Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases
The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel w...
Saved in:
Published in | Journal of physics. D, Applied physics Vol. 45; no. 8; pp. 85202 - 1-11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
29.02.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-3727 1361-6463 |
DOI | 10.1088/0022-3727/45/8/085202 |
Cover
Abstract | The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower. |
---|---|
AbstractList | The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower. The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O 2 and CO 2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O 2 , Ar + 18% CO 2 and 100% CO 2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO 2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO 2 is used as a shielding gas are considerably lower. The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O sub(2) and CO sub(2) as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar+8%O sub(2), Ar+18%CO sub(2) and 100% CO sub(2) respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO sub(2) gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO sub(2) is used as a shielding gas are considerably lower. |
Author | Wilhelm, G Kozakov, R Uhrlandt, D Schöpp, H Gött, G |
Author_xml | – sequence: 1 givenname: G surname: Wilhelm fullname: Wilhelm, G organization: Linde AG , Carl-von-Linde Strasse 25, Unterschleissheim 85716, Germany – sequence: 2 givenname: R surname: Kozakov fullname: Kozakov, R email: kozakov@inp-greifswald.de organization: Leibniz-Institute for Plasma Science and Technology e.V. , Felix-Haussdorf-Str. 2, Greifswald 17489, Germany – sequence: 3 givenname: G surname: Gött fullname: Gött, G organization: Leibniz-Institute for Plasma Science and Technology e.V. , Felix-Haussdorf-Str. 2, Greifswald 17489, Germany – sequence: 4 givenname: H surname: Schöpp fullname: Schöpp, H organization: Leibniz-Institute for Plasma Science and Technology e.V. , Felix-Haussdorf-Str. 2, Greifswald 17489, Germany – sequence: 5 givenname: D surname: Uhrlandt fullname: Uhrlandt, D organization: Leibniz-Institute for Plasma Science and Technology e.V. , Felix-Haussdorf-Str. 2, Greifswald 17489, Germany |
BookMark | eNqFkM1KAzEURoMoWKuPIGTpZmz-O8VVFa1CxY3iMqSZO21kTGqSKr69mVZcuOkq3C_nCzfnBB364AGhc0ouKanrESGMVXzMxiMhR2WsJSPsAA0oV7RSQvFDNPhjjtFJSm-EEKlqOkDxGlbm04VNxKHFeQXYxeDxp1n3kQ2xBH6bm2h7xJTQ5xi6DhqcViHmqr-ZPU5f8ToGCynhL5dXuHFtCxF8LpSDrnF-iZcmQTpFR63pEpz9nkP0cnf7fHNfzZ9mDzfTeWU5q3PVGMKlWAgYW8Ea1VqrJFUc6glZkIWsGecMJAHCuSByoZS0AogSvCgZm4ngQ3Sxe7es9bGBlPW7Sxa6zngIm6RpUVJPSpcW9GqH2hhSitBq67LJrv-pcV1BdW9a9xZ1b1ELqcu4NV3a8l97Hd27id97e3TXc2Gt34pvX3Ts6fwATUeRMQ |
CODEN | JPAPBE |
CitedBy_id | crossref_primary_10_1088_0022_3727_46_22_224002 crossref_primary_10_1088_0022_3727_46_22_224005 crossref_primary_10_1088_1361_6463_aaed04 crossref_primary_10_1088_0022_3727_46_47_475501 crossref_primary_10_1088_1742_6596_550_1_012004 crossref_primary_10_1134_S1063785015070068 crossref_primary_10_1088_1361_6463_aadb86 crossref_primary_10_1088_0022_3727_46_27_273001 crossref_primary_10_1088_1361_6463_ac3daa crossref_primary_10_3390_jmmp4040113 crossref_primary_10_1088_0022_3727_47_46_465202 crossref_primary_10_3390_ma15186415 crossref_primary_10_1088_0022_3727_49_31_313001 crossref_primary_10_1088_0022_3727_46_22_224001 |
Cites_doi | 10.1088/0022-3727/42/19/194006 10.1088/0022-3727/43/43/434001 10.1088/0022-3727/43/43/434011 10.1088/0022-3727/43/43/434008 10.1088/0022-3727/43/43/434002 10.1088/0022-3727/43/43/434003 10.1088/0022-3727/43/43/434009 10.1088/0022-3727/43/43/434004 10.1137/0111030 10.1088/0963-0252/16/4/019 10.1063/1.2777159 10.1090/qam/10666 10.1016/j.matdes.2008.07.015 10.1063/1.94990 10.1088/0022-3727/8/8/006 10.1088/0022-3727/43/16/165204 10.1088/0022-3727/21/3/007 |
ContentType | Journal Article |
Copyright | 2012 IOP Publishing Ltd |
Copyright_xml | – notice: 2012 IOP Publishing Ltd |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1088/0022-3727/45/8/085202 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
DocumentTitleAlternate | Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases |
EISSN | 1361-6463 |
EndPage | 1-11 |
ExternalDocumentID | 10_1088_0022_3727_45_8_085202 jphysd406915 |
GroupedDBID | -ET -~X 1JI 1WK 4.4 5B3 5GY 5PX 5VS 5ZH 6TJ 7.M 7.Q 9BW AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ACNCT ADIYS AEFHF AFFNX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IJHAN IOP IZVLO JCGBZ KOT LAP M45 N5L N9A NT- NT. P2P PJBAE Q02 RIN RKQ RNS RO9 ROL RPA S3P SY9 TAE TN5 UCJ W28 WH7 XPP XSW YQT ZMT 02O 29L 3O- 41~ 5ZI 6TU 8WZ A6W AAGCF AAYJJ AAYXX ABDEX ACARI ACWPO ADEQX AERVB AGQPQ AHSEE AI. ARNYC BBWZM CBCFC CEBXE CITATION H~9 OHT R4D T37 VH1 VOH XOL ZE2 7U5 8FD AEINN L7M |
ID | FETCH-LOGICAL-c328t-da0354b4e7c42d6fcc65163e890b0b582332e50e033405b665c4e06430887a943 |
IEDL.DBID | IOP |
ISSN | 0022-3727 |
IngestDate | Fri Sep 05 13:50:04 EDT 2025 Tue Jul 01 04:08:50 EDT 2025 Thu Apr 24 23:11:40 EDT 2025 Wed Aug 21 03:34:19 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-da0354b4e7c42d6fcc65163e890b0b582332e50e033405b665c4e06430887a943 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1022894051 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1088_0022_3727_45_8_085202 crossref_primary_10_1088_0022_3727_45_8_085202 proquest_miscellaneous_1022894051 iop_journals_10_1088_0022_3727_45_8_085202 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-02-29 |
PublicationDateYYYYMMDD | 2012-02-29 |
PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-29 day: 29 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physics. D, Applied physics |
PublicationTitleAbbrev | JPhysD |
PublicationTitleAlternate | J. Phys. D: Appl. Phys |
PublicationYear | 2012 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Rouffet (jphysd406915bib08) 2010; 43 Cram (jphysd406915bib17) 1988; 21 Zielinska (jphysd406915bib05) 2007; 16 Wilhelm (jphysd406915bib09) 2010; 43 Haidar (jphysd406915bib19) 2010; 43 Tanaka (jphysd406915bib03) 2010; 43 Paul (jphysd406915bib10) 2007; 78 Marquardt (jphysd406915bib12) 1963; 11 Huismann (jphysd406915bib14) 2000 Yang (jphysd406915bib02) 2010; 43 Murphy (jphysd406915bib18) 2009; 42 Levenberg (jphysd406915bib11) 1944; 2 jphysd406915bib15 Murphy (jphysd406915bib01) 2010; 43 Feng (jphysd406915bib13) 2009; 30 Farmer (jphysd406915bib16) 1984; 45 Schnick (jphysd406915bib04) 2010; 43 Ton (jphysd406915bib07) 1975; 8 Valensi (jphysd406915bib06) 2010; 43 |
References_xml | – volume: 42 year: 2009 ident: jphysd406915bib18 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/19/194006 – volume: 43 year: 2010 ident: jphysd406915bib01 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/43/434001 – volume: 43 year: 2010 ident: jphysd406915bib02 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/43/434011 – volume: 43 year: 2010 ident: jphysd406915bib04 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/43/434008 – volume: 43 year: 2010 ident: jphysd406915bib06 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/43/434002 – volume: 43 year: 2010 ident: jphysd406915bib08 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/43/434003 – volume: 43 year: 2010 ident: jphysd406915bib03 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/43/434009 – volume: 43 year: 2010 ident: jphysd406915bib09 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/43/434004 – volume: 11 start-page: 431 year: 1963 ident: jphysd406915bib12 publication-title: SIAM J. Appl. Math. doi: 10.1137/0111030 – volume: 16 start-page: 832 year: 2007 ident: jphysd406915bib05 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/16/4/019 – year: 2000 ident: jphysd406915bib14 – volume: 78 year: 2007 ident: jphysd406915bib10 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2777159 – volume: 2 start-page: 164 year: 1944 ident: jphysd406915bib11 publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 30 start-page: 1850 year: 2009 ident: jphysd406915bib13 publication-title: Mater. Des. doi: 10.1016/j.matdes.2008.07.015 – volume: 45 start-page: 24 year: 1984 ident: jphysd406915bib16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.94990 – volume: 8 start-page: 922 year: 1975 ident: jphysd406915bib07 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/8/8/006 – volume: 43 year: 2010 ident: jphysd406915bib19 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/16/165204 – volume: 21 start-page: 418 year: 1988 ident: jphysd406915bib17 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/21/3/007 – ident: jphysd406915bib15 |
SSID | ssj0005681 |
Score | 2.1305888 |
Snippet | The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 85202 |
SubjectTerms | Carbon dioxide Electric wire Gas metal arc welding Iron Shielding Steels Vapour Workpieces |
Title | Behaviour of the iron vapour core in the arc of a controlled short-arc GMAW process with different shielding gases |
URI | https://iopscience.iop.org/article/10.1088/0022-3727/45/8/085202 https://www.proquest.com/docview/1022894051 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46EfTBuzhvRPBJ6FZzW_o4xAvC1AeHvpU0TVUc3dhaH_z1ntOLTkVEfGvSkzT386U55wshh9DNlrtO4lnHE9igxMbTEdOe0075sRJSFl7vvSt10ReX9_J-yov_aTiqlv4WPJZEwWUTVgZxul0aoIPebQvZhqCWDNkk57iGzQW68F3ffBh5KH38zhcOSWofnp-y-aSdZqEE35boQu-cLRNTl7g0N3lu5VnUsq9fyBz_U6UVslSBUtot5VfJjEvXyOIUVeEamS9MRe1knYwrSsV8TIcJBfxI0VOOvpgRRiErJn1Ki3iYQyhiaGUPP3AxnTwC3vfwzXmve0dHpZ8Cxd_BtL6sJQMpNKyDD9MH0LKTDdI_O709ufCqmxs8y5nOvNj4XIpIuI4VLFaJtUoC8HM68CM_kppxzpz0nc85AMZIKWmFQ3CEa54JBN8kjXSYui1CIxcwjXa4gNNEwhQAWlCwcWB4bH1jgiYRdY-FtqI1x9s1BmFxvK51iI0bYuOGQoYQLBq3SVrvyUYlr8dvCY6g98Jqhk9-Ez6oR00I0xXPYEzqhjkmY7DFhUofb_8lwx2yAEiNFb70wS5pZOPc7QEayqL9YsC_Ae0J-D4 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFH5iUREcoGUR01LqSpyQMpPxNs5xBB2WFsoBBDfLcRxAoEw0k-HAr-c5y9BFCCFusePn2M_L-xy_BWAHh9ky10sD61iKB5TEBCqmKnDKyTCRXIjS6v3kVB5e8OMrcTUD-1NbmGFeb_1tfKwcBVcsrBXiVKdSQEe52-Gig0kl8ADfyZN0FuYFEz0fwOHo99mzoodU3anPcCRr7HhequovCTWLrfhvmy5lz2AFXNPqSuXkrj0p4rZ9_Meh43u79RGWa3BK-hXNJ5hx2Sos_eGycBU-lCqjdrwGo9q14mREhilBHEm8xRx5MLnP8t4xyW1W5uNa8kUMqfXi711CxjeI-wP_5uCkf0nyyl6B-N_CpAnaUmApr2CHHybXKG3H63Ax-HG-dxjUERwCy6gqgsSETPCYu57lNJGptVIgAHQqCuMwFooyRp0IXcgYAsdYSmG58yDJ730m4mwD5rJh5jaBxC6iyuvjIl7jKZUIbFHQJpFhiQ2NiVrAm1HTtnZv7qNs3Ovyml0p7RmsPYM1FxqTJYNb0J6S5ZV_j9cIdnEEdb3Sx68V_t7MHI3L1t_FmMwNJ56M4lEXO939_JYKv8HC2f5A_zo6_fkFFhG80dK8PtqCuWI0cV8RIBXxdjn_nwAUJv2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behaviour+of+the+iron+vapour+core+in+the+arc+of+a+controlled+short-arc+GMAW+process+with+different+shielding+gases&rft.jtitle=Journal+of+physics.+D%2C+Applied+physics&rft.au=Wilhelm%2C+G&rft.au=Kozakov%2C+R&rft.au=G%C3%B6tt%2C+G&rft.au=Sch%C3%B6pp%2C+H&rft.date=2012-02-29&rft.pub=IOP+Publishing&rft.issn=0022-3727&rft.eissn=1361-6463&rft.volume=45&rft.issue=8&rft_id=info:doi/10.1088%2F0022-3727%2F45%2F8%2F085202&rft.externalDocID=jphysd406915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3727&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3727&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3727&client=summon |