Automatic classification of atrial fibrillation from short single-lead ECG recordings using a Hybrid Approach of Dual Support Vector Machine

Automatic Classification of Atrial Fibrillation from Short Single-Lead ECG Recordings using a Hybrid Approach of Dual Support Vector Machine. [Display omitted] •Hybrid Approach of Dual Support Vector Machine is used for the detection of AFr.•Cardiac segmentation was used to further evaluate and diag...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 198; p. 116848
Main Authors Geweid, Gamal G.N., Chen, Jiande D.Z.
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.07.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2022.116848

Cover

Abstract Automatic Classification of Atrial Fibrillation from Short Single-Lead ECG Recordings using a Hybrid Approach of Dual Support Vector Machine. [Display omitted] •Hybrid Approach of Dual Support Vector Machine is used for the detection of AFr.•Cardiac segmentation was used to further evaluate and diagnose AFr based on the ECG.•A comparative study is made on detection of AFr using the top five-scoring methods.•The proposed algorithm saves the operation time in addition to improving accuracy. Millions of people worldwide are affected by cardiac arrythmias currently. One of the life threatening arrythmias associated with high morbidity and mortality is Atrial Fibrillation (AFr). Electrocardiogram (ECG) is regularly used in the diagnosis and evaluation of cardiac arrythmias. The goal of the ECG is to improve the outcome as well as reduce time to diagnosis in heart disease identification. Using an ECG makes the diagnosis of a cardiac arrythmia much easier. Cardiologists depend on the ECG signal to determine the appropriate treatment method of the cardiac arrythmia. In this work, cardiac segmentation was used to further evaluate and diagnose AFr based on ECG. The issue with segmentation is that it is complicated due to similarities in amplitude, time among different ECG signals as well as noise. In this paper, a comparative study is made on detection of Atrial Fibrillation using the top five-scoring methods submitted in the PhysioNet/Computing in Cardiology Challenge 2017. A new method based on a Hybrid Approach of Dual Support Vector Machine (HA-DSVM) is used for the detection of atrial fibrillation. This proposed method is accomplished by stochastic gradient descent with cross entropy loss function. The method is tested on the dataset collected from the 2017 Physionet/CinC challenge dataset with performance evaluation on training (99.27 %). Using this technique, an F1 score and accuracy of 0.95 and 99.27% can be obtained on the validation data set. One of the advantages of the proposed technique is the high reliability and accuracy which simplifies the extraction process and removal of detecting ECG signal fiducial points and removing hand-crafted features. This provides screening for a large population with a new method for diagnosing atrial fibrillation. The proposed method can be applied to many the population with symptoms of atrial fibrillation which will improve the accuracy of diagnosis and determine the required treatment.
AbstractList Millions of people worldwide are affected by cardiac arrythmias currently. One of the life threatening arrythmias associated with high morbidity and mortality is Atrial Fibrillation (AFr). Electrocardiogram (ECG) is regularly used in the diagnosis and evaluation of cardiac arrythmias. The goal of the ECG is to improve the outcome as well as reduce time to diagnosis in heart disease identification. Using an ECG makes the diagnosis of a cardiac arrythmia much easier. Cardiologists depend on the ECG signal to determine the appropriate treatment method of the cardiac arrythmia. In this work, cardiac segmentation was used to further evaluate and diagnose AFr based on ECG. The issue with segmentation is that it is complicated due to similarities in amplitude, time among different ECG signals as well as noise. In this paper, a comparative study is made on detection of Atrial Fibrillation using the top five-scoring methods submitted in the PhysioNet/Computing in Cardiology Challenge 2017. A new method based on a Hybrid Approach of Dual Support Vector Machine (HA-DSVM) is used for the detection of atrial fibrillation. This proposed method is accomplished by stochastic gradient descent with cross entropy loss function. The method is tested on the dataset collected from the 2017 Physionet/CinC challenge dataset with performance evaluation on training (99.27 %). Using this technique, an F1 score and accuracy of 0.95 and 99.27% can be obtained on the validation data set. One of the advantages of the proposed technique is the high reliability and accuracy which simplifies the extraction process and removal of detecting ECG signal fiducial points and removing hand-crafted features. This provides screening for a large population with a new method for diagnosing atrial fibrillation. The proposed method can be applied to many the population with symptoms of atrial fibrillation which will improve the accuracy of diagnosis and determine the required treatment.
Automatic Classification of Atrial Fibrillation from Short Single-Lead ECG Recordings using a Hybrid Approach of Dual Support Vector Machine. [Display omitted] •Hybrid Approach of Dual Support Vector Machine is used for the detection of AFr.•Cardiac segmentation was used to further evaluate and diagnose AFr based on the ECG.•A comparative study is made on detection of AFr using the top five-scoring methods.•The proposed algorithm saves the operation time in addition to improving accuracy. Millions of people worldwide are affected by cardiac arrythmias currently. One of the life threatening arrythmias associated with high morbidity and mortality is Atrial Fibrillation (AFr). Electrocardiogram (ECG) is regularly used in the diagnosis and evaluation of cardiac arrythmias. The goal of the ECG is to improve the outcome as well as reduce time to diagnosis in heart disease identification. Using an ECG makes the diagnosis of a cardiac arrythmia much easier. Cardiologists depend on the ECG signal to determine the appropriate treatment method of the cardiac arrythmia. In this work, cardiac segmentation was used to further evaluate and diagnose AFr based on ECG. The issue with segmentation is that it is complicated due to similarities in amplitude, time among different ECG signals as well as noise. In this paper, a comparative study is made on detection of Atrial Fibrillation using the top five-scoring methods submitted in the PhysioNet/Computing in Cardiology Challenge 2017. A new method based on a Hybrid Approach of Dual Support Vector Machine (HA-DSVM) is used for the detection of atrial fibrillation. This proposed method is accomplished by stochastic gradient descent with cross entropy loss function. The method is tested on the dataset collected from the 2017 Physionet/CinC challenge dataset with performance evaluation on training (99.27 %). Using this technique, an F1 score and accuracy of 0.95 and 99.27% can be obtained on the validation data set. One of the advantages of the proposed technique is the high reliability and accuracy which simplifies the extraction process and removal of detecting ECG signal fiducial points and removing hand-crafted features. This provides screening for a large population with a new method for diagnosing atrial fibrillation. The proposed method can be applied to many the population with symptoms of atrial fibrillation which will improve the accuracy of diagnosis and determine the required treatment.
ArticleNumber 116848
Author Geweid, Gamal G.N.
Chen, Jiande D.Z.
Author_xml – sequence: 1
  givenname: Gamal G.N.
  orcidid: 0000-0001-8237-7538
  surname: Geweid
  fullname: Geweid, Gamal G.N.
  email: gamalg@med.umich.edugam, alg@med.umic.edu
  organization: Department of Internal Medicine-Gastroenterology, Michigan Medicine-University of Michigan, Ann Arbor, MI 48109 USA
– sequence: 2
  givenname: Jiande D.Z.
  surname: Chen
  fullname: Chen, Jiande D.Z.
  email: cjiande@med.umich.edu
  organization: Department of Internal Medicine-Gastroenterology, Michigan Medicine-University of Michigan, Ann Arbor, MI 48109 USA
BookMark eNp9kMtu3CAUhlGUSJ1cXqArpK49BcMYLHUzmtwqpcoibbYIHyBh5DEO4ER5hz50cd1VF1khzjnff-A7RcdDGCxCnylZU0Kbr_u1TW96XZO6XlPaSC6P0IpKwapGtOwYrUi7ERWngn9CpyntCaGCELFCv7dTDgedPWDodUreeSi3MODgsM7R6x4730Xf90vZxXDA6TnEjJMfnnpb9VYbfLW7wdFCiKYUE57mHtb49r2gBm_HMQYNz3Po5VQiH6ZxnCMeLeQQ8Y_S84M9RydO98le_DvP0K_rq5-72-ru_ub7bntXAatlrqxwlvPOWSc6xzYbZmgNWjaUEOi6lrcSKLSMMyM30LRgJJPMCNcKyiUnhp2hL0tuedXLZFNW-zDFoaxUdSMYE42QrEzJZQpiSClap8DnvxJy1L5XlKjZvdqr2b2a3avFfUHr_9Ax-oOO7x9D3xbIlq-_ehtVAm8HsMYXs1mZ4D_C_wDMj6G_
CitedBy_id crossref_primary_10_1016_j_engappai_2024_108607
crossref_primary_10_3390_asi6050095
crossref_primary_10_1016_j_eswa_2022_119162
crossref_primary_10_3233_IDT_220130
crossref_primary_10_1016_j_bspc_2024_107480
crossref_primary_10_32604_cmc_2024_059403
crossref_primary_10_1109_ACCESS_2023_3305473
crossref_primary_10_1007_s00521_025_11089_6
crossref_primary_10_1016_j_knosys_2024_111906
crossref_primary_10_1111_exsy_13277
crossref_primary_10_1051_bioconf_202411103009
crossref_primary_10_1109_TIM_2024_3400302
crossref_primary_10_1016_j_eswa_2023_122974
crossref_primary_10_1016_j_eswa_2024_125482
crossref_primary_10_1016_j_heliyon_2023_e13601
crossref_primary_10_1016_j_eswa_2023_122144
crossref_primary_10_1109_JBHI_2022_3221464
crossref_primary_10_1109_TBCAS_2023_3299084
crossref_primary_10_1016_j_ins_2024_121516
crossref_primary_10_3390_diagnostics13142442
Cites_doi 10.1001/jama.285.22.2864
10.22489/CinC.2017.180-102
10.1145/3357384.3357998
10.1016/j.cmpb.2018.07.014
10.22489/CinC.2017.173-154
10.1088/2057-1976/ab6e1e
10.1016/j.procs.2015.01.053
10.1016/j.cmpb.2019.02.005
10.22489/CinC.2017.065-469
10.1136/heart.89.8.939
10.22489/CinC.2017.066-138
10.3390/s20030765
10.1109/EMBC.2017.8037253
10.1016/j.cub.2015.06.076
10.1109/JBHI.2018.2858789
10.1016/j.future.2019.09.012
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2022.116848
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2022_116848
S0957417422003013
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
BNSAS
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSH
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AAYWO
AAYXX
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-e7fe44bfef7bf3553d12ca86100cbb9498c1c9343d85c69cd8383d7f9714840d3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Jul 14 10:26:15 EDT 2025
Sat Oct 25 05:47:14 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Sun Apr 06 06:53:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Atrial fibrillation (AFr)
Dual Support Vector Machine (DSVM)
Cardiac arrythmia (CA)
Hybrid Approach (HA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-e7fe44bfef7bf3553d12ca86100cbb9498c1c9343d85c69cd8383d7f9714840d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8237-7538
PQID 2673376783
PQPubID 2045477
ParticipantIDs proquest_journals_2673376783
crossref_citationtrail_10_1016_j_eswa_2022_116848
crossref_primary_10_1016_j_eswa_2022_116848
elsevier_sciencedirect_doi_10_1016_j_eswa_2022_116848
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Andrian, Naufal, Hermanto, Junaidi, Lumbanraja (b0010) 2019; 1338
Htay, Maung (b0085) 2018
Li X, Qian B, Wei J, Zhang X, Chen S, Zheng Q, none N. (2019). Domain knowledge guided deep atrial fibrillation classification and its visual interpretation. InProceedings of the 28th ACM International Conference on Information and Knowledge Management. 129-138.
Andersen RS, Poulsen ES, Puthusserypady S. (2017). A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine. In 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). 2039-2042.
Liu Y, Wang K, Li Q, He R, Xia Y, Li Z, Liu H, Zhang H. (2017). Diagnosis of AF based on time and frequency features by using a hierarchical classifier. In2017 Computing in Cardiology (CinC). IEEE (pp. 1-4). IEEE.
Kleyko, Osipov, Wiklund (b0100) 2020; 6
Wang (b0170) 2020; 1
Daqrouq, Alkhateeb, Ajour, Morfeq (b0045) 2014
B.F. Gage A.D. Waterman W. Shannon M. Boechler M.W. Rich M.J. Radford Validation of clinical classification schemes for predicting stroke: Results from the National Registry of Atrial Fibrillation Jama 285(22):Pp.2864-2870 2001.
Xiong, Liang, Liu (b0180) 2021; 13
J. Harefa A. Alexander M. Pratiwi Comparison classifier: Support vector machine (SVM) and K-nearest neighbor (K-NN) in digital mammogram images Jurnal Informatika dan Sistem Informasi 2(2):Pp.35-40 2017.
Shi H, Wang H, Huang Y, Zhao L, Qin C, Liu C. (2019). A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. Computer methods and programs in biomedicine. 171:1-0.
Ma, Wei, Chen, Zhong, Liu, Liu (b0125) 2020
Chandra, Sastry, Jana, Patidar (b0015) 2017
Dang, Sun, Zhang, Qi, Zhou, Chang (b0040) 2019; 24;7:75
Xiong Z, Stiles MK, Zhao J. Robust (2017). ECG signal classification for detection of atrial fibrillation using a novel neural network. In 2017 Computing in Cardiology (CinC) 2017, IEEE Sep 24 (pp. 1-4).
Hong, Wu, Zhou, Wang, Shang, Li, Xie (b0080) 2017
Padmavathi, Ramakrishna (b0140) 2015; 1
Potpara, Lip, Blomstrom-Lundqvist, Boriani, Van Gelder, Heidbuchel, Camm (b0145) 2020
Clifford GD, Liu C, Moody B, Li-wei HL, Silva I, Li Q, Johnson AE, Mark RG. (2017). AF Classification from a short single lead ECG recording: the PhysioNet/Computing in Cardiology Challenge 2017. In2017 Computing in Cardiology (CinC), pp. 1-4.
Kurniadi, Abdurachman, Warnars, Suparta (b0105) 2018; 434
Markides, Schilling (b0130) 2003
Christov, Krasteva, Simova, Neycheva, Schmid (b0020) 2017
Ebrahimzadeh, Kalantari, Joulani, Shahraki, Fayaz, Ahmadi (b0055) 2018; 165
Coppola, Gyawali, Vanjara, Giaime, Wang (b0030) 2017
Nagelberg, Wang, Su, Torres-Vázquez, Targoff, Poss, Knaut (b0135) 2015; 25
X. Fan Q. Yao Y. Cai F. Miao F. Sun Y. Li Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings IEEE journal of biomedical and health informatics 2018 7;22(6):pp.1744-1753.
Hernandez, Mendez, Amado, Altuve (b0075) 2018
Datta S, Puri C, Mukherjee A, Banerjee R, Choudhury AD, Singh R, Ukil A, Bandyopadhyay S, Pal A, Khandelwal S. (2017). Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier, Computing in cardiology (cinc), pp. 1-4.
Czabanski, Horoba, Wrobel, Matonia, Martinek, Kupka, Leski (b0035) 2020; 20
Limam, Precioso (b0115) 2017
Nagelberg (10.1016/j.eswa.2022.116848_b0135) 2015; 25
Kurniadi (10.1016/j.eswa.2022.116848_b0105) 2018; 434
Htay (10.1016/j.eswa.2022.116848_b0085) 2018
Padmavathi (10.1016/j.eswa.2022.116848_b0140) 2015; 1
Andrian (10.1016/j.eswa.2022.116848_b0010) 2019; 1338
Ma (10.1016/j.eswa.2022.116848_b0125) 2020
10.1016/j.eswa.2022.116848_b0160
10.1016/j.eswa.2022.116848_b0060
Coppola (10.1016/j.eswa.2022.116848_b0030) 2017
10.1016/j.eswa.2022.116848_b0110
10.1016/j.eswa.2022.116848_b0175
Christov (10.1016/j.eswa.2022.116848_b0020) 2017
Ebrahimzadeh (10.1016/j.eswa.2022.116848_b0055) 2018; 165
Hong (10.1016/j.eswa.2022.116848_b0080) 2017
Daqrouq (10.1016/j.eswa.2022.116848_b0045) 2014
Markides (10.1016/j.eswa.2022.116848_b0130) 2003
Czabanski (10.1016/j.eswa.2022.116848_b0035) 2020; 20
Xiong (10.1016/j.eswa.2022.116848_b0180) 2021; 13
Potpara (10.1016/j.eswa.2022.116848_b0145) 2020
Chandra (10.1016/j.eswa.2022.116848_b0015) 2017
Dang (10.1016/j.eswa.2022.116848_b0040) 2019; 24;7:75
Wang (10.1016/j.eswa.2022.116848_b0170) 2020; 1
10.1016/j.eswa.2022.116848_b0050
Hernandez (10.1016/j.eswa.2022.116848_b0075) 2018
10.1016/j.eswa.2022.116848_b0070
10.1016/j.eswa.2022.116848_b0065
10.1016/j.eswa.2022.116848_b0120
Kleyko (10.1016/j.eswa.2022.116848_b0100) 2020; 6
10.1016/j.eswa.2022.116848_b0025
Limam (10.1016/j.eswa.2022.116848_b0115) 2017
10.1016/j.eswa.2022.116848_b0005
References_xml – volume: 165
  start-page: 53
  year: 2018
  end-page: 67
  ident: b0055
  article-title: Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal
  publication-title: Computer methods and programs in biomedicine
– reference: X. Fan Q. Yao Y. Cai F. Miao F. Sun Y. Li Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings IEEE journal of biomedical and health informatics 2018 7;22(6):pp.1744-1753.
– reference: Andersen RS, Poulsen ES, Puthusserypady S. (2017). A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine. In 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). 2039-2042.
– year: 2014
  ident: b0045
  article-title: Neural network and wavelet average framing percentage energy for atrial fibrillation classification
  publication-title: Computer methods and programs in biomedicine
– year: 2003
  ident: b0130
  article-title: Atrial fibrillation: Classification, pathophysiology, mechanisms and drug treatment
  publication-title: Heart.
– reference: Liu Y, Wang K, Li Q, He R, Xia Y, Li Z, Liu H, Zhang H. (2017). Diagnosis of AF based on time and frequency features by using a hierarchical classifier. In2017 Computing in Cardiology (CinC). IEEE (pp. 1-4). IEEE.
– reference: Li X, Qian B, Wei J, Zhang X, Chen S, Zheng Q, none N. (2019). Domain knowledge guided deep atrial fibrillation classification and its visual interpretation. InProceedings of the 28th ACM International Conference on Information and Knowledge Management. 129-138.
– reference: Shi H, Wang H, Huang Y, Zhao L, Qin C, Liu C. (2019). A hierarchical method based on weighted extreme gradient boosting in ECG heartbeat classification. Computer methods and programs in biomedicine. 171:1-0.
– volume: 20
  start-page: 765
  year: 2020
  ident: b0035
  article-title: Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine
  publication-title: Sensors
– reference: J. Harefa A. Alexander M. Pratiwi Comparison classifier: Support vector machine (SVM) and K-nearest neighbor (K-NN) in digital mammogram images Jurnal Informatika dan Sistem Informasi 2(2):Pp.35-40 2017.
– year: 2020
  ident: b0125
  article-title: Integration of results from convolutional neural network in a support vector machine for the detection of atrial fibrillation
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 1338
  year: 2019
  ident: b0010
  article-title: k-Nearest Neighbor (k-NN) classification for recognition of the batik Lampung motifs
  publication-title: InJournal of Physics: Conference Series
– volume: 1
  start-page: 53
  year: 2015
  end-page: 59
  ident: b0140
  article-title: Classification of ECG signal during atrial fibrillation using autoregressive modeling
  publication-title: Procedia Computer Science.
– reference: Datta S, Puri C, Mukherjee A, Banerjee R, Choudhury AD, Singh R, Ukil A, Bandyopadhyay S, Pal A, Khandelwal S. (2017). Identifying normal, AF and other abnormal ECG rhythms using a cascaded binary classifier, Computing in cardiology (cinc), pp. 1-4.
– volume: 434
  year: 2018
  ident: b0105
  article-title: The prediction of scholarship recipients in higher education using k-Nearest neighbor algorithm
  publication-title: InIOP Conference Series: Materials Science and Engineering.
– start-page: 1
  year: 2017
  end-page: 4
  ident: b0115
  article-title: Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network. In2017 Computing in Cardiology (CinC)
  publication-title: IEE
– start-page: 1
  year: 2017
  end-page: 4
  ident: b0030
  article-title: Atrial fibrillation classification from a short single lead ECG recording using hierarchical classifier
  publication-title: Computing in Cardiology (CinC)
– volume: 6
  year: 2020
  ident: b0100
  article-title: A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017
  publication-title: Biomedical Physics & Engineering Express.
– reference: Xiong Z, Stiles MK, Zhao J. Robust (2017). ECG signal classification for detection of atrial fibrillation using a novel neural network. In 2017 Computing in Cardiology (CinC) 2017, IEEE Sep 24 (pp. 1-4).
– start-page: 5982
  year: 2018
  end-page: 5985
  ident: b0075
  article-title: Atrial fibrillation detection in short single lead ECG recordings using wavelet transform and artificial neural networks
  publication-title: In2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE
– start-page: 1
  year: 2017
  end-page: 4
  ident: b0015
  article-title: Atrial fibrillation detection using convolutional neural networks. In2017 Computing
  publication-title: Cardiology
– start-page: 1
  year: 2017
  end-page: 4
  ident: b0020
  article-title: Multi-parametric analysis for atrial fibrillation classification in ECG
  publication-title: Computing in Cardiology (CinC)
– start-page: 171
  year: 2018
  end-page: 175
  ident: b0085
  article-title: Early stage breast cancer detection system using glcm feature extraction and k-nearest neighbor (k-NN) on mammography image
  publication-title: In2018 18th International Symposium on Communications and Information Technologies (ISCIT). IEE
– reference: Clifford GD, Liu C, Moody B, Li-wei HL, Silva I, Li Q, Johnson AE, Mark RG. (2017). AF Classification from a short single lead ECG recording: the PhysioNet/Computing in Cardiology Challenge 2017. In2017 Computing in Cardiology (CinC), pp. 1-4.
– volume: 25
  start-page: 2099
  year: 2015
  end-page: 2110
  ident: b0135
  article-title: Origin, specification, and plasticity of the great vessels of the heart
  publication-title: Current Biology.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 7
  ident: b0180
  article-title: Real-Time QRS Detection Algorithm Based on Energy Segmentation for Exercise Electrocardiogram
  publication-title: Circuits, Systems, and Signal Processing.
– start-page: 214
  year: 2020
  end-page: 227
  ident: b0145
  article-title: The 4S-AF scheme (stroke risk; symptoms; severity of burden; substrate): A novel approach to in-depth characterization (rather than classification) of atrial fibrillation
  publication-title: Thrombosis and haemostasis.
– volume: 24;7:75
  start-page: 577
  year: 2019
  end-page: 590
  ident: b0040
  article-title: A novel deep arrhythmia-diagnosis network for atrial fibrillation classification using electrocardiogram signals. IEEE
  publication-title: Access
– volume: 1
  start-page: 670
  year: 2020
  end-page: 679
  ident: b0170
  article-title: deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network
  publication-title: Future Generation Computer Systems
– start-page: 1
  year: 2017
  end-page: 4
  ident: b0080
  article-title: ENCASE: An ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks
  publication-title: In 2017 Computing in cardiology (cinc)
– reference: B.F. Gage A.D. Waterman W. Shannon M. Boechler M.W. Rich M.J. Radford Validation of clinical classification schemes for predicting stroke: Results from the National Registry of Atrial Fibrillation Jama 285(22):Pp.2864-2870 2001.
– ident: 10.1016/j.eswa.2022.116848_b0065
  doi: 10.1001/jama.285.22.2864
– ident: 10.1016/j.eswa.2022.116848_b0120
  doi: 10.22489/CinC.2017.180-102
– volume: 434
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2022.116848_b0105
  article-title: The prediction of scholarship recipients in higher education using k-Nearest neighbor algorithm
  publication-title: InIOP Conference Series: Materials Science and Engineering.
– ident: 10.1016/j.eswa.2022.116848_b0110
  doi: 10.1145/3357384.3357998
– volume: 1338
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2022.116848_b0010
  article-title: k-Nearest Neighbor (k-NN) classification for recognition of the batik Lampung motifs
  publication-title: InJournal of Physics: Conference Series
– volume: 165
  start-page: 53
  year: 2018
  ident: 10.1016/j.eswa.2022.116848_b0055
  article-title: Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2018.07.014
– ident: 10.1016/j.eswa.2022.116848_b0050
  doi: 10.22489/CinC.2017.173-154
– start-page: 214
  year: 2020
  ident: 10.1016/j.eswa.2022.116848_b0145
  article-title: The 4S-AF scheme (stroke risk; symptoms; severity of burden; substrate): A novel approach to in-depth characterization (rather than classification) of atrial fibrillation
  publication-title: Thrombosis and haemostasis.
– ident: 10.1016/j.eswa.2022.116848_b0070
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.116848_b0015
  article-title: Atrial fibrillation detection using convolutional neural networks. In2017 Computing
  publication-title: Cardiology
– volume: 24;7:75
  start-page: 577
  year: 2019
  ident: 10.1016/j.eswa.2022.116848_b0040
  article-title: A novel deep arrhythmia-diagnosis network for atrial fibrillation classification using electrocardiogram signals. IEEE
  publication-title: Access
– volume: 6
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2022.116848_b0100
  article-title: A Comprehensive Study of Complexity and Performance of Automatic Detection of Atrial Fibrillation: Classification of Long ECG Recordings Based on the PhysioNet Computing in Cardiology Challenge 2017
  publication-title: Biomedical Physics & Engineering Express.
  doi: 10.1088/2057-1976/ab6e1e
– year: 2020
  ident: 10.1016/j.eswa.2022.116848_b0125
  article-title: Integration of results from convolutional neural network in a support vector machine for the detection of atrial fibrillation
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 1
  start-page: 53
  issue: 46
  year: 2015
  ident: 10.1016/j.eswa.2022.116848_b0140
  article-title: Classification of ECG signal during atrial fibrillation using autoregressive modeling
  publication-title: Procedia Computer Science.
  doi: 10.1016/j.procs.2015.01.053
– start-page: 171
  year: 2018
  ident: 10.1016/j.eswa.2022.116848_b0085
  article-title: Early stage breast cancer detection system using glcm feature extraction and k-nearest neighbor (k-NN) on mammography image
– ident: 10.1016/j.eswa.2022.116848_b0160
  doi: 10.1016/j.cmpb.2019.02.005
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.116848_b0080
  article-title: ENCASE: An ENsemble ClASsifiEr for ECG classification using expert features and deep neural networks
– ident: 10.1016/j.eswa.2022.116848_b0025
  doi: 10.22489/CinC.2017.065-469
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.116848_b0030
  article-title: Atrial fibrillation classification from a short single lead ECG recording using hierarchical classifier
  publication-title: Computing in Cardiology (CinC)
– year: 2003
  ident: 10.1016/j.eswa.2022.116848_b0130
  article-title: Atrial fibrillation: Classification, pathophysiology, mechanisms and drug treatment
  publication-title: Heart.
  doi: 10.1136/heart.89.8.939
– ident: 10.1016/j.eswa.2022.116848_b0175
  doi: 10.22489/CinC.2017.066-138
– volume: 20
  start-page: 765
  issue: 3
  year: 2020
  ident: 10.1016/j.eswa.2022.116848_b0035
  article-title: Detection of atrial fibrillation episodes in long-term heart rhythm signals using a support vector machine
  publication-title: Sensors
  doi: 10.3390/s20030765
– ident: 10.1016/j.eswa.2022.116848_b0005
  doi: 10.1109/EMBC.2017.8037253
– year: 2014
  ident: 10.1016/j.eswa.2022.116848_b0045
  article-title: Neural network and wavelet average framing percentage energy for atrial fibrillation classification
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.116848_b0020
  article-title: Multi-parametric analysis for atrial fibrillation classification in ECG
  publication-title: Computing in Cardiology (CinC)
– start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2022.116848_b0115
  article-title: Atrial fibrillation detection and ECG classification based on convolutional recurrent neural network. In2017 Computing in Cardiology (CinC)
  publication-title: IEE
– volume: 25
  start-page: 2099
  issue: 16
  year: 2015
  ident: 10.1016/j.eswa.2022.116848_b0135
  article-title: Origin, specification, and plasticity of the great vessels of the heart
  publication-title: Current Biology.
  doi: 10.1016/j.cub.2015.06.076
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.eswa.2022.116848_b0180
  article-title: Real-Time QRS Detection Algorithm Based on Energy Segmentation for Exercise Electrocardiogram
  publication-title: Circuits, Systems, and Signal Processing.
– ident: 10.1016/j.eswa.2022.116848_b0060
  doi: 10.1109/JBHI.2018.2858789
– start-page: 5982
  year: 2018
  ident: 10.1016/j.eswa.2022.116848_b0075
  article-title: Atrial fibrillation detection in short single lead ECG recordings using wavelet transform and artificial neural networks
– volume: 1
  start-page: 670
  issue: 102
  year: 2020
  ident: 10.1016/j.eswa.2022.116848_b0170
  article-title: deep learning approach for atrial fibrillation signals classification based on convolutional and modified Elman neural network
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.09.012
SSID ssj0017007
Score 2.5306442
Snippet Automatic Classification of Atrial Fibrillation from Short Single-Lead ECG Recordings using a Hybrid Approach of Dual Support Vector Machine. [Display omitted]...
Millions of people worldwide are affected by cardiac arrythmias currently. One of the life threatening arrythmias associated with high morbidity and mortality...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116848
SubjectTerms Accuracy
Atrial fibrillation (AFr)
Cardiac arrhythmia
Cardiac arrythmia (CA)
Cardiology
Comparative studies
Datasets
Diagnosis
Dual Support Vector Machine (DSVM)
Electrocardiography
Fibrillation
Heart diseases
Hybrid Approach (HA)
Performance evaluation
Segmentation
Signal processing
Signs and symptoms
Support vector machines
Title Automatic classification of atrial fibrillation from short single-lead ECG recordings using a Hybrid Approach of Dual Support Vector Machine
URI https://dx.doi.org/10.1016/j.eswa.2022.116848
https://www.proquest.com/docview/2673376783
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWq9MIFWiiiEKo5cEMmu7bX9h6jkDaA2gsU9Wbt-qMNipKKJKp66S_gR-Pxeiu1Qj1w3JVtrTz2zPPs8xtCPlSqKG0oHG3rRlIR2opqLRvKnZSWKdu6JDx_eiZn5-LrRXWxQyb9XRikVWbf3_n05K3zm1GezdH1fD76HsFBDIfxaMcSrkfFTyEUVjH4dHdP80D5OdXp7SmKrfPFmY7j5dc3qD3EWPQcUmMNoH8Hp0duOsWe4z3yPINGGHfftU92_PIledEXZIC8P1-RP-PtZpU0WMEiKkYaUJp5WAVoUoEOCMjxX3QMOMDLJbC-ihAcMGew8HQRbQ7TyQl02RvMowNy4y-hgdktXu-CcZYhx0E_b-OQWBkUh_iZ_gDAaeJn-gNyfjz9MZnRXG6BWs70hnoVvBBt8EG1IcIQ7kpmGx3xVWHbtha1tqWtueBOV1bW1ul4unUq1CoeqUTh-GsyWK6W_g0BX7LSeysLjnjLs8aXyjWKS-m0jBDhkJT9PBubtcixJMbC9KSzXwZtY9A2prPNIfl43-e6U-J4snXVm888WE8mhoon-w17W5u8m9eGScVR9Ubzt_857DvyDJ8wKVxWQzLY_N769xHNbNqjtFyPyO74y7fZ2V89ivUs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNpLgT5U3nPoDbmb2IntHFdb6PJYLkDFzUr8oFSrXcTuCnHhF_Cj63EcpFYVB66JbUUee-Yb5_M3hHwtZZYbn1naVLWghW9KqpSoKbdCGCZNY6Pw_OhMDC-L46vyaokMurswSKtMvr_16dFbpye9NJu925ub3nkAByEchtSORVzP35CVomQSM7Bvj888D9Sfk63gnqTYPN2caUlebnaP4kOMBdchFBYB-n90-sdPx-BzuEbeJ9QI_fbD1smSm3wgq11FBkgb9CN56i_m0yjCCgZhMfKA4tTD1EMdK3SAR5L_uKXAAd4ugdmvgMEBDw3Gjo6D0eFg8APa4xs8SAckx19DDcMHvN8F_aRDjoN-X4QhsTQoDvEz_gKAUSRouk_k8vDgYjCkqd4CNZypOXXSu6JovPOy8QGHcJszU6sAsDLTNFVRKZObihfcqtKIylgV0lsrfSVDTlVkln8my5PpxH0h4HKWO2dExhFwOVa7XNpaciGsEgEjbJC8m2dtkhg51sQY64519lujbTTaRre22SD7z31uWymOF1uXnfn0XwtKh1jxYr_tztY6beeZZkJylL1RfPOVw-6Rt8OL0ak-PTo72SLv8A2eEOflNlme3y3cToA282Y3Lt0_6QT2wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+classification+of+atrial+fibrillation+from+short+single-lead+ECG+recordings+using+a+Hybrid+Approach+of+Dual+Support+Vector+Machine&rft.jtitle=Expert+systems+with+applications&rft.au=Geweid%2C+Gamal+G.N.&rft.au=Chen%2C+Jiande+D.Z.&rft.date=2022-07-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=198&rft_id=info:doi/10.1016%2Fj.eswa.2022.116848&rft.externalDocID=S0957417422003013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon