Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm

This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irreg...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 163; p. 113807
Main Authors Yadav, Samir S., Jadhav, Shivajirao M.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.01.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2020.113807

Cover

Abstract This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irregular heartbeats. It is very essential to prevent a CAs, as they are the most common cause of natural death in all over the world. According to the health reports, more than 4.5 lakh cardiac patients fatalities annually in the United States alone. To diagnose cardiac diseases, patient’s reported qualitative symptoms can be useful. However, this strategy may fail sometimes due to less accuracy and false positive cases. Therefore in this work, we strive to find a quantitative basis for more reliable and accurate diagnosis of cardiac arrhythmias. This research used the openly available MIMIC-III database to obtain large quantities of clinical monitoring data from patients over the age of sixteen admitted to intensive care units (ICUs). The database was processed on the Health Sciences and Technology (HEST) Cluster, filtered with in a specified time frame(24hrs, 12hrs and 6hrs) and organized into a multi-class and a single-class and finally split into train, validation, and test sets with respective weights of 0.7, 0.2, and 0.1. We used random forest classifier model for the diagnosis of cardiac arrhythmia and measure the importance of different features like respiratory rate, blood pressure, sodium, potassium, calcium, among the other features. Hyperparameter optimization techniques like grid search and genetic algorithms are compared to find the maximum number and depth of trees in the forest. The model achieved, at its best, an Area Under the Receiver Operator Curve (AUC) score of 0.9787 and, thus, confirmed the importance of several previously suggested factors in the diagnosis of cardiac arrhythmias. We substantiated claims that each of sodium, calcium, potassium, respiratory rates and blood pressure can be used for the early diagnosis of cardiac arrhythmias. •Cardiac arrhythmias are diagnosed based on patient-reported qualitative symptoms.•Random forest model supports in Cardiac arrhythmia diagnosis.•This model also helps to identify critical features of arrhythmia diagnosis.•The model achieved the best accuracy to confirm the features importance.
AbstractList This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irregular heartbeats. It is very essential to prevent a CAs, as they are the most common cause of natural death in all over the world. According to the health reports, more than 4.5 lakh cardiac patients fatalities annually in the United States alone. To diagnose cardiac diseases, patient’s reported qualitative symptoms can be useful. However, this strategy may fail sometimes due to less accuracy and false positive cases. Therefore in this work, we strive to find a quantitative basis for more reliable and accurate diagnosis of cardiac arrhythmias. This research used the openly available MIMIC-III database to obtain large quantities of clinical monitoring data from patients over the age of sixteen admitted to intensive care units (ICUs). The database was processed on the Health Sciences and Technology (HEST) Cluster, filtered with in a specified time frame(24hrs, 12hrs and 6hrs) and organized into a multi-class and a single-class and finally split into train, validation, and test sets with respective weights of 0.7, 0.2, and 0.1. We used random forest classifier model for the diagnosis of cardiac arrhythmia and measure the importance of different features like respiratory rate, blood pressure, sodium, potassium, calcium, among the other features. Hyperparameter optimization techniques like grid search and genetic algorithms are compared to find the maximum number and depth of trees in the forest. The model achieved, at its best, an Area Under the Receiver Operator Curve (AUC) score of 0.9787 and, thus, confirmed the importance of several previously suggested factors in the diagnosis of cardiac arrhythmias. We substantiated claims that each of sodium, calcium, potassium, respiratory rates and blood pressure can be used for the early diagnosis of cardiac arrhythmias. •Cardiac arrhythmias are diagnosed based on patient-reported qualitative symptoms.•Random forest model supports in Cardiac arrhythmia diagnosis.•This model also helps to identify critical features of arrhythmia diagnosis.•The model achieved the best accuracy to confirm the features importance.
This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the importance of specific factors that are potentially relevant to its diagnosis. Cardiac arrhythmia (CA) is a group of condition related to the irregular heartbeats. It is very essential to prevent a CAs, as they are the most common cause of natural death in all over the world. According to the health reports, more than 4.5 lakh cardiac patients fatalities annually in the United States alone. To diagnose cardiac diseases, patient's reported qualitative symptoms can be useful. However, this strategy may fail sometimes due to less accuracy and false positive cases. Therefore in this work, we strive to find a quantitative basis for more reliable and accurate diagnosis of cardiac arrhythmias. This research used the openly available MIMIC-III database to obtain large quantities of clinical monitoring data from patients over the age of sixteen admitted to intensive care units (ICUs). The database was processed on the Health Sciences and Technology (HEST) Cluster, filtered with in a specified time frame(24hrs, 12hrs and 6hrs) and organized into a multi-class and a single-class and finally split into train, validation, and test sets with respective weights of 0.7, 0.2, and 0.1. We used random forest classifier model for the diagnosis of cardiac arrhythmia and measure the importance of different features like respiratory rate, blood pressure, sodium, potassium, calcium, among the other features. Hyperparameter optimization techniques like grid search and genetic algorithms are compared to find the maximum number and depth of trees in the forest. The model achieved, at its best, an Area Under the Receiver Operator Curve (AUC) score of 0.9787 and, thus, confirmed the importance of several previously suggested factors in the diagnosis of cardiac arrhythmias. We substantiated claims that each of sodium, calcium, potassium, respiratory rates and blood pressure can be used for the early diagnosis of cardiac arrhythmias.
ArticleNumber 113807
Author Yadav, Samir S.
Jadhav, Shivajirao M.
Author_xml – sequence: 1
  givenname: Samir S.
  surname: Yadav
  fullname: Yadav, Samir S.
  email: ssyadav@dbatu.ac.in
– sequence: 2
  givenname: Shivajirao M.
  surname: Jadhav
  fullname: Jadhav, Shivajirao M.
  email: smjadhav@dbatu.ac.in
BookMark eNp9kE1PAyEQhonRxFr9A55IPG_lY3fZTbyY-pmYeNEzoezQUrtQh63Gfy9rPXnwBDO8zwDPCTkMMQAh55zNOOP15XoG6dPMBBO5wWXD1AGZ8EbJolatPCQT1laqKLkqj8lJSmvGuGJMTQjcwAB28DHQ6KiNfZ936NMbdcYOERN1EWnnzTLE5NNPyGCuLTWIq69h1XtDd8mHJe2NXfkAdAMGw9gwm2VEnyOn5MiZTYKz33VKXu9uX-YPxdPz_eP8-qmwUjRD4VzZNPn5uZBQKQOdZNCYVpZMOlOJVvKyVgtZLcqWAVOdcK0E1roauBuPp-RiP3eL8X0HadDruMOQr9SirKtSKSFkTol9ymJMCcHpLfre4JfmTI869VqPOvWoU-91Zqj5A1k_mFHcgMZv_kev9ijkr394QJ2sh2Ch85jd6y76__BvPmiS3Q
CitedBy_id crossref_primary_10_1155_2021_6053824
crossref_primary_10_51537_chaos_1413955
crossref_primary_10_3390_healthcare10071303
crossref_primary_10_1109_JSEN_2024_3406780
crossref_primary_10_1007_s41635_023_00140_4
crossref_primary_10_35741_issn_0258_2724_59_2_8
crossref_primary_10_1016_j_compbiomed_2023_106998
crossref_primary_10_1016_j_eswa_2023_120969
crossref_primary_10_1016_j_compbiomed_2023_107025
crossref_primary_10_1007_s42600_024_00399_8
crossref_primary_10_1007_s11277_022_09585_2
crossref_primary_10_1007_s11227_021_04108_5
crossref_primary_10_1016_j_eswa_2023_121497
crossref_primary_10_1007_s11227_024_06036_6
crossref_primary_10_1016_j_cie_2024_110765
crossref_primary_10_1109_TCSS_2022_3151643
crossref_primary_10_32604_cmc_2023_036118
crossref_primary_10_1016_j_chemolab_2023_104820
crossref_primary_10_1007_s11042_024_18312_x
crossref_primary_10_1016_j_asoc_2024_112056
crossref_primary_10_54392_irjmt24313
crossref_primary_10_1109_ACCESS_2024_3468163
crossref_primary_10_1142_S0218339023300014
crossref_primary_10_1016_j_ypmed_2023_107619
crossref_primary_10_2478_msr_2024_0017
Cites_doi 10.1016/j.imu.2018.06.002
10.1016/j.knosys.2019.104923
10.1155/2013/849674
10.1007/s00500-013-1079-6
10.1109/51.932724
10.14257/astl.2017.143.54
10.1016/j.jcct.2018.04.010
10.1016/j.jacc.2017.10.053
10.1016/S0092-8674(01)00243-4
10.1016/j.swevo.2017.10.002
10.1111/j.1755-5922.2010.00210.x
10.1093/bjaceaccp/mkm013
10.1016/j.eswa.2005.09.019
10.3390/s19235079
10.1016/j.eswa.2017.09.022
10.5120/6338-8532
10.1038/nature04710
10.1109/TNNLS.2011.2178447
10.1609/aaai.v29i1.9209
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Jan 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Jan 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113807
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113807
S0957417420306229
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-ff4881133283e57aed30e8a93403fa52931467b35b490e07d2f93e09f6e1f5293
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sun Jul 13 03:53:57 EDT 2025
Sat Oct 25 05:19:00 EDT 2025
Thu Apr 24 22:49:22 EDT 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cardiac arrhythmia
MIMIC-III database
Random forest
Electrocardiogram
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-ff4881133283e57aed30e8a93403fa52931467b35b490e07d2f93e09f6e1f5293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2465477223
PQPubID 2045477
ParticipantIDs proquest_journals_2465477223
crossref_primary_10_1016_j_eswa_2020_113807
crossref_citationtrail_10_1016_j_eswa_2020_113807
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113807
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Breiman, Cutler (b6) 2002
Koehrson (b30) 2018
Cretikos, Bellomo, Hillman, Chen, Finfer, Flabouris (b12) 2002; 188
Ghassemi, M., Pimentel, M. A., Naumann, T., Brennan, T., Clifton, D. A., Szolovits, P., & Feng, M. (2015). A multivariate time modeling approach to severity of illness assessment and forecasting in ICU with sparse. In
Sanguinetti, Tristani-Firouzi (b47) 2006; 440
Kandala, Dhuli, Pławiak, Naik, Moeinzadeh, Gargiulo, Gunnam (b27) 2019; 19
Al-Khatib, Stevenson, Ackerman, Bryant, Callans, Curtis, Deal, Dickfeld, Field, Fonarow, Gillis, Granger, Hammill, Hlatky, Jogla, Kay, Matlock, Myerburg, Page (b1) 2018; 72
Splawski, Timothy, Decher, Kumar, Sachse, Beggs, Sanguinetti, Keating (b52) 2005; 102
Jadhav, Nalbalwar, Ghatol (b22) 2012; 44
Center for Disease Control and Prevention (b8) 2015
F.Fieselmann, Hendryx, Helms, Wakefield (b13) 1992; 8
Huikiri, Castellanos, Myerburg (b21) 2001; 345
Singh, Al’Aref, Assen, Kim, van Rosendael, Kolli, Dwivedi, Maliakal, Pandey, Wang, Do, Gummalla, Cecco, Min (b51) 2018
Churpek, Adhikari, Edelson (b11) 2016
Ayar, Sabamoniri (b5) 2018; 13
Pławiak (b41) 2018; 92
Tuncer, Dogan, Pławiak, Acharya (b57) 2019; 186
Tahsildar (b55) 2019
American College of Cardiology (b2) 2019
Foundation (b14) 2018
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b37) 2011; 12
Narkhede (b35) 2018
Jogla, Page, Caldwell, Calkins, Conti, Deal, III, Field, Goldberger, Hammill, Indik, Lindsay, Olshansky, Russo, Shen, Tracy, Al-Khatib (b24) 2015
Choi, Schuetz, Stewart, Sun (b10) 2016; 24
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b38) 2019
Remme, Bezzina (b46) 2010; 28
Pinnell, Turner, Howell (b39) 2007; 7
Singh (b50) 2018
.
Huang (b20) 2018
Johnson, Pollard, Shen, Lehman, Feng, Ghassemi, Moody, Szolovits, Celi, Mark (b25) 2016
American Heart Association (b3) 2017
Kadam, Yadav, Jadhav (b26) 2018
Guvenir, Acar, Demiroz, Cekin (b18) 1997
Khare, Bhandari, Singh, Arora (b29) 2012
Polat, Şahan, Güneş (b44) 2006; 31
Keating, Sanguinetti (b28) 2001; 104
Yılmaz (b59) 2013; 2013
SciPy Organization (b48) 2019
The Cleveland Clinic (b56) 2019
Splawski, Timothy, Tateyama, Clancy, Malhotra, Beggs, Cappuccio, Sagnella, Kass, Keating (b53) 2017
Microsoft Azure (b33) 2019
Ghassemi, Brimmer, Tristan Naumann, Szolovits, Doshi-Velez, Rumshisky (b16) 2014
(2013). Cardiac Arrhythmias. Available at
Pollard, Johnson (b45) 2016
Gao, Madden, Schukat, Chambers, Lyons (b15) 2004
Pławiak, Abdar (b42) 2020
Sean, Mak, Cheung (b49) 2017
Lee, Uhm, Lim (b31) 2007
Pławiak, Acharya (b43) 2019
Uyar, Gurgen (b58) 2007
Oveisi, Oveisi, Erfanian, Patras (b36) 2011; 23
Moody, Mark (b34) 2001; 20
Pławiak (b40) 2018; 39
Lerma, Simon, Sofronescu (b32) 2018
Choi, Bahadori, Schuetz, Stewart, Sun (b9) 2016; 56
(2019). ATPases. Available at
Jadhav, Nalbalwar, Ghatol (b23) 2014; 18
(2019). SQLite Release (3.27.2)
Han (b19) 2017; 143
Sean (10.1016/j.eswa.2020.113807_b49) 2017
Sanguinetti (10.1016/j.eswa.2020.113807_b47) 2006; 440
Koehrson (10.1016/j.eswa.2020.113807_b30) 2018
Tuncer (10.1016/j.eswa.2020.113807_b57) 2019; 186
Pławiak (10.1016/j.eswa.2020.113807_b42) 2020
Tahsildar (10.1016/j.eswa.2020.113807_b55) 2019
Pedregosa (10.1016/j.eswa.2020.113807_b38) 2019
Center for Disease Control and Prevention (10.1016/j.eswa.2020.113807_b8) 2015
Yılmaz (10.1016/j.eswa.2020.113807_b59) 2013; 2013
F.Fieselmann (10.1016/j.eswa.2020.113807_b13) 1992; 8
Oveisi (10.1016/j.eswa.2020.113807_b36) 2011; 23
Singh (10.1016/j.eswa.2020.113807_b51) 2018
Lee (10.1016/j.eswa.2020.113807_b31) 2007
Pollard (10.1016/j.eswa.2020.113807_b45) 2016
Johnson (10.1016/j.eswa.2020.113807_b25) 2016
Huang (10.1016/j.eswa.2020.113807_b20) 2018
Keating (10.1016/j.eswa.2020.113807_b28) 2001; 104
Lerma (10.1016/j.eswa.2020.113807_b32) 2018
Narkhede (10.1016/j.eswa.2020.113807_b35) 2018
Guvenir (10.1016/j.eswa.2020.113807_b18) 1997
Pinnell (10.1016/j.eswa.2020.113807_b39) 2007; 7
Kandala (10.1016/j.eswa.2020.113807_b27) 2019; 19
Pławiak (10.1016/j.eswa.2020.113807_b41) 2018; 92
Choi (10.1016/j.eswa.2020.113807_b10) 2016; 24
Microsoft Azure (10.1016/j.eswa.2020.113807_b33) 2019
Ayar (10.1016/j.eswa.2020.113807_b5) 2018; 13
Ghassemi (10.1016/j.eswa.2020.113807_b16) 2014
Jadhav (10.1016/j.eswa.2020.113807_b22) 2012; 44
Splawski (10.1016/j.eswa.2020.113807_b52) 2005; 102
Moody (10.1016/j.eswa.2020.113807_b34) 2001; 20
Polat (10.1016/j.eswa.2020.113807_b44) 2006; 31
Jogla (10.1016/j.eswa.2020.113807_b24) 2015
Han (10.1016/j.eswa.2020.113807_b19) 2017; 143
Jadhav (10.1016/j.eswa.2020.113807_b23) 2014; 18
Pedregosa (10.1016/j.eswa.2020.113807_b37) 2011; 12
Pławiak (10.1016/j.eswa.2020.113807_b43) 2019
10.1016/j.eswa.2020.113807_b7
10.1016/j.eswa.2020.113807_b4
Churpek (10.1016/j.eswa.2020.113807_b11) 2016
Khare (10.1016/j.eswa.2020.113807_b29) 2012
Al-Khatib (10.1016/j.eswa.2020.113807_b1) 2018; 72
Breiman (10.1016/j.eswa.2020.113807_b6) 2002
The Cleveland Clinic (10.1016/j.eswa.2020.113807_b56) 2019
American Heart Association (10.1016/j.eswa.2020.113807_b3) 2017
Choi (10.1016/j.eswa.2020.113807_b9) 2016; 56
Pławiak (10.1016/j.eswa.2020.113807_b40) 2018; 39
American College of Cardiology (10.1016/j.eswa.2020.113807_b2) 2019
Gao (10.1016/j.eswa.2020.113807_b15) 2004
10.1016/j.eswa.2020.113807_b17
Remme (10.1016/j.eswa.2020.113807_b46) 2010; 28
SciPy Organization (10.1016/j.eswa.2020.113807_b48) 2019
Splawski (10.1016/j.eswa.2020.113807_b53) 2017
Cretikos (10.1016/j.eswa.2020.113807_b12) 2002; 188
Huikiri (10.1016/j.eswa.2020.113807_b21) 2001; 345
Singh (10.1016/j.eswa.2020.113807_b50) 2018
Uyar (10.1016/j.eswa.2020.113807_b58) 2007
Kadam (10.1016/j.eswa.2020.113807_b26) 2018
10.1016/j.eswa.2020.113807_b54
Foundation (10.1016/j.eswa.2020.113807_b14) 2018
References_xml – start-page: 149
  year: 2019
  end-page: 648
  ident: b38
  article-title: Scikit-learn user guide
– reference: Ghassemi, M., Pimentel, M. A., Naumann, T., Brennan, T., Clifton, D. A., Szolovits, P., & Feng, M. (2015). A multivariate time modeling approach to severity of illness assessment and forecasting in ICU with sparse. In
– year: 2019
  ident: b56
  article-title: Sudden cardiac death
– start-page: 433
  year: 1997
  end-page: 436
  ident: b18
  article-title: A supervised machine learning algorithm for arrhythmia analysis
  publication-title: Computers in Cardiology 1997
– year: 2019
  ident: b2
  article-title: Apple heart study identifies AFib in small group of apple watch wearers
– volume: 8
  year: 1992
  ident: b13
  article-title: Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients
  publication-title: Journal of General Internal Medicine
– volume: 56
  year: 2016
  ident: b9
  article-title: Doctor AI: Predicting clinical events via recurrent neural networks
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 2013
  year: 2013
  ident: b59
  article-title: An expert system based on Fisher score and LS-SVM for cardiac arrhythmia diagnosis
  publication-title: Computational and mathematical methods in medicine
– start-page: 560
  year: 2007
  end-page: 565
  ident: b58
  article-title: Arrhythmia classification using serial fusion of support vector machines and logistic regression
  publication-title: 2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications
– volume: 31
  start-page: 264
  year: 2006
  end-page: 269
  ident: b44
  article-title: A new method to medical diagnosis: Artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia
  publication-title: Expert Systems with Applications
– year: 2018
  ident: b50
  article-title: Understanding the bias-Variance tradeoff
– start-page: 22
  year: 2007
  end-page: 25
  ident: b31
  article-title: Extracting input features and fuzzy rules for detecting ECG arrhythmia based on NEWFM
  publication-title: 2007 International Conference on Intelligent and Advanced Systems
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: b34
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– start-page: 127
  year: 2017
  end-page: 132
  ident: b49
  article-title: Deep neural networks versus support vector machines for ECG arrhythmia classification
  publication-title: 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW)
– reference: (2013). Cardiac Arrhythmias. Available at:
– year: 2017
  ident: b53
  article-title: Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia
  publication-title: Science
– year: 2019
  ident: b48
  article-title: Numpy reference guide, version 1.16
– year: 2018
  ident: b14
  article-title: Python language reference, version 2.7
– year: 2014
  ident: b16
  article-title: Unfolding physiological state: Mortality modelling in intensive care units
  publication-title: KDD
– year: 2015
  ident: b8
  article-title: International classification of diseases, ninth revision (ICD-9)
– volume: 188
  year: 2002
  ident: b12
  article-title: Respiratory rate: the neglected vital sign
  publication-title: Medical Journal of Australia
– year: 2018
  ident: b30
  article-title: An implementation and explanation of the random forest in Python
– start-page: 1
  year: 2019
  end-page: 25
  ident: b43
  article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
  publication-title: Neural Computing and Applications
– volume: 186
  year: 2019
  ident: b57
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowledge-Based Systems
– year: 2019
  ident: b33
  article-title: How to choose algorithms for azure machine learning studio
– volume: 24
  year: 2016
  ident: b10
  article-title: Using recurrent neural network models for early detection of heart failure onset
  publication-title: Journal of the American Medical Informatics Association
– volume: 345
  year: 2001
  ident: b21
  article-title: Sudden death due to cardiac arrhythmias
  publication-title: New England Journal of Medicine
– reference: (2019). SQLite Release (3.27.2),
– volume: 440
  year: 2006
  ident: b47
  article-title: hERG potassium channels and cardiac arrhythmia
  publication-title: Nature
– year: 2016
  ident: b11
  article-title: The value of vital sign trends for detecting clinical deterioration on the wards
– volume: 104
  year: 2001
  ident: b28
  article-title: Molecular and cellular mechanisms of cardiac arrhythmias
  publication-title: Cell
– year: 2016
  ident: b25
  article-title: MIMIC-III, a freely accessible critical care database.
– year: 2018
  ident: b20
  article-title: Multiple hypothesis testing and false discovery rate
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b37
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research (JMLR)
– year: 2016
  ident: b45
  article-title: The MIMIC-III clinical database
– volume: 92
  start-page: 334
  year: 2018
  end-page: 349
  ident: b41
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Systems with Applications
– year: 2019
  ident: b55
  article-title: Random forest algorithm in trading using Python
– volume: 39
  start-page: 192
  year: 2018
  end-page: 208
  ident: b40
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
  publication-title: Swarm and Evolutionary Computation
– volume: 44
  start-page: 8
  year: 2012
  end-page: 13
  ident: b22
  article-title: Artificial neural network models based cardiac arrhythmia disease diagnosis from ECG signal data
  publication-title: International Journal of Computer Applications
– year: 2002
  ident: b6
  article-title: Random forests
  publication-title: Machine Learning Journal
– year: 2017
  ident: b3
  article-title: Heath topics
– volume: 7
  start-page: 85
  year: 2007
  end-page: -88
  ident: b39
  article-title: Cardiac muscle physiology
  publication-title: Continuing Education in Anaesthesia Critical Care & Pain
– start-page: 225
  year: 2020
  end-page: 272
  ident: b42
  article-title: Novel methodology for cardiac arrhythmias classification based on long-duration ECG signal fragments analysis
  publication-title: Biomedical Signal Processing
– year: 2018
  ident: b51
  article-title: Machine learning in cardiac CT: Basic concepts and contemporary data
  publication-title: Journal of Cardiovascular Computed Tomograph
– volume: 19
  start-page: 5079
  year: 2019
  ident: b27
  article-title: Towards real-time heartbeat classification: evaluation of nonlinear morphological features and voting method
  publication-title: Sensors
– reference: (2019). ATPases. Available at:
– volume: 13
  start-page: 167
  year: 2018
  end-page: 175
  ident: b5
  article-title: An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm
  publication-title: Informatics in Medicine Unlocked
– start-page: 965
  year: 2018
  end-page: 976
  ident: b26
  article-title: Soft-margin SVM incorporating feature selection using improved elitist GA for arrhythmia classification
  publication-title: International Conference on Intelligent Systems Design and Applications
– year: 2018
  ident: b32
  article-title: Laboratory medicine
– volume: 28
  year: 2010
  ident: b46
  article-title: Sodium channel (dys)function and cardiac arrhythmias
  publication-title: Cardiovascular Therapeutics
– volume: 143
  start-page: 272
  year: 2017
  end-page: 275
  ident: b19
  article-title: Detecting an ECG arrhythmia using cascade architectures of fuzzy neural networks
  publication-title: Advanced Science and Technology Letters
– volume: 72
  year: 2018
  ident: b1
  article-title: 2017 AHA/ACC/HRS guideline for management of patients with Ventricular arrhythmias and the prevention of sudden cardiac death: executive summary
  publication-title: Journal of the American College of Cardiology
– year: 2018
  ident: b35
  article-title: Understanding AUC-ROC curve
– volume: 102
  year: 2005
  ident: b52
  article-title: Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– reference: .
– year: 2015
  ident: b24
  article-title: 2015 AHA/ACC/HRS guideline for management of patients with supraventricular tachycardia
  publication-title: Journal of the American College of Cardiology
– volume: 23
  start-page: 127
  year: 2011
  end-page: 137
  ident: b36
  article-title: Tree-structured feature extraction using mutual information
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2004
  ident: b15
  article-title: Arrhythmia identification from ECG signals with a neural network classifier based on a Bayesian framework
  publication-title: Proceedings of the 24th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence
– volume: 18
  start-page: 579
  year: 2014
  end-page: 587
  ident: b23
  article-title: Feature elimination based random subspace ensembles learning for ECG arrhythmia diagnosis
  publication-title: Soft Computing
– start-page: 591
  year: 2012
  end-page: 598
  ident: b29
  article-title: Ecg arrhythmia classification using spearman rank correlation and support vector machine
  publication-title: Proceedings of the International Conference on Soft Computing for Problem Solving, SocProS 2011 December 20-22, 2011
– year: 2018
  ident: 10.1016/j.eswa.2020.113807_b14
– year: 2015
  ident: 10.1016/j.eswa.2020.113807_b24
  article-title: 2015 AHA/ACC/HRS guideline for management of patients with supraventricular tachycardia
  publication-title: Journal of the American College of Cardiology
– volume: 13
  start-page: 167
  year: 2018
  ident: 10.1016/j.eswa.2020.113807_b5
  article-title: An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm
  publication-title: Informatics in Medicine Unlocked
  doi: 10.1016/j.imu.2018.06.002
– year: 2014
  ident: 10.1016/j.eswa.2020.113807_b16
  article-title: Unfolding physiological state: Mortality modelling in intensive care units
  publication-title: KDD
– year: 2017
  ident: 10.1016/j.eswa.2020.113807_b3
– volume: 186
  year: 2019
  ident: 10.1016/j.eswa.2020.113807_b57
  article-title: Automated arrhythmia detection using novel hexadecimal local pattern and multilevel wavelet transform with ECG signals
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.104923
– volume: 8
  year: 1992
  ident: 10.1016/j.eswa.2020.113807_b13
  article-title: Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients
  publication-title: Journal of General Internal Medicine
– year: 2018
  ident: 10.1016/j.eswa.2020.113807_b30
– volume: 2013
  year: 2013
  ident: 10.1016/j.eswa.2020.113807_b59
  article-title: An expert system based on Fisher score and LS-SVM for cardiac arrhythmia diagnosis
  publication-title: Computational and mathematical methods in medicine
  doi: 10.1155/2013/849674
– volume: 188
  year: 2002
  ident: 10.1016/j.eswa.2020.113807_b12
  article-title: Respiratory rate: the neglected vital sign
  publication-title: Medical Journal of Australia
– year: 2018
  ident: 10.1016/j.eswa.2020.113807_b50
– volume: 18
  start-page: 579
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2020.113807_b23
  article-title: Feature elimination based random subspace ensembles learning for ECG arrhythmia diagnosis
  publication-title: Soft Computing
  doi: 10.1007/s00500-013-1079-6
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2020.113807_b34
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/51.932724
– volume: 102
  year: 2005
  ident: 10.1016/j.eswa.2020.113807_b52
  article-title: Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– start-page: 22
  year: 2007
  ident: 10.1016/j.eswa.2020.113807_b31
  article-title: Extracting input features and fuzzy rules for detecting ECG arrhythmia based on NEWFM
– volume: 143
  start-page: 272
  year: 2017
  ident: 10.1016/j.eswa.2020.113807_b19
  article-title: Detecting an ECG arrhythmia using cascade architectures of fuzzy neural networks
  publication-title: Advanced Science and Technology Letters
  doi: 10.14257/astl.2017.143.54
– year: 2018
  ident: 10.1016/j.eswa.2020.113807_b51
  article-title: Machine learning in cardiac CT: Basic concepts and contemporary data
  publication-title: Journal of Cardiovascular Computed Tomograph
  doi: 10.1016/j.jcct.2018.04.010
– year: 2018
  ident: 10.1016/j.eswa.2020.113807_b35
– year: 2019
  ident: 10.1016/j.eswa.2020.113807_b55
– year: 2015
  ident: 10.1016/j.eswa.2020.113807_b8
– year: 2018
  ident: 10.1016/j.eswa.2020.113807_b20
– year: 2004
  ident: 10.1016/j.eswa.2020.113807_b15
  article-title: Arrhythmia identification from ECG signals with a neural network classifier based on a Bayesian framework
– volume: 72
  year: 2018
  ident: 10.1016/j.eswa.2020.113807_b1
  article-title: 2017 AHA/ACC/HRS guideline for management of patients with Ventricular arrhythmias and the prevention of sudden cardiac death: executive summary
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/j.jacc.2017.10.053
– volume: 104
  year: 2001
  ident: 10.1016/j.eswa.2020.113807_b28
  article-title: Molecular and cellular mechanisms of cardiac arrhythmias
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00243-4
– year: 2018
  ident: 10.1016/j.eswa.2020.113807_b32
– volume: 39
  start-page: 192
  year: 2018
  ident: 10.1016/j.eswa.2020.113807_b40
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2017.10.002
– volume: 28
  year: 2010
  ident: 10.1016/j.eswa.2020.113807_b46
  article-title: Sodium channel (dys)function and cardiac arrhythmias
  publication-title: Cardiovascular Therapeutics
  doi: 10.1111/j.1755-5922.2010.00210.x
– ident: 10.1016/j.eswa.2020.113807_b7
– volume: 7
  start-page: 85
  year: 2007
  ident: 10.1016/j.eswa.2020.113807_b39
  article-title: Cardiac muscle physiology
  publication-title: Continuing Education in Anaesthesia Critical Care & Pain
  doi: 10.1093/bjaceaccp/mkm013
– year: 2019
  ident: 10.1016/j.eswa.2020.113807_b48
– start-page: 965
  year: 2018
  ident: 10.1016/j.eswa.2020.113807_b26
  article-title: Soft-margin SVM incorporating feature selection using improved elitist GA for arrhythmia classification
– year: 2016
  ident: 10.1016/j.eswa.2020.113807_b11
– volume: 345
  year: 2001
  ident: 10.1016/j.eswa.2020.113807_b21
  article-title: Sudden death due to cardiac arrhythmias
  publication-title: New England Journal of Medicine
– volume: 31
  start-page: 264
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2020.113807_b44
  article-title: A new method to medical diagnosis: Artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.019
– year: 2019
  ident: 10.1016/j.eswa.2020.113807_b33
– ident: 10.1016/j.eswa.2020.113807_b54
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.eswa.2020.113807_b37
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research (JMLR)
– year: 2017
  ident: 10.1016/j.eswa.2020.113807_b53
  article-title: Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia
  publication-title: Science
– volume: 19
  start-page: 5079
  issue: 23
  year: 2019
  ident: 10.1016/j.eswa.2020.113807_b27
  article-title: Towards real-time heartbeat classification: evaluation of nonlinear morphological features and voting method
  publication-title: Sensors
  doi: 10.3390/s19235079
– start-page: 433
  year: 1997
  ident: 10.1016/j.eswa.2020.113807_b18
  article-title: A supervised machine learning algorithm for arrhythmia analysis
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.113807_b43
  article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
  publication-title: Neural Computing and Applications
– year: 2016
  ident: 10.1016/j.eswa.2020.113807_b25
– start-page: 560
  year: 2007
  ident: 10.1016/j.eswa.2020.113807_b58
  article-title: Arrhythmia classification using serial fusion of support vector machines and logistic regression
– start-page: 591
  year: 2012
  ident: 10.1016/j.eswa.2020.113807_b29
  article-title: Ecg arrhythmia classification using spearman rank correlation and support vector machine
– volume: 92
  start-page: 334
  year: 2018
  ident: 10.1016/j.eswa.2020.113807_b41
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.09.022
– year: 2019
  ident: 10.1016/j.eswa.2020.113807_b56
– year: 2019
  ident: 10.1016/j.eswa.2020.113807_b2
– ident: 10.1016/j.eswa.2020.113807_b4
– year: 2016
  ident: 10.1016/j.eswa.2020.113807_b45
– volume: 44
  start-page: 8
  issue: 15
  year: 2012
  ident: 10.1016/j.eswa.2020.113807_b22
  article-title: Artificial neural network models based cardiac arrhythmia disease diagnosis from ECG signal data
  publication-title: International Journal of Computer Applications
  doi: 10.5120/6338-8532
– volume: 440
  year: 2006
  ident: 10.1016/j.eswa.2020.113807_b47
  article-title: hERG potassium channels and cardiac arrhythmia
  publication-title: Nature
  doi: 10.1038/nature04710
– volume: 24
  year: 2016
  ident: 10.1016/j.eswa.2020.113807_b10
  article-title: Using recurrent neural network models for early detection of heart failure onset
  publication-title: Journal of the American Medical Informatics Association
– volume: 56
  year: 2016
  ident: 10.1016/j.eswa.2020.113807_b9
  article-title: Doctor AI: Predicting clinical events via recurrent neural networks
  publication-title: Journal of Machine Learning Research (JMLR)
– volume: 23
  start-page: 127
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2020.113807_b36
  article-title: Tree-structured feature extraction using mutual information
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2011.2178447
– year: 2002
  ident: 10.1016/j.eswa.2020.113807_b6
  article-title: Random forests
  publication-title: Machine Learning Journal
– start-page: 149
  year: 2019
  ident: 10.1016/j.eswa.2020.113807_b38
– start-page: 127
  year: 2017
  ident: 10.1016/j.eswa.2020.113807_b49
  article-title: Deep neural networks versus support vector machines for ECG arrhythmia classification
– start-page: 225
  year: 2020
  ident: 10.1016/j.eswa.2020.113807_b42
  article-title: Novel methodology for cardiac arrhythmias classification based on long-duration ECG signal fragments analysis
– ident: 10.1016/j.eswa.2020.113807_b17
  doi: 10.1609/aaai.v29i1.9209
SSID ssj0017007
Score 2.4505482
Snippet This article aims to establish an accurate and innovative objective framework for classification of cardiac arrhythmia patients by trying to measure the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113807
SubjectTerms Arrhythmia
Blood pressure
Calcium
Cardiac arrhythmia
Diagnosis
Electrocardiogram
Genetic algorithms
Machine learning
MIMIC-III database
Optimization
Optimization techniques
Potassium
Random forest
Respiratory rate
Risk analysis
Signs and symptoms
Test sets
Title Detection of common risk factors for diagnosis of cardiac arrhythmia using machine learning algorithm
URI https://dx.doi.org/10.1016/j.eswa.2020.113807
https://www.proquest.com/docview/2465477223
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4Ix6l8sCGQoMfTTxWBVRAdIFK3ayksdugvtQGIRZ-O3eOUwmEGBiTnKP4fL47R9_dR8iFyKRJlJRBqrI4EGmYgR-M00ClLG7FoVXGsSg89VrdvngYyEGNdKpaGIRVet9f-nTnrf2dptdmc5HnzWdIDiAcwtEO017GsIhPiAhZDK4-1zAPbD8Xlf32ogClfeFMifEyq3fsPcQctUmMlLK_B6cfbtrFnrtdsu2TRtouv2uP1Mxsn-xUhAzU788DYm5M4aBVMzq3FKYENkYRPE49rQ6FFJVmJbouXzkhZyFDmiyX449iPM0TilD4EZ06lKWhnlZiRJPJaL7MQeSQ9O9uXzrdwPMoBEPO4iKwFnYpTBAuuJFRYjIemjhRXITcJhICPrrLlMtUqNCEUcas4iZUtmWuLT4-Ihuz-cwcEwrJlBkKHmE3SgHrr7LUStB6JNBZ2PCEXFcK1EPfZBy5Lia6QpO9alS6RqXrUukn5HI9ZlG22PhTWlbror8ZioYY8Oe4erWI2m_TlWbYTQ7OF4yf_vO1Z2SLIcrF_ZSpk41i-WbOIU0p0oazwwbZbN8_dntfkW_l0g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDnBhR-z4wA2Fpl6a-IhYVLZeoFJvVtLYbRCkqA1CXPh2ZhynEgj1wDHJOIrH41mi53mEnIhMmkRJGaQqiwORhhn4wTgNVMriVhxaZRyLwkOn1e6K257szZGL-iwMwiq97698uvPW_k7Da7PxlueNR0gOIBxCaYdpL2NqniwKySKswM6-pjgP7D8XVQ33ogDF_cmZCuRlJh_YfIg5bpMYOWX_jk6__LQLPtdrZMVnjfS8-rB1MmeKDbJaMzJQv0E3ibk0pcNWFXRkKcwJjIwiepx6Xh0KOSrNKnhdPnFCzkT6NBmPh5_l8DVPKGLhB_TVwSwN9bwSA5q8DEbjHES2SPf66umiHXgihaDPWVwG1sI2hQnCBTcySkzGQxMniouQ20RCxEd_mXKZChWaMMqYVdyEyrZM0-LjbbJQjAqzQyhkU6YveITtKAUYgMpSK4WAJBK9hQ13SbNWoO77LuNIdvGiazjZs0ala1S6rpS-S06nY96qHhszpWW9LvqHpWgIAjPHHdSLqP0-nWiG7eSgwGB875-vPSZL7aeHe31_07nbJ8sMIS_uD80BWSjH7-YQcpYyPXI2-Q33JOdn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+common+risk+factors+for+diagnosis+of+cardiac+arrhythmia+using+machine+learning+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Yadav%2C+Samir+S.&rft.au=Jadhav%2C+Shivajirao+M.&rft.date=2021-01-01&rft.issn=0957-4174&rft.volume=163&rft.spage=113807&rft_id=info:doi/10.1016%2Fj.eswa.2020.113807&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2020_113807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon