPh5_l8DVPKGLhB_TVwSwN9bwSA5q8DEbjHES2SPf66umiHXgihaDPWVwG1sI2hQnCBTcySkzGQxMniouQ20RCxEd_mXKZChWaMMqYVdyEyrZM0-LjbbJQjAqzQyhkU6YveITtKAUYgMpSK4WAJBK9hQ13SbNWoO77LuNIdvGiazjZs0ala1S6rpS-S06nY96qHhszpWW9LvqHpWgIAjPHHdSLqP0-nWiG7eSgwGB875-vPSZL7aeHe31_07nbJ8sMIS_uD80BWSjH7-YQcpYyPXI2-Q33JOdn |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+common+risk+factors+for+diagnosis+of+cardiac+arrhythmia+using+machine+learning+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Yadav%2C+Samir+S.&rft.au=Jadhav%2C+Shivajirao+M.&rft.date=2021-01-01&rft.issn=0957-4174&rft.volume=163&rft.spage=113807&rft_id=info:doi/10.1016%2Fj.eswa.2020.113807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113807 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |