Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases

The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel w...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. D, Applied physics Vol. 45; no. 8; pp. 85202 - 1-11
Main Authors Wilhelm, G, Kozakov, R, Gött, G, Schöpp, H, Uhrlandt, D
Format Journal Article
LanguageEnglish
Published IOP Publishing 29.02.2012
Subjects
Online AccessGet full text
ISSN0022-3727
1361-6463
DOI10.1088/0022-3727/45/8/085202

Cover

Abstract The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.
AbstractList The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.
The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O 2 and CO 2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O 2 , Ar + 18% CO 2 and 100% CO 2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO 2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO 2 is used as a shielding gas are considerably lower.
The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O sub(2) and CO sub(2) as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar+8%O sub(2), Ar+18%CO sub(2) and 100% CO sub(2) respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO sub(2) gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO sub(2) is used as a shielding gas are considerably lower.
Author Wilhelm, G
Kozakov, R
Uhrlandt, D
Schöpp, H
Gött, G
Author_xml – sequence: 1
  givenname: G
  surname: Wilhelm
  fullname: Wilhelm, G
  organization: Linde AG , Carl-von-Linde Strasse 25, Unterschleissheim 85716, Germany
– sequence: 2
  givenname: R
  surname: Kozakov
  fullname: Kozakov, R
  email: kozakov@inp-greifswald.de
  organization: Leibniz-Institute for Plasma Science and Technology e.V. , Felix-Haussdorf-Str. 2, Greifswald 17489, Germany
– sequence: 3
  givenname: G
  surname: Gött
  fullname: Gött, G
  organization: Leibniz-Institute for Plasma Science and Technology e.V. , Felix-Haussdorf-Str. 2, Greifswald 17489, Germany
– sequence: 4
  givenname: H
  surname: Schöpp
  fullname: Schöpp, H
  organization: Leibniz-Institute for Plasma Science and Technology e.V. , Felix-Haussdorf-Str. 2, Greifswald 17489, Germany
– sequence: 5
  givenname: D
  surname: Uhrlandt
  fullname: Uhrlandt, D
  organization: Leibniz-Institute for Plasma Science and Technology e.V. , Felix-Haussdorf-Str. 2, Greifswald 17489, Germany
BookMark eNqFkM1KAzEURoMoWKuPIGTpZmz-O8VVFa1CxY3iMqSZO21kTGqSKr69mVZcuOkq3C_nCzfnBB364AGhc0ouKanrESGMVXzMxiMhR2WsJSPsAA0oV7RSQvFDNPhjjtFJSm-EEKlqOkDxGlbm04VNxKHFeQXYxeDxp1n3kQ2xBH6bm2h7xJTQ5xi6DhqcViHmqr-ZPU5f8ToGCynhL5dXuHFtCxF8LpSDrnF-iZcmQTpFR63pEpz9nkP0cnf7fHNfzZ9mDzfTeWU5q3PVGMKlWAgYW8Ea1VqrJFUc6glZkIWsGecMJAHCuSByoZS0AogSvCgZm4ngQ3Sxe7es9bGBlPW7Sxa6zngIm6RpUVJPSpcW9GqH2hhSitBq67LJrv-pcV1BdW9a9xZ1b1ELqcu4NV3a8l97Hd27id97e3TXc2Gt34pvX3Ts6fwATUeRMQ
CODEN JPAPBE
CitedBy_id crossref_primary_10_1088_0022_3727_46_22_224002
crossref_primary_10_1088_0022_3727_46_22_224005
crossref_primary_10_1088_1361_6463_aaed04
crossref_primary_10_1088_0022_3727_46_47_475501
crossref_primary_10_1088_1742_6596_550_1_012004
crossref_primary_10_1134_S1063785015070068
crossref_primary_10_1088_1361_6463_aadb86
crossref_primary_10_1088_0022_3727_46_27_273001
crossref_primary_10_1088_1361_6463_ac3daa
crossref_primary_10_3390_jmmp4040113
crossref_primary_10_1088_0022_3727_47_46_465202
crossref_primary_10_3390_ma15186415
crossref_primary_10_1088_0022_3727_49_31_313001
crossref_primary_10_1088_0022_3727_46_22_224001
Cites_doi 10.1088/0022-3727/42/19/194006
10.1088/0022-3727/43/43/434001
10.1088/0022-3727/43/43/434011
10.1088/0022-3727/43/43/434008
10.1088/0022-3727/43/43/434002
10.1088/0022-3727/43/43/434003
10.1088/0022-3727/43/43/434009
10.1088/0022-3727/43/43/434004
10.1137/0111030
10.1088/0963-0252/16/4/019
10.1063/1.2777159
10.1090/qam/10666
10.1016/j.matdes.2008.07.015
10.1063/1.94990
10.1088/0022-3727/8/8/006
10.1088/0022-3727/43/16/165204
10.1088/0022-3727/21/3/007
ContentType Journal Article
Copyright 2012 IOP Publishing Ltd
Copyright_xml – notice: 2012 IOP Publishing Ltd
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1088/0022-3727/45/8/085202
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
DocumentTitleAlternate Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases
EISSN 1361-6463
EndPage 1-11
ExternalDocumentID 10_1088_0022_3727_45_8_085202
jphysd406915
GroupedDBID -ET
-~X
1JI
1WK
4.4
5B3
5GY
5PX
5VS
5ZH
6TJ
7.M
7.Q
9BW
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ACNCT
ADIYS
AEFHF
AFFNX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IJHAN
IOP
IZVLO
JCGBZ
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
Q02
RIN
RKQ
RNS
RO9
ROL
RPA
S3P
SY9
TAE
TN5
UCJ
W28
WH7
XPP
XSW
YQT
ZMT
02O
29L
3O-
41~
5ZI
6TU
8WZ
A6W
AAGCF
AAYJJ
AAYXX
ABDEX
ACARI
ACWPO
ADEQX
AERVB
AGQPQ
AHSEE
AI.
ARNYC
BBWZM
CBCFC
CEBXE
CITATION
H~9
OHT
R4D
T37
VH1
VOH
XOL
ZE2
7U5
8FD
AEINN
L7M
ID FETCH-LOGICAL-c328t-da0354b4e7c42d6fcc65163e890b0b582332e50e033405b665c4e06430887a943
IEDL.DBID IOP
ISSN 0022-3727
IngestDate Fri Sep 05 13:50:04 EDT 2025
Tue Jul 01 04:08:50 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
Wed Aug 21 03:34:19 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-da0354b4e7c42d6fcc65163e890b0b582332e50e033405b665c4e06430887a943
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1022894051
PQPubID 23500
PageCount 11
ParticipantIDs crossref_citationtrail_10_1088_0022_3727_45_8_085202
crossref_primary_10_1088_0022_3727_45_8_085202
proquest_miscellaneous_1022894051
iop_journals_10_1088_0022_3727_45_8_085202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-29
PublicationDateYYYYMMDD 2012-02-29
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-29
  day: 29
PublicationDecade 2010
PublicationTitle Journal of physics. D, Applied physics
PublicationTitleAbbrev JPhysD
PublicationTitleAlternate J. Phys. D: Appl. Phys
PublicationYear 2012
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Rouffet (jphysd406915bib08) 2010; 43
Cram (jphysd406915bib17) 1988; 21
Zielinska (jphysd406915bib05) 2007; 16
Wilhelm (jphysd406915bib09) 2010; 43
Haidar (jphysd406915bib19) 2010; 43
Tanaka (jphysd406915bib03) 2010; 43
Paul (jphysd406915bib10) 2007; 78
Marquardt (jphysd406915bib12) 1963; 11
Huismann (jphysd406915bib14) 2000
Yang (jphysd406915bib02) 2010; 43
Murphy (jphysd406915bib18) 2009; 42
Levenberg (jphysd406915bib11) 1944; 2
jphysd406915bib15
Murphy (jphysd406915bib01) 2010; 43
Feng (jphysd406915bib13) 2009; 30
Farmer (jphysd406915bib16) 1984; 45
Schnick (jphysd406915bib04) 2010; 43
Ton (jphysd406915bib07) 1975; 8
Valensi (jphysd406915bib06) 2010; 43
References_xml – volume: 42
  year: 2009
  ident: jphysd406915bib18
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/19/194006
– volume: 43
  year: 2010
  ident: jphysd406915bib01
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/43/434001
– volume: 43
  year: 2010
  ident: jphysd406915bib02
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/43/434011
– volume: 43
  year: 2010
  ident: jphysd406915bib04
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/43/434008
– volume: 43
  year: 2010
  ident: jphysd406915bib06
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/43/434002
– volume: 43
  year: 2010
  ident: jphysd406915bib08
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/43/434003
– volume: 43
  year: 2010
  ident: jphysd406915bib03
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/43/434009
– volume: 43
  year: 2010
  ident: jphysd406915bib09
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/43/434004
– volume: 11
  start-page: 431
  year: 1963
  ident: jphysd406915bib12
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0111030
– volume: 16
  start-page: 832
  year: 2007
  ident: jphysd406915bib05
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/16/4/019
– year: 2000
  ident: jphysd406915bib14
– volume: 78
  year: 2007
  ident: jphysd406915bib10
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2777159
– volume: 2
  start-page: 164
  year: 1944
  ident: jphysd406915bib11
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 30
  start-page: 1850
  year: 2009
  ident: jphysd406915bib13
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2008.07.015
– volume: 45
  start-page: 24
  year: 1984
  ident: jphysd406915bib16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.94990
– volume: 8
  start-page: 922
  year: 1975
  ident: jphysd406915bib07
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/8/8/006
– volume: 43
  year: 2010
  ident: jphysd406915bib19
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/16/165204
– volume: 21
  start-page: 418
  year: 1988
  ident: jphysd406915bib17
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/21/3/007
– ident: jphysd406915bib15
SSID ssj0005681
Score 2.1305888
Snippet The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85202
SubjectTerms Carbon dioxide
Electric wire
Gas metal arc welding
Iron
Shielding
Steels
Vapour
Workpieces
Title Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases
URI https://iopscience.iop.org/article/10.1088/0022-3727/45/8/085202
https://www.proquest.com/docview/1022894051
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46EfTBuzhvRPBJ6FZzW_o4xAvC1AeHvpU0TVUc3dhaH_z1ntOLTkVEfGvSkzT386U55wshh9DNlrtO4lnHE9igxMbTEdOe0075sRJSFl7vvSt10ReX9_J-yov_aTiqlv4WPJZEwWUTVgZxul0aoIPebQvZhqCWDNkk57iGzQW68F3ffBh5KH38zhcOSWofnp-y-aSdZqEE35boQu-cLRNTl7g0N3lu5VnUsq9fyBz_U6UVslSBUtot5VfJjEvXyOIUVeEamS9MRe1knYwrSsV8TIcJBfxI0VOOvpgRRiErJn1Ki3iYQyhiaGUPP3AxnTwC3vfwzXmve0dHpZ8Cxd_BtL6sJQMpNKyDD9MH0LKTDdI_O709ufCqmxs8y5nOvNj4XIpIuI4VLFaJtUoC8HM68CM_kppxzpz0nc85AMZIKWmFQ3CEa54JBN8kjXSYui1CIxcwjXa4gNNEwhQAWlCwcWB4bH1jgiYRdY-FtqI1x9s1BmFxvK51iI0bYuOGQoYQLBq3SVrvyUYlr8dvCY6g98Jqhk9-Ez6oR00I0xXPYEzqhjkmY7DFhUofb_8lwx2yAEiNFb70wS5pZOPc7QEayqL9YsC_Ae0J-D4
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH5iUREcoGUR01LqSpyQMpPxNs5xBB2WFsoBBDfLcRxAoEw0k-HAr-c5y9BFCCFusePn2M_L-xy_BWAHh9ky10sD61iKB5TEBCqmKnDKyTCRXIjS6v3kVB5e8OMrcTUD-1NbmGFeb_1tfKwcBVcsrBXiVKdSQEe52-Gig0kl8ADfyZN0FuYFEz0fwOHo99mzoodU3anPcCRr7HhequovCTWLrfhvmy5lz2AFXNPqSuXkrj0p4rZ9_Meh43u79RGWa3BK-hXNJ5hx2Sos_eGycBU-lCqjdrwGo9q14mREhilBHEm8xRx5MLnP8t4xyW1W5uNa8kUMqfXi711CxjeI-wP_5uCkf0nyyl6B-N_CpAnaUmApr2CHHybXKG3H63Ax-HG-dxjUERwCy6gqgsSETPCYu57lNJGptVIgAHQqCuMwFooyRp0IXcgYAsdYSmG58yDJ730m4mwD5rJh5jaBxC6iyuvjIl7jKZUIbFHQJpFhiQ2NiVrAm1HTtnZv7qNs3Ovyml0p7RmsPYM1FxqTJYNb0J6S5ZV_j9cIdnEEdb3Sx68V_t7MHI3L1t_FmMwNJ56M4lEXO939_JYKv8HC2f5A_zo6_fkFFhG80dK8PtqCuWI0cV8RIBXxdjn_nwAUJv2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behaviour+of+the+iron+vapour+core+in+the+arc+of+a+controlled+short-arc+GMAW+process+with+different+shielding+gases&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Wilhelm%2C+G&rft.au=Kozakov%2C+R&rft.au=G%C3%B6tt%2C+G&rft.au=Sch%C3%B6pp%2C+H&rft.date=2012-02-29&rft.pub=IOP+Publishing&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=45&rft.issue=8&rft_id=info:doi/10.1088%2F0022-3727%2F45%2F8%2F085202&rft.externalDocID=jphysd406915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon