A conceptual and practical comparison of PSO-style optimization algorithms
Optimization algorithms are widely employed for finding optimal solutions in many applications. Stochastic optimization algorithms including nature-inspired optimization algorithms are simple and easy to implement, and this is the reason why there is a growing interest in this research area. Recentl...
Saved in:
| Published in | Expert systems with applications Vol. 167; p. 114430 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
01.04.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2020.114430 |
Cover
| Abstract | Optimization algorithms are widely employed for finding optimal solutions in many applications. Stochastic optimization algorithms including nature-inspired optimization algorithms are simple and easy to implement, and this is the reason why there is a growing interest in this research area. Recently, many nature-inspired optimization algorithms have been proposed for solving many optimization problems. Moreover, with the aim of improving the performance of optimization algorithms, some modifications were applied such as combining different algorithms and employing some sampling techniques for replacing critical parameters in the optimization algorithms. This paper compares five different widely used PSO-style optimization algorithms to investigate if there is a significant difference between them or not. Theoretically, we explain different PSO-style algorithms and discuss the similarities and differences between them. Practically, a number of experiments were conducted to compare these algorithms. Theoretical analysis and practical results prove that there is not any significant difference between the PSO-style algorithms regarding their performance.
•Nature-inspired optimization algorithms are used to solve optimization problems.•Many comparisons are presented to compare PSO-style optimization algorithms.•Under the same metaheuristic framework, the algorithms perform similarly. |
|---|---|
| AbstractList | Optimization algorithms are widely employed for finding optimal solutions in many applications. Stochastic optimization algorithms including nature-inspired optimization algorithms are simple and easy to implement, and this is the reason why there is a growing interest in this research area. Recently, many nature-inspired optimization algorithms have been proposed for solving many optimization problems. Moreover, with the aim of improving the performance of optimization algorithms, some modifications were applied such as combining different algorithms and employing some sampling techniques for replacing critical parameters in the optimization algorithms. This paper compares five different widely used PSO-style optimization algorithms to investigate if there is a significant difference between them or not. Theoretically, we explain different PSO-style algorithms and discuss the similarities and differences between them. Practically, a number of experiments were conducted to compare these algorithms. Theoretical analysis and practical results prove that there is not any significant difference between the PSO-style algorithms regarding their performance. Optimization algorithms are widely employed for finding optimal solutions in many applications. Stochastic optimization algorithms including nature-inspired optimization algorithms are simple and easy to implement, and this is the reason why there is a growing interest in this research area. Recently, many nature-inspired optimization algorithms have been proposed for solving many optimization problems. Moreover, with the aim of improving the performance of optimization algorithms, some modifications were applied such as combining different algorithms and employing some sampling techniques for replacing critical parameters in the optimization algorithms. This paper compares five different widely used PSO-style optimization algorithms to investigate if there is a significant difference between them or not. Theoretically, we explain different PSO-style algorithms and discuss the similarities and differences between them. Practically, a number of experiments were conducted to compare these algorithms. Theoretical analysis and practical results prove that there is not any significant difference between the PSO-style algorithms regarding their performance. •Nature-inspired optimization algorithms are used to solve optimization problems.•Many comparisons are presented to compare PSO-style optimization algorithms.•Under the same metaheuristic framework, the algorithms perform similarly. |
| ArticleNumber | 114430 |
| Author | Schenck, Wolfram Tharwat, Alaa |
| Author_xml | – sequence: 1 givenname: Alaa surname: Tharwat fullname: Tharwat, Alaa email: alaa.othman@fh-bielefeld.de – sequence: 2 givenname: Wolfram surname: Schenck fullname: Schenck, Wolfram email: wolfram.schenck@fh-bielefeld.de |
| BookMark | eNp9kM1LwzAUwINMcE7_AU8Fz51JmiYteBnDTwYT1HNI0xdNaZuaZMr86-2cJw87hZf3fu_jd4omvesBoQuC5wQTftXMIXypOcV0_CCMZfgITUkhspSLMpugKS5zkTIi2Ak6DaHBmAiMxRQ9LhLteg1D3Kg2UX2dDF7paPUYadcNytvg-sSZ5Ol5nYa4bSFxQ7Sd_VbRjhnVvjlv43sXztCxUW2A8793hl5vb16W9-lqffewXKxSndEiptpUZY2ZVlRxpgpVkhyYAc5wJnKOC2MM07QEzsu64oqDMEWtNc-qyjDQkM3Q5b7v4N3HBkKUjdv4fhwpaY4zImhO2FhV7Ku0dyF4MFLb-Lty9Mq2kmC5MycbuTMnd-bk3tyI0n_o4G2n_PYwdL2HYDz904KXQVsYzdbWg46ydvYQ_gOejIrA |
| CitedBy_id | crossref_primary_10_1007_s10472_023_09834_5 crossref_primary_10_1007_s12046_023_02288_9 crossref_primary_10_1016_j_eswa_2024_124343 crossref_primary_10_1007_s13369_024_08912_y crossref_primary_10_1109_TNNLS_2024_3352279 crossref_primary_10_1155_2023_5566965 crossref_primary_10_3390_math12020243 crossref_primary_10_1016_j_asoc_2022_109724 crossref_primary_10_1007_s13369_022_07072_1 crossref_primary_10_1016_j_eswa_2021_115945 crossref_primary_10_3390_a18030119 crossref_primary_10_1007_s40815_021_01144_4 crossref_primary_10_1016_j_frl_2023_104552 crossref_primary_10_1007_s11227_024_06510_1 crossref_primary_10_1016_j_ymssp_2022_109733 crossref_primary_10_1111_mice_12828 crossref_primary_10_1007_s11042_023_16392_9 crossref_primary_10_1016_j_renene_2024_121889 crossref_primary_10_1007_s40436_023_00451_3 crossref_primary_10_1016_j_hydromet_2023_106192 crossref_primary_10_1109_JIOT_2023_3314057 crossref_primary_10_1155_2022_4639208 crossref_primary_10_1108_SSMT_04_2023_0020 crossref_primary_10_1590_1517_7076_rmat_2023_0245 crossref_primary_10_32604_cmc_2023_031304 crossref_primary_10_1007_s10706_023_02423_7 crossref_primary_10_1016_j_swevo_2021_100952 crossref_primary_10_1016_j_cose_2024_104160 crossref_primary_10_1016_j_eswa_2023_121248 crossref_primary_10_1016_j_eswa_2023_119648 crossref_primary_10_1111_jfpe_13993 crossref_primary_10_1177_00405175211070611 crossref_primary_10_1016_j_watres_2025_123443 crossref_primary_10_3390_pr11123417 crossref_primary_10_1016_j_engappai_2021_104324 crossref_primary_10_1109_ACCESS_2022_3215131 crossref_primary_10_1007_s13246_024_01467_0 crossref_primary_10_1002_nag_3972 crossref_primary_10_1016_j_jics_2021_100241 crossref_primary_10_3390_fractalfract6100560 crossref_primary_10_1016_j_compgeo_2024_106440 crossref_primary_10_1155_2024_5469868 crossref_primary_10_1007_s00366_021_01554_w crossref_primary_10_1080_03772063_2021_1886609 crossref_primary_10_1103_PhysRevAccelBeams_24_060701 crossref_primary_10_3389_fphy_2023_1154735 crossref_primary_10_1007_s11600_022_00988_0 crossref_primary_10_1109_ACCESS_2022_3153727 crossref_primary_10_1109_TITS_2024_3465234 crossref_primary_10_1007_s11269_024_04083_5 crossref_primary_10_1088_1742_6596_2404_1_012015 crossref_primary_10_3390_app14093624 crossref_primary_10_1007_s00366_022_01746_y crossref_primary_10_1093_ijlct_ctae282 crossref_primary_10_1016_j_compag_2024_108972 crossref_primary_10_1007_s10586_024_04644_8 crossref_primary_10_1007_s11581_024_05954_y |
| Cites_doi | 10.1016/j.ins.2012.11.009 10.1016/j.biomaterials.2010.08.096 10.1016/j.jbi.2017.03.002 10.1109/TEC.2002.801992 10.1016/j.cnsns.2012.05.010 10.1016/j.knosys.2011.07.001 10.1145/37402.37406 10.1016/j.future.2019.02.028 10.1007/s00500-014-1493-4 10.1016/j.swevo.2013.06.001 10.1016/j.ins.2012.03.005 10.1007/s10898-007-9149-x 10.1016/j.advengsoft.2016.01.008 10.1016/j.asoc.2015.10.048 10.1016/j.eswa.2010.08.053 10.1109/TEVC.2008.919004 10.1016/j.soildyn.2015.04.004 10.1016/j.knosys.2015.12.022 10.1016/j.future.2020.03.055 10.1016/j.advengsoft.2017.01.004 10.1111/itor.12001 10.1016/j.engappai.2013.05.002 10.1525/bio.2013.63.2.5 10.1007/s00500-015-1993-x 10.1061/(ASCE)0733-9496(2003)129:3(210) 10.1016/j.neucom.2017.04.053 10.1016/j.ins.2009.03.004 10.2514/6.2005-1897 10.1109/20.376418 10.1016/j.ins.2014.11.023 10.1016/j.advengsoft.2015.01.010 10.1016/j.enconman.2018.02.012 10.1378/chest.11-0523 10.1007/s10462-011-9276-0 10.1016/j.eswa.2018.09.027 10.24846/v28i1y201907 10.1109/4235.585893 10.1007/s11721-008-0021-5 10.1016/j.eswa.2020.113377 10.1016/j.advengsoft.2017.07.002 10.1080/15325008.2015.1041625 10.1109/3477.484436 10.1016/j.asoc.2011.05.008 10.1016/j.ins.2011.08.006 10.1007/s00521-015-1920-1 10.1016/j.ins.2010.05.035 10.1109/TSMCB.2008.921005 10.1080/15325000701351641 10.1016/j.patrec.2016.10.007 10.1016/j.jocs.2013.10.002 10.1016/j.knosys.2019.105237 10.1061/(ASCE)HE.1943-5584.0000938 10.1016/j.chaos.2004.11.095 10.1007/s11760-017-1212-6 10.1016/j.asoc.2009.08.029 10.1007/s10489-018-1158-6 10.1080/03610928008827904 10.1162/EVCO_a_00077 10.1162/evco.1995.3.1.81 10.1080/03052150902736879 10.1136/bmj.310.6973.170 10.1016/j.advengsoft.2013.12.007 10.1016/j.ecoinf.2006.07.003 10.1108/02644401211235834 10.1016/j.cad.2010.12.015 10.1007/s00521-017-2988-6 10.1016/j.compstruc.2014.03.007 10.1007/s11721-016-0128-z 10.1016/j.asoc.2015.01.004 10.3139/120.111153 10.1080/01621459.1937.10503522 10.1016/j.neucom.2008.04.027 10.1016/j.compbiolchem.2017.08.015 10.1016/j.aei.2005.01.004 10.1016/j.energy.2016.05.105 10.1016/j.ins.2012.05.009 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Apr 1, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Apr 1, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.114430 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_114430 S0957417420310939 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-cfb9d04ca2a64a8a915e4fe640375608fff4c29e669db6a6e7f8dcc63bbf4ece3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 04:01:32 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Sat Oct 25 04:50:58 EDT 2025 Fri Feb 23 02:40:57 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bat algorithm Particle swarm optimization (PSO) Whale optimization algorithm (WOA) Nature-inspired optimization algorithms Gray wolf optimization (GWO) Swarm optimization algorithms Sine–cosine algorithm (SCA) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-cfb9d04ca2a64a8a915e4fe640375608fff4c29e669db6a6e7f8dcc63bbf4ece3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2503172514 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2503172514 crossref_citationtrail_10_1016_j_eswa_2020_114430 crossref_primary_10_1016_j_eswa_2020_114430 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114430 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 2021-04-00 20210401 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Liu, Wang, Jin, Tang, Huang (b57) 2005; 25 Ma (b59) 2010; 180 Piotrowski (b76) 2015; 297 Sayed, Khoriba, Haggag (b84) 2018; 48 Yang, Hossein Gandomi (b109) 2012; 29 Saremi, Mirjalili, Lewis (b82) 2017; 105 Krishnanand, Ghose (b52) 2009; 3 Ghahremani-Nahr, Kian, Sabet (b33) 2019; 116 Jayabarathi, Raghunathan, Adarsh, Suganthan (b48) 2016; 111 Bland, Altman (b7) 1995; 310 McDonald (b63) 2009 Pedersen, Chipperfield (b74) 2010; 10 Goldbogen, Friedlaender, Calambokidis, Mckenna, Simon, Nowacek (b34) 2013; 63 Eberhart, Shi (b19) 2000 Mirjalili, Mirjalili, Lewis (b71) 2014; 69 Eberhart, Shi (b18) 1998 Rajabioun (b77) 2011; 11 Mirjalili (b68) 2016; 96 Eberhart, Kennedy (b17) 1995 Li, Chen, Wang, Heidari, Mirjalili (b54) 2020 Song, Tang, Zhao, Zhang, Li, Huang, Cai (b87) 2015; 75 Črepinšek, Liu, Mernik (b97) 2012; 212 He, Wu, Saunders (b41) 2006 Dorigo, Stützle (b15) 2019 Mirjalili, Lewis (b70) 2016; 95 Haupt (b40) 1995; 31 Gandomi, Yang (b32) 2014; 5 Mirjalili (b66) 2015; 83 Ding, Chen, Hao (b13) 2018 Sörensen (b88) 2015; 22 Yıldız, Yıldız (b111) 2018; 60 Cleghorn, Engelbrecht (b11) 2014 Pan (b73) 2012; 26 Pham, Castellani (b75) 2009; 223 Tharwat, Hassanien, Elnaghi (b94) 2017; 93 Wilcoxon (b101) 1992 Tahk, Park, Woo, Kim (b90) 2009; 41 Abderazek, Yildiz, Mirjalili (b2) 2020; 191 Ibrahim, Tharwat, Gaber, Hassanien (b46) 2018; 12 Cheng, Prayogo (b8) 2014; 139 Duéñez-Guzmán, Vose (b16) 2013; 21 Elfattah, Hassanien, Abuelenin, Bhattacharyya (b25) 2019 Ezugwu, Adeleke, Akinyelu, Viriri (b27) 2019 Yang, Gao, Liu, Song (b108) 2015; 29 Arsenault, Poulin, Côté, Brissette (b5) 2014; 19 Kennedy (b50) 2003 Karaboga, Basturk (b49) 2007; 39 Xing, Gao (b104) 2014 Waghmare (b99) 2013; 229 Friedman (b30) 1937; 32 Gandomi, Alavi (b31) 2012; 17 Oldewage, Engelbrecht, Cleghorn (b72) 2018 Hoffmeister, Bäck (b44) 1990 Yang, Deb (b107) 2009 Mehrabian, Lucas (b64) 2006; 1 Kennedy (b51) 2010 Rashedi, Nezamabadi-Pour, Saryazdi (b80) 2009; 179 Yang (b105) 2012 Abido (b3) 2002; 17 Ling, Iu, Chan, Lam, Yeung, Leung (b55) 2008; 38 Eusuff, Lansey (b26) 2003; 129 Tharwat (b91) 2019 Wolpert, Macready (b103) 1997; 1 (pp. 1–13). Elbeltagi, Hegazy, Grierson (b22) 2005; 19 El-Fergany, Hasanien (b21) 2015; 43 Sayed, Hassanien, Azar (b83) 2019; 31 Tsai, Pan, Liao, Tsai, Istanda (b96) 2012; 148 Mirjalili (b67) 2016; 27 Wang, Yang, Du, Niu (b100) 2018; 163 Ma, Ye, Simon, Fei (b61) 2017; 21 Ma, Simon, Fei, Chen (b60) 2013; 26 Guedria (b35) 2016; 40 Inman, Davenpot (b47) 1980; 9 Demšar (b12) 2006; 7 Heppner, Grenander (b43) 1990 Streiner, Norman (b89) 2011; 140 Beyer (b6) 1995; 3 Liu, Tao, Yang, Zhang, Lee, Liu (b56) 2011; 32 Harrison, Engelbrecht, Ombuki-Berman (b37) 2016; 10 Fister, Fister Jr, Yang, Brest (b29) 2013; 13 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b42) 2019 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b69) 2017; 114 Reynolds (b81) 1987; 21 Lones (b58) 2019 Eberhart, Shi (b20) 2001 Hassan, R., Cohanim, B., De Weck, O., & Venter, G. (2005). A comparison of particle swarm optimization and the genetic algorithm. In Merz, Freisleben (b65) 1999 Hu (b45) 2011; 38 Rao, Savsani, Vakharia (b78) 2011; 43 Tharwat, Gaber, Hassanien, Elnaghi (b93) 2017 Tharwat, A., & Gabel, T. 0000. Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Computing and Applications. 1–14. Elfattah, Abuelenin, Hassanien, Pan (b23) 2016 Ab Wahab, Nefti-Meziani, Atyabi (b1) 2015; 10 Civicioglu, Besdok (b10) 2013; 39 Rao, Savsani, Vakharia (b79) 2012; 183 Shi, Eberhart (b85) 1999 Črepinšek, Liu, Mernik, Mernik (b98) 2016; 20 Chu, Tsai, Pan (b9) 2006 Latiff, Tsimenidis, Sharif (b53) 2007 Yang (b106) 2014 ELFATTAH, HASSANIEN, ABUELENIN (b24) 2019; 28 Guo, Yang, Wu, Wang, Liang (b36) 2008; 71 Yildiz (b110) 2012; 210 Simon (b86) 2008; 12 Anitha, Subramanian, Gnanadass (b4) 2007; 35 Mafarja, Mirjalili (b62) 2017; 260 Hassanien, Tharwat, Own (b39) 2017; 70 Dorigo, Maniezzo, Colorni (b14) 1996; 26 Tharwat, Moemen, Hassanien (b95) 2017; 68 Faramarzi, Heidarinejad, Mirjalili, Gandomi (b28) 2020 Wolpert, Macready (b102) 1995 Ibrahim (10.1016/j.eswa.2020.114430_b46) 2018; 12 Mirjalili (10.1016/j.eswa.2020.114430_b68) 2016; 96 Heppner (10.1016/j.eswa.2020.114430_b43) 1990 Li (10.1016/j.eswa.2020.114430_b54) 2020 Hu (10.1016/j.eswa.2020.114430_b45) 2011; 38 Wolpert (10.1016/j.eswa.2020.114430_b103) 1997; 1 Yang (10.1016/j.eswa.2020.114430_b107) 2009 Ding (10.1016/j.eswa.2020.114430_b13) 2018 Ma (10.1016/j.eswa.2020.114430_b60) 2013; 26 Elbeltagi (10.1016/j.eswa.2020.114430_b22) 2005; 19 Ma (10.1016/j.eswa.2020.114430_b59) 2010; 180 Goldbogen (10.1016/j.eswa.2020.114430_b34) 2013; 63 Piotrowski (10.1016/j.eswa.2020.114430_b76) 2015; 297 Yıldız (10.1016/j.eswa.2020.114430_b111) 2018; 60 Duéñez-Guzmán (10.1016/j.eswa.2020.114430_b16) 2013; 21 Rashedi (10.1016/j.eswa.2020.114430_b80) 2009; 179 Sayed (10.1016/j.eswa.2020.114430_b84) 2018; 48 Cheng (10.1016/j.eswa.2020.114430_b8) 2014; 139 Civicioglu (10.1016/j.eswa.2020.114430_b10) 2013; 39 Saremi (10.1016/j.eswa.2020.114430_b82) 2017; 105 Yang (10.1016/j.eswa.2020.114430_b108) 2015; 29 Hoffmeister (10.1016/j.eswa.2020.114430_b44) 1990 Demšar (10.1016/j.eswa.2020.114430_b12) 2006; 7 Eusuff (10.1016/j.eswa.2020.114430_b26) 2003; 129 Hassanien (10.1016/j.eswa.2020.114430_b39) 2017; 70 Yang (10.1016/j.eswa.2020.114430_b106) 2014 Mirjalili (10.1016/j.eswa.2020.114430_b70) 2016; 95 Waghmare (10.1016/j.eswa.2020.114430_b99) 2013; 229 Tharwat (10.1016/j.eswa.2020.114430_b95) 2017; 68 Guo (10.1016/j.eswa.2020.114430_b36) 2008; 71 Inman (10.1016/j.eswa.2020.114430_b47) 1980; 9 Rao (10.1016/j.eswa.2020.114430_b78) 2011; 43 Anitha (10.1016/j.eswa.2020.114430_b4) 2007; 35 Haupt (10.1016/j.eswa.2020.114430_b40) 1995; 31 Lones (10.1016/j.eswa.2020.114430_b58) 2019 Chu (10.1016/j.eswa.2020.114430_b9) 2006 Cleghorn (10.1016/j.eswa.2020.114430_b11) 2014 Gandomi (10.1016/j.eswa.2020.114430_b32) 2014; 5 Mirjalili (10.1016/j.eswa.2020.114430_b66) 2015; 83 Dorigo (10.1016/j.eswa.2020.114430_b14) 1996; 26 El-Fergany (10.1016/j.eswa.2020.114430_b21) 2015; 43 Kennedy (10.1016/j.eswa.2020.114430_b50) 2003 Ling (10.1016/j.eswa.2020.114430_b55) 2008; 38 Xing (10.1016/j.eswa.2020.114430_b104) 2014 Faramarzi (10.1016/j.eswa.2020.114430_b28) 2020 Song (10.1016/j.eswa.2020.114430_b87) 2015; 75 Latiff (10.1016/j.eswa.2020.114430_b53) 2007 Mirjalili (10.1016/j.eswa.2020.114430_b69) 2017; 114 Eberhart (10.1016/j.eswa.2020.114430_b18) 1998 Liu (10.1016/j.eswa.2020.114430_b56) 2011; 32 Yang (10.1016/j.eswa.2020.114430_b105) 2012 Abderazek (10.1016/j.eswa.2020.114430_b2) 2020; 191 Jayabarathi (10.1016/j.eswa.2020.114430_b48) 2016; 111 Yildiz (10.1016/j.eswa.2020.114430_b110) 2012; 210 Krishnanand (10.1016/j.eswa.2020.114430_b52) 2009; 3 Wang (10.1016/j.eswa.2020.114430_b100) 2018; 163 Harrison (10.1016/j.eswa.2020.114430_b37) 2016; 10 Oldewage (10.1016/j.eswa.2020.114430_b72) 2018 Fister (10.1016/j.eswa.2020.114430_b29) 2013; 13 Črepinšek (10.1016/j.eswa.2020.114430_b98) 2016; 20 Streiner (10.1016/j.eswa.2020.114430_b89) 2011; 140 Eberhart (10.1016/j.eswa.2020.114430_b20) 2001 Bland (10.1016/j.eswa.2020.114430_b7) 1995; 310 Tsai (10.1016/j.eswa.2020.114430_b96) 2012; 148 Elfattah (10.1016/j.eswa.2020.114430_b23) 2016 Karaboga (10.1016/j.eswa.2020.114430_b49) 2007; 39 Eberhart (10.1016/j.eswa.2020.114430_b17) 1995 Reynolds (10.1016/j.eswa.2020.114430_b81) 1987; 21 Sayed (10.1016/j.eswa.2020.114430_b83) 2019; 31 10.1016/j.eswa.2020.114430_b92 Beyer (10.1016/j.eswa.2020.114430_b6) 1995; 3 Abido (10.1016/j.eswa.2020.114430_b3) 2002; 17 Dorigo (10.1016/j.eswa.2020.114430_b15) 2019 Sörensen (10.1016/j.eswa.2020.114430_b88) 2015; 22 Friedman (10.1016/j.eswa.2020.114430_b30) 1937; 32 Rajabioun (10.1016/j.eswa.2020.114430_b77) 2011; 11 ELFATTAH (10.1016/j.eswa.2020.114430_b24) 2019; 28 Mirjalili (10.1016/j.eswa.2020.114430_b71) 2014; 69 Tharwat (10.1016/j.eswa.2020.114430_b93) 2017 Ghahremani-Nahr (10.1016/j.eswa.2020.114430_b33) 2019; 116 Pan (10.1016/j.eswa.2020.114430_b73) 2012; 26 Yang (10.1016/j.eswa.2020.114430_b109) 2012; 29 Pham (10.1016/j.eswa.2020.114430_b75) 2009; 223 Kennedy (10.1016/j.eswa.2020.114430_b51) 2010 Tharwat (10.1016/j.eswa.2020.114430_b94) 2017; 93 Elfattah (10.1016/j.eswa.2020.114430_b25) 2019 McDonald (10.1016/j.eswa.2020.114430_b63) 2009 Mafarja (10.1016/j.eswa.2020.114430_b62) 2017; 260 Mehrabian (10.1016/j.eswa.2020.114430_b64) 2006; 1 He (10.1016/j.eswa.2020.114430_b41) 2006 Merz (10.1016/j.eswa.2020.114430_b65) 1999 Shi (10.1016/j.eswa.2020.114430_b85) 1999 Heidari (10.1016/j.eswa.2020.114430_b42) 2019 Eberhart (10.1016/j.eswa.2020.114430_b19) 2000 Arsenault (10.1016/j.eswa.2020.114430_b5) 2014; 19 Mirjalili (10.1016/j.eswa.2020.114430_b67) 2016; 27 Ma (10.1016/j.eswa.2020.114430_b61) 2017; 21 Gandomi (10.1016/j.eswa.2020.114430_b31) 2012; 17 Wolpert (10.1016/j.eswa.2020.114430_b102) 1995 Ab Wahab (10.1016/j.eswa.2020.114430_b1) 2015; 10 Guedria (10.1016/j.eswa.2020.114430_b35) 2016; 40 Wilcoxon (10.1016/j.eswa.2020.114430_b101) 1992 Simon (10.1016/j.eswa.2020.114430_b86) 2008; 12 Črepinšek (10.1016/j.eswa.2020.114430_b97) 2012; 212 Tahk (10.1016/j.eswa.2020.114430_b90) 2009; 41 Tharwat (10.1016/j.eswa.2020.114430_b91) 2019 Ezugwu (10.1016/j.eswa.2020.114430_b27) 2019 Pedersen (10.1016/j.eswa.2020.114430_b74) 2010; 10 Liu (10.1016/j.eswa.2020.114430_b57) 2005; 25 10.1016/j.eswa.2020.114430_b38 Rao (10.1016/j.eswa.2020.114430_b79) 2012; 183 |
| References_xml | – volume: 229 start-page: 159 year: 2013 end-page: 169 ident: b99 article-title: Comments on “A note on teaching–learning-based optimization algorithm” publication-title: Information Sciences – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: b69 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software – volume: 5 start-page: 224 year: 2014 end-page: 232 ident: b32 article-title: Chaotic bat algorithm publication-title: Journal of Computer Science – year: 2019 ident: b58 article-title: Mitigating metaphors: A comprehensible guide to recent nature-inspired algorithms – volume: 31 start-page: 1932 year: 1995 end-page: 1935 ident: b40 article-title: Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems publication-title: IEEE Transactions on Magnetics – volume: 163 start-page: 134 year: 2018 end-page: 150 ident: b100 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Conversion and Management – volume: 40 start-page: 455 year: 2016 end-page: 467 ident: b35 article-title: Improved accelerated PSO algorithm for mechanical engineering optimization problems publication-title: Applied Soft Computing – volume: 38 start-page: 743 year: 2008 end-page: 763 ident: b55 article-title: Hybrid particle swarm optimization with wavelet mutation and its industrial applications publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – start-page: 264 year: 2018 end-page: 276 ident: b72 article-title: The importance of component-wise stochasticity in particle swarm optimization publication-title: International Conference on Swarm Intelligence – volume: 105 start-page: 30 year: 2017 end-page: 47 ident: b82 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Advances in Engineering Software – volume: 10 year: 2015 ident: b1 article-title: A comprehensive review of swarm optimization algorithms publication-title: PloS One – volume: 25 start-page: 1261 year: 2005 end-page: 1271 ident: b57 article-title: Improved particle swarm optimization combined with chaos publication-title: Chaos, Solitons & Fractals – volume: 210 start-page: 81 year: 2012 end-page: 88 ident: b110 article-title: A comparative study of population-based optimization algorithms for turning operations publication-title: Information Sciences – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: b80 article-title: GSA: a gravitational search algorithm publication-title: Information Sciences – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b12 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – year: 2020 ident: b28 article-title: Marine predators algorithm: A nature-inspired Metaheuristic publication-title: Expert Systems with Applications – volume: 12 start-page: 711 year: 2018 end-page: 719 ident: b46 article-title: Optimized superpixel and adaboost classifier for human thermal face recognition publication-title: Signal, Image and Video Processing – year: 2009 ident: b63 article-title: Handbook of biological statistics (vol. 2) – volume: 1 start-page: 355 year: 2006 end-page: 366 ident: b64 article-title: A novel numerical optimization algorithm inspired from weed colonization publication-title: Ecological Informatics – start-page: 240 year: 2012 end-page: 249 ident: b105 article-title: Flower pollination algorithm for global optimization publication-title: International conference on unconventional computing and natural computation – volume: 29 start-page: 386 year: 2015 end-page: 394 ident: b108 article-title: Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight publication-title: Applied Soft Computing – volume: 10 start-page: 267 year: 2016 end-page: 305 ident: b37 article-title: Inertia weight control strategies for particle swarm optimization publication-title: Swarm Intelligence – start-page: 2063 year: 1999 end-page: 2070 ident: b65 article-title: A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem publication-title: Proceedings of the 1999 Congress on Evolutionary Computation- (Cat. No. 99TH8406) (vol. 3) – start-page: 1 year: 2019 end-page: 34 ident: b91 article-title: Parameter investigation of support vector machine classifier with kernel functions publication-title: Knowledge and Information Systems – start-page: 39 year: 1995 end-page: 43 ident: b17 article-title: A new optimizer using particle swarm theory publication-title: Proceedings of the sixth international symposium on micro machine and human science – volume: 10 start-page: 618 year: 2010 end-page: 628 ident: b74 article-title: Simplifying particle swarm optimization publication-title: Applied Soft Computing – volume: 20 start-page: 223 year: 2016 end-page: 235 ident: b98 article-title: Is a comparison of results meaningful from the inexact replications of computational experiments? publication-title: Soft Computing – volume: 17 start-page: 4831 year: 2012 end-page: 4845 ident: b31 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 22 start-page: 3 year: 2015 end-page: 18 ident: b88 article-title: Metaheuristics—the metaphor exposed publication-title: International Transactions in Operational Research – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b71 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 60 start-page: 311 year: 2018 end-page: 315 ident: b111 article-title: Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod publication-title: Materials Testing – volume: 297 start-page: 191 year: 2015 end-page: 201 ident: b76 article-title: Regarding the rankings of optimization heuristics based on artificially-constructed benchmark functions publication-title: Information Sciences – volume: 17 start-page: 406 year: 2002 end-page: 413 ident: b3 article-title: Optimal design of power-system stabilizers using particle swarm optimization publication-title: IEEE Transactions on Energy Conversion – volume: 43 start-page: 303 year: 2011 end-page: 315 ident: b78 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design – start-page: 3 year: 2014 end-page: 17 ident: b104 article-title: Introduction to computational intelligence publication-title: Innovative computational intelligence: A rough guide to 134 clever algorithms – volume: 19 start-page: 43 year: 2005 end-page: 53 ident: b22 article-title: Comparison among five evolutionary-based optimization algorithms publication-title: Advanced Engineering Informatics – volume: 310 start-page: 170 year: 1995 ident: b7 article-title: Multiple significance tests: the Bonferroni method publication-title: Bmj – volume: 26 start-page: 69 year: 2012 end-page: 74 ident: b73 article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example publication-title: Knowledge-Based Systems – volume: 26 start-page: 2397 year: 2013 end-page: 2407 ident: b60 article-title: On the equivalences and differences of evolutionary algorithms publication-title: Engineering Applications of Artificial Intelligence – start-page: 455 year: 1990 end-page: 469 ident: b44 article-title: Genetic algorithms and evolution strategies: Similarities and differences publication-title: International conference on parallel problem solving from nature – volume: 21 start-page: 25 year: 1987 end-page: 34 ident: b81 article-title: Flocks, herds and schools: A distributed behavioral model publication-title: ACM Siggraph Computer Graphics – volume: 9 start-page: 571 year: 1980 end-page: 595 ident: b47 article-title: Approximations of the critical region of the friedman statistic publication-title: Communications in Statistics, Theory and Methods A – year: 1995 ident: b102 article-title: No free lunch theorems for search – start-page: 1 year: 2019 end-page: 45 ident: b27 article-title: A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems publication-title: Neural Computing and Applications – start-page: 196 year: 1992 end-page: 202 ident: b101 article-title: Individual comparisons by ranking methods publication-title: Breakthroughs in statistics – volume: 63 start-page: 90 year: 2013 end-page: 100 ident: b34 article-title: Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology publication-title: BioScience – volume: 180 start-page: 3444 year: 2010 end-page: 3464 ident: b59 article-title: An analysis of the equilibrium of migration models for biogeography-based optimization publication-title: Information Sciences – volume: 140 start-page: 16 year: 2011 end-page: 18 ident: b89 article-title: Correction for multiple testing: is there a resolution? publication-title: Chest – start-page: 273 year: 2016 end-page: 280 ident: b23 article-title: Handwritten arabic manuscript image binarization using sine cosine optimization algorithm publication-title: International conference on genetic and evolutionary computing – volume: 183 start-page: 1 year: 2012 end-page: 15 ident: b79 article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems publication-title: Information Sciences – volume: 21 start-page: 293 year: 2013 end-page: 312 ident: b16 article-title: No free lunch and benchmarks publication-title: Evolutionary Computation – year: 1990 ident: b43 article-title: A stochastic nonlinear model for coordinated bird flocks. – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b68 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems – start-page: 317 year: 2018 end-page: 391 ident: b13 article-title: Bio-inspired optimization algorithms publication-title: Bio-inspired collaborative intelligent control and optimization – volume: 32 start-page: 675 year: 1937 end-page: 701 ident: b30 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association – volume: 13 start-page: 34 year: 2013 end-page: 46 ident: b29 article-title: A comprehensive review of firefly algorithms publication-title: Swarm and Evolutionary Computation – volume: 11 start-page: 5508 year: 2011 end-page: 5518 ident: b77 article-title: Cuckoo optimization algorithm publication-title: Applied Soft Computing – start-page: 210 year: 2009 end-page: 214 ident: b107 article-title: Cuckoo search via Lévy flights publication-title: 2009 World congress on nature & biologically inspired computing – start-page: 760 year: 2010 end-page: 766 ident: b51 article-title: Particle swarm optimization publication-title: Encyclopedia of machine learning – volume: 212 start-page: 79 year: 2012 end-page: 93 ident: b97 article-title: A note on teaching–learning-based optimization algorithm publication-title: Information Sciences – volume: 28 start-page: 65 year: 2019 end-page: 76 ident: b24 article-title: A hybrid swarm optimization approach for document binarization publication-title: Studies in Informatics and Control – volume: 75 start-page: 147 year: 2015 end-page: 157 ident: b87 article-title: Grey Wolf Optimizer for parameter estimation in surface waves publication-title: Soil Dynamics and Earthquake Engineering – start-page: 1945 year: 1999 end-page: 1950 ident: b85 article-title: Empirical study of particle swarm optimization publication-title: Proceedings of the 1999 congress on evolutionary computation- (Cat. No. 99TH8406) (vol. 3) – volume: 71 start-page: 3211 year: 2008 end-page: 3215 ident: b36 article-title: A novel LS-SVMs hyper-parameter selection based on particle swarm optimization publication-title: Neurocomputing – volume: 39 start-page: 315 year: 2013 end-page: 346 ident: b10 article-title: A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms publication-title: Artificial Intelligence Review – volume: 41 start-page: 609 year: 2009 end-page: 633 ident: b90 article-title: Hessian approximation algorithms for hybrid optimization methods publication-title: Engineering Optimization – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b49 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization – start-page: 94 year: 2001 end-page: 100 ident: b20 article-title: Tracking and optimizing dynamic systems with particle swarms publication-title: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546) (vol. 1) – volume: 116 start-page: 454 year: 2019 end-page: 471 ident: b33 article-title: A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm publication-title: Expert Systems with Applications – volume: 43 start-page: 1548 year: 2015 end-page: 1559 ident: b21 article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms publication-title: Electric Power Components and Systems – volume: 3 start-page: 81 year: 1995 end-page: 111 ident: b6 article-title: Toward a theory of evolution strategies: On the benefits of sex—the ( publication-title: Evolutionary Computation – start-page: 165 year: 2019 end-page: 175 ident: b25 article-title: Multi-verse optimization clustering algorithm for binarization of handwritten documents publication-title: Recent trends in signal and image processing – volume: 139 start-page: 98 year: 2014 end-page: 112 ident: b8 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Computers and Structures – volume: 191 year: 2020 ident: b2 article-title: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism publication-title: Knowledge-Based Systems – start-page: 611 year: 1998 end-page: 616 ident: b18 article-title: Comparison between genetic algorithms and particle swarm optimization publication-title: International conference on evolutionary programming – year: 2020 ident: b54 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Generation Computer Systems – volume: 35 start-page: 1219 year: 2007 end-page: 1232 ident: b4 article-title: FDR PSO-based transient stability constrained optimal power flow solution for deregulated power industry publication-title: Electric Power Components and Systems – start-page: 311 year: 2019 end-page: 351 ident: b15 article-title: Ant colony optimization: overview and recent advances publication-title: Handbook of metaheuristics – start-page: 1 year: 2007 end-page: 4 ident: b53 article-title: Performance comparison of optimization algorithms for clustering in wireless sensor networks publication-title: 2007 IEEE international conference on mobile adhoc and sensor systems – volume: 260 start-page: 302 year: 2017 end-page: 312 ident: b62 article-title: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection publication-title: Neurocomputing – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b70 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – year: 2019 ident: b42 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems – start-page: 614 year: 2017 end-page: 635 ident: b93 article-title: Particle swarm optimization: a tutorial publication-title: Handbook of research on machine learning innovations and trends – volume: 129 start-page: 210 year: 2003 end-page: 225 ident: b26 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: Journal of Water Resources Planning and Management – start-page: 1272 year: 2006 end-page: 1278 ident: b41 article-title: A novel group search optimizer inspired by animal behavioural ecology publication-title: 2006 IEEE international conference on evolutionary computation – volume: 3 start-page: 87 year: 2009 end-page: 124 ident: b52 article-title: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions publication-title: Swarm Intelligence – volume: 21 start-page: 3081 year: 2017 end-page: 3100 ident: b61 article-title: Conceptual and numerical comparisons of swarm intelligence optimization algorithms publication-title: Soft Computing – volume: 48 start-page: 3462 year: 2018 end-page: 3481 ident: b84 article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies – volume: 148 start-page: 134 year: 2012 end-page: 137 ident: b96 article-title: Bat algorithm inspired algorithm for solving numerical optimization problems publication-title: Applied Mechanics and Materials – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: b67 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications – start-page: 2524 year: 2014 end-page: 2530 ident: b11 article-title: Particle swarm convergence: An empirical investigation publication-title: 2014 IEEE congress on evolutionary computation – volume: 68 start-page: 132 year: 2017 end-page: 149 ident: b95 article-title: Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines publication-title: Journal of Biomedical Informatics – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b103 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 84 year: 2000 end-page: 88 ident: b19 article-title: Comparing inertia weights and constriction factors in particle swarm optimization publication-title: Proceedings of the 2000 congress on evolutionary computation. (Cat. No. 00TH8512) (vol. 1) – volume: 38 start-page: 2632 year: 2011 end-page: 2639 ident: b45 article-title: A container multimodal transportation scheduling approach based on immune affinity model for emergency relief publication-title: Expert Systems with Applications – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b86 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation – start-page: 854 year: 2006 end-page: 858 ident: b9 article-title: Cat swarm optimization publication-title: Pacific rim international conference on artificial intelligence – reference: Hassan, R., Cohanim, B., De Weck, O., & Venter, G. (2005). A comparison of particle swarm optimization and the genetic algorithm. In – volume: 19 start-page: 1374 year: 2014 end-page: 1384 ident: b5 article-title: Comparison of stochastic optimization algorithms in hydrological model calibration publication-title: Journal of Hydrologic Engineering – start-page: 80 year: 2003 end-page: 87 ident: b50 article-title: Bare bones particle swarms publication-title: Proceedings of the 2003 IEEE swarm intelligence symposium. (Cat. No. 03EX706) – volume: 31 start-page: 171 year: 2019 end-page: 188 ident: b83 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Computing and Applications – reference: (pp. 1–13). – year: 2014 ident: b106 article-title: Nature-inspired optimization algorithms – volume: 93 start-page: 13 year: 2017 end-page: 22 ident: b94 article-title: A BA-based algorithm for parameter optimization of support vector machine publication-title: Pattern Recognition Letters – volume: 70 start-page: 198 year: 2017 end-page: 210 ident: b39 article-title: Computational model for vitamin D deficiency using hair mineral analysis publication-title: Computational Biology and Chemistry – volume: 83 start-page: 80 year: 2015 end-page: 98 ident: b66 article-title: The ant lion optimizer publication-title: Advances in Engineering Software – volume: 29 start-page: 464 year: 2012 end-page: 483 ident: b109 article-title: Bat algorithm: a novel approach for global engineering optimization publication-title: Engineering Computations – volume: 32 start-page: 144 year: 2011 end-page: 151 ident: b56 article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors publication-title: Biomaterials – volume: 111 start-page: 630 year: 2016 end-page: 641 ident: b48 article-title: Economic dispatch using hybrid grey wolf optimizer publication-title: Energy – volume: 223 start-page: 2919 year: 2009 end-page: 2938 ident: b75 article-title: The bees algorithm: modelling foraging behaviour to solve continuous optimization problems publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 26 start-page: 29 year: 1996 end-page: 41 ident: b14 article-title: Ant system: optimization by a colony of cooperating agents publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics – reference: Tharwat, A., & Gabel, T. 0000. Parameters optimization of support vector machines for imbalanced data using social ski driver algorithm. Neural Computing and Applications. 1–14. – volume: 229 start-page: 159 year: 2013 ident: 10.1016/j.eswa.2020.114430_b99 article-title: Comments on “A note on teaching–learning-based optimization algorithm” publication-title: Information Sciences doi: 10.1016/j.ins.2012.11.009 – volume: 32 start-page: 144 issue: 1 year: 2011 ident: 10.1016/j.eswa.2020.114430_b56 article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.08.096 – volume: 68 start-page: 132 year: 2017 ident: 10.1016/j.eswa.2020.114430_b95 article-title: Classification of toxicity effects of biotransformed hepatic drugs using whale optimized support vector machines publication-title: Journal of Biomedical Informatics doi: 10.1016/j.jbi.2017.03.002 – volume: 17 start-page: 406 issue: 3 year: 2002 ident: 10.1016/j.eswa.2020.114430_b3 article-title: Optimal design of power-system stabilizers using particle swarm optimization publication-title: IEEE Transactions on Energy Conversion doi: 10.1109/TEC.2002.801992 – start-page: 196 year: 1992 ident: 10.1016/j.eswa.2020.114430_b101 article-title: Individual comparisons by ranking methods – volume: 17 start-page: 4831 issue: 12 year: 2012 ident: 10.1016/j.eswa.2020.114430_b31 article-title: Krill herd: a new bio-inspired optimization algorithm publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2012.05.010 – volume: 26 start-page: 69 year: 2012 ident: 10.1016/j.eswa.2020.114430_b73 article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2011.07.001 – start-page: 210 year: 2009 ident: 10.1016/j.eswa.2020.114430_b107 article-title: Cuckoo search via Lévy flights – start-page: 84 year: 2000 ident: 10.1016/j.eswa.2020.114430_b19 article-title: Comparing inertia weights and constriction factors in particle swarm optimization – volume: 21 start-page: 25 issue: 4 year: 1987 ident: 10.1016/j.eswa.2020.114430_b81 article-title: Flocks, herds and schools: A distributed behavioral model publication-title: ACM Siggraph Computer Graphics doi: 10.1145/37402.37406 – start-page: 273 year: 2016 ident: 10.1016/j.eswa.2020.114430_b23 article-title: Handwritten arabic manuscript image binarization using sine cosine optimization algorithm – year: 2019 ident: 10.1016/j.eswa.2020.114430_b42 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2019.02.028 – volume: 20 start-page: 223 issue: 1 year: 2016 ident: 10.1016/j.eswa.2020.114430_b98 article-title: Is a comparison of results meaningful from the inexact replications of computational experiments? publication-title: Soft Computing doi: 10.1007/s00500-014-1493-4 – start-page: 311 year: 2019 ident: 10.1016/j.eswa.2020.114430_b15 article-title: Ant colony optimization: overview and recent advances – volume: 13 start-page: 34 year: 2013 ident: 10.1016/j.eswa.2020.114430_b29 article-title: A comprehensive review of firefly algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.06.001 – volume: 210 start-page: 81 year: 2012 ident: 10.1016/j.eswa.2020.114430_b110 article-title: A comparative study of population-based optimization algorithms for turning operations publication-title: Information Sciences doi: 10.1016/j.ins.2012.03.005 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 10.1016/j.eswa.2020.114430_b49 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization doi: 10.1007/s10898-007-9149-x – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.eswa.2020.114430_b70 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 40 start-page: 455 year: 2016 ident: 10.1016/j.eswa.2020.114430_b35 article-title: Improved accelerated PSO algorithm for mechanical engineering optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.10.048 – start-page: 760 year: 2010 ident: 10.1016/j.eswa.2020.114430_b51 article-title: Particle swarm optimization – volume: 38 start-page: 2632 issue: 3 year: 2011 ident: 10.1016/j.eswa.2020.114430_b45 article-title: A container multimodal transportation scheduling approach based on immune affinity model for emergency relief publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.08.053 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.eswa.2020.114430_b86 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.919004 – volume: 75 start-page: 147 year: 2015 ident: 10.1016/j.eswa.2020.114430_b87 article-title: Grey Wolf Optimizer for parameter estimation in surface waves publication-title: Soil Dynamics and Earthquake Engineering doi: 10.1016/j.soildyn.2015.04.004 – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.eswa.2020.114430_b68 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.12.022 – year: 2020 ident: 10.1016/j.eswa.2020.114430_b54 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Generation Computer Systems doi: 10.1016/j.future.2020.03.055 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.114430_b27 article-title: A conceptual comparison of several metaheuristic algorithms on continuous optimisation problems publication-title: Neural Computing and Applications – volume: 105 start-page: 30 year: 2017 ident: 10.1016/j.eswa.2020.114430_b82 article-title: Grasshopper optimisation algorithm: theory and application publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.01.004 – start-page: 455 year: 1990 ident: 10.1016/j.eswa.2020.114430_b44 article-title: Genetic algorithms and evolution strategies: Similarities and differences – volume: 22 start-page: 3 issue: 1 year: 2015 ident: 10.1016/j.eswa.2020.114430_b88 article-title: Metaheuristics—the metaphor exposed publication-title: International Transactions in Operational Research doi: 10.1111/itor.12001 – volume: 26 start-page: 2397 issue: 10 year: 2013 ident: 10.1016/j.eswa.2020.114430_b60 article-title: On the equivalences and differences of evolutionary algorithms publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2013.05.002 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.114430_b91 article-title: Parameter investigation of support vector machine classifier with kernel functions publication-title: Knowledge and Information Systems – volume: 63 start-page: 90 issue: 2 year: 2013 ident: 10.1016/j.eswa.2020.114430_b34 article-title: Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology publication-title: BioScience doi: 10.1525/bio.2013.63.2.5 – volume: 21 start-page: 3081 issue: 11 year: 2017 ident: 10.1016/j.eswa.2020.114430_b61 article-title: Conceptual and numerical comparisons of swarm intelligence optimization algorithms publication-title: Soft Computing doi: 10.1007/s00500-015-1993-x – volume: 129 start-page: 210 issue: 3 year: 2003 ident: 10.1016/j.eswa.2020.114430_b26 article-title: Optimization of water distribution network design using the shuffled frog leaping algorithm publication-title: Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)0733-9496(2003)129:3(210) – start-page: 317 year: 2018 ident: 10.1016/j.eswa.2020.114430_b13 article-title: Bio-inspired optimization algorithms – volume: 260 start-page: 302 year: 2017 ident: 10.1016/j.eswa.2020.114430_b62 article-title: Hybrid Whale Optimization Algorithm with simulated annealing for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.053 – year: 2014 ident: 10.1016/j.eswa.2020.114430_b106 – volume: 179 start-page: 2232 issue: 13 year: 2009 ident: 10.1016/j.eswa.2020.114430_b80 article-title: GSA: a gravitational search algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2009.03.004 – ident: 10.1016/j.eswa.2020.114430_b38 doi: 10.2514/6.2005-1897 – volume: 31 start-page: 1932 issue: 3 year: 1995 ident: 10.1016/j.eswa.2020.114430_b40 article-title: Comparison between genetic and gradient-based optimization algorithms for solving electromagnetics problems publication-title: IEEE Transactions on Magnetics doi: 10.1109/20.376418 – volume: 297 start-page: 191 year: 2015 ident: 10.1016/j.eswa.2020.114430_b76 article-title: Regarding the rankings of optimization heuristics based on artificially-constructed benchmark functions publication-title: Information Sciences doi: 10.1016/j.ins.2014.11.023 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.eswa.2020.114430_b66 article-title: The ant lion optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2015.01.010 – start-page: 854 year: 2006 ident: 10.1016/j.eswa.2020.114430_b9 article-title: Cat swarm optimization – volume: 163 start-page: 134 year: 2018 ident: 10.1016/j.eswa.2020.114430_b100 article-title: A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2018.02.012 – start-page: 1 year: 2007 ident: 10.1016/j.eswa.2020.114430_b53 article-title: Performance comparison of optimization algorithms for clustering in wireless sensor networks – volume: 140 start-page: 16 issue: 1 year: 2011 ident: 10.1016/j.eswa.2020.114430_b89 article-title: Correction for multiple testing: is there a resolution? publication-title: Chest doi: 10.1378/chest.11-0523 – start-page: 165 year: 2019 ident: 10.1016/j.eswa.2020.114430_b25 article-title: Multi-verse optimization clustering algorithm for binarization of handwritten documents – volume: 39 start-page: 315 issue: 4 year: 2013 ident: 10.1016/j.eswa.2020.114430_b10 article-title: A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms publication-title: Artificial Intelligence Review doi: 10.1007/s10462-011-9276-0 – start-page: 1945 year: 1999 ident: 10.1016/j.eswa.2020.114430_b85 article-title: Empirical study of particle swarm optimization – start-page: 2063 year: 1999 ident: 10.1016/j.eswa.2020.114430_b65 article-title: A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem – volume: 116 start-page: 454 year: 2019 ident: 10.1016/j.eswa.2020.114430_b33 article-title: A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.09.027 – year: 1990 ident: 10.1016/j.eswa.2020.114430_b43 – year: 2009 ident: 10.1016/j.eswa.2020.114430_b63 – year: 2019 ident: 10.1016/j.eswa.2020.114430_b58 – volume: 28 start-page: 65 issue: 1 year: 2019 ident: 10.1016/j.eswa.2020.114430_b24 article-title: A hybrid swarm optimization approach for document binarization publication-title: Studies in Informatics and Control doi: 10.24846/v28i1y201907 – volume: 7 start-page: 1 issue: Jan year: 2006 ident: 10.1016/j.eswa.2020.114430_b12 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – year: 1995 ident: 10.1016/j.eswa.2020.114430_b102 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2020.114430_b103 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 3 start-page: 87 issue: 2 year: 2009 ident: 10.1016/j.eswa.2020.114430_b52 article-title: Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions publication-title: Swarm Intelligence doi: 10.1007/s11721-008-0021-5 – year: 2020 ident: 10.1016/j.eswa.2020.114430_b28 article-title: Marine predators algorithm: A nature-inspired Metaheuristic publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113377 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.eswa.2020.114430_b69 article-title: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2017.07.002 – ident: 10.1016/j.eswa.2020.114430_b92 – volume: 43 start-page: 1548 issue: 13 year: 2015 ident: 10.1016/j.eswa.2020.114430_b21 article-title: Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms publication-title: Electric Power Components and Systems doi: 10.1080/15325008.2015.1041625 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 10.1016/j.eswa.2020.114430_b14 article-title: Ant system: optimization by a colony of cooperating agents publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics doi: 10.1109/3477.484436 – start-page: 1272 year: 2006 ident: 10.1016/j.eswa.2020.114430_b41 article-title: A novel group search optimizer inspired by animal behavioural ecology – start-page: 94 year: 2001 ident: 10.1016/j.eswa.2020.114430_b20 article-title: Tracking and optimizing dynamic systems with particle swarms – volume: 11 start-page: 5508 issue: 8 year: 2011 ident: 10.1016/j.eswa.2020.114430_b77 article-title: Cuckoo optimization algorithm publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.05.008 – volume: 183 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.eswa.2020.114430_b79 article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems publication-title: Information Sciences doi: 10.1016/j.ins.2011.08.006 – start-page: 80 year: 2003 ident: 10.1016/j.eswa.2020.114430_b50 article-title: Bare bones particle swarms – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.eswa.2020.114430_b67 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Computing and Applications doi: 10.1007/s00521-015-1920-1 – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.eswa.2020.114430_b1 article-title: A comprehensive review of swarm optimization algorithms publication-title: PloS One – volume: 148 start-page: 134 year: 2012 ident: 10.1016/j.eswa.2020.114430_b96 article-title: Bat algorithm inspired algorithm for solving numerical optimization problems – start-page: 2524 year: 2014 ident: 10.1016/j.eswa.2020.114430_b11 article-title: Particle swarm convergence: An empirical investigation – start-page: 39 year: 1995 ident: 10.1016/j.eswa.2020.114430_b17 article-title: A new optimizer using particle swarm theory – volume: 180 start-page: 3444 issue: 18 year: 2010 ident: 10.1016/j.eswa.2020.114430_b59 article-title: An analysis of the equilibrium of migration models for biogeography-based optimization publication-title: Information Sciences doi: 10.1016/j.ins.2010.05.035 – volume: 38 start-page: 743 issue: 3 year: 2008 ident: 10.1016/j.eswa.2020.114430_b55 article-title: Hybrid particle swarm optimization with wavelet mutation and its industrial applications publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2008.921005 – start-page: 614 year: 2017 ident: 10.1016/j.eswa.2020.114430_b93 article-title: Particle swarm optimization: a tutorial – volume: 35 start-page: 1219 issue: 11 year: 2007 ident: 10.1016/j.eswa.2020.114430_b4 article-title: FDR PSO-based transient stability constrained optimal power flow solution for deregulated power industry publication-title: Electric Power Components and Systems doi: 10.1080/15325000701351641 – volume: 93 start-page: 13 year: 2017 ident: 10.1016/j.eswa.2020.114430_b94 article-title: A BA-based algorithm for parameter optimization of support vector machine publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2016.10.007 – volume: 5 start-page: 224 issue: 2 year: 2014 ident: 10.1016/j.eswa.2020.114430_b32 article-title: Chaotic bat algorithm publication-title: Journal of Computer Science doi: 10.1016/j.jocs.2013.10.002 – volume: 191 year: 2020 ident: 10.1016/j.eswa.2020.114430_b2 article-title: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105237 – volume: 19 start-page: 1374 issue: 7 year: 2014 ident: 10.1016/j.eswa.2020.114430_b5 article-title: Comparison of stochastic optimization algorithms in hydrological model calibration publication-title: Journal of Hydrologic Engineering doi: 10.1061/(ASCE)HE.1943-5584.0000938 – start-page: 240 year: 2012 ident: 10.1016/j.eswa.2020.114430_b105 article-title: Flower pollination algorithm for global optimization – volume: 25 start-page: 1261 issue: 5 year: 2005 ident: 10.1016/j.eswa.2020.114430_b57 article-title: Improved particle swarm optimization combined with chaos publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2004.11.095 – volume: 12 start-page: 711 issue: 4 year: 2018 ident: 10.1016/j.eswa.2020.114430_b46 article-title: Optimized superpixel and adaboost classifier for human thermal face recognition publication-title: Signal, Image and Video Processing doi: 10.1007/s11760-017-1212-6 – volume: 10 start-page: 618 issue: 2 year: 2010 ident: 10.1016/j.eswa.2020.114430_b74 article-title: Simplifying particle swarm optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.08.029 – volume: 48 start-page: 3462 issue: 10 year: 2018 ident: 10.1016/j.eswa.2020.114430_b84 article-title: A novel chaotic salp swarm algorithm for global optimization and feature selection publication-title: Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies doi: 10.1007/s10489-018-1158-6 – volume: 9 start-page: 571 year: 1980 ident: 10.1016/j.eswa.2020.114430_b47 article-title: Approximations of the critical region of the friedman statistic publication-title: Communications in Statistics, Theory and Methods A doi: 10.1080/03610928008827904 – volume: 21 start-page: 293 issue: 2 year: 2013 ident: 10.1016/j.eswa.2020.114430_b16 article-title: No free lunch and benchmarks publication-title: Evolutionary Computation doi: 10.1162/EVCO_a_00077 – volume: 3 start-page: 81 issue: 1 year: 1995 ident: 10.1016/j.eswa.2020.114430_b6 article-title: Toward a theory of evolution strategies: On the benefits of sex—the (μ/μ, λ) theory publication-title: Evolutionary Computation doi: 10.1162/evco.1995.3.1.81 – volume: 223 start-page: 2919 issue: 12 year: 2009 ident: 10.1016/j.eswa.2020.114430_b75 article-title: The bees algorithm: modelling foraging behaviour to solve continuous optimization problems publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 41 start-page: 609 issue: 7 year: 2009 ident: 10.1016/j.eswa.2020.114430_b90 article-title: Hessian approximation algorithms for hybrid optimization methods publication-title: Engineering Optimization doi: 10.1080/03052150902736879 – volume: 310 start-page: 170 issue: 6973 year: 1995 ident: 10.1016/j.eswa.2020.114430_b7 article-title: Multiple significance tests: the Bonferroni method publication-title: Bmj doi: 10.1136/bmj.310.6973.170 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.eswa.2020.114430_b71 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – volume: 1 start-page: 355 issue: 4 year: 2006 ident: 10.1016/j.eswa.2020.114430_b64 article-title: A novel numerical optimization algorithm inspired from weed colonization publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2006.07.003 – start-page: 264 year: 2018 ident: 10.1016/j.eswa.2020.114430_b72 article-title: The importance of component-wise stochasticity in particle swarm optimization – volume: 29 start-page: 464 issue: 5 year: 2012 ident: 10.1016/j.eswa.2020.114430_b109 article-title: Bat algorithm: a novel approach for global engineering optimization publication-title: Engineering Computations doi: 10.1108/02644401211235834 – start-page: 611 year: 1998 ident: 10.1016/j.eswa.2020.114430_b18 article-title: Comparison between genetic algorithms and particle swarm optimization – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 10.1016/j.eswa.2020.114430_b78 article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems publication-title: Computer-Aided Design doi: 10.1016/j.cad.2010.12.015 – volume: 31 start-page: 171 issue: 1 year: 2019 ident: 10.1016/j.eswa.2020.114430_b83 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Computing and Applications doi: 10.1007/s00521-017-2988-6 – volume: 139 start-page: 98 year: 2014 ident: 10.1016/j.eswa.2020.114430_b8 article-title: Symbiotic organisms search: a new metaheuristic optimization algorithm publication-title: Computers and Structures doi: 10.1016/j.compstruc.2014.03.007 – volume: 10 start-page: 267 issue: 4 year: 2016 ident: 10.1016/j.eswa.2020.114430_b37 article-title: Inertia weight control strategies for particle swarm optimization publication-title: Swarm Intelligence doi: 10.1007/s11721-016-0128-z – volume: 29 start-page: 386 year: 2015 ident: 10.1016/j.eswa.2020.114430_b108 article-title: Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.01.004 – volume: 60 start-page: 311 issue: 3 year: 2018 ident: 10.1016/j.eswa.2020.114430_b111 article-title: Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod publication-title: Materials Testing doi: 10.3139/120.111153 – start-page: 3 year: 2014 ident: 10.1016/j.eswa.2020.114430_b104 article-title: Introduction to computational intelligence – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 10.1016/j.eswa.2020.114430_b30 article-title: The use of ranks to avoid the assumption of normality implicit in the analysis of variance publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1937.10503522 – volume: 71 start-page: 3211 issue: 16–18 year: 2008 ident: 10.1016/j.eswa.2020.114430_b36 article-title: A novel LS-SVMs hyper-parameter selection based on particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.04.027 – volume: 70 start-page: 198 year: 2017 ident: 10.1016/j.eswa.2020.114430_b39 article-title: Computational model for vitamin D deficiency using hair mineral analysis publication-title: Computational Biology and Chemistry doi: 10.1016/j.compbiolchem.2017.08.015 – volume: 19 start-page: 43 issue: 1 year: 2005 ident: 10.1016/j.eswa.2020.114430_b22 article-title: Comparison among five evolutionary-based optimization algorithms publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2005.01.004 – volume: 111 start-page: 630 year: 2016 ident: 10.1016/j.eswa.2020.114430_b48 article-title: Economic dispatch using hybrid grey wolf optimizer publication-title: Energy doi: 10.1016/j.energy.2016.05.105 – volume: 212 start-page: 79 year: 2012 ident: 10.1016/j.eswa.2020.114430_b97 article-title: A note on teaching–learning-based optimization algorithm publication-title: Information Sciences doi: 10.1016/j.ins.2012.05.009 |
| SSID | ssj0017007 |
| Score | 2.586599 |
| Snippet | Optimization algorithms are widely employed for finding optimal solutions in many applications. Stochastic optimization algorithms including nature-inspired... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114430 |
| SubjectTerms | Algorithms Bat algorithm Gray wolf optimization (GWO) Nature-inspired optimization algorithms Optimization Optimization algorithms Particle swarm optimization (PSO) Sine–cosine algorithm (SCA) Swarm optimization algorithms Whale optimization algorithm (WOA) |
| Title | A conceptual and practical comparison of PSO-style optimization algorithms |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.114430 https://www.proquest.com/docview/2503172514 |
| Volume | 167 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4LX7MkYM3qetHmrbHMRxz4hTmYLeQpIlOtnVsHeLFv92XNh0osoPHhiSU1-S9V_h9IHQNVR3GvdhRSRw4hPDQEYrDvXIJCcOUE1nYtz0OaG9E-uNwXEOdigtjYJU295c5vcjWdqRlo9laTCatITQHUA7h165QtwwMiY-QyLgY3H5tYB5Gfi4q9fYix8y2xJkS46VWH0Z7yC8kc4lBQv9dnH6l6aL2dA_Qnm0acbt8r0NUU_MjtF8ZMmB7P49Rv41lSUNcw3Q-T7ElQcGT3BgO4kzj5-GTs8o_pwpnkDNmloyJ-fQ1W07yt9nqBI26dy-dnmPNEhwZ-HHuSC2S1CWS-5wSHvPECxXRihJjckvdWGtNpJ8oSpNUUE5VpONUShoIoYmSKjhF9Xk2V2cIK8NwSgQEJIAaF4lERynnQgfK1R5scI68KkpMWiVxY2gxZRVk7J2ZyDITWVZG9hzdbNYsSh2NrbPDKvjsx2lgkOi3rmtUX4rZu7hi0ORBkwR9HLn457aXaNc3UJYCsNNA9Xy5VlfQi-SiWRy2Jtpp3z_0Bt9E3d4l |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4QD3rx24ii9uDNTGDruu1IiAQR0ARIuDVt1yqGr8CI8eJv9-3WkWiMB49r2mZ52vejyfM-L0I3ENVhvBY6Kgo9hxDuO0JxsKsqIb4fcyLT9m3dHm0NSXvkjwqokdfCGFql9f2ZT0-9tR2pWDQri_G40ofkAMIhPO1SdUsv2kLbxHcD8wK7-9zwPIz-XJAJ7gWOmW4rZzKSl1q9G_EhN9XMJYYK_Xt0-uGn0-DTPEB7NmvE9ezHDlFBzY7Qft6RAVsDPUbtOpZZHeIapvNZjG0VFHzJTcdBPNf4uf_krJKPicJzcBpTW42J-eRlvhwnr9PVCRo27weNlmO7JTjSc8PEkVpEcZVI7nJKeMijmq-IVpSYLre0GmqtiXQjRWkUC8qpCnQYS0k9ITRRUnmnqDibz9QZwsqUOEUCAPEgyAUi0kHMudCequoabFBCtRwlJq2UuOloMWE5Z-yNGWSZQZZlyJbQ7WbNIhPS-HO2n4PPvl0HBp7-z3Xl_KSYNcYVgywPsiRI5Mj5P7e9RjutQbfDOg-9xwu06xpeS8reKaNislyrS0hMEnGVXrwvhabfug |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+conceptual+and+practical+comparison+of+PSO-style+optimization+algorithms&rft.jtitle=Expert+systems+with+applications&rft.au=Tharwat%2C+Alaa&rft.au=Schenck%2C+Wolfram&rft.date=2021-04-01&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=167&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2020.114430&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |