A new data clustering algorithm based on critical distance methodology

•A new CDC algorithm.•6 indicators to evaluate the results.•26 experiments had been conducted. A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate algorithm can be chosen for the purpose of cluster...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 129; pp. 296 - 310
Main Authors Kuwil, Farag Hamed, Shaar, Fadi, Topcu, Ahmet Ercan, Murtagh, Fionn
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.09.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2019.03.051

Cover

Abstract •A new CDC algorithm.•6 indicators to evaluate the results.•26 experiments had been conducted. A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate algorithm can be chosen for the purpose of clustering. It is difficult for a user to decide a priori which algorithm would be the most appropriate for a given dataset. Algorithms based on graphs provide good results for this task. However, these algorithms are vulnerable to outliers with limited information about edges contained in the tree to split a dataset. Thus, in several fields, the need for better clustering algorithms increases and for this reason utilizing robust and dynamic algorithms to improve and simplify the whole process of data clustering has become an urgent need. In this paper, we propose a novel distance-based clustering algorithm called the critical distance clustering algorithm. This algorithm depends on the Euclidean distance between data points and some basic mathematical statistics operations. The algorithm is simple, robust, and flexible; it works with quantitative data that are real-valued, not qualitative, and categorical with different dimensions. In this work, 26 experiments are conducted using different types of real and synthetic datasets taken from different fields. The results prove that the new algorithm outperforms some popular clustering algorithms such as MST-based clustering, K-means, and Dbscan. Moreover, the algorithm can precisely produce more reasonable clusters even when the dataset contains outliers and without specifying any parameters in advance. It also provides a number of indicators to evaluate the established clusters and prove the validity of the clustering.
AbstractList •A new CDC algorithm.•6 indicators to evaluate the results.•26 experiments had been conducted. A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate algorithm can be chosen for the purpose of clustering. It is difficult for a user to decide a priori which algorithm would be the most appropriate for a given dataset. Algorithms based on graphs provide good results for this task. However, these algorithms are vulnerable to outliers with limited information about edges contained in the tree to split a dataset. Thus, in several fields, the need for better clustering algorithms increases and for this reason utilizing robust and dynamic algorithms to improve and simplify the whole process of data clustering has become an urgent need. In this paper, we propose a novel distance-based clustering algorithm called the critical distance clustering algorithm. This algorithm depends on the Euclidean distance between data points and some basic mathematical statistics operations. The algorithm is simple, robust, and flexible; it works with quantitative data that are real-valued, not qualitative, and categorical with different dimensions. In this work, 26 experiments are conducted using different types of real and synthetic datasets taken from different fields. The results prove that the new algorithm outperforms some popular clustering algorithms such as MST-based clustering, K-means, and Dbscan. Moreover, the algorithm can precisely produce more reasonable clusters even when the dataset contains outliers and without specifying any parameters in advance. It also provides a number of indicators to evaluate the established clusters and prove the validity of the clustering.
A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate algorithm can be chosen for the purpose of clustering. It is difficult for a user to decide a priori which algorithm would be the most appropriate for a given dataset. Algorithms based on graphs provide good results for this task. However, these algorithms are vulnerable to outliers with limited information about edges contained in the tree to split a dataset. Thus, in several fields, the need for better clustering algorithms increases and for this reason utilizing robust and dynamic algorithms to improve and simplify the whole process of data clustering has become an urgent need. In this paper, we propose a novel distance-based clustering algorithm called the critical distance clustering algorithm. This algorithm depends on the Euclidean distance between data points and some basic mathematical statistics operations. The algorithm is simple, robust, and flexible; it works with quantitative data that are real-valued, not qualitative, and categorical with different dimensions. In this work, 26 experiments are conducted using different types of real and synthetic datasets taken from different fields. The results prove that the new algorithm outperforms some popular clustering algorithms such as MST-based clustering, K-means, and Dbscan. Moreover, the algorithm can precisely produce more reasonable clusters even when the dataset contains outliers and without specifying any parameters in advance. It also provides a number of indicators to evaluate the established clusters and prove the validity of the clustering.
Author Shaar, Fadi
Murtagh, Fionn
Kuwil, Farag Hamed
Topcu, Ahmet Ercan
Author_xml – sequence: 1
  givenname: Farag Hamed
  orcidid: 0000-0001-6630-3918
  surname: Kuwil
  fullname: Kuwil, Farag Hamed
  email: kuwil73@gmail.com, 175101409@ybu.edu.tr
  organization: Faculty of Engineering and Natural Sciences, Department of Computer Engineering, Ankara Yildirim Beyazit University 06220 Ankara, Turkey
– sequence: 2
  givenname: Fadi
  orcidid: 0000-0001-9976-4227
  surname: Shaar
  fullname: Shaar, Fadi
  email: eng.fadishaar@gmail.com
  organization: Faculty of Engineering and Natural Sciences, Department of Computer Engineering, Ankara Yildirim Beyazit University 06220 Ankara, Turkey
– sequence: 3
  givenname: Ahmet Ercan
  orcidid: 0000-0003-1929-5358
  surname: Topcu
  fullname: Topcu, Ahmet Ercan
  email: ahmet.topcu@aum.edu.kw, aetopcu@ybu.edu.tr
  organization: Faculty of Engineering and Natural Sciences, Department of Computer Engineering, Ankara Yildirim Beyazit University 06220 Ankara, Turkey
– sequence: 4
  givenname: Fionn
  orcidid: 0000-0002-0589-6892
  surname: Murtagh
  fullname: Murtagh, Fionn
  email: f.murtagh@hud.ac.uk
  organization: School of Computing and Engineering, Huddersfield University, Huddersfield, HD1 3DH, UK
BookMark eNp9kMtKAzEUhoNUsK2-gKuA6xlzaSYz4KYUq0LBja5DmpxpM0wnNUktfXtT6sqFq58D5zuXb4JGgx8AoXtKSkpo9diVEI-6ZIQ2JeElEfQKjWkteVHJho_QmDRCFjMqZzdoEmNHCJWEyDFazvEAR2x10tj0h5gguGGDdb_xwaXtDq91BIv9gE2undE9ti4mPRjAO0hbb33vN6dbdN3qPsLdb07R5_L5Y_FarN5f3hbzVWE4q1MBYEm1lsxYyQSArIyWObQRbSMF50LYltTWzCCfXhFTtzW11tCGUN0IMHyKHi5z98F_HSAm1flDGPJKxRiXomKc0dxVX7pM8DEGaJVxSSfnhxS06xUl6mxNdepsTZ2tKcJVtpZR9gfdB7fT4fQ_9HSBIL_-7SCoaBxkRdYFMElZ7_7DfwCTzYkf
CitedBy_id crossref_primary_10_1016_j_eswa_2024_123298
crossref_primary_10_1016_j_ins_2022_08_100
crossref_primary_10_1155_2022_6408949
crossref_primary_10_1007_s42044_023_00160_x
crossref_primary_10_1007_s10726_021_09758_7
crossref_primary_10_1016_j_neuri_2022_100097
crossref_primary_10_1007_s13748_020_00213_3
crossref_primary_10_1109_ACCESS_2023_3329429
crossref_primary_10_53070_bbd_1421527
crossref_primary_10_1002_cpe_6717
crossref_primary_10_1007_s12065_020_00562_x
crossref_primary_10_1155_2021_7038294
crossref_primary_10_1002_cpe_6546
crossref_primary_10_1002_cpe_6523
crossref_primary_10_1002_spy2_411
crossref_primary_10_1016_j_eswa_2020_113435
crossref_primary_10_1016_j_eswa_2021_114648
crossref_primary_10_1002_cpe_6522
crossref_primary_10_1007_s10462_024_10920_1
crossref_primary_10_1186_s42162_021_00177_1
crossref_primary_10_1016_j_patcog_2020_107713
crossref_primary_10_3390_app14010380
crossref_primary_10_1016_j_eswa_2022_116976
crossref_primary_10_4018_IJSWIS_346377
crossref_primary_10_3390_app12073524
crossref_primary_10_3390_electronics10141677
Cites_doi 10.1016/j.asoc.2009.12.025
10.1198/016214503000000666
10.1080/00207549408957064
10.1007/s11004-010-9276-7
10.1016/0031-3203(95)00022-R
10.1016/j.swevo.2013.11.003
10.1016/j.ins.2011.04.013
10.1016/S0306-4379(01)00008-4
10.1016/S0031-3203(99)00137-5
10.1155/2014/368628
10.1016/j.patrec.2007.12.002
10.1007/BF02289263
10.1007/s11277-017-4572-x
10.1016/j.dsp.2013.03.009
10.1016/j.aca.2003.12.032
10.1016/j.asoc.2009.07.001
10.1016/j.patcog.2017.06.023
10.1016/0031-3203(91)90097-O
10.1049/ip-vis:20010139
10.1016/j.csda.2015.03.008
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Sep 1, 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Sep 1, 2019
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.03.051
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 310
ExternalDocumentID 10_1016_j_eswa_2019_03_051
S0957417419302258
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-eed06b72cd725ee76ca7ee7ac5f9753355df08dc4e87360c8f81ddc1901a95ec3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 07:40:44 EDT 2025
Thu Apr 24 22:50:43 EDT 2025
Sat Oct 25 05:09:11 EDT 2025
Fri Feb 23 02:24:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cluster analysis
Algorithm
Euclidean distance
MST
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-eed06b72cd725ee76ca7ee7ac5f9753355df08dc4e87360c8f81ddc1901a95ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1929-5358
0000-0001-9976-4227
0000-0001-6630-3918
0000-0002-0589-6892
PQID 2237562321
PQPubID 2045477
PageCount 15
ParticipantIDs proquest_journals_2237562321
crossref_citationtrail_10_1016_j_eswa_2019_03_051
crossref_primary_10_1016_j_eswa_2019_03_051
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_03_051
PublicationCentury 2000
PublicationDate 2019-09-01
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Kuwil (bib0019) 2017; 7
Niknam, Amiri (bib0023) 2010; 10
Daiyan, Abid, Khan, Tareq (bib0008) 2012
Nanda, Panda (bib0022) 2014; 16
Zhou, Shu, Su (bib0038) 2015; 89
Saida, Kamel, Omar (bib0024) 2014
Honarkhah, Caers (bib0016) 2010; 42
Everitt, Landau, Leese, Stahl (bib0013) 2011
Wang, Wang, Chen, Wilkes (bib0034) 2013; 23
UCI Machine Learning Repository. (2018).
Sugar, James (bib0028) 2003; 98
Selim, Alsultan (bib0025) 1991; 24
Shelokar, Jayaraman, Kulkarni (bib0026) 2004; 509
He, Zhao, Zhang, Ramamohanarao, Pang (bib0015) 2014
Bishop (bib0005) 2006
Casper, W. R., & Nadiga, B. (2017). A New spectral clustering algorithm. Eprint ArXiv
Tsai, Wu, Tsai (bib0030) 2002
Srinivasan (bib0027) 1994; 32
Chen, Ye (bib0007) 2004; 2
Karaboga, Ozturk (bib0017) 2011; 11
Thorndike (bib0029) 1953; 18
Al-Sultan (bib0002) 1995; 28
Retrieved from.
Reza, Fathian, Gholamian (bib0039) 2014; 14
Baradaran, Navi (bib0004) 2017; 97
Guha, Rastogi, Shim (bib0040) 2001; 26
Kuwil (bib0018) 2017; 7
Elfarra, El Khateeb, Ashour (bib0012) 2013; 1
Wang, Rau (bib0033) 2001; 148
Halim, Uzma (bib0014) 2018
Maulik, Bandyopadhyay (bib0020) 2000; 33
Eurostat (2018).
Accessed 5 December 2018.
Verma, Srivastava, Chack, Diswar, Gupta (bib0032) 2012; 2
Zhang, Shen (bib0036) 2014; 2014
Murtagh, Contreras (bib0021) 2012; 2
Zhong, Miao, Fränti (bib0037) 2011; 181
Ahmadyfard, Modares (bib0001) 2008
Dhawan, Dai (bib0010) 2008
Bai, Cheng, Liang, Shen, Guo (bib0003) 2017; 71
Das, Abraham, Konar (bib0009) 2008; 29
Kuwil (10.1016/j.eswa.2019.03.051_bib0019) 2017; 7
Al-Sultan (10.1016/j.eswa.2019.03.051_bib0002) 1995; 28
Everitt (10.1016/j.eswa.2019.03.051_bib0013) 2011
Wang (10.1016/j.eswa.2019.03.051_bib0033) 2001; 148
Zhong (10.1016/j.eswa.2019.03.051_bib0037) 2011; 181
He (10.1016/j.eswa.2019.03.051_bib0015) 2014
Saida (10.1016/j.eswa.2019.03.051_bib0024) 2014
Sugar (10.1016/j.eswa.2019.03.051_bib0028) 2003; 98
Das (10.1016/j.eswa.2019.03.051_bib0009) 2008; 29
10.1016/j.eswa.2019.03.051_bib0006
Elfarra (10.1016/j.eswa.2019.03.051_bib0012) 2013; 1
Honarkhah (10.1016/j.eswa.2019.03.051_bib0016) 2010; 42
Wang (10.1016/j.eswa.2019.03.051_bib0034) 2013; 23
Kuwil (10.1016/j.eswa.2019.03.051_bib0018) 2017; 7
Baradaran (10.1016/j.eswa.2019.03.051_bib0004) 2017; 97
Shelokar (10.1016/j.eswa.2019.03.051_bib0026) 2004; 509
Zhou (10.1016/j.eswa.2019.03.051_bib0038) 2015; 89
Reza (10.1016/j.eswa.2019.03.051_bib0039) 2014; 14
Zhang (10.1016/j.eswa.2019.03.051_bib0036) 2014; 2014
Chen (10.1016/j.eswa.2019.03.051_bib0007) 2004; 2
Guha (10.1016/j.eswa.2019.03.051_bib0040) 2001; 26
Daiyan (10.1016/j.eswa.2019.03.051_bib0008) 2012
Selim (10.1016/j.eswa.2019.03.051_bib0025) 1991; 24
Thorndike (10.1016/j.eswa.2019.03.051_bib0029) 1953; 18
Verma (10.1016/j.eswa.2019.03.051_bib0032) 2012; 2
Murtagh (10.1016/j.eswa.2019.03.051_bib0021) 2012; 2
Nanda (10.1016/j.eswa.2019.03.051_bib0022) 2014; 16
Ahmadyfard (10.1016/j.eswa.2019.03.051_bib0001) 2008
Dhawan (10.1016/j.eswa.2019.03.051_bib0010) 2008
Niknam (10.1016/j.eswa.2019.03.051_bib0023) 2010; 10
Bishop (10.1016/j.eswa.2019.03.051_bib0005) 2006
10.1016/j.eswa.2019.03.051_bib0011
10.1016/j.eswa.2019.03.051_bib0031
Karaboga (10.1016/j.eswa.2019.03.051_bib0017) 2011; 11
Tsai (10.1016/j.eswa.2019.03.051_bib0030) 2002
Maulik (10.1016/j.eswa.2019.03.051_bib0020) 2000; 33
Bai (10.1016/j.eswa.2019.03.051_bib0003) 2017; 71
Srinivasan (10.1016/j.eswa.2019.03.051_bib0027) 1994; 32
Halim (10.1016/j.eswa.2019.03.051_bib0014) 2018
References_xml – start-page: 1
  year: 2018
  end-page: 15
  ident: bib0014
  article-title: Optimizing the minimum spanning tree-based extracted clusters using evolution strategy
  publication-title: Cluster Computing
– volume: 7
  start-page: 112
  year: 2017
  end-page: 122
  ident: bib0018
  article-title: Effectiveness measurement of spectral clustering algorithm
  publication-title: Global Journal of Computer Sciences: Theory and Research
– year: 2011
  ident: bib0013
  article-title: Cluster analysis: fifth edition. Cluster Analysis: fifth edition
– volume: 98
  start-page: 750
  year: 2003
  end-page: 763
  ident: bib0028
  article-title: Finding the number of clusters in a dataset: An information-theoretic approach
  publication-title: Journal of the American Statistical Association
– volume: 148
  start-page: 36
  year: 2001
  ident: bib0033
  article-title: VQ-agglomeration: A novel approach to clustering
  publication-title: IEE Proceedings - Vision, Image, and Signal Processing
– volume: 24
  start-page: 1003
  year: 1991
  end-page: 1008
  ident: bib0025
  article-title: A simulated annealing algorithm for the clustering problem
  publication-title: Pattern Recognition
– year: 2006
  ident: bib0005
  article-title: Pattern recognition and machine learning
– volume: 23
  start-page: 1523
  year: 2013
  end-page: 1538
  ident: bib0034
  article-title: Enhancing minimum spanning tree-based clustering by removing density-based outliers
  publication-title: Digital Signal Processing
– volume: 42
  start-page: 487
  year: 2010
  end-page: 517
  ident: bib0016
  article-title: Stochastic simulation of patterns using distance-based pattern modeling
  publication-title: Mathematical Geosciences
– volume: 181
  start-page: 3397
  year: 2011
  end-page: 3410
  ident: bib0037
  article-title: Minimum spanning tree based split-and-merge: A hierarchical clustering method
  publication-title: Information Sciences
– start-page: 229
  year: 2008
  end-page: 265
  ident: bib0010
  article-title: Clustering and pattern classification
  publication-title: Principles and Advanced Methods in Medical Imaging and Image Analysis
– reference: Eurostat (2018).
– volume: 2
  start-page: 789
  year: 2004
  end-page: 794
  ident: bib0007
  article-title: Particle swarm optimization algorithm and its application to clustering analysis
  publication-title: IEEE International Conference on Networking, Sensing and Control, 2004
– reference: Accessed 5 December 2018.
– volume: 16
  start-page: 1
  year: 2014
  end-page: 18
  ident: bib0022
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm and Evolutionary Computation
– volume: 89
  start-page: 134
  year: 2015
  end-page: 146
  ident: bib0038
  article-title: An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters
  publication-title: Computational Statistics & Data Analysis
– volume: 26
  start-page: 35
  year: 2001
  end-page: 58
  ident: bib0040
  article-title: Cure: an efficient clustering algorithm for large databases
  publication-title: Information systems
– start-page: 867
  year: 2014
  end-page: 874
  ident: bib0015
  article-title: An effective clustering algorithm for auto-detecting well-separated clusters
  publication-title: 2014 IEEE International Conference on Data Mining Workshop
– volume: 71
  start-page: 375
  year: 2017
  end-page: 386
  ident: bib0003
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognition
– volume: 509
  start-page: 187
  year: 2004
  end-page: 195
  ident: bib0026
  article-title: An ant colony approach for clustering
  publication-title: Analytica Chimica Acta
– reference: UCI Machine Learning Repository. (2018).
– reference: Casper, W. R., & Nadiga, B. (2017). A New spectral clustering algorithm. Eprint ArXiv:
– start-page: 1
  year: 2012
  end-page: 3
  ident: bib0008
  article-title: An efficient grid algorithm for faster clustering using K medoids approach
  publication-title: Proceeding of the 15th International Conference on Computer and Information Technology, ICCIT 2012
– volume: 14
  start-page: 54
  year: 2014
  end-page: 61
  ident: bib0039
  article-title: A New Method for Clustering Based on Development of Imperialist Competitive Algorithm
  publication-title: China Communications
– volume: 97
  start-page: 1323
  year: 2017
  end-page: 1344
  ident: bib0004
  article-title: CAST-WSN: The presentation of new clustering algorithm based on steiner tree and c-means algorithm improvement in wireless sensor networks
  publication-title: Wireless Personal Communications
– volume: 7
  start-page: 78
  year: 2017
  ident: bib0019
  article-title: Kuwil method for spectral clustering algorithm
  publication-title: Global Journal of Computer Sciences: Theory and Research
– start-page: 688
  year: 2008
  end-page: 691
  ident: bib0001
  article-title: Combining PSO and k-means to enhance data clustering
  publication-title: 2008 International Symposium on Telecommunications, IST 2008
– volume: 10
  start-page: 183
  year: 2010
  end-page: 197
  ident: bib0023
  article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
  publication-title: Applied Soft Computing
– start-page: 59
  year: 2014
  end-page: 68
  ident: bib0024
  article-title: A new hybrid algorithm for document clustering based on cuckoo search and K-means
  publication-title: Recent Advances on Soft Computing and Data Mining
– volume: 28
  start-page: 1443
  year: 1995
  end-page: 1451
  ident: bib0002
  article-title: A Tabu search approach to the clustering problem
  publication-title: Pattern Recognition
– volume: 29
  start-page: 688
  year: 2008
  end-page: 699
  ident: bib0009
  article-title: Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm
  publication-title: Pattern Recognition Letters
– volume: 33
  start-page: 1455
  year: 2000
  end-page: 1465
  ident: bib0020
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recognition
– volume: 2
  start-page: 86
  year: 2012
  end-page: 97
  ident: bib0021
  article-title: Algorithms for hierarchical clustering: An overview
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 11
  start-page: 652
  year: 2011
  end-page: 657
  ident: bib0017
  article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm
  publication-title: Applied Soft Computing
– reference: . Retrieved from.
– start-page: 315
  year: 2002
  end-page: 320
  ident: bib0030
  article-title: A new data clustering approach for data mining in large databases
  publication-title:
– volume: 2
  start-page: 1379
  year: 2012
  end-page: 1384
  ident: bib0032
  article-title: A comparative study of various clustering algorithms in data mining
  publication-title: International Journal of Engineering Research and Applications (IJERA)
– volume: 2014
  year: 2014
  ident: bib0036
  article-title: An improved fuzzy c-means clustering algorithm based on shadowed sets and PSO
  publication-title: Computational Intelligence and Neuroscience
– volume: 1
  start-page: 15
  year: 2013
  end-page: 24
  ident: bib0012
  article-title: BH-centroids: A new efficient clustering algorithm
  publication-title: Work
– volume: 32
  start-page: 2149
  year: 1994
  end-page: 2158
  ident: bib0027
  article-title: A clustering algorithm for machine cell formation in group technology using minimum spanning trees
  publication-title: International Journal of Production Research
– volume: 18
  start-page: 267
  year: 1953
  ident: bib0029
  article-title: Who belongs in a family?
  publication-title: Psychometrica
– volume: 11
  start-page: 652
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2019.03.051_bib0017
  article-title: A novel clustering approach: Artificial Bee Colony (ABC) algorithm
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.12.025
– volume: 98
  start-page: 750
  issue: 463
  year: 2003
  ident: 10.1016/j.eswa.2019.03.051_bib0028
  article-title: Finding the number of clusters in a dataset: An information-theoretic approach
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214503000000666
– year: 2011
  ident: 10.1016/j.eswa.2019.03.051_bib0013
– volume: 32
  start-page: 2149
  issue: 9
  year: 1994
  ident: 10.1016/j.eswa.2019.03.051_bib0027
  article-title: A clustering algorithm for machine cell formation in group technology using minimum spanning trees
  publication-title: International Journal of Production Research
  doi: 10.1080/00207549408957064
– ident: 10.1016/j.eswa.2019.03.051_bib0011
– start-page: 1
  year: 2018
  ident: 10.1016/j.eswa.2019.03.051_bib0014
  article-title: Optimizing the minimum spanning tree-based extracted clusters using evolution strategy
  publication-title: Cluster Computing
– volume: 42
  start-page: 487
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2019.03.051_bib0016
  article-title: Stochastic simulation of patterns using distance-based pattern modeling
  publication-title: Mathematical Geosciences
  doi: 10.1007/s11004-010-9276-7
– start-page: 688
  year: 2008
  ident: 10.1016/j.eswa.2019.03.051_bib0001
  article-title: Combining PSO and k-means to enhance data clustering
– volume: 28
  start-page: 1443
  issue: 9
  year: 1995
  ident: 10.1016/j.eswa.2019.03.051_bib0002
  article-title: A Tabu search approach to the clustering problem
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(95)00022-R
– volume: 2
  start-page: 1379
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2019.03.051_bib0032
  article-title: A comparative study of various clustering algorithms in data mining
  publication-title: International Journal of Engineering Research and Applications (IJERA)
– start-page: 315
  year: 2002
  ident: 10.1016/j.eswa.2019.03.051_bib0030
  article-title: A new data clustering approach for data mining in large databases
– ident: 10.1016/j.eswa.2019.03.051_bib0031
– year: 2006
  ident: 10.1016/j.eswa.2019.03.051_bib0005
– volume: 7
  start-page: 112
  issue: 3
  year: 2017
  ident: 10.1016/j.eswa.2019.03.051_bib0018
  article-title: Effectiveness measurement of spectral clustering algorithm
  publication-title: Global Journal of Computer Sciences: Theory and Research
– volume: 16
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2019.03.051_bib0022
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2013.11.003
– volume: 181
  start-page: 3397
  issue: 16
  year: 2011
  ident: 10.1016/j.eswa.2019.03.051_bib0037
  article-title: Minimum spanning tree based split-and-merge: A hierarchical clustering method
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2011.04.013
– volume: 1
  start-page: 15
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2019.03.051_bib0012
  article-title: BH-centroids: A new efficient clustering algorithm
  publication-title: Work
– volume: 26
  start-page: 35
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2019.03.051_bib0040
  article-title: Cure: an efficient clustering algorithm for large databases
  publication-title: Information systems
  doi: 10.1016/S0306-4379(01)00008-4
– volume: 33
  start-page: 1455
  issue: 9
  year: 2000
  ident: 10.1016/j.eswa.2019.03.051_bib0020
  article-title: Genetic algorithm-based clustering technique
  publication-title: Pattern Recognition
  doi: 10.1016/S0031-3203(99)00137-5
– volume: 14
  start-page: 54
  issue: 12
  year: 2014
  ident: 10.1016/j.eswa.2019.03.051_bib0039
  article-title: A New Method for Clustering Based on Development of Imperialist Competitive Algorithm
  publication-title: China Communications
– volume: 7
  start-page: 78
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2019.03.051_bib0019
  article-title: Kuwil method for spectral clustering algorithm
  publication-title: Global Journal of Computer Sciences: Theory and Research
– volume: 2
  start-page: 86
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2019.03.051_bib0021
  article-title: Algorithms for hierarchical clustering: An overview
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– start-page: 1
  year: 2012
  ident: 10.1016/j.eswa.2019.03.051_bib0008
  article-title: An efficient grid algorithm for faster clustering using K medoids approach
– start-page: 59
  year: 2014
  ident: 10.1016/j.eswa.2019.03.051_bib0024
  article-title: A new hybrid algorithm for document clustering based on cuckoo search and K-means
– volume: 2014
  year: 2014
  ident: 10.1016/j.eswa.2019.03.051_bib0036
  article-title: An improved fuzzy c-means clustering algorithm based on shadowed sets and PSO
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2014/368628
– volume: 29
  start-page: 688
  issue: 5
  year: 2008
  ident: 10.1016/j.eswa.2019.03.051_bib0009
  article-title: Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2007.12.002
– start-page: 229
  year: 2008
  ident: 10.1016/j.eswa.2019.03.051_bib0010
  article-title: Clustering and pattern classification
– volume: 18
  start-page: 267
  year: 1953
  ident: 10.1016/j.eswa.2019.03.051_bib0029
  article-title: Who belongs in a family?
  publication-title: Psychometrica
  doi: 10.1007/BF02289263
– volume: 97
  start-page: 1323
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2019.03.051_bib0004
  article-title: CAST-WSN: The presentation of new clustering algorithm based on steiner tree and c-means algorithm improvement in wireless sensor networks
  publication-title: Wireless Personal Communications
  doi: 10.1007/s11277-017-4572-x
– volume: 23
  start-page: 1523
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2019.03.051_bib0034
  article-title: Enhancing minimum spanning tree-based clustering by removing density-based outliers
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2013.03.009
– volume: 509
  start-page: 187
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2019.03.051_bib0026
  article-title: An ant colony approach for clustering
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2003.12.032
– volume: 10
  start-page: 183
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2019.03.051_bib0023
  article-title: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.07.001
– volume: 71
  start-page: 375
  year: 2017
  ident: 10.1016/j.eswa.2019.03.051_bib0003
  article-title: Fast density clustering strategies based on the k-means algorithm
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.06.023
– volume: 2
  start-page: 789
  year: 2004
  ident: 10.1016/j.eswa.2019.03.051_bib0007
  article-title: Particle swarm optimization algorithm and its application to clustering analysis
– volume: 24
  start-page: 1003
  issue: 10
  year: 1991
  ident: 10.1016/j.eswa.2019.03.051_bib0025
  article-title: A simulated annealing algorithm for the clustering problem
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(91)90097-O
– ident: 10.1016/j.eswa.2019.03.051_bib0006
– start-page: 867
  year: 2014
  ident: 10.1016/j.eswa.2019.03.051_bib0015
  article-title: An effective clustering algorithm for auto-detecting well-separated clusters
– volume: 148
  start-page: 36
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2019.03.051_bib0033
  article-title: VQ-agglomeration: A novel approach to clustering
  publication-title: IEE Proceedings - Vision, Image, and Signal Processing
  doi: 10.1049/ip-vis:20010139
– volume: 89
  start-page: 134
  year: 2015
  ident: 10.1016/j.eswa.2019.03.051_bib0038
  article-title: An adaptive minimum spanning tree test for detecting irregularly-shaped spatial clusters
  publication-title: Computational Statistics & Data Analysis
  doi: 10.1016/j.csda.2015.03.008
SSID ssj0017007
Score 2.446589
Snippet •A new CDC algorithm.•6 indicators to evaluate the results.•26 experiments had been conducted. A variety of algorithms have recently emerged in the field of...
A variety of algorithms have recently emerged in the field of cluster analysis. Consequently, based on the distribution nature of the data, an appropriate...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 296
SubjectTerms Algorithm
Algorithms
Cluster analysis
Clustering
Data points
Datasets
Euclidean distance
Euclidean geometry
MST
Outliers (statistics)
Qualitative analysis
Robustness (mathematics)
Title A new data clustering algorithm based on critical distance methodology
URI https://dx.doi.org/10.1016/j.eswa.2019.03.051
https://www.proquest.com/docview/2237562321
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYM3qWubZmmPYzim4i462C2kaaqT2Y2tw5t_u-81qaDgDkKhtOSV8jV570v53nuEXBkWphw2yh6PFfOiyM-9lKHKQqlEBGmW6KpN5-O4N5pE91M-bZBBnQuDskrn-61Pr7y1u9N1aHaXs1n3CcgBhEM4EgaBiGPCbxQJ7GJw8_kt88Dyc8LW2xMejnaJM1bjZdYfWHsosIVOefBXcPrlpqvYMzwge4400r59r0PSMMUR2a8bMlC3Po_JsE-BJVNUfVI932ANBIhMVM1fFqtZ-fpOMWZldFFQ7Toc0Az5IxhT20q6-sl-QibD2-fByHONEjzNwrj0IM75vVSEOhMhN0b0tBJwUprnmDcLlCLL_TjTkYkF6_k6zoGlZhq5gEq40eyUNItFYc4IBRx1YjJhFIuAq6g0VnkoeGQ0MEnYnrVIUCMktasijs0s5rKWi71JRFUiqtJnElBtketvm6WtobF1NK-Blz9mggQnv9WuXX8l6dbhWgL5EcjwwuD8n4-9ILt4ZWVlbdIsVxtzCTykTDvVROuQnf7dw2j8BSX_3Ho
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD3rxtxFF7cGbmWzrSrcjIRJU4CIk3Jqu6xSDQGDEm3-7720diSZ6MFmyZGuX5Vv73tfl6_cIuTHMjzkslB0eKuYEgZs6MUOVhVKR8OIk0nmZzv6g2R0Fj2M-rpB2uRcGZZU29hcxPY_W9krDotlYTCaNZyAHkA7hiBgkIh5uke2A-wJXYHefG50H-s-JwnBPONjc7pwpRF5m9YHmQ17hdMq937LTjzidJ5_OAdmzrJG2ihc7JBUzOyL7ZUUGaifoMem0KNBkirJPqqdrNEGA1ETV9GW-nGSv7xSTVkLnM6ptiQOaIIGEzrSoJZ3_ZT8ho879sN11bKUERzM_zBxIdG4zFr5OhM-NEU2tBJyU5ilunAVOkaRumOjAhII1XR2mQFMTjWRARdxodkqqs_nMnBEKQOrIJMIoFgBZUXGoUl_wwGigkrA-qxGvREhqayOO1SymstSLvUlEVSKq0mUSUK2R202fRWGi8WdrXgIvvw0FCVH-z3718itJOxFXEtiPQIrne-f_fOw12ekO-z3Zexg8XZBdvFNozOqkmi3X5hJISRZf5YPuC1533g8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+data+clustering+algorithm+based+on+critical+distance+methodology&rft.jtitle=Expert+systems+with+applications&rft.au=Kuwil%2C+Farag+Hamed&rft.au=Shaar%2C+Fadi&rft.au=Topcu%2C+Ahmet+Ercan&rft.au=Murtagh%2C+Fionn&rft.date=2019-09-01&rft.issn=0957-4174&rft.volume=129&rft.spage=296&rft.epage=310&rft_id=info:doi/10.1016%2Fj.eswa.2019.03.051&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2019_03_051
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon