Explaining anomalies detected by autoencoders using Shapley Additive Explanations
Deep learning algorithms for anomaly detection, such as autoencoders, point out the outliers, saving experts the time-consuming task of examining normal cases in order to find anomalies. Most outlier detection algorithms output a score for each instance in the database. The top-k most intense outlie...
Saved in:
| Published in | Expert systems with applications Vol. 186; p. 115736 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
30.12.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2021.115736 |
Cover
| Abstract | Deep learning algorithms for anomaly detection, such as autoencoders, point out the outliers, saving experts the time-consuming task of examining normal cases in order to find anomalies. Most outlier detection algorithms output a score for each instance in the database. The top-k most intense outliers are returned to the user for further inspection; however, the manual validation of results becomes challenging without justification or additional clues. An explanation of why an instance is anomalous enables the experts to focus their investigation on the most important anomalies and may increase their trust in the algorithm. Recently, a game theory-based framework known as SHapley Additive exPlanations (SHAP) was shown to be effective in explaining various supervised learning models.
In this paper, we propose a method that uses Kernel SHAP to explain anomalies detected by an autoencoder, which is an unsupervised model. The proposed explanation method aims to provide a comprehensive explanation to the experts by focusing on the connection between the features with high reconstruction error and the features that are most important in terms of their affect on the reconstruction error. We propose a black-box explanation method, because it has the advantage of being able to explain any autoencoder without being aware of the exact architecture of the autoencoder model. The proposed explanation method extracts and visually depicts both features that contribute the most to the anomaly and those that offset it. An expert evaluation using real-world data demonstrates the usefulness of the proposed method in helping domain experts better understand the anomalies. Our evaluation of the explanation method, in which a “perfect” autoencoder is used as the ground truth, shows that the proposed method explains anomalies correctly, using the exact features, and evaluation on real-data demonstrates that (1) our explanation model, which uses SHAP, is more robust than the Local Interpretable Model-agnostic Explanations (LIME) method, and (2) the explanations our method provides are more effective at reducing the anomaly score than other methods.
•Explaining anomalies identified by autoencoder using shapley values.•Explain features with high reconstruction error.•Evaluated correctness and robustness of explanations.•Explanations can assist in reducing anomaly score.•Conducted experts evaluation to examine the explanation method. |
|---|---|
| AbstractList | Deep learning algorithms for anomaly detection, such as autoencoders, point out the outliers, saving experts the time-consuming task of examining normal cases in order to find anomalies. Most outlier detection algorithms output a score for each instance in the database. The top-k most intense outliers are returned to the user for further inspection; however, the manual validation of results becomes challenging without justification or additional clues. An explanation of why an instance is anomalous enables the experts to focus their investigation on the most important anomalies and may increase their trust in the algorithm. Recently, a game theory-based framework known as SHapley Additive exPlanations (SHAP) was shown to be effective in explaining various supervised learning models. In this paper, we propose a method that uses Kernel SHAP to explain anomalies detected by an autoencoder, which is an unsupervised model. The proposed explanation method aims to provide a comprehensive explanation to the experts by focusing on the connection between the features with high reconstruction error and the features that are most important in terms of their affect on the reconstruction error. We propose a black-box explanation method, because it has the advantage of being able to explain any autoencoder without being aware of the exact architecture of the autoencoder model. The proposed explanation method extracts and visually depicts both features that contribute the most to the anomaly and those that offset it. An expert evaluation using real-world data demonstrates the usefulness of the proposed method in helping domain experts better understand the anomalies. Our evaluation of the explanation method, in which a "perfect" autoencoder is used as the ground truth, shows that the proposed method explains anomalies correctly, using the exact features, and evaluation on real-data demonstrates that (1) our explanation model, which uses SHAP, is more robust than the Local Interpretable Model-agnostic Explanations (LIME) method, and (2) the explanations our method provides are more effective at reducing the anomaly score than other methods. Deep learning algorithms for anomaly detection, such as autoencoders, point out the outliers, saving experts the time-consuming task of examining normal cases in order to find anomalies. Most outlier detection algorithms output a score for each instance in the database. The top-k most intense outliers are returned to the user for further inspection; however, the manual validation of results becomes challenging without justification or additional clues. An explanation of why an instance is anomalous enables the experts to focus their investigation on the most important anomalies and may increase their trust in the algorithm. Recently, a game theory-based framework known as SHapley Additive exPlanations (SHAP) was shown to be effective in explaining various supervised learning models. In this paper, we propose a method that uses Kernel SHAP to explain anomalies detected by an autoencoder, which is an unsupervised model. The proposed explanation method aims to provide a comprehensive explanation to the experts by focusing on the connection between the features with high reconstruction error and the features that are most important in terms of their affect on the reconstruction error. We propose a black-box explanation method, because it has the advantage of being able to explain any autoencoder without being aware of the exact architecture of the autoencoder model. The proposed explanation method extracts and visually depicts both features that contribute the most to the anomaly and those that offset it. An expert evaluation using real-world data demonstrates the usefulness of the proposed method in helping domain experts better understand the anomalies. Our evaluation of the explanation method, in which a “perfect” autoencoder is used as the ground truth, shows that the proposed method explains anomalies correctly, using the exact features, and evaluation on real-data demonstrates that (1) our explanation model, which uses SHAP, is more robust than the Local Interpretable Model-agnostic Explanations (LIME) method, and (2) the explanations our method provides are more effective at reducing the anomaly score than other methods. •Explaining anomalies identified by autoencoder using shapley values.•Explain features with high reconstruction error.•Evaluated correctness and robustness of explanations.•Explanations can assist in reducing anomaly score.•Conducted experts evaluation to examine the explanation method. |
| ArticleNumber | 115736 |
| Author | Antwarg, Liat Shapira, Bracha Rokach, Lior Miller, Ronnie Mindlin |
| Author_xml | – sequence: 1 givenname: Liat orcidid: 0000-0002-6383-6185 surname: Antwarg fullname: Antwarg, Liat email: liatant@post.bgu.ac.il – sequence: 2 givenname: Ronnie Mindlin surname: Miller fullname: Miller, Ronnie Mindlin email: Ronniemi@post.bgu.ac.il – sequence: 3 givenname: Bracha orcidid: 0000-0003-4943-9324 surname: Shapira fullname: Shapira, Bracha email: bshapira@bgu.ac.il – sequence: 4 givenname: Lior surname: Rokach fullname: Rokach, Lior email: liorrk@post.bgu.ac.il |
| BookMark | eNp9kD1PwzAURS1UJNrCH2CKxJxiO4mdSCxVVT6kSggBs-XYL-AqtYvtFPrvSVomhk5vuec-3TNBI-ssIHRN8Ixgwm7XMwjfckYxJTNCCp6xMzQmJc9SxqtshMa4KniaE55foEkIa4wJx5iP0cvyZ9tKY439SKR1G9kaCImGCCqCTup9IrvowCqnwYekC0Pw9VNuW9gnc61NNDtIDiVWRuNsuETnjWwDXP3dKXq_X74tHtPV88PTYr5KVUbLmKqmkHmteKEJq2lFoclYocpMA6NKZY2sasaqXEqaS1JzTTQ0vNS6aiQUdb9sim6OvVvvvjoIUaxd523_UtCiqnoLjGR9ih5TyrsQPDRi681G-r0gWAzqxFoM6sSgThzV9VD5D1ImHtZFL017Gr07otBP3xnwIijT6wNtfK9UaGdO4b-xJo3v |
| CitedBy_id | crossref_primary_10_51583_IJLTEMAS_2024_130524 crossref_primary_10_1109_JSEN_2023_3236838 crossref_primary_10_1016_j_isatra_2025_01_013 crossref_primary_10_1016_j_jpha_2025_101263 crossref_primary_10_3390_app12136395 crossref_primary_10_1016_j_eswa_2022_119115 crossref_primary_10_1016_j_fuel_2022_126891 crossref_primary_10_1016_j_health_2023_100242 crossref_primary_10_3390_computation12060113 crossref_primary_10_31466_kfbd_1473382 crossref_primary_10_1016_j_aap_2025_107942 crossref_primary_10_1016_j_wasman_2024_09_010 crossref_primary_10_1007_s12145_023_01042_3 crossref_primary_10_1016_j_coastaleng_2025_104722 crossref_primary_10_1016_j_jmrt_2024_06_036 crossref_primary_10_1080_19392699_2024_2341952 crossref_primary_10_1109_TG_2024_3369330 crossref_primary_10_1021_acs_biochem_3c00253 crossref_primary_10_1088_1748_9326_ad959f crossref_primary_10_1007_s00477_025_02911_7 crossref_primary_10_1016_j_coche_2024_101025 crossref_primary_10_1109_ACCESS_2024_3445308 crossref_primary_10_1117_1_JRS_18_042604 crossref_primary_10_1016_j_asoc_2024_112056 crossref_primary_10_1016_j_envpol_2024_124389 crossref_primary_10_1007_s00170_024_14696_0 crossref_primary_10_1016_j_rineng_2025_104025 crossref_primary_10_1111_poms_13727 crossref_primary_10_1016_j_compag_2023_108456 crossref_primary_10_1016_j_ecolind_2024_112945 crossref_primary_10_3390_ma17205056 crossref_primary_10_1016_j_energy_2022_125704 crossref_primary_10_1038_s41598_022_09613_y crossref_primary_10_1080_17538947_2024_2413890 crossref_primary_10_1016_j_jobe_2024_108675 crossref_primary_10_1088_1361_6501_ace640 crossref_primary_10_1063_5_0241098 crossref_primary_10_1016_j_osnem_2022_100239 crossref_primary_10_1002_cpe_8334 crossref_primary_10_1145_3701740 crossref_primary_10_1016_j_heliyon_2024_e41517 crossref_primary_10_1016_j_istruc_2025_108259 crossref_primary_10_47582_jompac_1259507 crossref_primary_10_3390_e24121708 crossref_primary_10_3390_s22249684 crossref_primary_10_1016_j_cmpb_2023_107482 crossref_primary_10_1016_j_conbuildmat_2024_137992 crossref_primary_10_1007_s10462_024_10890_4 crossref_primary_10_1016_j_asoc_2024_112678 crossref_primary_10_1016_j_coldregions_2024_104341 crossref_primary_10_3390_machines12070495 crossref_primary_10_1002_aisy_202400495 crossref_primary_10_1007_s00521_024_09967_6 crossref_primary_10_1016_j_eswa_2023_121533 crossref_primary_10_1016_j_ipm_2022_102988 crossref_primary_10_3390_biomedinformatics4010041 crossref_primary_10_1016_j_rineng_2024_102637 crossref_primary_10_3390_jimaging9020033 crossref_primary_10_1007_s40808_024_02063_7 crossref_primary_10_1016_j_bspc_2024_106320 crossref_primary_10_3389_frai_2023_1099521 crossref_primary_10_3390_rs16193582 crossref_primary_10_1016_j_powtec_2023_118416 crossref_primary_10_1109_ACCESS_2023_3325896 crossref_primary_10_1155_2022_2263329 crossref_primary_10_1111_exsy_13722 crossref_primary_10_1016_j_eswa_2022_117144 crossref_primary_10_3390_machines12020121 crossref_primary_10_1002_for_3097 crossref_primary_10_1145_3654665 crossref_primary_10_1016_j_knosys_2025_112970 crossref_primary_10_1515_teme_2022_0097 crossref_primary_10_1038_s41598_024_51374_3 crossref_primary_10_1016_j_apenergy_2024_123289 crossref_primary_10_1016_j_engappai_2024_108046 crossref_primary_10_1038_s41598_024_75062_4 crossref_primary_10_1016_j_jfueco_2022_100078 crossref_primary_10_1109_TNSM_2023_3282740 crossref_primary_10_1016_j_ijepes_2023_109576 crossref_primary_10_3390_polym14214717 crossref_primary_10_1007_s10462_025_11167_0 crossref_primary_10_1016_j_asej_2024_102975 crossref_primary_10_1038_s41598_023_37746_1 crossref_primary_10_1021_acsami_3c17377 crossref_primary_10_1007_s11668_025_02118_6 crossref_primary_10_1016_j_psep_2024_12_027 crossref_primary_10_3390_electronics13173412 crossref_primary_10_1002_batt_202300457 crossref_primary_10_1016_j_scitotenv_2024_175600 crossref_primary_10_1080_15481603_2024_2426598 crossref_primary_10_1007_s11517_024_03073_4 crossref_primary_10_1016_j_cose_2024_103705 crossref_primary_10_1038_s41598_024_66481_4 crossref_primary_10_1016_j_cscm_2023_e02607 crossref_primary_10_1109_JIOT_2023_3234530 crossref_primary_10_1016_j_enbuild_2024_115177 crossref_primary_10_1016_j_eswa_2023_120307 crossref_primary_10_1109_ACCESS_2024_3360691 crossref_primary_10_3390_molecules29020499 crossref_primary_10_1002_adfm_202412901 crossref_primary_10_1109_ACCESS_2024_3485593 crossref_primary_10_3389_fpubh_2024_1445425 crossref_primary_10_1016_j_compind_2023_104044 crossref_primary_10_1080_08839514_2021_2008148 crossref_primary_10_32604_cmc_2024_052323 crossref_primary_10_1186_s13677_024_00712_x crossref_primary_10_1080_15435075_2024_2326076 crossref_primary_10_2139_ssrn_4147618 crossref_primary_10_1109_ACCESS_2024_3426955 crossref_primary_10_3390_a17060231 crossref_primary_10_3389_fendo_2024_1444282 crossref_primary_10_1016_j_telpol_2023_102598 crossref_primary_10_3390_en16124773 crossref_primary_10_1016_j_apenergy_2024_124117 crossref_primary_10_1007_s10207_023_00763_2 crossref_primary_10_3390_math9212683 crossref_primary_10_1007_s00354_022_00201_2 crossref_primary_10_1016_j_jag_2024_103746 crossref_primary_10_32604_cmc_2024_052599 crossref_primary_10_2196_58455 crossref_primary_10_1016_j_rsase_2024_101208 crossref_primary_10_1016_j_compbiomed_2023_106619 crossref_primary_10_1371_journal_pone_0307721 crossref_primary_10_1007_s00521_023_08929_8 crossref_primary_10_1016_j_fuel_2023_129469 crossref_primary_10_3390_s22176338 crossref_primary_10_1016_j_coldregions_2024_104416 crossref_primary_10_1051_metal_2023075 crossref_primary_10_1016_j_eswa_2022_118721 crossref_primary_10_1186_s44147_024_00428_4 crossref_primary_10_1007_s11628_023_00535_x crossref_primary_10_1016_j_jhazmat_2024_135853 crossref_primary_10_1080_13467581_2023_2294871 crossref_primary_10_1007_s10207_024_00828_w crossref_primary_10_1007_s12243_022_00926_7 crossref_primary_10_1016_j_scs_2024_105889 crossref_primary_10_1109_ACCESS_2023_3342868 crossref_primary_10_1145_3609333 crossref_primary_10_1007_s11356_023_29336_5 crossref_primary_10_3390_ai5040117 crossref_primary_10_3390_axioms12060538 crossref_primary_10_1038_s41598_024_70773_0 crossref_primary_10_3390_su14159680 crossref_primary_10_1016_j_prime_2024_100856 crossref_primary_10_3390_a15110431 crossref_primary_10_3390_app12136681 crossref_primary_10_1007_s10922_024_09891_z crossref_primary_10_1016_j_aej_2024_10_042 crossref_primary_10_1016_j_aei_2024_102823 crossref_primary_10_1016_j_comcom_2023_02_019 crossref_primary_10_1109_ACCESS_2025_3541878 crossref_primary_10_1109_LSP_2024_3520019 crossref_primary_10_1109_JIOT_2023_3296809 crossref_primary_10_1016_j_compeleceng_2024_109246 crossref_primary_10_32604_cmc_2025_059567 crossref_primary_10_1016_j_nhres_2024_11_004 crossref_primary_10_1016_j_artmed_2022_102454 crossref_primary_10_1109_OJCOMS_2022_3215676 crossref_primary_10_1016_j_mlwa_2024_100580 crossref_primary_10_3390_f15111971 crossref_primary_10_1007_s00477_023_02560_8 |
| Cites_doi | 10.1609/aimag.v38i3.2741 10.1016/j.datak.2009.01.004 10.1016/j.visinf.2017.01.006 10.1162/neco.2006.18.7.1527 10.1145/3287560.3287574 10.1145/3097983.3098052 10.1145/1541880.1541882 10.1109/TVCG.2018.2865029 10.1126/science.1127647 10.1016/j.ipm.2003.10.006 10.1016/j.artint.2018.07.007 10.1145/3236386.3241340 10.1007/s10994-017-5633-9 10.14569/IJACSA.2019.0101201 10.1016/j.patcog.2020.107198 10.1023/B:AIRE.0000045502.10941.a9 10.1016/j.patcog.2016.03.028 10.1109/TNNLS.2016.2599820 10.1016/0025-5564(75)90047-4 10.1155/2017/8501683 10.1109/ACCESS.2018.2870052 10.1016/j.eswa.2020.113187 10.1145/342009.335388 10.1007/s10462-010-9165-y 10.1016/j.inffus.2019.12.012 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 30, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 30, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.115736 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_115736 S0957417421011155 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AGCQF JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-cf5a4bc75d16b292ef365c83de62cc3fa9b6694aa24a1b7d1def78dd9fae5b873 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Sun Sep 07 03:35:56 EDT 2025 Sat Oct 25 05:41:17 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 23 02:40:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | XAI Shapley values Explainable black-box models SHAP Autoencoder Anomaly detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-cf5a4bc75d16b292ef365c83de62cc3fa9b6694aa24a1b7d1def78dd9fae5b873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4943-9324 0000-0002-6383-6185 |
| PQID | 2599115613 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2599115613 crossref_primary_10_1016_j_eswa_2021_115736 crossref_citationtrail_10_1016_j_eswa_2021_115736 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115736 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-30 |
| PublicationDateYYYYMMDD | 2021-12-30 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Jolliffe (b34) 2011 Pang, Shen, Cao, Hengel (b54) 2020 Guidotti, Monreale, Ruggieri, Turini, Giannotti, Pedreschi (b27) 2018; 51 Kopp, Pevnỳ, Holeňa (b37) 2020; 149 Štrumbelj, Kononenko, Šikonja (b65) 2009; 68 Amarasinghe, Kenney, Manic (b3) 2018 Song, Jiang, Men, Yang (b64) 2017; 2017 External Data Source (b20) 2018 Miller (b47) 2019; 267 Takeishi (b66) 2019 Zhou, C., & Paffenroth, R. C. (2017). Anomaly detection with robust deep autoencoders. In Lipton (b38) 2018; 16 Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. In Liu, Motoda (b39) 2013 Takeishi, Kawahara (b67) 2020 Ben-Gal (b7) 2005 Hodge, Austin (b32) 2004; 22 Maaten, Hinton (b45) 2008; 9 Radev, Jing, Styś, Tam (b56) 2004; 40 Arrieta, Díaz-Rodríguez, Del Ser, Bennetot, Tabik, Barbado, García, Gil-López, Molina, Benjamins (b6) 2020; 58 An, Cho (b4) 2015; 2 Goodall, Ragan, Steed, Reed, Richardson, Huffer, Bridges, Laska (b24) 2019; 25 Yang, Kim (b69) 2019 Hoffman, Mueller, Klein, Litman (b33) 2018 Tan, Steinbach, Kumar (b68) 2016 Arp, Spreitzenbarth, Hubner, Gascon, Rieck, Siemens (b5) 2014 Lundberg, Lee (b44) 2017 Goodman, Flaxman (b26) 2017; 38 Hinton, Osindero, Teh (b30) 2006; 18 Paula, Ladeira, Carvalho, Marzagão (b55) 2016 Singh, Upadhyaya (b63) 2012; 9 Ribeiro, Singh, Guestrin (b57) 2016 (pp. 665–674). Hinton, Salakhutdinov (b31) 2006; 313 Nguyen, Lim, Divakaran, Low, Chan (b50) 2019 Liu, Shin, Hu (b40) 2018 External Data Source (b19) 2018 (pp. 279–288). Collaris, Vink, van Wijk (b16) 2018 Golan, El-Yaniv (b23) 2018 (pp. 93–104). Shrikumar, Greenside, Kundaje (b62) 2017 Chandola, Banerjee, Kumar (b14) 2009; 41 Palczewska, Palczewski, Robinson, Neagu (b53) 2014 Carbonera, Olszewska (b13) 2019; 10 Kauffmann, Müller, Montavon (b35) 2020; 101 Melis, Jaakkola (b46) 2018 Liu, Xia, Yu (b42) 2000 Sakurada, Yairi (b59) 2014 Liu, Wang, Liu, Zhu (b41) 2017; 1 Rumelhart, Hinton, Williams (b58) 1985 Erfani, Rajasegarar, Karunasekera, Leckie (b18) 2016; 58 Mittelstadt, B., Russell, C., & Wachter, S. (2019). Explaining explanations in AI. In Shortliffe, Buchanan (b61) 1975; 23 Bengio, LeCun (b8) 2007; 34 Aggarwal (b2) 2015 Samek, Binder, Montavon, Lapuschkin, Müller (b60) 2017; 28 Lundberg, Erion, Lee (b43) 2018 Doshi-Velez, Kim (b17) 2017; 1050 Kindermans, Hooker, Adebayo, Alber, Schütt, Dähne, Erhan, Kim (b36) 2017; 1050 Montavon, Samek, Müller (b49) 2017 Bertsimas, Orfanoudaki, Wiberg (b11) 2018 Gunning (b28) 2017 Olszewska (b51) 2019 Friedman (b21) 2001 Olvera-López, Carrasco-Ochoa, Martínez-Trinidad, Kittler (b52) 2010; 34 Adadi, Berrada (b1) 2018; 6 Bergman, Hoshen (b9) 2020 Bertsimas, Dunn (b10) 2017; 106 Gilpin, Bau, Yuan, Bajwa, Specter, Kagal (b22) 2018 Chen, Sathe, Aggarwal, Turaga (b15) 2017 Goodfellow, Bengio, Courville (b25) 2016 Hawkins, He, Williams, Baxter (b29) 2002 Goodall (10.1016/j.eswa.2021.115736_b24) 2019; 25 Hinton (10.1016/j.eswa.2021.115736_b30) 2006; 18 Montavon (10.1016/j.eswa.2021.115736_b49) 2017 Golan (10.1016/j.eswa.2021.115736_b23) 2018 Kopp (10.1016/j.eswa.2021.115736_b37) 2020; 149 Shortliffe (10.1016/j.eswa.2021.115736_b61) 1975; 23 Hoffman (10.1016/j.eswa.2021.115736_b33) 2018 External Data Source (10.1016/j.eswa.2021.115736_b19) 2018 Gunning (10.1016/j.eswa.2021.115736_b28) 2017 An (10.1016/j.eswa.2021.115736_b4) 2015; 2 Bengio (10.1016/j.eswa.2021.115736_b8) 2007; 34 Bertsimas (10.1016/j.eswa.2021.115736_b10) 2017; 106 10.1016/j.eswa.2021.115736_b12 Goodman (10.1016/j.eswa.2021.115736_b26) 2017; 38 Hinton (10.1016/j.eswa.2021.115736_b31) 2006; 313 Miller (10.1016/j.eswa.2021.115736_b47) 2019; 267 Pang (10.1016/j.eswa.2021.115736_b54) 2020 Takeishi (10.1016/j.eswa.2021.115736_b67) 2020 Goodfellow (10.1016/j.eswa.2021.115736_b25) 2016 Friedman (10.1016/j.eswa.2021.115736_b21) 2001 Takeishi (10.1016/j.eswa.2021.115736_b66) 2019 Yang (10.1016/j.eswa.2021.115736_b69) 2019 Amarasinghe (10.1016/j.eswa.2021.115736_b3) 2018 Erfani (10.1016/j.eswa.2021.115736_b18) 2016; 58 Hawkins (10.1016/j.eswa.2021.115736_b29) 2002 Liu (10.1016/j.eswa.2021.115736_b41) 2017; 1 Song (10.1016/j.eswa.2021.115736_b64) 2017; 2017 Samek (10.1016/j.eswa.2021.115736_b60) 2017; 28 Jolliffe (10.1016/j.eswa.2021.115736_b34) 2011 Sakurada (10.1016/j.eswa.2021.115736_b59) 2014 Štrumbelj (10.1016/j.eswa.2021.115736_b65) 2009; 68 Arrieta (10.1016/j.eswa.2021.115736_b6) 2020; 58 Liu (10.1016/j.eswa.2021.115736_b40) 2018 Chen (10.1016/j.eswa.2021.115736_b15) 2017 Paula (10.1016/j.eswa.2021.115736_b55) 2016 Palczewska (10.1016/j.eswa.2021.115736_b53) 2014 10.1016/j.eswa.2021.115736_b48 Doshi-Velez (10.1016/j.eswa.2021.115736_b17) 2017; 1050 Melis (10.1016/j.eswa.2021.115736_b46) 2018 Bertsimas (10.1016/j.eswa.2021.115736_b11) 2018 Carbonera (10.1016/j.eswa.2021.115736_b13) 2019; 10 Arp (10.1016/j.eswa.2021.115736_b5) 2014 Singh (10.1016/j.eswa.2021.115736_b63) 2012; 9 Gilpin (10.1016/j.eswa.2021.115736_b22) 2018 Adadi (10.1016/j.eswa.2021.115736_b1) 2018; 6 Ribeiro (10.1016/j.eswa.2021.115736_b57) 2016 Lundberg (10.1016/j.eswa.2021.115736_b43) 2018 Lipton (10.1016/j.eswa.2021.115736_b38) 2018; 16 Kauffmann (10.1016/j.eswa.2021.115736_b35) 2020; 101 Olszewska (10.1016/j.eswa.2021.115736_b51) 2019 Chandola (10.1016/j.eswa.2021.115736_b14) 2009; 41 Hodge (10.1016/j.eswa.2021.115736_b32) 2004; 22 Collaris (10.1016/j.eswa.2021.115736_b16) 2018 Tan (10.1016/j.eswa.2021.115736_b68) 2016 Radev (10.1016/j.eswa.2021.115736_b56) 2004; 40 Aggarwal (10.1016/j.eswa.2021.115736_b2) 2015 Shrikumar (10.1016/j.eswa.2021.115736_b62) 2017 10.1016/j.eswa.2021.115736_b70 Liu (10.1016/j.eswa.2021.115736_b39) 2013 Bergman (10.1016/j.eswa.2021.115736_b9) 2020 External Data Source (10.1016/j.eswa.2021.115736_b20) 2018 Olvera-López (10.1016/j.eswa.2021.115736_b52) 2010; 34 Liu (10.1016/j.eswa.2021.115736_b42) 2000 Lundberg (10.1016/j.eswa.2021.115736_b44) 2017 Nguyen (10.1016/j.eswa.2021.115736_b50) 2019 Ben-Gal (10.1016/j.eswa.2021.115736_b7) 2005 Rumelhart (10.1016/j.eswa.2021.115736_b58) 1985 Guidotti (10.1016/j.eswa.2021.115736_b27) 2018; 51 Kindermans (10.1016/j.eswa.2021.115736_b36) 2017; 1050 Maaten (10.1016/j.eswa.2021.115736_b45) 2008; 9 |
| References_xml | – reference: Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: identifying density-based local outliers. In – year: 2016 ident: b25 article-title: Deep learning – year: 2017 ident: b49 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digital Signal Processing – year: 2020 ident: b54 article-title: Deep learning for anomaly detection: A review – year: 2013 ident: b39 article-title: Instance selection and construction for data mining, vol. 608 – volume: 10 start-page: Paper year: 2019 end-page: 1 ident: b13 article-title: Local-set based-on instance selection approach for autonomous object modelling publication-title: International Journal of Advanced Computer Science and Applications – volume: 28 start-page: 2660 year: 2017 end-page: 2673 ident: b60 article-title: Evaluating the visualization of what a deep neural network has learned publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b45 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – year: 2017 ident: b28 article-title: Explainable artificial intelligence (xai) – start-page: 9758 year: 2018 end-page: 9769 ident: b23 article-title: Deep anomaly detection using geometric transformations publication-title: Advances in neural information processing systems – volume: 38 start-page: 50 year: 2017 end-page: 57 ident: b26 article-title: European Union regulations on algorithmic decision-making and a “right to explanation” publication-title: AI Magazine – volume: 58 start-page: 121 year: 2016 end-page: 134 ident: b18 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Pattern Recognition – start-page: 311 year: 2018 end-page: 317 ident: b3 article-title: Toward explainable deep neural network based anomaly detection publication-title: 2018 11th international conference on human system interaction – start-page: 91 year: 2019 end-page: 99 ident: b50 article-title: GEE: A gradient-based explainable variational autoencoder for network anomaly detection publication-title: 2019 IEEE conference on communications and network security – volume: 2017 year: 2017 ident: b64 article-title: A hybrid semi-supervised anomaly detection model for high-dimensional data publication-title: Computational Intelligence and Neuroscience – volume: 1 start-page: 48 year: 2017 end-page: 56 ident: b41 article-title: Towards better analysis of machine learning models: A visual analytics perspective publication-title: Visual Informatics – volume: 101 year: 2020 ident: b35 article-title: Towards explaining anomalies: a deep taylor decomposition of one-class models publication-title: Pattern Recognition – year: 2020 ident: b9 article-title: Classification-based anomaly detection for general data publication-title: ICLR 2020 – year: 2018 ident: b43 article-title: Consistent individualized feature attribution for tree ensembles – reference: Zhou, C., & Paffenroth, R. C. (2017). Anomaly detection with robust deep autoencoders. In – volume: 41 start-page: 15 year: 2009 ident: b14 article-title: Anomaly detection: A survey publication-title: ACM Computing Surveys – volume: 34 start-page: 133 year: 2010 end-page: 143 ident: b52 article-title: A review of instance selection methods publication-title: Artificial Intelligence Review – start-page: 193 year: 2014 end-page: 218 ident: b53 article-title: Interpreting random forest classification models using a feature contribution method publication-title: Integration of reusable systems – start-page: 4 year: 2014 ident: b59 article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction publication-title: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis – volume: 34 start-page: 1 year: 2007 end-page: 41 ident: b8 article-title: Scaling learning algorithms towards AI publication-title: Large-Scale Kernel Machines – start-page: 4765 year: 2017 end-page: 4774 ident: b44 article-title: A unified approach to interpreting model predictions publication-title: Advances in Neural Information Processing Systems – year: 2018 ident: b16 article-title: Instance-level explanations for fraud detection: A case study – start-page: 793 year: 2019 end-page: 798 ident: b66 article-title: Shapley Values of reconstruction errors of PCA for explaining anomaly detection publication-title: 2019 international conference on data mining workshops – start-page: 954 year: 2016 end-page: 960 ident: b55 article-title: Deep learning anomaly detection as support fraud investigation in brazilian exports and anti-money laundering publication-title: Machine learning and applications (ICMLA), 2016 15th IEEE international conference on – start-page: 23 year: 2014 end-page: 26 ident: b5 article-title: DREBIN: Effective and explainable detection of android malware in your pocket publication-title: Ndss (Vol. 14) – year: 2018 ident: b33 article-title: Metrics for explainable AI: Challenges and prospects – start-page: 3145 year: 2017 end-page: 3153 ident: b62 article-title: Learning important features through propagating activation differences publication-title: Proceedings of the 34th international conference on machine learning-volume 70 – year: 2011 ident: b34 article-title: Principal component analysis – year: 1985 ident: b58 article-title: Learning internal representations by error propagation – year: 2016 ident: b68 article-title: Introduction to data mining – year: 2020 ident: b67 article-title: On anomaly interpretation via Shapley values – volume: 9 start-page: 307 year: 2012 ident: b63 article-title: Outlier detection: applications and techniques publication-title: International Journal of Computer Science Issues (IJCSI) – volume: 68 start-page: 886 year: 2009 end-page: 904 ident: b65 article-title: Explaining instance classifications with interactions of subsets of feature values publication-title: Data & Knowledge Engineering – year: 2018 ident: b19 article-title: Credit card fraud detection – volume: 23 start-page: 351 year: 1975 end-page: 379 ident: b61 article-title: A model of inexact reasoning in medicine publication-title: Mathematical Biosciences – year: 2018 ident: b11 article-title: Interpretable clustering via optimal trees – start-page: 850 year: 2019 end-page: 856 ident: b51 article-title: Designing transparent and autonomous intelligent vision systems publication-title: ICAART (No. 2) – start-page: 90 year: 2017 end-page: 98 ident: b15 article-title: Outlier detection with autoencoder ensembles publication-title: Proceedings of the 2017 SIAM international conference on data mining – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b31 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – start-page: 131 year: 2005 end-page: 146 ident: b7 article-title: Outlier detection publication-title: Data mining and knowledge discovery handbook – start-page: 170 year: 2002 end-page: 180 ident: b29 article-title: Outlier detection using replicator neural networks publication-title: International conference on data warehousing and knowledge discovery – year: 2019 ident: b69 article-title: BIM: Towards quantitative evaluation of interpretability methods with ground truth – year: 2018 ident: b20 article-title: KDD cup 1999 data – start-page: 237 year: 2015 end-page: 263 ident: b2 article-title: Outlier analysis publication-title: Data mining – start-page: 2461 year: 2018 end-page: 2467 ident: b40 article-title: Contextual outlier interpretation publication-title: Proceedings of the 27th international joint conference on artificial intelligence – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: b1 article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access – volume: 40 start-page: 919 year: 2004 end-page: 938 ident: b56 article-title: Centroid-based summarization of multiple documents publication-title: Information Processing & Management – volume: 106 start-page: 1039 year: 2017 end-page: 1082 ident: b10 article-title: Optimal classification trees publication-title: Machine Learning – volume: 51 start-page: 93 year: 2018 ident: b27 article-title: A survey of methods for explaining black box models publication-title: ACM Computing Surveys – reference: (pp. 665–674). – start-page: 80 year: 2018 end-page: 89 ident: b22 article-title: Explaining explanations: An overview of interpretability of machine learning publication-title: 2018 IEEE 5th international conference on data science and advanced analytics – start-page: 1189 year: 2001 end-page: 1232 ident: b21 article-title: Greedy function approximation: a gradient boosting machine publication-title: The Annals of Statistics – volume: 1050 start-page: 2 year: 2017 ident: b36 article-title: The (UN) reliability of saliency methods publication-title: Stat – reference: (pp. 93–104). – reference: Mittelstadt, B., Russell, C., & Wachter, S. (2019). Explaining explanations in AI. In – volume: 22 start-page: 85 year: 2004 end-page: 126 ident: b32 article-title: A survey of outlier detection methodologies publication-title: Artificial Intelligence Review – volume: 58 start-page: 82 year: 2020 end-page: 115 ident: b6 article-title: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Information Fusion – start-page: 1135 year: 2016 end-page: 1144 ident: b57 article-title: Why should i trust you?: Explaining the predictions of any classifier publication-title: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining – volume: 2 start-page: 1 year: 2015 end-page: 18 ident: b4 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Special Lecture on IE – volume: 267 start-page: 1 year: 2019 end-page: 38 ident: b47 article-title: Explanation in artificial intelligence: Insights from the social sciences publication-title: Artificial Intelligence – start-page: 20 year: 2000 end-page: 29 ident: b42 article-title: Clustering through decision tree construction publication-title: Proceedings of the ninth international conference on information and knowledge management – volume: 25 start-page: 204 year: 2019 end-page: 214 ident: b24 article-title: Situ: Identifying and explaining suspicious behavior in networks publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: b30 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation – volume: 1050 start-page: 28 year: 2017 ident: b17 article-title: A roadmap for a rigorous science of interpretability publication-title: Stat – volume: 149 year: 2020 ident: b37 article-title: Anomaly explanation with random forests publication-title: Expert Systems with Applications – volume: 16 start-page: 31 year: 2018 end-page: 57 ident: b38 article-title: The mythos of model interpretability publication-title: Queue – start-page: 7786 year: 2018 end-page: 7795 ident: b46 article-title: Towards robust interpretability with self-explaining neural networks publication-title: Advances in neural information processing systems – reference: (pp. 279–288). – start-page: 3145 year: 2017 ident: 10.1016/j.eswa.2021.115736_b62 article-title: Learning important features through propagating activation differences – start-page: 954 year: 2016 ident: 10.1016/j.eswa.2021.115736_b55 article-title: Deep learning anomaly detection as support fraud investigation in brazilian exports and anti-money laundering – volume: 38 start-page: 50 issue: 3 year: 2017 ident: 10.1016/j.eswa.2021.115736_b26 article-title: European Union regulations on algorithmic decision-making and a “right to explanation” publication-title: AI Magazine doi: 10.1609/aimag.v38i3.2741 – year: 2020 ident: 10.1016/j.eswa.2021.115736_b54 – start-page: 90 year: 2017 ident: 10.1016/j.eswa.2021.115736_b15 article-title: Outlier detection with autoencoder ensembles – year: 2016 ident: 10.1016/j.eswa.2021.115736_b68 – volume: 68 start-page: 886 issue: 10 year: 2009 ident: 10.1016/j.eswa.2021.115736_b65 article-title: Explaining instance classifications with interactions of subsets of feature values publication-title: Data & Knowledge Engineering doi: 10.1016/j.datak.2009.01.004 – start-page: 237 year: 2015 ident: 10.1016/j.eswa.2021.115736_b2 article-title: Outlier analysis – start-page: 91 year: 2019 ident: 10.1016/j.eswa.2021.115736_b50 article-title: GEE: A gradient-based explainable variational autoencoder for network anomaly detection – start-page: 193 year: 2014 ident: 10.1016/j.eswa.2021.115736_b53 article-title: Interpreting random forest classification models using a feature contribution method – volume: 1 start-page: 48 issue: 1 year: 2017 ident: 10.1016/j.eswa.2021.115736_b41 article-title: Towards better analysis of machine learning models: A visual analytics perspective publication-title: Visual Informatics doi: 10.1016/j.visinf.2017.01.006 – start-page: 1135 year: 2016 ident: 10.1016/j.eswa.2021.115736_b57 article-title: Why should i trust you?: Explaining the predictions of any classifier – volume: 51 start-page: 93 issue: 5 year: 2018 ident: 10.1016/j.eswa.2021.115736_b27 article-title: A survey of methods for explaining black box models publication-title: ACM Computing Surveys – year: 2018 ident: 10.1016/j.eswa.2021.115736_b16 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.eswa.2021.115736_b30 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computation doi: 10.1162/neco.2006.18.7.1527 – year: 2019 ident: 10.1016/j.eswa.2021.115736_b69 – year: 2011 ident: 10.1016/j.eswa.2021.115736_b34 – volume: 9 start-page: 2579 issue: Nov year: 2008 ident: 10.1016/j.eswa.2021.115736_b45 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – year: 2016 ident: 10.1016/j.eswa.2021.115736_b25 – year: 2013 ident: 10.1016/j.eswa.2021.115736_b39 – ident: 10.1016/j.eswa.2021.115736_b48 doi: 10.1145/3287560.3287574 – ident: 10.1016/j.eswa.2021.115736_b70 doi: 10.1145/3097983.3098052 – volume: 41 start-page: 15 issue: 3 year: 2009 ident: 10.1016/j.eswa.2021.115736_b14 article-title: Anomaly detection: A survey publication-title: ACM Computing Surveys doi: 10.1145/1541880.1541882 – start-page: 4 year: 2014 ident: 10.1016/j.eswa.2021.115736_b59 article-title: Anomaly detection using autoencoders with nonlinear dimensionality reduction – start-page: 850 year: 2019 ident: 10.1016/j.eswa.2021.115736_b51 article-title: Designing transparent and autonomous intelligent vision systems – volume: 25 start-page: 204 issue: 1 year: 2019 ident: 10.1016/j.eswa.2021.115736_b24 article-title: Situ: Identifying and explaining suspicious behavior in networks publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2018.2865029 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.eswa.2021.115736_b31 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 40 start-page: 919 issue: 6 year: 2004 ident: 10.1016/j.eswa.2021.115736_b56 article-title: Centroid-based summarization of multiple documents publication-title: Information Processing & Management doi: 10.1016/j.ipm.2003.10.006 – start-page: 7786 year: 2018 ident: 10.1016/j.eswa.2021.115736_b46 article-title: Towards robust interpretability with self-explaining neural networks – volume: 267 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115736_b47 article-title: Explanation in artificial intelligence: Insights from the social sciences publication-title: Artificial Intelligence doi: 10.1016/j.artint.2018.07.007 – year: 2018 ident: 10.1016/j.eswa.2021.115736_b11 – volume: 16 start-page: 31 issue: 3 year: 2018 ident: 10.1016/j.eswa.2021.115736_b38 article-title: The mythos of model interpretability publication-title: Queue doi: 10.1145/3236386.3241340 – volume: 106 start-page: 1039 issue: 7 year: 2017 ident: 10.1016/j.eswa.2021.115736_b10 article-title: Optimal classification trees publication-title: Machine Learning doi: 10.1007/s10994-017-5633-9 – volume: 10 start-page: Paper issue: 12 year: 2019 ident: 10.1016/j.eswa.2021.115736_b13 article-title: Local-set based-on instance selection approach for autonomous object modelling publication-title: International Journal of Advanced Computer Science and Applications doi: 10.14569/IJACSA.2019.0101201 – volume: 1050 start-page: 2 year: 2017 ident: 10.1016/j.eswa.2021.115736_b36 article-title: The (UN) reliability of saliency methods publication-title: Stat – year: 2018 ident: 10.1016/j.eswa.2021.115736_b19 – volume: 101 year: 2020 ident: 10.1016/j.eswa.2021.115736_b35 article-title: Towards explaining anomalies: a deep taylor decomposition of one-class models publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107198 – start-page: 23 year: 2014 ident: 10.1016/j.eswa.2021.115736_b5 article-title: DREBIN: Effective and explainable detection of android malware in your pocket – start-page: 20 year: 2000 ident: 10.1016/j.eswa.2021.115736_b42 article-title: Clustering through decision tree construction – volume: 22 start-page: 85 issue: 2 year: 2004 ident: 10.1016/j.eswa.2021.115736_b32 article-title: A survey of outlier detection methodologies publication-title: Artificial Intelligence Review doi: 10.1023/B:AIRE.0000045502.10941.a9 – volume: 58 start-page: 121 year: 2016 ident: 10.1016/j.eswa.2021.115736_b18 article-title: High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.03.028 – volume: 1050 start-page: 28 year: 2017 ident: 10.1016/j.eswa.2021.115736_b17 article-title: A roadmap for a rigorous science of interpretability publication-title: Stat – start-page: 80 year: 2018 ident: 10.1016/j.eswa.2021.115736_b22 article-title: Explaining explanations: An overview of interpretability of machine learning – volume: 28 start-page: 2660 issue: 11 year: 2017 ident: 10.1016/j.eswa.2021.115736_b60 article-title: Evaluating the visualization of what a deep neural network has learned publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2016.2599820 – volume: 23 start-page: 351 issue: 3–4 year: 1975 ident: 10.1016/j.eswa.2021.115736_b61 article-title: A model of inexact reasoning in medicine publication-title: Mathematical Biosciences doi: 10.1016/0025-5564(75)90047-4 – year: 2018 ident: 10.1016/j.eswa.2021.115736_b20 – volume: 2017 year: 2017 ident: 10.1016/j.eswa.2021.115736_b64 article-title: A hybrid semi-supervised anomaly detection model for high-dimensional data publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2017/8501683 – volume: 6 start-page: 52138 year: 2018 ident: 10.1016/j.eswa.2021.115736_b1 article-title: Peeking inside the black-box: A survey on explainable artificial intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – start-page: 9758 year: 2018 ident: 10.1016/j.eswa.2021.115736_b23 article-title: Deep anomaly detection using geometric transformations – volume: 149 year: 2020 ident: 10.1016/j.eswa.2021.115736_b37 article-title: Anomaly explanation with random forests publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113187 – volume: 9 start-page: 307 issue: 1 year: 2012 ident: 10.1016/j.eswa.2021.115736_b63 article-title: Outlier detection: applications and techniques publication-title: International Journal of Computer Science Issues (IJCSI) – start-page: 1189 year: 2001 ident: 10.1016/j.eswa.2021.115736_b21 article-title: Greedy function approximation: a gradient boosting machine publication-title: The Annals of Statistics – start-page: 4765 year: 2017 ident: 10.1016/j.eswa.2021.115736_b44 article-title: A unified approach to interpreting model predictions – year: 2020 ident: 10.1016/j.eswa.2021.115736_b67 – start-page: 2461 year: 2018 ident: 10.1016/j.eswa.2021.115736_b40 article-title: Contextual outlier interpretation – volume: 2 start-page: 1 year: 2015 ident: 10.1016/j.eswa.2021.115736_b4 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Special Lecture on IE – start-page: 793 year: 2019 ident: 10.1016/j.eswa.2021.115736_b66 article-title: Shapley Values of reconstruction errors of PCA for explaining anomaly detection – year: 1985 ident: 10.1016/j.eswa.2021.115736_b58 – start-page: 311 year: 2018 ident: 10.1016/j.eswa.2021.115736_b3 article-title: Toward explainable deep neural network based anomaly detection – year: 2017 ident: 10.1016/j.eswa.2021.115736_b28 – ident: 10.1016/j.eswa.2021.115736_b12 doi: 10.1145/342009.335388 – start-page: 131 year: 2005 ident: 10.1016/j.eswa.2021.115736_b7 article-title: Outlier detection – start-page: 170 year: 2002 ident: 10.1016/j.eswa.2021.115736_b29 article-title: Outlier detection using replicator neural networks – volume: 34 start-page: 133 issue: 2 year: 2010 ident: 10.1016/j.eswa.2021.115736_b52 article-title: A review of instance selection methods publication-title: Artificial Intelligence Review doi: 10.1007/s10462-010-9165-y – year: 2018 ident: 10.1016/j.eswa.2021.115736_b43 – year: 2020 ident: 10.1016/j.eswa.2021.115736_b9 article-title: Classification-based anomaly detection for general data – year: 2018 ident: 10.1016/j.eswa.2021.115736_b33 – volume: 34 start-page: 1 issue: 5 year: 2007 ident: 10.1016/j.eswa.2021.115736_b8 article-title: Scaling learning algorithms towards AI publication-title: Large-Scale Kernel Machines – year: 2017 ident: 10.1016/j.eswa.2021.115736_b49 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digital Signal Processing – volume: 58 start-page: 82 year: 2020 ident: 10.1016/j.eswa.2021.115736_b6 article-title: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI publication-title: Information Fusion doi: 10.1016/j.inffus.2019.12.012 |
| SSID | ssj0017007 |
| Score | 2.694973 |
| Snippet | Deep learning algorithms for anomaly detection, such as autoencoders, point out the outliers, saving experts the time-consuming task of examining normal cases... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115736 |
| SubjectTerms | Algorithms Anomalies Anomaly detection Autoencoder Data analysis Deep learning Evaluation Explainable black-box models Feature extraction Game theory Inspection Machine learning Outliers (statistics) Reconstruction SHAP Shapley values XAI |
| Title | Explaining anomalies detected by autoencoders using Shapley Additive Explanations |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.115736 https://www.proquest.com/docview/2599115613 |
| Volume | 186 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5zOkYM36bamSZsex3BMxYHMwW4hv6oT7YbbEC_-7ea1qaDIDh5bklBeku-9NN_7HkIXJOUyiTMbOG-kA8qYDLhiLFA6oZpnkksGCc53o3g4oTdTNq2hfpULA7RKj_0lphdo7d90vDU7i9msM3bBgXOH7mgXQr10BonmlCZQxaD9-U3zAPm5pNTbSwJo7RNnSo6XXb6D9hAJ26A5U8g0_-mcfsF04XsGe2jHB424V37XPqrZ_ADtVgUZsN-fh-geGHVlyQcs8_mri7HtEhsLFwXWYPWB5Xo1B-lKoC9j4Lw_4vGTXDhkwD1jCh4RLgYpfxIuj9BkcPXQHwa-ZkKgI8JXgc6YpM7QzISxIimxWRQzzSNjY6J1lMlUxXFKpSRUhioxobFZwo1JM2mZ4kl0jOr5PLcnCJOuZJRQS6UbUrowikehIkRpFza4DraBwspYQntBcahr8SIq5tizAAMLMLAoDdxAl999FqWcxsbWrJoD8WNRCIf3G_s1qwkTfksuhTvnOWCH89LpP4c9Q9vwVMg8dpuovnpb23MXkqxUq1hzLbTVu74djr4ACwnhgQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4QD3rxtxFF7cGbmbiu3bojIRpUIDFCwq3prylGgQjEePFvt2_rSDTGg9etbZbX9nvvrV-_h9AZSblM4swGzhvpgDImA64YC5ROqOaZ5JLBBeduL24P6O2QDSuoVd6FAVqlx_4C03O09k8a3pqN6WjUeHDBgXOHLrULoV46YytolTKSQAZ28bnkeYD-XFII7iUBNPc3ZwqSl529g_gQCS9AdCbXaf7VO_3A6dz5XG-hDR814mbxYduoYsc7aLOsyID9Bt1F90CpK2o-YDmevLog286wsXBSYA1WH1gu5hPQrgT-MgbS-yN-eJJTBw24aUxOJML5IMVfwtkeGlxf9VvtwBdNCHRE-DzQGZPUWZqZMFYkJTaLYqZ5ZGxMtI4ymao4TqmUhMpQJSY0Nku4MWkmLVM8ifZRdTwZ2wOEyaVklFBLpRtSujiKR6EiRGkXN7gOtobC0lhCe0VxKGzxIkrq2LMAAwswsCgMXEPnyz7TQk_jz9asnAPxbVUIB_h_9quXEyb8npwJl-g5ZIeE6fCfw56itXa_2xGdm97dEVqHN7nm42UdVedvC3vs4pO5OsnX3xdbKeMW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explaining+anomalies+detected+by+autoencoders+using+Shapley+Additive+Explanations&rft.jtitle=Expert+systems+with+applications&rft.au=Antwarg%2C+Liat&rft.au=Miller%2C+Ronnie+Mindlin&rft.au=Shapira%2C+Bracha&rft.au=Rokach%2C+Lior&rft.date=2021-12-30&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=186&rft_id=info:doi/10.1016%2Fj.eswa.2021.115736&rft.externalDocID=S0957417421011155 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |