A new data clustering algorithm based on critical distance methodology
•A new CDC algorithm.•6 indicators to evaluate the results.•26 experiments had been conducted. A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate algorithm can be chosen for the purpose of cluster...
Saved in:
| Published in | Expert systems with applications Vol. 129; pp. 296 - 310 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
01.09.2019
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2019.03.051 |
Cover
| Abstract | •A new CDC algorithm.•6 indicators to evaluate the results.•26 experiments had been conducted.
A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate algorithm can be chosen for the purpose of clustering. It is difficult for a user to decide a priori which algorithm would be the most appropriate for a given dataset. Algorithms based on graphs provide good results for this task. However, these algorithms are vulnerable to outliers with limited information about edges contained in the tree to split a dataset. Thus, in several fields, the need for better clustering algorithms increases and for this reason utilizing robust and dynamic algorithms to improve and simplify the whole process of data clustering has become an urgent need. In this paper, we propose a novel distance-based clustering algorithm called the critical distance clustering algorithm. This algorithm depends on the Euclidean distance between data points and some basic mathematical statistics operations. The algorithm is simple, robust, and flexible; it works with quantitative data that are real-valued, not qualitative, and categorical with different dimensions. In this work, 26 experiments are conducted using different types of real and synthetic datasets taken from different fields. The results prove that the new algorithm outperforms some popular clustering algorithms such as MST-based clustering, K-means, and Dbscan. Moreover, the algorithm can precisely produce more reasonable clusters even when the dataset contains outliers and without specifying any parameters in advance. It also provides a number of indicators to evaluate the established clusters and prove the validity of the clustering. |
|---|---|
| AbstractList | •A new CDC algorithm.•6 indicators to evaluate the results.•26 experiments had been conducted.
A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate algorithm can be chosen for the purpose of clustering. It is difficult for a user to decide a priori which algorithm would be the most appropriate for a given dataset. Algorithms based on graphs provide good results for this task. However, these algorithms are vulnerable to outliers with limited information about edges contained in the tree to split a dataset. Thus, in several fields, the need for better clustering algorithms increases and for this reason utilizing robust and dynamic algorithms to improve and simplify the whole process of data clustering has become an urgent need. In this paper, we propose a novel distance-based clustering algorithm called the critical distance clustering algorithm. This algorithm depends on the Euclidean distance between data points and some basic mathematical statistics operations. The algorithm is simple, robust, and flexible; it works with quantitative data that are real-valued, not qualitative, and categorical with different dimensions. In this work, 26 experiments are conducted using different types of real and synthetic datasets taken from different fields. The results prove that the new algorithm outperforms some popular clustering algorithms such as MST-based clustering, K-means, and Dbscan. Moreover, the algorithm can precisely produce more reasonable clusters even when the dataset contains outliers and without specifying any parameters in advance. It also provides a number of indicators to evaluate the established clusters and prove the validity of the clustering. A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate algorithm can be chosen for the purpose of clustering. It is difficult for a user to decide a priori which algorithm would be the most appropriate for a given dataset. Algorithms based on graphs provide good results for this task. However, these algorithms are vulnerable to outliers with limited information about edges contained in the tree to split a dataset. Thus, in several fields, the need for better clustering algorithms increases and for this reason utilizing robust and dynamic algorithms to improve and simplify the whole process of data clustering has become an urgent need. In this paper, we propose a novel distance-based clustering algorithm called the critical distance clustering algorithm. This algorithm depends on the Euclidean distance between data points and some basic mathematical statistics operations. The algorithm is simple, robust, and flexible; it works with quantitative data that are real-valued, not qualitative, and categorical with different dimensions. In this work, 26 experiments are conducted using different types of real and synthetic datasets taken from different fields. The results prove that the new algorithm outperforms some popular clustering algorithms such as MST-based clustering, K-means, and Dbscan. Moreover, the algorithm can precisely produce more reasonable clusters even when the dataset contains outliers and without specifying any parameters in advance. It also provides a number of indicators to evaluate the established clusters and prove the validity of the clustering. |
| Author | Shaar, Fadi Murtagh, Fionn Kuwil, Farag Hamed Topcu, Ahmet Ercan |
| Author_xml | – sequence: 1 givenname: Farag Hamed orcidid: 0000-0001-6630-3918 surname: Kuwil fullname: Kuwil, Farag Hamed email: kuwil73@gmail.com, 175101409@ybu.edu.tr organization: Faculty of Engineering and Natural Sciences, Department of Computer Engineering, Ankara Yildirim Beyazit University 06220 Ankara, Turkey – sequence: 2 givenname: Fadi orcidid: 0000-0001-9976-4227 surname: Shaar fullname: Shaar, Fadi email: eng.fadishaar@gmail.com organization: Faculty of Engineering and Natural Sciences, Department of Computer Engineering, Ankara Yildirim Beyazit University 06220 Ankara, Turkey – sequence: 3 givenname: Ahmet Ercan orcidid: 0000-0003-1929-5358 surname: Topcu fullname: Topcu, Ahmet Ercan email: ahmet.topcu@aum.edu.kw, aetopcu@ybu.edu.tr organization: Faculty of Engineering and Natural Sciences, Department of Computer Engineering, Ankara Yildirim Beyazit University 06220 Ankara, Turkey – sequence: 4 givenname: Fionn orcidid: 0000-0002-0589-6892 surname: Murtagh fullname: Murtagh, Fionn email: f.murtagh@hud.ac.uk organization: School of Computing and Engineering, Huddersfield University, Huddersfield, HD1 3DH, UK |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKuA6xlzaSYz4KYUq0LBja5DmpxpM0wnNUktfXtT6sqFq58D5zuXb4JGgx8AoXtKSkpo9diVEI-6ZIQ2JeElEfQKjWkteVHJho_QmDRCFjMqZzdoEmNHCJWEyDFazvEAR2x10tj0h5gguGGDdb_xwaXtDq91BIv9gE2undE9ti4mPRjAO0hbb33vN6dbdN3qPsLdb07R5_L5Y_FarN5f3hbzVWE4q1MBYEm1lsxYyQSArIyWObQRbSMF50LYltTWzCCfXhFTtzW11tCGUN0IMHyKHi5z98F_HSAm1flDGPJKxRiXomKc0dxVX7pM8DEGaJVxSSfnhxS06xUl6mxNdepsTZ2tKcJVtpZR9gfdB7fT4fQ_9HSBIL_-7SCoaBxkRdYFMElZ7_7DfwCTzYkf |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_123298 crossref_primary_10_1016_j_ins_2022_08_100 crossref_primary_10_1155_2022_6408949 crossref_primary_10_1007_s42044_023_00160_x crossref_primary_10_1007_s10726_021_09758_7 crossref_primary_10_1016_j_neuri_2022_100097 crossref_primary_10_1007_s13748_020_00213_3 crossref_primary_10_1109_ACCESS_2023_3329429 crossref_primary_10_53070_bbd_1421527 crossref_primary_10_1002_cpe_6717 crossref_primary_10_1007_s12065_020_00562_x crossref_primary_10_1155_2021_7038294 crossref_primary_10_1002_cpe_6546 crossref_primary_10_1002_cpe_6523 crossref_primary_10_1002_spy2_411 crossref_primary_10_1016_j_eswa_2020_113435 crossref_primary_10_1016_j_eswa_2021_114648 crossref_primary_10_1002_cpe_6522 crossref_primary_10_1007_s10462_024_10920_1 crossref_primary_10_1186_s42162_021_00177_1 crossref_primary_10_1016_j_patcog_2020_107713 crossref_primary_10_3390_app14010380 crossref_primary_10_1016_j_eswa_2022_116976 crossref_primary_10_4018_IJSWIS_346377 crossref_primary_10_3390_app12073524 crossref_primary_10_3390_electronics10141677 |
| Cites_doi | 10.1016/j.asoc.2009.12.025 10.1198/016214503000000666 10.1080/00207549408957064 10.1007/s11004-010-9276-7 10.1016/0031-3203(95)00022-R 10.1016/j.swevo.2013.11.003 10.1016/j.ins.2011.04.013 10.1016/S0306-4379(01)00008-4 10.1016/S0031-3203(99)00137-5 10.1155/2014/368628 10.1016/j.patrec.2007.12.002 10.1007/BF02289263 10.1007/s11277-017-4572-x 10.1016/j.dsp.2013.03.009 10.1016/j.aca.2003.12.032 10.1016/j.asoc.2009.07.001 10.1016/j.patcog.2017.06.023 10.1016/0031-3203(91)90097-O 10.1049/ip-vis:20010139 10.1016/j.csda.2015.03.008 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright Elsevier BV Sep 1, 2019 |
| Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Sep 1, 2019 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2019.03.051 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 310 |
| ExternalDocumentID | 10_1016_j_eswa_2019_03_051 S0957417419302258 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-eed06b72cd725ee76ca7ee7ac5f9753355df08dc4e87360c8f81ddc1901a95ec3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 07:40:44 EDT 2025 Thu Apr 24 22:50:43 EDT 2025 Sat Oct 25 05:09:11 EDT 2025 Fri Feb 23 02:24:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cluster analysis Algorithm Euclidean distance MST |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-eed06b72cd725ee76ca7ee7ac5f9753355df08dc4e87360c8f81ddc1901a95ec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1929-5358 0000-0001-9976-4227 0000-0001-6630-3918 0000-0002-0589-6892 |
| PQID | 2237562321 |
| PQPubID | 2045477 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2237562321 crossref_citationtrail_10_1016_j_eswa_2019_03_051 crossref_primary_10_1016_j_eswa_2019_03_051 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_03_051 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-09-01 2019-09-00 20190901 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Kuwil (bib0019) 2017; 7 Niknam, Amiri (bib0023) 2010; 10 Daiyan, Abid, Khan, Tareq (bib0008) 2012 Nanda, Panda (bib0022) 2014; 16 Zhou, Shu, Su (bib0038) 2015; 89 Saida, Kamel, Omar (bib0024) 2014 Honarkhah, Caers (bib0016) 2010; 42 Everitt, Landau, Leese, Stahl (bib0013) 2011 Wang, Wang, Chen, Wilkes (bib0034) 2013; 23 UCI Machine Learning Repository. (2018). Sugar, James (bib0028) 2003; 98 Selim, Alsultan (bib0025) 1991; 24 Shelokar, Jayaraman, Kulkarni (bib0026) 2004; 509 He, Zhao, Zhang, Ramamohanarao, Pang (bib0015) 2014 Bishop (bib0005) 2006 Casper, W. R., & Nadiga, B. (2017). A New spectral clustering algorithm. Eprint ArXiv Tsai, Wu, Tsai (bib0030) 2002 Srinivasan (bib0027) 1994; 32 Chen, Ye (bib0007) 2004; 2 Karaboga, Ozturk (bib0017) 2011; 11 Thorndike (bib0029) 1953; 18 Al-Sultan (bib0002) 1995; 28 Retrieved from. Reza, Fathian, Gholamian (bib0039) 2014; 14 Baradaran, Navi (bib0004) 2017; 97 Guha, Rastogi, Shim (bib0040) 2001; 26 Kuwil (bib0018) 2017; 7 Elfarra, El Khateeb, Ashour (bib0012) 2013; 1 Wang, Rau (bib0033) 2001; 148 Halim, Uzma (bib0014) 2018 Maulik, Bandyopadhyay (bib0020) 2000; 33 Eurostat (2018). Accessed 5 December 2018. Verma, Srivastava, Chack, Diswar, Gupta (bib0032) 2012; 2 Zhang, Shen (bib0036) 2014; 2014 Murtagh, Contreras (bib0021) 2012; 2 Zhong, Miao, Fränti (bib0037) 2011; 181 Ahmadyfard, Modares (bib0001) 2008 Dhawan, Dai (bib0010) 2008 Bai, Cheng, Liang, Shen, Guo (bib0003) 2017; 71 Das, Abraham, Konar (bib0009) 2008; 29 Kuwil (10.1016/j.eswa.2019.03.051_bib0019) 2017; 7 Al-Sultan (10.1016/j.eswa.2019.03.051_bib0002) 1995; 28 Everitt (10.1016/j.eswa.2019.03.051_bib0013) 2011 Wang (10.1016/j.eswa.2019.03.051_bib0033) 2001; 148 Zhong (10.1016/j.eswa.2019.03.051_bib0037) 2011; 181 He (10.1016/j.eswa.2019.03.051_bib0015) 2014 Saida (10.1016/j.eswa.2019.03.051_bib0024) 2014 Sugar (10.1016/j.eswa.2019.03.051_bib0028) 2003; 98 Das (10.1016/j.eswa.2019.03.051_bib0009) 2008; 29 10.1016/j.eswa.2019.03.051_bib0006 Elfarra (10.1016/j.eswa.2019.03.051_bib0012) 2013; 1 Honarkhah (10.1016/j.eswa.2019.03.051_bib0016) 2010; 42 Wang (10.1016/j.eswa.2019.03.051_bib0034) 2013; 23 Kuwil (10.1016/j.eswa.2019.03.051_bib0018) 2017; 7 Baradaran (10.1016/j.eswa.2019.03.051_bib0004) 2017; 97 Shelokar (10.1016/j.eswa.2019.03.051_bib0026) 2004; 509 Zhou (10.1016/j.eswa.2019.03.051_bib0038) 2015; 89 Reza (10.1016/j.eswa.2019.03.051_bib0039) 2014; 14 Zhang (10.1016/j.eswa.2019.03.051_bib0036) 2014; 2014 Chen (10.1016/j.eswa.2019.03.051_bib0007) 2004; 2 Guha (10.1016/j.eswa.2019.03.051_bib0040) 2001; 26 Daiyan (10.1016/j.eswa.2019.03.051_bib0008) 2012 Selim (10.1016/j.eswa.2019.03.051_bib0025) 1991; 24 Thorndike (10.1016/j.eswa.2019.03.051_bib0029) 1953; 18 Verma (10.1016/j.eswa.2019.03.051_bib0032) 2012; 2 Murtagh (10.1016/j.eswa.2019.03.051_bib0021) 2012; 2 Nanda (10.1016/j.eswa.2019.03.051_bib0022) 2014; 16 Ahmadyfard (10.1016/j.eswa.2019.03.051_bib0001) 2008 Dhawan (10.1016/j.eswa.2019.03.051_bib0010) 2008 Niknam (10.1016/j.eswa.2019.03.051_bib0023) 2010; 10 Bishop (10.1016/j.eswa.2019.03.051_bib0005) 2006 10.1016/j.eswa.2019.03.051_bib0011 10.1016/j.eswa.2019.03.051_bib0031 Karaboga (10.1016/j.eswa.2019.03.051_bib0017) 2011; 11 Tsai (10.1016/j.eswa.2019.03.051_bib0030) 2002 Maulik (10.1016/j.eswa.2019.03.051_bib0020) 2000; 33 Bai (10.1016/j.eswa.2019.03.051_bib0003) 2017; 71 Srinivasan (10.1016/j.eswa.2019.03.051_bib0027) 1994; 32 Halim (10.1016/j.eswa.2019.03.051_bib0014) 2018 |
| References_xml | – start-page: 1 year: 2018 end-page: 15 ident: bib0014 article-title: Optimizing the minimum spanning tree-based extracted clusters using evolution strategy publication-title: Cluster Computing – volume: 7 start-page: 112 year: 2017 end-page: 122 ident: bib0018 article-title: Effectiveness measurement of spectral clustering algorithm publication-title: Global Journal of Computer Sciences: Theory and Research – year: 2011 ident: bib0013 article-title: Cluster analysis: fifth edition. Cluster Analysis: fifth edition – volume: 98 start-page: 750 year: 2003 end-page: 763 ident: bib0028 article-title: Finding the number of clusters in a dataset: An information-theoretic approach publication-title: Journal of the American Statistical Association – volume: 148 start-page: 36 year: 2001 ident: bib0033 article-title: VQ-agglomeration: A novel approach to clustering publication-title: IEE Proceedings - Vision, Image, and Signal Processing – volume: 24 start-page: 1003 year: 1991 end-page: 1008 ident: bib0025 article-title: A simulated annealing algorithm for the clustering problem publication-title: Pattern Recognition – year: 2006 ident: bib0005 article-title: Pattern recognition and machine learning – volume: 23 start-page: 1523 year: 2013 end-page: 1538 ident: bib0034 article-title: Enhancing minimum spanning tree-based clustering by removing density-based outliers publication-title: Digital Signal Processing – volume: 42 start-page: 487 year: 2010 end-page: 517 ident: bib0016 article-title: Stochastic simulation of patterns using distance-based pattern modeling publication-title: Mathematical Geosciences – volume: 181 start-page: 3397 year: 2011 end-page: 3410 ident: bib0037 article-title: Minimum spanning tree based split-and-merge: A hierarchical clustering method publication-title: Information Sciences – start-page: 229 year: 2008 end-page: 265 ident: bib0010 article-title: Clustering and pattern classification publication-title: Principles and Advanced Methods in Medical Imaging and Image Analysis – reference: Eurostat (2018). – volume: 2 start-page: 789 year: 2004 end-page: 794 ident: bib0007 article-title: Particle swarm optimization algorithm and its application to clustering analysis publication-title: IEEE International Conference on Networking, Sensing and Control, 2004 – reference: Accessed 5 December 2018. – volume: 16 start-page: 1 year: 2014 end-page: 18 ident: bib0022 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm and Evolutionary Computation – volume: 89 start-page: 134 year: 2015 end-page: 146 ident: bib0038 article-title: An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters publication-title: Computational Statistics & Data Analysis – volume: 26 start-page: 35 year: 2001 end-page: 58 ident: bib0040 article-title: Cure: an efficient clustering algorithm for large databases publication-title: Information systems – start-page: 867 year: 2014 end-page: 874 ident: bib0015 article-title: An effective clustering algorithm for auto-detecting well-separated clusters publication-title: 2014 IEEE International Conference on Data Mining Workshop – volume: 71 start-page: 375 year: 2017 end-page: 386 ident: bib0003 article-title: Fast density clustering strategies based on the k-means algorithm publication-title: Pattern Recognition – volume: 509 start-page: 187 year: 2004 end-page: 195 ident: bib0026 article-title: An ant colony approach for clustering publication-title: Analytica Chimica Acta – reference: UCI Machine Learning Repository. (2018). – reference: Casper, W. R., & Nadiga, B. (2017). A New spectral clustering algorithm. Eprint ArXiv: – start-page: 1 year: 2012 end-page: 3 ident: bib0008 article-title: An efficient grid algorithm for faster clustering using K medoids approach publication-title: Proceeding of the 15th International Conference on Computer and Information Technology, ICCIT 2012 – volume: 14 start-page: 54 year: 2014 end-page: 61 ident: bib0039 article-title: A New Method for Clustering Based on Development of Imperialist Competitive Algorithm publication-title: China Communications – volume: 97 start-page: 1323 year: 2017 end-page: 1344 ident: bib0004 article-title: CAST-WSN: The presentation of new clustering algorithm based on steiner tree and c-means algorithm improvement in wireless sensor networks publication-title: Wireless Personal Communications – volume: 7 start-page: 78 year: 2017 ident: bib0019 article-title: Kuwil method for spectral clustering algorithm publication-title: Global Journal of Computer Sciences: Theory and Research – start-page: 688 year: 2008 end-page: 691 ident: bib0001 article-title: Combining PSO and k-means to enhance data clustering publication-title: 2008 International Symposium on Telecommunications, IST 2008 – volume: 10 start-page: 183 year: 2010 end-page: 197 ident: bib0023 article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis publication-title: Applied Soft Computing – start-page: 59 year: 2014 end-page: 68 ident: bib0024 article-title: A new hybrid algorithm for document clustering based on cuckoo search and K-means publication-title: Recent Advances on Soft Computing and Data Mining – volume: 28 start-page: 1443 year: 1995 end-page: 1451 ident: bib0002 article-title: A Tabu search approach to the clustering problem publication-title: Pattern Recognition – volume: 29 start-page: 688 year: 2008 end-page: 699 ident: bib0009 article-title: Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm publication-title: Pattern Recognition Letters – volume: 33 start-page: 1455 year: 2000 end-page: 1465 ident: bib0020 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recognition – volume: 2 start-page: 86 year: 2012 end-page: 97 ident: bib0021 article-title: Algorithms for hierarchical clustering: An overview publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 11 start-page: 652 year: 2011 end-page: 657 ident: bib0017 article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm publication-title: Applied Soft Computing – reference: . Retrieved from. – start-page: 315 year: 2002 end-page: 320 ident: bib0030 article-title: A new data clustering approach for data mining in large databases publication-title: – – volume: 2 start-page: 1379 year: 2012 end-page: 1384 ident: bib0032 article-title: A comparative study of various clustering algorithms in data mining publication-title: International Journal of Engineering Research and Applications (IJERA) – volume: 2014 year: 2014 ident: bib0036 article-title: An improved fuzzy c-means clustering algorithm based on shadowed sets and PSO publication-title: Computational Intelligence and Neuroscience – volume: 1 start-page: 15 year: 2013 end-page: 24 ident: bib0012 article-title: BH-centroids: A new efficient clustering algorithm publication-title: Work – volume: 32 start-page: 2149 year: 1994 end-page: 2158 ident: bib0027 article-title: A clustering algorithm for machine cell formation in group technology using minimum spanning trees publication-title: International Journal of Production Research – volume: 18 start-page: 267 year: 1953 ident: bib0029 article-title: Who belongs in a family? publication-title: Psychometrica – volume: 11 start-page: 652 issue: 1 year: 2011 ident: 10.1016/j.eswa.2019.03.051_bib0017 article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.12.025 – volume: 98 start-page: 750 issue: 463 year: 2003 ident: 10.1016/j.eswa.2019.03.051_bib0028 article-title: Finding the number of clusters in a dataset: An information-theoretic approach publication-title: Journal of the American Statistical Association doi: 10.1198/016214503000000666 – year: 2011 ident: 10.1016/j.eswa.2019.03.051_bib0013 – volume: 32 start-page: 2149 issue: 9 year: 1994 ident: 10.1016/j.eswa.2019.03.051_bib0027 article-title: A clustering algorithm for machine cell formation in group technology using minimum spanning trees publication-title: International Journal of Production Research doi: 10.1080/00207549408957064 – ident: 10.1016/j.eswa.2019.03.051_bib0011 – start-page: 1 year: 2018 ident: 10.1016/j.eswa.2019.03.051_bib0014 article-title: Optimizing the minimum spanning tree-based extracted clusters using evolution strategy publication-title: Cluster Computing – volume: 42 start-page: 487 issue: 5 year: 2010 ident: 10.1016/j.eswa.2019.03.051_bib0016 article-title: Stochastic simulation of patterns using distance-based pattern modeling publication-title: Mathematical Geosciences doi: 10.1007/s11004-010-9276-7 – start-page: 688 year: 2008 ident: 10.1016/j.eswa.2019.03.051_bib0001 article-title: Combining PSO and k-means to enhance data clustering – volume: 28 start-page: 1443 issue: 9 year: 1995 ident: 10.1016/j.eswa.2019.03.051_bib0002 article-title: A Tabu search approach to the clustering problem publication-title: Pattern Recognition doi: 10.1016/0031-3203(95)00022-R – volume: 2 start-page: 1379 issue: 3 year: 2012 ident: 10.1016/j.eswa.2019.03.051_bib0032 article-title: A comparative study of various clustering algorithms in data mining publication-title: International Journal of Engineering Research and Applications (IJERA) – start-page: 315 year: 2002 ident: 10.1016/j.eswa.2019.03.051_bib0030 article-title: A new data clustering approach for data mining in large databases – ident: 10.1016/j.eswa.2019.03.051_bib0031 – year: 2006 ident: 10.1016/j.eswa.2019.03.051_bib0005 – volume: 7 start-page: 112 issue: 3 year: 2017 ident: 10.1016/j.eswa.2019.03.051_bib0018 article-title: Effectiveness measurement of spectral clustering algorithm publication-title: Global Journal of Computer Sciences: Theory and Research – volume: 16 start-page: 1 year: 2014 ident: 10.1016/j.eswa.2019.03.051_bib0022 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.11.003 – volume: 181 start-page: 3397 issue: 16 year: 2011 ident: 10.1016/j.eswa.2019.03.051_bib0037 article-title: Minimum spanning tree based split-and-merge: A hierarchical clustering method publication-title: Information Sciences doi: 10.1016/j.ins.2011.04.013 – volume: 1 start-page: 15 issue: 1 year: 2013 ident: 10.1016/j.eswa.2019.03.051_bib0012 article-title: BH-centroids: A new efficient clustering algorithm publication-title: Work – volume: 26 start-page: 35 issue: 1 year: 2001 ident: 10.1016/j.eswa.2019.03.051_bib0040 article-title: Cure: an efficient clustering algorithm for large databases publication-title: Information systems doi: 10.1016/S0306-4379(01)00008-4 – volume: 33 start-page: 1455 issue: 9 year: 2000 ident: 10.1016/j.eswa.2019.03.051_bib0020 article-title: Genetic algorithm-based clustering technique publication-title: Pattern Recognition doi: 10.1016/S0031-3203(99)00137-5 – volume: 14 start-page: 54 issue: 12 year: 2014 ident: 10.1016/j.eswa.2019.03.051_bib0039 article-title: A New Method for Clustering Based on Development of Imperialist Competitive Algorithm publication-title: China Communications – volume: 7 start-page: 78 issue: 2 year: 2017 ident: 10.1016/j.eswa.2019.03.051_bib0019 article-title: Kuwil method for spectral clustering algorithm publication-title: Global Journal of Computer Sciences: Theory and Research – volume: 2 start-page: 86 issue: 1 year: 2012 ident: 10.1016/j.eswa.2019.03.051_bib0021 article-title: Algorithms for hierarchical clustering: An overview publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – start-page: 1 year: 2012 ident: 10.1016/j.eswa.2019.03.051_bib0008 article-title: An efficient grid algorithm for faster clustering using K medoids approach – start-page: 59 year: 2014 ident: 10.1016/j.eswa.2019.03.051_bib0024 article-title: A new hybrid algorithm for document clustering based on cuckoo search and K-means – volume: 2014 year: 2014 ident: 10.1016/j.eswa.2019.03.051_bib0036 article-title: An improved fuzzy c-means clustering algorithm based on shadowed sets and PSO publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2014/368628 – volume: 29 start-page: 688 issue: 5 year: 2008 ident: 10.1016/j.eswa.2019.03.051_bib0009 article-title: Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2007.12.002 – start-page: 229 year: 2008 ident: 10.1016/j.eswa.2019.03.051_bib0010 article-title: Clustering and pattern classification – volume: 18 start-page: 267 year: 1953 ident: 10.1016/j.eswa.2019.03.051_bib0029 article-title: Who belongs in a family? publication-title: Psychometrica doi: 10.1007/BF02289263 – volume: 97 start-page: 1323 issue: 1 year: 2017 ident: 10.1016/j.eswa.2019.03.051_bib0004 article-title: CAST-WSN: The presentation of new clustering algorithm based on steiner tree and c-means algorithm improvement in wireless sensor networks publication-title: Wireless Personal Communications doi: 10.1007/s11277-017-4572-x – volume: 23 start-page: 1523 issue: 5 year: 2013 ident: 10.1016/j.eswa.2019.03.051_bib0034 article-title: Enhancing minimum spanning tree-based clustering by removing density-based outliers publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2013.03.009 – volume: 509 start-page: 187 issue: 2 year: 2004 ident: 10.1016/j.eswa.2019.03.051_bib0026 article-title: An ant colony approach for clustering publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2003.12.032 – volume: 10 start-page: 183 issue: 1 year: 2010 ident: 10.1016/j.eswa.2019.03.051_bib0023 article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.07.001 – volume: 71 start-page: 375 year: 2017 ident: 10.1016/j.eswa.2019.03.051_bib0003 article-title: Fast density clustering strategies based on the k-means algorithm publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.06.023 – volume: 2 start-page: 789 year: 2004 ident: 10.1016/j.eswa.2019.03.051_bib0007 article-title: Particle swarm optimization algorithm and its application to clustering analysis – volume: 24 start-page: 1003 issue: 10 year: 1991 ident: 10.1016/j.eswa.2019.03.051_bib0025 article-title: A simulated annealing algorithm for the clustering problem publication-title: Pattern Recognition doi: 10.1016/0031-3203(91)90097-O – ident: 10.1016/j.eswa.2019.03.051_bib0006 – start-page: 867 year: 2014 ident: 10.1016/j.eswa.2019.03.051_bib0015 article-title: An effective clustering algorithm for auto-detecting well-separated clusters – volume: 148 start-page: 36 issue: 1 year: 2001 ident: 10.1016/j.eswa.2019.03.051_bib0033 article-title: VQ-agglomeration: A novel approach to clustering publication-title: IEE Proceedings - Vision, Image, and Signal Processing doi: 10.1049/ip-vis:20010139 – volume: 89 start-page: 134 year: 2015 ident: 10.1016/j.eswa.2019.03.051_bib0038 article-title: An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters publication-title: Computational Statistics & Data Analysis doi: 10.1016/j.csda.2015.03.008 |
| SSID | ssj0017007 |
| Score | 2.446589 |
| Snippet | •A new CDC algorithm.•6 indicators to evaluate the results.•26 experiments had been conducted.
A variety of algorithms have recently emerged in the field of... A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 296 |
| SubjectTerms | Algorithm Algorithms Cluster analysis Clustering Data points Datasets Euclidean distance Euclidean geometry MST Outliers (statistics) Qualitative analysis Robustness (mathematics) |
| Title | A new data clustering algorithm based on critical distance methodology |
| URI | https://dx.doi.org/10.1016/j.eswa.2019.03.051 https://www.proquest.com/docview/2237562321 |
| Volume | 129 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYM3qWubZmmPYzim4i462C2kaaqT2Y2tw5t_u-81qaDgDkKhtOSV8jV570v53nuEXBkWphw2yh6PFfOiyM-9lKHKQqlEBGmW6KpN5-O4N5pE91M-bZBBnQuDskrn-61Pr7y1u9N1aHaXs1n3CcgBhEM4EgaBiGPCbxQJ7GJw8_kt88Dyc8LW2xMejnaJM1bjZdYfWHsosIVOefBXcPrlpqvYMzwge4400r59r0PSMMUR2a8bMlC3Po_JsE-BJVNUfVI932ANBIhMVM1fFqtZ-fpOMWZldFFQ7Toc0Az5IxhT20q6-sl-QibD2-fByHONEjzNwrj0IM75vVSEOhMhN0b0tBJwUprnmDcLlCLL_TjTkYkF6_k6zoGlZhq5gEq40eyUNItFYc4IBRx1YjJhFIuAq6g0VnkoeGQ0MEnYnrVIUCMktasijs0s5rKWi71JRFUiqtJnElBtketvm6WtobF1NK-Blz9mggQnv9WuXX8l6dbhWgL5EcjwwuD8n4-9ILt4ZWVlbdIsVxtzCTykTDvVROuQnf7dw2j8BSX_3Ho |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD3rxtxFF7cGbmWzrSrcjIRJU4CIk3Jqu6xSDQGDEm3-7720diSZ6MFmyZGuX5Vv73tfl6_cIuTHMjzkslB0eKuYEgZs6MUOVhVKR8OIk0nmZzv6g2R0Fj2M-rpB2uRcGZZU29hcxPY_W9krDotlYTCaNZyAHkA7hiBgkIh5uke2A-wJXYHefG50H-s-JwnBPONjc7pwpRF5m9YHmQ17hdMq937LTjzidJ5_OAdmzrJG2ihc7JBUzOyL7ZUUGaifoMem0KNBkirJPqqdrNEGA1ETV9GW-nGSv7xSTVkLnM6ptiQOaIIGEzrSoJZ3_ZT8ho879sN11bKUERzM_zBxIdG4zFr5OhM-NEU2tBJyU5ilunAVOkaRumOjAhII1XR2mQFMTjWRARdxodkqqs_nMnBEKQOrIJMIoFgBZUXGoUl_wwGigkrA-qxGvREhqayOO1SymstSLvUlEVSKq0mUSUK2R202fRWGi8WdrXgIvvw0FCVH-z3718itJOxFXEtiPQIrne-f_fOw12ekO-z3Zexg8XZBdvFNozOqkmi3X5hJISRZf5YPuC1533g8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+data+clustering+algorithm+based+on+critical+distance+methodology&rft.jtitle=Expert+systems+with+applications&rft.au=Kuwil%2C+Farag+Hamed&rft.au=Shaar%2C+Fadi&rft.au=Topcu%2C+Ahmet+Ercan&rft.au=Murtagh%2C+Fionn&rft.date=2019-09-01&rft.issn=0957-4174&rft.volume=129&rft.spage=296&rft.epage=310&rft_id=info:doi/10.1016%2Fj.eswa.2019.03.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2019_03_051 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |