A 2D electrocardiogram signal compression algorithm using 1D discrete wavelet transform

Electrocardiogram (ECG) signals are frequently acquired nowadays to detect various heart diseases. Nowadays, IoT-enabled wearable devices are in demand for distant or telemedicine-based healthcare applications. However, the acquisition process of ECG signals generates a huge amount of data, which ne...

Full description

Saved in:
Bibliographic Details
Published inAustralasian physical & engineering sciences in medicine Vol. 48; no. 2; pp. 903 - 914
Main Authors Pal, Hardev Singh, Kumar, A., Vishwakarma, Amit, Singh, Girish Kumar
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2662-4729
0158-9938
2662-4737
2662-4737
1879-5447
DOI10.1007/s13246-025-01556-8

Cover

Abstract Electrocardiogram (ECG) signals are frequently acquired nowadays to detect various heart diseases. Nowadays, IoT-enabled wearable devices are in demand for distant or telemedicine-based healthcare applications. However, the acquisition process of ECG signals generates a huge amount of data, which negatively impacts the storage and transmission efficiency of these devices. As a result, an efficient compression algorithm is needed for effective ECG data management. Therefore, a compression algorithm for 2D ECG signals is proposed that employs the 1D Cohen-Daubechies-Feauveau 9/7 wavelet transform on 2D ECG signals. The proposed method effectively improves compression performance by increasing sparsity among the transform coefficients. Following that, obtained coefficients are quantized, and significant ones are retained using the target-based reconstruction error. The adaptive Huffman encoding is used to further enhance the compression once the quantized coefficients have been encoded. The experimental work is tested on MIT-BIH arrhythmia database, and the effect of different anomalies on compression performance is also assessed. The compression efficacy is evaluated in comparison to existing compression methods, and other wavelet transforms such as sym2, sym4, haar, db5, coif4, and beta wavelets. The proposed algorithm’s performance is assessed in terms of quality score, percent root-mean-square difference, signal-to-noise ratio, and compression ratio. These factors were averaged out to get values of 30.23, 5.07, 26.78 dB, and 7.21, respectively. Results are evident that the proposed method can significantly improve storage efficiency and may also improve bandwidth utilization during real-time data transfer.
AbstractList Electrocardiogram (ECG) signals are frequently acquired nowadays to detect various heart diseases. Nowadays, IoT-enabled wearable devices are in demand for distant or telemedicine-based healthcare applications. However, the acquisition process of ECG signals generates a huge amount of data, which negatively impacts the storage and transmission efficiency of these devices. As a result, an efficient compression algorithm is needed for effective ECG data management. Therefore, a compression algorithm for 2D ECG signals is proposed that employs the 1D Cohen-Daubechies-Feauveau 9/7 wavelet transform on 2D ECG signals. The proposed method effectively improves compression performance by increasing sparsity among the transform coefficients. Following that, obtained coefficients are quantized, and significant ones are retained using the target-based reconstruction error. The adaptive Huffman encoding is used to further enhance the compression once the quantized coefficients have been encoded. The experimental work is tested on MIT-BIH arrhythmia database, and the effect of different anomalies on compression performance is also assessed. The compression efficacy is evaluated in comparison to existing compression methods, and other wavelet transforms such as sym2, sym4, haar, db5, coif4, and beta wavelets. The proposed algorithm’s performance is assessed in terms of quality score, percent root-mean-square difference, signal-to-noise ratio, and compression ratio. These factors were averaged out to get values of 30.23, 5.07, 26.78 dB, and 7.21, respectively. Results are evident that the proposed method can significantly improve storage efficiency and may also improve bandwidth utilization during real-time data transfer.
Electrocardiogram (ECG) signals are frequently acquired nowadays to detect various heart diseases. Nowadays, IoT-enabled wearable devices are in demand for distant or telemedicine-based healthcare applications. However, the acquisition process of ECG signals generates a huge amount of data, which negatively impacts the storage and transmission efficiency of these devices. As a result, an efficient compression algorithm is needed for effective ECG data management. Therefore, a compression algorithm for 2D ECG signals is proposed that employs the 1D Cohen-Daubechies-Feauveau 9/7 wavelet transform on 2D ECG signals. The proposed method effectively improves compression performance by increasing sparsity among the transform coefficients. Following that, obtained coefficients are quantized, and significant ones are retained using the target-based reconstruction error. The adaptive Huffman encoding is used to further enhance the compression once the quantized coefficients have been encoded. The experimental work is tested on MIT-BIH arrhythmia database, and the effect of different anomalies on compression performance is also assessed. The compression efficacy is evaluated in comparison to existing compression methods, and other wavelet transforms such as sym2, sym4, haar, db5, coif4, and beta wavelets. The proposed algorithm's performance is assessed in terms of quality score, percent root-mean-square difference, signal-to-noise ratio, and compression ratio. These factors were averaged out to get values of 30.23, 5.07, 26.78 dB, and 7.21, respectively. Results are evident that the proposed method can significantly improve storage efficiency and may also improve bandwidth utilization during real-time data transfer.Electrocardiogram (ECG) signals are frequently acquired nowadays to detect various heart diseases. Nowadays, IoT-enabled wearable devices are in demand for distant or telemedicine-based healthcare applications. However, the acquisition process of ECG signals generates a huge amount of data, which negatively impacts the storage and transmission efficiency of these devices. As a result, an efficient compression algorithm is needed for effective ECG data management. Therefore, a compression algorithm for 2D ECG signals is proposed that employs the 1D Cohen-Daubechies-Feauveau 9/7 wavelet transform on 2D ECG signals. The proposed method effectively improves compression performance by increasing sparsity among the transform coefficients. Following that, obtained coefficients are quantized, and significant ones are retained using the target-based reconstruction error. The adaptive Huffman encoding is used to further enhance the compression once the quantized coefficients have been encoded. The experimental work is tested on MIT-BIH arrhythmia database, and the effect of different anomalies on compression performance is also assessed. The compression efficacy is evaluated in comparison to existing compression methods, and other wavelet transforms such as sym2, sym4, haar, db5, coif4, and beta wavelets. The proposed algorithm's performance is assessed in terms of quality score, percent root-mean-square difference, signal-to-noise ratio, and compression ratio. These factors were averaged out to get values of 30.23, 5.07, 26.78 dB, and 7.21, respectively. Results are evident that the proposed method can significantly improve storage efficiency and may also improve bandwidth utilization during real-time data transfer.
Electrocardiogram (ECG) signals are frequently acquired nowadays to detect various heart diseases. Nowadays, IoT-enabled wearable devices are in demand for distant or telemedicine-based healthcare applications. However, the acquisition process of ECG signals generates a huge amount of data, which negatively impacts the storage and transmission efficiency of these devices. As a result, an efficient compression algorithm is needed for effective ECG data management. Therefore, a compression algorithm for 2D ECG signals is proposed that employs the 1D Cohen-Daubechies-Feauveau 9/7 wavelet transform on 2D ECG signals. The proposed method effectively improves compression performance by increasing sparsity among the transform coefficients. Following that, obtained coefficients are quantized, and significant ones are retained using the target-based reconstruction error. The adaptive Huffman encoding is used to further enhance the compression once the quantized coefficients have been encoded. The experimental work is tested on MIT-BIH arrhythmia database, and the effect of different anomalies on compression performance is also assessed. The compression efficacy is evaluated in comparison to existing compression methods, and other wavelet transforms such as sym2, sym4, haar, db5, coif4, and beta wavelets. The proposed algorithm’s performance is assessed in terms of quality score, percent root-mean-square difference, signal-to-noise ratio, and compression ratio. These factors were averaged out to get values of 30.23, 5.07, 26.78 dB, and 7.21, respectively. Results are evident that the proposed method can significantly improve storage efficiency and may also improve bandwidth utilization during real-time data transfer.
Author Pal, Hardev Singh
Singh, Girish Kumar
Kumar, A.
Vishwakarma, Amit
Author_xml – sequence: 1
  givenname: Hardev Singh
  orcidid: 0000-0002-0082-0290
  surname: Pal
  fullname: Pal, Hardev Singh
  email: 20peco05@iiitdmj.ac.in
  organization: Department of ECE, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Centre for Artificial Intelligence, Madhav Institute of Technology & Science, Deemed University
– sequence: 2
  givenname: A.
  surname: Kumar
  fullname: Kumar, A.
  organization: Department of ECE, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur
– sequence: 3
  givenname: Amit
  surname: Vishwakarma
  fullname: Vishwakarma, Amit
  organization: Department of ECE, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur
– sequence: 4
  givenname: Girish Kumar
  surname: Singh
  fullname: Singh, Girish Kumar
  organization: Department of Electrical Engineering, Indian Institute of Technology Roorkee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40358818$$D View this record in MEDLINE/PubMed
BookMark eNp90TtPwzAQB3ALFVEe_QIMyBILS8CP2E7GquUlIbGAGC3HuYSgJC52AuLb49ICEgOTPfz-Z9_dAZr0rgeEjik5p4Soi0A5S2VCmEgIFUIm2Q7aZ1KyJFVcTX7uLJ-iWQgvhERKqZJiD01TwkWW0WwfPc0xW2JowQ7eWePLxtXedDg0dW9abF238hBC43ps2tr5Znju8BiavsZ0icsmWA8D4HfzFmsMePCmD5Xz3RHarUwbYLY9D9Hj1eXD4ia5u7--XczvEstZNiRAQZGqrFJbKFWKEigvuMx5YWNzUOTCSEVtVhakrHJTUQWMCF5lTMlUcmr5ITrb1F159zpCGHQX_wRta3pwY9CcEc5JSiWL9PQPfXGjj12uFRMyJSnLozrZqrHooNQr33TGf-jvkUXANsB6F4KH6odQoter0ZvV6Dhv_bUavQ7xTShE3Nfgf9_-J_UJzsePsQ
Cites_doi 10.1016/j.dsp.2007.03.003
10.1109/ICSICT.2008.4735007
10.1016/j.aeue.2015.09.011
10.1016/j.dsp.2012.11.005
10.1109/10.52340
10.1007/s11277-024-11395-7
10.1016/j.measurement.2019.107252
10.1109/TBME.2011.2156794
10.1080/10255842.2023.2206933
10.1109/TBME.2005.863961
10.1016/j.bspc.2020.102067
10.1007/s12652-022-03898-7
10.1016/j.cmpb.2019.03.019
10.1109/TBME.2009.2037605
10.1016/j.bspc.2022.103932
10.1016/j.bspc.2021.102773
10.1016/j.advengsoft.2005.01.013
10.14569/ijacsa.2016.070325
10.1109/10.759056
10.1109/JIOT.2020.2974678
10.1007/978-81-322-1557-8
10.1109/JBHI.2018.2817192
10.1109/TBME.2014.2342879
10.1016/j.irbm.2020.05.004
10.1016/j.compeleceng.2012.04.008
10.1109/icip.2001.958471
10.1007/BF00770885
10.1016/j.bspc.2021.102464
10.1109/51.932724
10.1049/iet-smt.2016.0360
10.1016/j.medengphy.2004.04.004
10.1016/j.compeleceng.2005.02.002
10.1016/j.bspc.2018.06.009
10.1109/ICCES.2015.7393086
10.1007/s11227-023-05658-6
10.1016/j.suscom.2023.100949
10.1016/j.irbm.2020.05.008
10.1109/TIM.2021.3122119
10.1016/j.cmpb.2016.01.006
10.1109/MVIP.2012.6428766
10.1515/9781400827268.494
10.1109/10.245608
10.1109/TBME.2012.2191407
10.1109/TIM.2019.2922054
10.1038/s41598-019-40350-x
ContentType Journal Article
Copyright Australasian College of Physical Scientists and Engineers in Medicine 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2025. Australasian College of Physical Scientists and Engineers in Medicine.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: Australasian College of Physical Scientists and Engineers in Medicine 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2025. Australasian College of Physical Scientists and Engineers in Medicine.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1007/s13246-025-01556-8
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2662-4737
1879-5447
EndPage 914
ExternalDocumentID 40358818
10_1007_s13246_025_01556_8
Genre Journal Article
GroupedDBID 0R~
406
AACDK
AAHNG
AAJBT
AANZL
AAPKM
AASML
AATNV
AAUYE
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABJNI
ABMQK
ABRTQ
ABSXP
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACMDZ
ACOKC
ACPIV
ACSTC
ACZOJ
ADKNI
ADTPH
ADYFF
AEFQL
AEMSY
AESKC
AEVLU
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AGMZJ
AGQEE
AGRTI
AHPBZ
AHWEU
AIAKS
AIGIU
AILAN
AIXLP
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
ATHPR
AYFIA
BGNMA
DDRTE
DNIVK
DPUIP
EBLON
EBS
EMB
EMOBN
FERAY
FIGPU
FNLPD
GGCAI
IKXTQ
IWAJR
J-C
JZLTJ
LLZTM
M4Y
NPVJJ
NQJWS
NU0
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SRMVM
SSLCW
SV3
UOJIU
UTJUX
ZMTXR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
..I
06D
0VY
1N0
203
23N
29~
2KG
30V
36B
4.4
408
40D
53G
5GY
67N
8WZ
96X
A6W
AAIAL
AAJKR
AARTL
AATVU
AAWCG
AAYIU
AAYQN
AAZMS
ABFTV
ABJOX
ABKCH
ABPLI
ABQBU
ABTHY
ABTMW
ABXPI
ACGFS
ACGOD
ACKNC
ACMLO
ADBBV
ADHHG
ADHIR
ADKPE
ADRFC
ADURQ
ADZKW
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AETCA
AEXYK
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHYZX
AIIXL
AITGF
AJRNO
AJZVZ
AKMHD
ALFXC
AMKLP
AMYQR
ANMIH
ARAPS
AXYYD
CSCUP
EIOEI
EN4
ESBYG
FRRFC
FYJPI
GGRSB
GJIRD
GQ7
HCIFZ
HMJXF
HRMNR
HZ~
I0C
ITM
J0Z
JBSCW
K9.
KOV
KTM
O9-
O93
O9I
O9J
P2P
R9I
RLLFE
S1Z
S27
S3A
S3B
SBL
SHX
SISQX
SPISZ
SSXJD
STPWE
T13
TSG
U2A
U9L
UG4
UZXMN
VC2
VFIZW
W48
WK8
WOQ
Z45
ZOVNA
~A9
7X8
ID FETCH-LOGICAL-c328t-e1e70fdf4cb77d5de13b3693bc246eb95a671c8db0df9af17e2053f82764631c3
ISSN 2662-4729
0158-9938
2662-4737
IngestDate Fri Sep 05 16:49:05 EDT 2025
Fri Oct 03 06:51:58 EDT 2025
Wed Jul 02 01:57:29 EDT 2025
Wed Oct 01 05:51:02 EDT 2025
Mon Jul 21 06:06:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords ECG signal compression
Adaptive Huffman encoding
Wavelet transform
Language English
License 2025. Australasian College of Physical Scientists and Engineers in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-e1e70fdf4cb77d5de13b3693bc246eb95a671c8db0df9af17e2053f82764631c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0082-0290
PMID 40358818
PQID 3225640429
PQPubID 33672
PageCount 12
ParticipantIDs proquest_miscellaneous_3203304162
proquest_journals_3225640429
pubmed_primary_40358818
crossref_primary_10_1007_s13246_025_01556_8
springer_journals_10_1007_s13246_025_01556_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: Dordrecht
PublicationSubtitle The Official Journal of the Australasian College of Physical Scientists and Engineers in Medicine
PublicationTitle Australasian physical & engineering sciences in medicine
PublicationTitleAbbrev Phys Eng Sci Med
PublicationTitleAlternate Phys Eng Sci Med
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References R Kumar (1556_CR33) 2017; 11
J Xiao (1556_CR44) 2024; 80
C Ben Amar (1556_CR41) 2005; 36
G Zhong (1556_CR38) 2001
V Kumar (1556_CR15) 2005; 31
P Bera (1556_CR5) 2020; 69
M Abo-Zahhad (1556_CR26) 2013; 23
A Ullah (1556_CR46) 2024; 137
R Kumar (1556_CR31) 2015; 69
A Dean Forbes (1556_CR42) 1987; 3
S. Chandra’, A. Sharma, G.K. Singh (1556_CR13) 2021; 42
CT Ku (1556_CR20) 2010; 57
SG Mallat (1556_CR40) 2009; 11
HS Pal (1556_CR11) 2022; 78
HH Chou (1556_CR28) 2006; 53
H Lee (1556_CR32) 1999; 46
R Gupta (1556_CR2) 2014
L Rebollo-Neira (1556_CR10) 2019; 9
R Kumar (1556_CR21) 2013; 39
F Wang (1556_CR19) 2019; 175
CK Jha (1556_CR9) 2021; 42
MM Abo-Zahhad (1556_CR22) 2015; 2015
C Tan (1556_CR6) 2019; 23
J Qian (1556_CR4) 2020; 7
A Pandey (1556_CR1) 2020; 152
J Chagnon (1556_CR29) 2020; 62
L Abualigah (1556_CR43) 2024; 15
S Banerjee (1556_CR3) 2021
CK Jha (1556_CR25) 2018; 46
M Blanco-Velasco (1556_CR14) 2004; 26
X Wang (1556_CR34) 2008; 18
S Lee (1556_CR24) 2011; 58
1556_CR37
R Thilagavathy (1556_CR7) 2022; 71
G Nave (1556_CR17) 1993; 40
1556_CR36
1556_CR39
O El B’charri (1556_CR23) 2016
MA Abu-Hashem (1556_CR45) 2024; 41
CK Jha (1556_CR8) 2021; 66
CJ Deepu (1556_CR18) 2015; 62
R Kumar (1556_CR30) 2016; 129
GB Moody (1556_CR35) 2001; 20
AS Alvarado (1556_CR16) 2012; 59
SMS Jalaleddine (1556_CR12) 1990; 37
HS Pal (1556_CR27) 2023
References_xml – volume: 18
  start-page: 179
  year: 2008
  ident: 1556_CR34
  publication-title: Digit Signal Process A Rev J
  doi: 10.1016/j.dsp.2007.03.003
– ident: 1556_CR36
– ident: 1556_CR37
  doi: 10.1109/ICSICT.2008.4735007
– volume: 69
  start-page: 1810
  year: 2015
  ident: 1556_CR31
  publication-title: AEU - Int J Electron Commun
  doi: 10.1016/j.aeue.2015.09.011
– volume: 23
  start-page: 1002
  year: 2013
  ident: 1556_CR26
  publication-title: Digit Signal Process A Rev J
  doi: 10.1016/j.dsp.2012.11.005
– volume: 37
  start-page: 329
  year: 1990
  ident: 1556_CR12
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.52340
– volume: 137
  start-page: 2037
  year: 2024
  ident: 1556_CR46
  publication-title: Wirel Pers Commun
  doi: 10.1007/s11277-024-11395-7
– volume: 152
  start-page: 107252
  year: 2020
  ident: 1556_CR1
  publication-title: Meas
  doi: 10.1016/j.measurement.2019.107252
– volume: 58
  start-page: 2448
  year: 2011
  ident: 1556_CR24
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2156794
– year: 2023
  ident: 1556_CR27
  publication-title: Comput Methods Biomech Biomed Engin
  doi: 10.1080/10255842.2023.2206933
– volume: 53
  start-page: 1198
  year: 2006
  ident: 1556_CR28
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2005.863961
– volume: 62
  year: 2020
  ident: 1556_CR29
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.102067
– volume: 15
  start-page: 389
  year: 2024
  ident: 1556_CR43
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-022-03898-7
– volume: 175
  start-page: 139
  year: 2019
  ident: 1556_CR19
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2019.03.019
– volume: 57
  start-page: 1399
  year: 2010
  ident: 1556_CR20
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2037605
– volume: 78
  year: 2022
  ident: 1556_CR11
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103932
– volume: 71
  year: 2022
  ident: 1556_CR7
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102773
– volume: 36
  start-page: 459
  year: 2005
  ident: 1556_CR41
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2005.01.013
– year: 2016
  ident: 1556_CR23
  publication-title: Int J Adv Comput Sci Appl
  doi: 10.14569/ijacsa.2016.070325
– volume: 46
  start-page: 556
  year: 1999
  ident: 1556_CR32
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.759056
– volume: 7
  start-page: 10160
  year: 2020
  ident: 1556_CR4
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2020.2974678
– year: 2014
  ident: 1556_CR2
  publication-title: Springer
  doi: 10.1007/978-81-322-1557-8
– volume: 23
  start-page: 672
  year: 2019
  ident: 1556_CR6
  publication-title: IEEE J Biomed Heal Informatics
  doi: 10.1109/JBHI.2018.2817192
– volume: 62
  start-page: 165
  year: 2015
  ident: 1556_CR18
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2014.2342879
– volume: 42
  start-page: 227
  year: 2021
  ident: 1556_CR13
  publication-title: Innov Res Biomed Eng
  doi: 10.1016/j.irbm.2020.05.004
– volume: 39
  start-page: 130
  year: 2013
  ident: 1556_CR21
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2012.04.008
– year: 2001
  ident: 1556_CR38
  publication-title: IEEE Int Conf Image Process
  doi: 10.1109/icip.2001.958471
– volume: 3
  start-page: 53
  year: 1987
  ident: 1556_CR42
  publication-title: J Clin Monit
  doi: 10.1007/BF00770885
– volume: 66
  year: 2021
  ident: 1556_CR8
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102464
– volume: 20
  start-page: 45
  year: 2001
  ident: 1556_CR35
  publication-title: IEEE Eng Med Biol Mag
  doi: 10.1109/51.932724
– volume: 11
  start-page: 346
  year: 2017
  ident: 1556_CR33
  publication-title: IET Sci Meas Technol
  doi: 10.1049/iet-smt.2016.0360
– volume: 26
  start-page: 553
  year: 2004
  ident: 1556_CR14
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2004.04.004
– volume: 31
  start-page: 334
  year: 2005
  ident: 1556_CR15
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2005.02.002
– volume: 46
  start-page: 174
  year: 2018
  ident: 1556_CR25
  publication-title: Control
  doi: 10.1016/j.bspc.2018.06.009
– volume: 2015
  start-page: 416
  issue: 2016
  year: 2015
  ident: 1556_CR22
  publication-title: Conf Comput Eng Syst ICCES
  doi: 10.1109/ICCES.2015.7393086
– volume: 80
  start-page: 5136
  year: 2024
  ident: 1556_CR44
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05658-6
– volume: 41
  year: 2024
  ident: 1556_CR45
  publication-title: Sustain Comput Informatics Syst
  doi: 10.1016/j.suscom.2023.100949
– volume: 42
  start-page: 65
  year: 2021
  ident: 1556_CR9
  publication-title: Innov Res Biomed Eng
  doi: 10.1016/j.irbm.2020.05.008
– year: 2021
  ident: 1556_CR3
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2021.3122119
– volume: 129
  start-page: 135
  year: 2016
  ident: 1556_CR30
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.01.006
– ident: 1556_CR39
  doi: 10.1109/MVIP.2012.6428766
– volume: 11
  start-page: 494
  year: 2009
  ident: 1556_CR40
  publication-title: Fundam Pap Wavelet Theory
  doi: 10.1515/9781400827268.494
– volume: 40
  start-page: 877
  year: 1993
  ident: 1556_CR17
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.245608
– volume: 59
  start-page: 1641
  year: 2012
  ident: 1556_CR16
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2191407
– volume: 69
  start-page: 2084
  year: 2020
  ident: 1556_CR5
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2019.2922054
– volume: 9
  start-page: 1
  year: 2019
  ident: 1556_CR10
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-40350-x
SSID ssj0002511765
ssj0024368
Score 2.344512
Snippet Electrocardiogram (ECG) signals are frequently acquired nowadays to detect various heart diseases. Nowadays, IoT-enabled wearable devices are in demand for...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 903
SubjectTerms Algorithms
Approximation
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Compression Algorithms
Compression ratio
Data compression
Data Compression - methods
Data management
Data transfer (computers)
Discrete Wavelet Transform
Effectiveness
Electrocardiography
Fourier transforms
Heart diseases
Huffman codes
Humans
Medical and Radiation Physics
Real time
Scientific Paper
Signal Processing, Computer-Assisted
Signal to noise ratio
Sparsity
Telemedicine
Transmission efficiency
Wavelet Analysis
Wavelet transforms
Wearable technology
Title A 2D electrocardiogram signal compression algorithm using 1D discrete wavelet transform
URI https://link.springer.com/article/10.1007/s13246-025-01556-8
https://www.ncbi.nlm.nih.gov/pubmed/40358818
https://www.proquest.com/docview/3225640429
https://www.proquest.com/docview/3203304162
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2662-4737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511765
  issn: 2662-4729
  databaseCode: AFBBN
  dateStart: 20010301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2662-4737
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024368
  issn: 2662-4729
  databaseCode: AGYKE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2662-4737
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024368
  issn: 2662-4729
  databaseCode: U2A
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELaW9gUeEHcXSmUk-hRSJXacOI9bwmq5VpXahb5FORy6gj3YZqnEr-OnMWPn2i4g4CVaeXM4ni-e8cw3Y0KeMw6TPvMSmwVZYHtZ6NsSVh62FEx5IstFpin_78f-aOK9ORfnvd6PDmtpXaZH2fdf5pX8j1ShDeSKWbL_INnmptAAv0G-cAQJw_GvZDywWGRVG9lkmliKXCsLORm67MesYrnOreTLp8VqWl7MrLV2DrgRhmbAYiyVdZXg5hMl7hZhbNiuwbqRa7mshYp4UW0lQ6vSo5pbez1af5KYetnQP_XNOoXTGw90w-9uYPRhenlxlXxGP7tun00bWo6-Urvxpyssw6Qv7jotmGjJVRtOS2RkY5ykSaoxPk4Bc3Boir4cKTMvyyC0hWeKc9YTtyc7AGWdWTh0eEehhyZLdUtXOFXuNJiUyMNGDqMQvi1bzVizAUaD0_gkGsbvXo_fHvLh8quNu5ZhdP-QRwZWN8guA72Cm4dM2KBT7VEnYzavVKVtmeTN6w_eNI221jtbsXptAp3dIbertQsdGCDeJT01v0dudSpa3icfB5RFdAuS1ECSdiBJG0hSDUnqRrSGJK0gSRtIPiCT4auzlyO72rvDzjiTpa1cFThFXnhZGgS5yJXLU-6HPM3gpVUaisQP3EzmqZMXYVK4gWKgDgoJg-j53M34Q7IzX8zVHqESTM4i58JJAljOSpb6Cis45aHMi1QmaZ9Y9bDFS1OiJW6LceMgxzDIsR7kWPbJfj2ycfUpX8ao1XwPbbM-edb8DRMtRs-SuVqs8RwHfX-uz_rkkZFI8zjP4UKC6dsnL2oRtTf_fV8e_7kvT8jN9tvZJzvlaq2egglcpgdkdzA8Ph4faLT9BJ-CscI
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+2D+electrocardiogram+signal+compression+algorithm+using+1D+discrete+wavelet+transform&rft.jtitle=Australasian+physical+%26+engineering+sciences+in+medicine&rft.au=Pal%2C+Hardev+Singh&rft.au=Kumar%2C+A&rft.au=Vishwakarma%2C+Amit&rft.au=Singh%2C+Girish+Kumar&rft.date=2025-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0158-9938&rft.eissn=1879-5447&rft.volume=48&rft.issue=2&rft.spage=903&rft.epage=914&rft_id=info:doi/10.1007%2Fs13246-025-01556-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-4729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-4729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-4729&client=summon