Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study
Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in simultaneous incorporation of several Condition Monitoring (CM) technologies within manufacturing/industrial sectors. Smart utilization of CM data lead...
Saved in:
| Published in | Reliability engineering & system safety Vol. 222; p. 108405 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Barking
Elsevier Ltd
01.06.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0951-8320 1879-0836 |
| DOI | 10.1016/j.ress.2022.108405 |
Cover
| Abstract | Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in simultaneous incorporation of several Condition Monitoring (CM) technologies within manufacturing/industrial sectors. Smart utilization of CM data leads to enhanced safety, reliability and availability of manufacturing systems. Conventional system monitoring techniques, however, cannot efficiently cope with such rich CM information content. In this regard, the paper proposes a novel hybrid Maintenance Decision Support System (MDSS) for fault diagnostic and prognostics considering event-triggered CM data. The proposed MDSS is a hybrid framework designed by coupling Machine Learning (ML)-based models and statistical techniques. More specifically, the MDSS is a time-dependent Proportional Hazard Model (PHM) augmented with semi-supervised ML approaches and Reinforcement Learning (RL) to find an optimal maintenance policy for systems subject to stochastic degradations with focus on cost minimization. The developed hybrid model is capable of inferring and fusing high-volume CM data sources in an adaptive and autonomous fashion to recommend optimal maintenance decisions without human intervention, which is a step-forward contribution in the maintenance context. To evaluate the structure and performance of the proposed model, comprehensive ML-based solutions are developed based on a dataset provided by NASA containing run-to-failure and CM data associated with aircraft engines.
•A novel hybrid Maintenance Decision Support System (MDSS) is proposed.•The MDSS framework is designed by coupling Machine Learning (ML) and statistical models.•Semi-supervised learning along with RL are applied for optimizing CBM policy. |
|---|---|
| AbstractList | Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in simultaneous incorporation of several Condition Monitoring (CM) technologies within manufacturing/industrial sectors. Smart utilization of CM data leads to enhanced safety, reliability and availability of manufacturing systems. Conventional system monitoring techniques, however, cannot efficiently cope with such rich CM information content. In this regard, the paper proposes a novel hybrid Maintenance Decision Support System (MDSS) for fault diagnostic and prognostics considering event-triggered CM data. The proposed MDSS is a hybrid framework designed by coupling Machine Learning (ML)-based models and statistical techniques. More specifically, the MDSS is a time-dependent Proportional Hazard Model (PHM) augmented with semi-supervised ML approaches and Reinforcement Learning (RL) to find an optimal maintenance policy for systems subject to stochastic degradations with focus on cost minimization. The developed hybrid model is capable of inferring and fusing high-volume CM data sources in an adaptive and autonomous fashion to recommend optimal maintenance decisions without human intervention, which is a step-forward contribution in the maintenance context. To evaluate the structure and performance of the proposed model, comprehensive ML-based solutions are developed based on a dataset provided by NASA containing run-to-failure and CM data associated with aircraft engines. Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in simultaneous incorporation of several Condition Monitoring (CM) technologies within manufacturing/industrial sectors. Smart utilization of CM data leads to enhanced safety, reliability and availability of manufacturing systems. Conventional system monitoring techniques, however, cannot efficiently cope with such rich CM information content. In this regard, the paper proposes a novel hybrid Maintenance Decision Support System (MDSS) for fault diagnostic and prognostics considering event-triggered CM data. The proposed MDSS is a hybrid framework designed by coupling Machine Learning (ML)-based models and statistical techniques. More specifically, the MDSS is a time-dependent Proportional Hazard Model (PHM) augmented with semi-supervised ML approaches and Reinforcement Learning (RL) to find an optimal maintenance policy for systems subject to stochastic degradations with focus on cost minimization. The developed hybrid model is capable of inferring and fusing high-volume CM data sources in an adaptive and autonomous fashion to recommend optimal maintenance decisions without human intervention, which is a step-forward contribution in the maintenance context. To evaluate the structure and performance of the proposed model, comprehensive ML-based solutions are developed based on a dataset provided by NASA containing run-to-failure and CM data associated with aircraft engines. •A novel hybrid Maintenance Decision Support System (MDSS) is proposed.•The MDSS framework is designed by coupling Machine Learning (ML) and statistical models.•Semi-supervised learning along with RL are applied for optimizing CBM policy. |
| ArticleNumber | 108405 |
| Author | Naderkhani, Farnoosh Azar, Kamyar Hajiakhondi-Meybodi, Zohreh |
| Author_xml | – sequence: 1 givenname: Kamyar surname: Azar fullname: Azar, Kamyar email: k_zar@encs.concordia.ca organization: Concordia Institute for Information System Engineering, Concordia University, Montreal, Canada – sequence: 2 givenname: Zohreh surname: Hajiakhondi-Meybodi fullname: Hajiakhondi-Meybodi, Zohreh organization: Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada – sequence: 3 givenname: Farnoosh surname: Naderkhani fullname: Naderkhani, Farnoosh email: farnoosh.naderkhani@concordia.ca organization: Concordia Institute for Information System Engineering, Concordia University, Montreal, Canada |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz1vzsbtNxEspfkHBg4rHkE0mNaXd1CRb6L93y3ry4GmY4X1m3nknaNSGFhC6pmRGCa1vN7MIKc0YYawfiJJUZ2hMxVwWRPB6hMZEVrQQnJELNElpQwgpZTUfo8832PkidXuIB5_AYrPtUobo23XR6NNgB_krWOxCxE5324yt1-s2JJ-wbi3exzB0d3iBTU_glDt7vETnTm8TXP3WKfp4fHhfPher16eX5WJVGM5ELgyjTSVNWQnjnOxNWgIlB0oZrWvtGmdEw4WTWld2XjlupNHMNo1o5rXkDPgU3Qx7ex_fHaSsNqGLbX9SsbrinNey5L2KDSoTQ0oRnNpHv9PxqChRpwDVRp0CVKcA1RBgD4k_kPFZZx_aHLXf_o_eDyj0rx88RJWMh9aA9RFMVjb4__AfcXSPNw |
| CitedBy_id | crossref_primary_10_1016_j_array_2023_100321 crossref_primary_10_1016_j_ijar_2023_108988 crossref_primary_10_1007_s42417_023_01141_x crossref_primary_10_1088_1361_6501_acc602 crossref_primary_10_1016_j_engappai_2024_108802 crossref_primary_10_3390_machines11040418 crossref_primary_10_1002_qre_3714 crossref_primary_10_1016_j_ress_2024_110749 crossref_primary_10_1016_j_ress_2022_108932 crossref_primary_10_1016_j_ress_2025_110907 crossref_primary_10_1016_j_apenergy_2024_123773 crossref_primary_10_1016_j_ress_2022_108714 crossref_primary_10_3390_s23052402 crossref_primary_10_1016_j_ress_2023_109107 crossref_primary_10_1016_j_ress_2023_109321 crossref_primary_10_1007_s40964_024_00816_5 crossref_primary_10_1016_j_engappai_2025_110503 crossref_primary_10_1016_j_ress_2023_109186 crossref_primary_10_1016_j_ress_2024_110030 crossref_primary_10_1109_TIM_2024_3385829 crossref_primary_10_1016_j_ress_2024_110297 crossref_primary_10_1016_j_ijpe_2024_109218 crossref_primary_10_3390_s23198124 crossref_primary_10_1080_14786451_2024_2326296 crossref_primary_10_1111_exsy_13360 crossref_primary_10_1016_j_ress_2022_108921 crossref_primary_10_1016_j_ymssp_2024_111527 crossref_primary_10_1115_1_4066194 crossref_primary_10_1088_1361_6501_ad950c crossref_primary_10_1109_TIM_2025_3545531 crossref_primary_10_1016_j_ress_2025_110910 crossref_primary_10_1016_j_ress_2023_109235 crossref_primary_10_1016_j_ress_2023_109873 crossref_primary_10_1007_s40430_023_04042_y crossref_primary_10_1016_j_ress_2022_108981 crossref_primary_10_1016_j_ress_2023_109591 crossref_primary_10_1049_cim2_12122 |
| Cites_doi | 10.1109/ICPHM.2019.8819420 10.1016/j.rser.2019.03.049 10.1016/j.ymssp.2018.05.050 10.1016/j.ress.2021.107530 10.1016/j.ress.2021.107713 10.1080/07408170600847168 10.1016/j.ress.2019.106676 10.1016/j.cie.2020.106322 10.1016/j.ress.2017.11.021 10.1016/j.ejor.2019.10.049 10.1080/00207541003694811 10.1016/j.ress.2018.11.027 10.3390/su10010085 10.1080/07408170903232571 10.1057/s41274-016-0160-9 10.1016/j.eswa.2020.113701 10.1108/13552519810213644 10.3390/s20030723 10.1016/j.apenergy.2019.03.027 10.1016/j.ress.2018.11.011 10.1016/j.renene.2010.10.028 10.1016/j.ress.2016.08.009 10.1002/qre.4680030204 10.1016/j.ymssp.2005.09.012 10.1016/j.ress.2020.107257 10.1016/j.strusafe.2019.101906 10.1016/j.apor.2018.02.016 10.1016/j.ress.2020.107123 10.1108/JQME-07-2015-0030 10.1016/j.ress.2020.106926 10.1016/j.ress.2014.10.015 10.1016/j.ress.2021.107551 10.1111/mice.12558 10.1109/PHM-Chongqing.2018.00184 10.1109/TNNLS.2016.2582798 10.1109/TII.2019.2900295 10.1002/qre.1466 10.4172/2155-6180.1000392 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 2022 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2022.108405 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2022_108405 S0951832022000783 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI |
| ID | FETCH-LOGICAL-c328t-c21b59c458cff9095d0e43e112166afbfc8b38f9aa5d75f3c9ca2dbb8b76932e3 |
| IEDL.DBID | .~1 |
| ISSN | 0951-8320 |
| IngestDate | Wed Aug 13 08:00:16 EDT 2025 Sat Oct 25 04:59:41 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Fri Feb 23 02:39:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Prognostic and health management Condition-based maintenance Maintenance decision support system Machine learning Proportional hazard model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-c21b59c458cff9095d0e43e112166afbfc8b38f9aa5d75f3c9ca2dbb8b76932e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2653336943 |
| PQPubID | 2045406 |
| ParticipantIDs | proquest_journals_2653336943 crossref_primary_10_1016_j_ress_2022_108405 crossref_citationtrail_10_1016_j_ress_2022_108405 elsevier_sciencedirect_doi_10_1016_j_ress_2022_108405 |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Li, Zhou, Choubey, Sievenpiper (b29) 2007; 39 Makis, Jardine (b19) 1992; 30 Babu, Zhao, Li (b16) 2016 Liu, Chen, Jiang (b36) 2020; 283 Zheng, Makis (b47) 2020; 141 Makis, Jardine (b20) 1991; 3 Davidson-Pilon, Kalderstam, Jacobson, Reed, Kuhn, Zivich (b48) 2020 Jardine, Makis, Banjevic, Braticevic, Ennis (b51) 1998 Wang J, Wen G, Yang S, Liu Y. Remaining useful life estimation in prognostics using deep bidirectional lstm neural network. In: 2018 prognostics and system health management conference. 2018, p. 1037–42. Makis, Jardine (b50) 1992; 30 Tang, Makis, Jafari, Yu (b22) 2015; 134 Jardine, Lin, Banjevic (b5) 2006; 20 Shi, Chehade (b11) 2021; 205 Alaswad, Xiang (b25) 2017; 157 Xia, Ning, Huang (b49) 2018; 9 Chen, Chen, Li, Zhou, Sievenpiper (b28) 2011; 49 Ma, Chen, Wang, Liu, Li (b44) 2016 Jardine, Tsang (b41) 2005 Zheng, Ristovski, Farahat, Gupta (b15) 2017 Tian, Jin, Wu, Ding (b4) 2011; 36 Rengasamy, Jafari, Rothwell, Chen, Figueredo (b13) 2020; 20 Jardine, Anderson, Mann (b43) 1987; 3 Zhou, Yin (b45) 2019; 109 Zhao, Yan, Chen, Mao, Wang, Gao (b1) 2019; 115 Saxena, Goebel, Simon, Eklund (b6) 2008 Yu, Kim, Mechefske (b10) 2020; 199 Huang, Chang, Arinez (b35) 2020; 160 Zhan, Si (b38) 2020; 203 Lu, Sun, Zhang, Feng, Kang, Fu (b46) 2018; 74 Naderkhani, Jafari, Makis (b30) 2017 Wong, Jefferis, Montgomery (b26) 2010 Jafari, Naderkhani, Makis (b31) 2018; 69 Xu, Saleh (b12) 2021 Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (b17) 2019; 183 Duan, Makis, Deng (b23) 2020; 193 Andriotis, Papakonstantinou (b37) 2021; 212 Wu, Ryan (b21) 2010; 42 Rocchetta, Bellani, Compare, Zio, Patelli (b34) 2019; 241 Miao, Li, Sun, Liu (b8) 2019; 15 Li, Zhang, Ding (b14) 2019; 182 Yang, Li, Wang (b39) 2021 Banjevic, Jardine, Makis, Ennis (b42) 2001; 39 Jardine, Makis, Banjevic, Braticevic, Ennis (b27) 1998 Bai, Sun, Deng, Li, Long, Li (b2) 2018; 10 Wang Q, Zheng S, Farahat A, Serita S, Gupta C. Remaining useful life estimation using functional data analysis. In: 2019 IEEE international conference on prognostics and health management. 2019, p. 1–8. Li, Ding, Sun (b9) 2018; 172 Wu, Tian, Chen (b3) 2013; 29 Zhang, Lim, Qin, Tan (b40) 2017; 28 Zheng, Chen, Gu (b24) 2020; 204 Wei, Bao, Li (b33) 2020; 83 Yao, Dong, Jiang, Ni (b32) 2020; 35 Makis (10.1016/j.ress.2022.108405_b20) 1991; 3 Jardine (10.1016/j.ress.2022.108405_b41) 2005 Zhan (10.1016/j.ress.2022.108405_b38) 2020; 203 Zhao (10.1016/j.ress.2022.108405_b1) 2019; 115 Saxena (10.1016/j.ress.2022.108405_b6) 2008 Chen (10.1016/j.ress.2022.108405_b28) 2011; 49 Yang (10.1016/j.ress.2022.108405_b39) 2021 Jardine (10.1016/j.ress.2022.108405_b5) 2006; 20 Xia (10.1016/j.ress.2022.108405_b49) 2018; 9 Liu (10.1016/j.ress.2022.108405_b36) 2020; 283 Lu (10.1016/j.ress.2022.108405_b46) 2018; 74 Rengasamy (10.1016/j.ress.2022.108405_b13) 2020; 20 Alaswad (10.1016/j.ress.2022.108405_b25) 2017; 157 Jardine (10.1016/j.ress.2022.108405_b51) 1998 Ma (10.1016/j.ress.2022.108405_b44) 2016 Shi (10.1016/j.ress.2022.108405_b11) 2021; 205 Davidson-Pilon (10.1016/j.ress.2022.108405_b48) 2020 Ellefsen (10.1016/j.ress.2022.108405_b17) 2019; 183 10.1016/j.ress.2022.108405_b18 Naderkhani (10.1016/j.ress.2022.108405_b30) 2017 Yu (10.1016/j.ress.2022.108405_b10) 2020; 199 Zhang (10.1016/j.ress.2022.108405_b40) 2017; 28 Rocchetta (10.1016/j.ress.2022.108405_b34) 2019; 241 Miao (10.1016/j.ress.2022.108405_b8) 2019; 15 Yao (10.1016/j.ress.2022.108405_b32) 2020; 35 Wei (10.1016/j.ress.2022.108405_b33) 2020; 83 Andriotis (10.1016/j.ress.2022.108405_b37) 2021; 212 Wu (10.1016/j.ress.2022.108405_b3) 2013; 29 Makis (10.1016/j.ress.2022.108405_b19) 1992; 30 Huang (10.1016/j.ress.2022.108405_b35) 2020; 160 Banjevic (10.1016/j.ress.2022.108405_b42) 2001; 39 Jardine (10.1016/j.ress.2022.108405_b43) 1987; 3 Zhou (10.1016/j.ress.2022.108405_b45) 2019; 109 10.1016/j.ress.2022.108405_b7 Makis (10.1016/j.ress.2022.108405_b50) 1992; 30 Zheng (10.1016/j.ress.2022.108405_b15) 2017 Xu (10.1016/j.ress.2022.108405_b12) 2021 Tang (10.1016/j.ress.2022.108405_b22) 2015; 134 Tian (10.1016/j.ress.2022.108405_b4) 2011; 36 Wu (10.1016/j.ress.2022.108405_b21) 2010; 42 Bai (10.1016/j.ress.2022.108405_b2) 2018; 10 Wong (10.1016/j.ress.2022.108405_b26) 2010 Zheng (10.1016/j.ress.2022.108405_b47) 2020; 141 Li (10.1016/j.ress.2022.108405_b29) 2007; 39 Zheng (10.1016/j.ress.2022.108405_b24) 2020; 204 Li (10.1016/j.ress.2022.108405_b9) 2018; 172 Duan (10.1016/j.ress.2022.108405_b23) 2020; 193 Jardine (10.1016/j.ress.2022.108405_b27) 1998 Li (10.1016/j.ress.2022.108405_b14) 2019; 182 Babu (10.1016/j.ress.2022.108405_b16) 2016 Jafari (10.1016/j.ress.2022.108405_b31) 2018; 69 |
| References_xml | – volume: 283 start-page: 166 year: 2020 end-page: 181 ident: b36 article-title: Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach publication-title: European J Oper Res – year: 2021 ident: b12 article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities publication-title: Reliab Eng Syst Saf – volume: 49 start-page: 2083 year: 2011 end-page: 2100 ident: b28 article-title: Optimal variability sensitive condition-based maintenance with a cox ph model publication-title: Int J Prod Res – start-page: 88 year: 2017 end-page: 95 ident: b15 article-title: Long short-term memory network for remaining useful life estimation – volume: 204 year: 2020 ident: b24 article-title: Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model publication-title: Reliab Eng Syst Saf – volume: 69 start-page: 36 year: 2018 end-page: 48 ident: b31 article-title: Joint optimization of maintenance policy and inspection interval for a multi-unit series system using proportional hazards model publication-title: J Oper Res Soc – year: 1998 ident: b27 article-title: A decision optimization model for condition-based maintenance publication-title: J Qual Maintenance Eng – volume: 39 start-page: 303 year: 2007 end-page: 315 ident: b29 article-title: Failure event prediction using the cox proportional hazard model driven by frequent failure signatures publication-title: IIE Trans – year: 2017 ident: b30 article-title: Optimal cbm policy with two sampling intervals publication-title: J Qual Maintenance Eng – year: 2021 ident: b39 article-title: Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning publication-title: Reliab Eng Syst Saf – volume: 183 start-page: 240 year: 2019 end-page: 251 ident: b17 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliab Eng Syst Saf – volume: 10 start-page: 85 year: 2018 ident: b2 article-title: Manufacturing quality prediction using intelligent learning approaches: A comparative study publication-title: Sustainability – volume: 199 year: 2020 ident: b10 article-title: An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme publication-title: Reliab Eng Syst Saf – volume: 74 start-page: 69 year: 2018 end-page: 79 ident: b46 article-title: Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach publication-title: Appl Ocean Res – volume: 205 year: 2021 ident: b11 article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction publication-title: Reliab Eng Syst Saf – volume: 29 start-page: 1151 year: 2013 end-page: 1163 ident: b3 article-title: Condition-based maintenance optimization using neural network-based health condition prediction publication-title: Qual Reliab Eng Int – volume: 134 start-page: 198 year: 2015 end-page: 207 ident: b22 article-title: Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring publication-title: Reliab Eng Syst Saf – volume: 28 start-page: 2306 year: 2017 end-page: 2318 ident: b40 article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics publication-title: IEEE Trans Neural Netw Learn Syst – volume: 182 start-page: 208 year: 2019 end-page: 218 ident: b14 article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction publication-title: Reliab Eng Syst Saf – start-page: 214 year: 2016 end-page: 228 ident: b16 article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life – volume: 20 start-page: 1483 year: 2006 end-page: 1510 ident: b5 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech Syst Signal Process – volume: 141 year: 2020 ident: b47 article-title: Optimal condition-based maintenance with general repair and two dependent failure modes publication-title: Comput Ind Eng – volume: 157 start-page: 54 year: 2017 end-page: 63 ident: b25 article-title: A review on condition-based maintenance optimization models for stochastically deteriorating system publication-title: Reliab Eng Syst Saf – volume: 30 start-page: 172 year: 1992 end-page: 183 ident: b19 article-title: Optimal replacement in the proportional hazards model publication-title: INFOR: Inf Syst Oper Res – year: 2010 ident: b26 article-title: Proportional hazards modeling of engine failures in military vehicles publication-title: J Qual Maintenance Eng – volume: 241 start-page: 291 year: 2019 end-page: 301 ident: b34 article-title: A reinforcement learning framework for optimal operation and maintenance of power grids publication-title: Appl Energy – start-page: 1 year: 2008 end-page: 9 ident: b6 article-title: Damage propagation modeling for aircraft engine run-to-failure simulation – volume: 83 year: 2020 ident: b33 article-title: Optimal policy for structure maintenance: A deep reinforcement learning framework publication-title: Struct Saf – volume: 36 start-page: 1502 year: 2011 end-page: 1509 ident: b4 article-title: Condition based maintenance optimization for wind power generation systems under continuous monitoring publication-title: Renew Energy – volume: 30 start-page: 172 year: 1992 end-page: 183 ident: b50 article-title: Optimal replacement in proportional hazard model publication-title: Inf Syst Oper Res – volume: 20 start-page: 723 year: 2020 ident: b13 article-title: Deep learning with dynamically weighted loss function for sensor-based prognostics and health management publication-title: Sensors – volume: 39 start-page: 32 year: 2001 end-page: 50 ident: b42 article-title: A control-limit policy and software for condition-based maintenance optimization publication-title: INFOR: Inf Syst Oper Res – volume: 193 year: 2020 ident: b23 article-title: A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes publication-title: Reliab Eng Syst Saf – year: 1998 ident: b51 article-title: A decision optimization model for condition-based maintenance publication-title: J Qual Maintenance Eng – volume: 3 start-page: 169 year: 1991 end-page: 175 ident: b20 article-title: Computation of optimal policies in replacement models publication-title: IMA J Manag Math – reference: Wang J, Wen G, Yang S, Liu Y. Remaining useful life estimation in prognostics using deep bidirectional lstm neural network. In: 2018 prognostics and system health management conference. 2018, p. 1037–42. – volume: 42 start-page: 553 year: 2010 end-page: 563 ident: b21 article-title: Value of condition monitoring for optimal replacement in the proportional hazards model with continuous degradation publication-title: IIE Trans – year: 2020 ident: b48 article-title: Camdavidsonpilon/lifelines: v0.24.16 (version v0.24.16). Zenodo – volume: 9 start-page: 2 year: 2018 ident: b49 article-title: Empirical comparison of the Breslow estimator and the kalbfleisch prentice estimator for survival functions publication-title: J Biom Biostat – volume: 160 year: 2020 ident: b35 article-title: Deep reinforcement learning based preventive maintenance policy for serial production lines publication-title: Expert Syst Appl – volume: 15 start-page: 5023 year: 2019 end-page: 5032 ident: b8 article-title: Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks publication-title: IEEE Trans Ind Inf – volume: 3 start-page: 77 year: 1987 end-page: 82 ident: b43 article-title: Application of the weibull proportional hazards model to aircraft and marine engine failure data publication-title: Qual Reliab Eng – start-page: 382 year: 2016 end-page: 385 ident: b44 article-title: Bearing degradation assessment based on weibull distribution and deep belief network publication-title: 2016 international symposium on flexible automation – volume: 172 start-page: 1 year: 2018 end-page: 11 ident: b9 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab Eng Syst Saf – volume: 35 start-page: 1230 year: 2020 end-page: 1245 ident: b32 article-title: Deep reinforcement learning for long-term pavement maintenance planning publication-title: Comput-Aided Civ Infrastruct Eng – volume: 203 year: 2020 ident: b38 article-title: Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks publication-title: Reliab Eng Syst Saf – volume: 109 year: 2019 ident: b45 article-title: An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics publication-title: Renew Sustain Energy Rev – reference: Wang Q, Zheng S, Farahat A, Serita S, Gupta C. Remaining useful life estimation using functional data analysis. In: 2019 IEEE international conference on prognostics and health management. 2019, p. 1–8. – year: 2005 ident: b41 article-title: Maintenance, replacement, and reliability: theory and applications – volume: 212 year: 2021 ident: b37 article-title: Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints publication-title: Reliab Eng Syst Saf – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: b1 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech Syst Signal Process – volume: 203 year: 2020 ident: 10.1016/j.ress.2022.108405_b38 article-title: Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks publication-title: Reliab Eng Syst Saf – ident: 10.1016/j.ress.2022.108405_b18 doi: 10.1109/ICPHM.2019.8819420 – volume: 109 year: 2019 ident: 10.1016/j.ress.2022.108405_b45 article-title: An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.03.049 – volume: 39 start-page: 32 issue: 1 year: 2001 ident: 10.1016/j.ress.2022.108405_b42 article-title: A control-limit policy and software for condition-based maintenance optimization publication-title: INFOR: Inf Syst Oper Res – volume: 115 start-page: 213 year: 2019 ident: 10.1016/j.ress.2022.108405_b1 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.05.050 – year: 2021 ident: 10.1016/j.ress.2022.108405_b12 article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107530 – year: 2021 ident: 10.1016/j.ress.2022.108405_b39 article-title: Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107713 – volume: 39 start-page: 303 issue: 3 year: 2007 ident: 10.1016/j.ress.2022.108405_b29 article-title: Failure event prediction using the cox proportional hazard model driven by frequent failure signatures publication-title: IIE Trans doi: 10.1080/07408170600847168 – volume: 193 year: 2020 ident: 10.1016/j.ress.2022.108405_b23 article-title: A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2019.106676 – volume: 141 year: 2020 ident: 10.1016/j.ress.2022.108405_b47 article-title: Optimal condition-based maintenance with general repair and two dependent failure modes publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.106322 – volume: 172 start-page: 1 year: 2018 ident: 10.1016/j.ress.2022.108405_b9 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.11.021 – year: 2010 ident: 10.1016/j.ress.2022.108405_b26 article-title: Proportional hazards modeling of engine failures in military vehicles publication-title: J Qual Maintenance Eng – start-page: 382 year: 2016 ident: 10.1016/j.ress.2022.108405_b44 article-title: Bearing degradation assessment based on weibull distribution and deep belief network – year: 2005 ident: 10.1016/j.ress.2022.108405_b41 – volume: 283 start-page: 166 issue: 1 year: 2020 ident: 10.1016/j.ress.2022.108405_b36 article-title: Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach publication-title: European J Oper Res doi: 10.1016/j.ejor.2019.10.049 – volume: 49 start-page: 2083 issue: 7 year: 2011 ident: 10.1016/j.ress.2022.108405_b28 article-title: Optimal variability sensitive condition-based maintenance with a cox ph model publication-title: Int J Prod Res doi: 10.1080/00207541003694811 – volume: 183 start-page: 240 year: 2019 ident: 10.1016/j.ress.2022.108405_b17 article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.11.027 – start-page: 214 year: 2016 ident: 10.1016/j.ress.2022.108405_b16 – volume: 10 start-page: 85 issue: 1 year: 2018 ident: 10.1016/j.ress.2022.108405_b2 article-title: Manufacturing quality prediction using intelligent learning approaches: A comparative study publication-title: Sustainability doi: 10.3390/su10010085 – volume: 42 start-page: 553 issue: 8 year: 2010 ident: 10.1016/j.ress.2022.108405_b21 article-title: Value of condition monitoring for optimal replacement in the proportional hazards model with continuous degradation publication-title: IIE Trans doi: 10.1080/07408170903232571 – volume: 69 start-page: 36 issue: 1 year: 2018 ident: 10.1016/j.ress.2022.108405_b31 article-title: Joint optimization of maintenance policy and inspection interval for a multi-unit series system using proportional hazards model publication-title: J Oper Res Soc doi: 10.1057/s41274-016-0160-9 – volume: 160 year: 2020 ident: 10.1016/j.ress.2022.108405_b35 article-title: Deep reinforcement learning based preventive maintenance policy for serial production lines publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113701 – year: 1998 ident: 10.1016/j.ress.2022.108405_b51 article-title: A decision optimization model for condition-based maintenance publication-title: J Qual Maintenance Eng doi: 10.1108/13552519810213644 – volume: 20 start-page: 723 issue: 3 year: 2020 ident: 10.1016/j.ress.2022.108405_b13 article-title: Deep learning with dynamically weighted loss function for sensor-based prognostics and health management publication-title: Sensors doi: 10.3390/s20030723 – volume: 241 start-page: 291 year: 2019 ident: 10.1016/j.ress.2022.108405_b34 article-title: A reinforcement learning framework for optimal operation and maintenance of power grids publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.027 – volume: 182 start-page: 208 year: 2019 ident: 10.1016/j.ress.2022.108405_b14 article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.11.011 – year: 1998 ident: 10.1016/j.ress.2022.108405_b27 article-title: A decision optimization model for condition-based maintenance publication-title: J Qual Maintenance Eng doi: 10.1108/13552519810213644 – volume: 36 start-page: 1502 issue: 5 year: 2011 ident: 10.1016/j.ress.2022.108405_b4 article-title: Condition based maintenance optimization for wind power generation systems under continuous monitoring publication-title: Renew Energy doi: 10.1016/j.renene.2010.10.028 – volume: 157 start-page: 54 year: 2017 ident: 10.1016/j.ress.2022.108405_b25 article-title: A review on condition-based maintenance optimization models for stochastically deteriorating system publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.08.009 – volume: 3 start-page: 77 year: 1987 ident: 10.1016/j.ress.2022.108405_b43 article-title: Application of the weibull proportional hazards model to aircraft and marine engine failure data publication-title: Qual Reliab Eng doi: 10.1002/qre.4680030204 – volume: 20 start-page: 1483 issue: 7 year: 2006 ident: 10.1016/j.ress.2022.108405_b5 article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2005.09.012 – volume: 205 year: 2021 ident: 10.1016/j.ress.2022.108405_b11 article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107257 – start-page: 1 year: 2008 ident: 10.1016/j.ress.2022.108405_b6 – year: 2020 ident: 10.1016/j.ress.2022.108405_b48 – volume: 83 year: 2020 ident: 10.1016/j.ress.2022.108405_b33 article-title: Optimal policy for structure maintenance: A deep reinforcement learning framework publication-title: Struct Saf doi: 10.1016/j.strusafe.2019.101906 – volume: 74 start-page: 69 year: 2018 ident: 10.1016/j.ress.2022.108405_b46 article-title: Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach publication-title: Appl Ocean Res doi: 10.1016/j.apor.2018.02.016 – volume: 204 year: 2020 ident: 10.1016/j.ress.2022.108405_b24 article-title: Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107123 – year: 2017 ident: 10.1016/j.ress.2022.108405_b30 article-title: Optimal cbm policy with two sampling intervals publication-title: J Qual Maintenance Eng doi: 10.1108/JQME-07-2015-0030 – volume: 199 year: 2020 ident: 10.1016/j.ress.2022.108405_b10 article-title: An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.106926 – volume: 134 start-page: 198 year: 2015 ident: 10.1016/j.ress.2022.108405_b22 article-title: Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2014.10.015 – volume: 212 year: 2021 ident: 10.1016/j.ress.2022.108405_b37 article-title: Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107551 – volume: 35 start-page: 1230 issue: 11 year: 2020 ident: 10.1016/j.ress.2022.108405_b32 article-title: Deep reinforcement learning for long-term pavement maintenance planning publication-title: Comput-Aided Civ Infrastruct Eng doi: 10.1111/mice.12558 – volume: 3 start-page: 169 issue: 3 year: 1991 ident: 10.1016/j.ress.2022.108405_b20 article-title: Computation of optimal policies in replacement models publication-title: IMA J Manag Math – ident: 10.1016/j.ress.2022.108405_b7 doi: 10.1109/PHM-Chongqing.2018.00184 – volume: 28 start-page: 2306 issue: 10 year: 2017 ident: 10.1016/j.ress.2022.108405_b40 article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2582798 – start-page: 88 year: 2017 ident: 10.1016/j.ress.2022.108405_b15 – volume: 30 start-page: 172 issue: 1 year: 1992 ident: 10.1016/j.ress.2022.108405_b19 article-title: Optimal replacement in the proportional hazards model publication-title: INFOR: Inf Syst Oper Res – volume: 30 start-page: 172 issue: 1 year: 1992 ident: 10.1016/j.ress.2022.108405_b50 article-title: Optimal replacement in proportional hazard model publication-title: Inf Syst Oper Res – volume: 15 start-page: 5023 issue: 9 year: 2019 ident: 10.1016/j.ress.2022.108405_b8 article-title: Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2019.2900295 – volume: 29 start-page: 1151 issue: 8 year: 2013 ident: 10.1016/j.ress.2022.108405_b3 article-title: Condition-based maintenance optimization using neural network-based health condition prediction publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1466 – volume: 9 start-page: 2 year: 2018 ident: 10.1016/j.ress.2022.108405_b49 article-title: Empirical comparison of the Breslow estimator and the kalbfleisch prentice estimator for survival functions publication-title: J Biom Biostat doi: 10.4172/2155-6180.1000392 |
| SSID | ssj0004957 |
| Score | 2.5366879 |
| Snippet | Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108405 |
| SubjectTerms | Aircraft engines Artificial intelligence Clustering Condition monitoring Condition-based maintenance Decision support systems Fault diagnosis Hybrid systems Machine learning Maintenance Maintenance decision support system Manufacturing Mathematical models Optimization Prognostic and health management Proportional hazard model Reliability engineering Smart sensors Statistical analysis Statistical models |
| Title | Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study |
| URI | https://dx.doi.org/10.1016/j.ress.2022.108405 https://www.proquest.com/docview/2653336943 |
| Volume | 222 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpHqTywIbdN7CQOW1VRFRBdSkW3yHZsKaiEiiYrvx1f4vAS6sCY-KHkbN99lr67D6FLuCOHVHHCLNyFlJyQcCZ8IqWw4VFwyqti1Q_TcDJnd4tg0UKjJhcGaJXO99c-vfLW7k3fWbO_yrL-DMABB_lvvwp0UPGTsQhUDHrvXzQPewGIGjl56O0SZ2qOF9xoezADUO0YSNj9HZx-uekq9oz30K4DjXhYf9c-aun8AO18KyV4iJ5m-iUj63IFZ3-tU6yWJdRAsI0EIlWKa61obEEqNqJcFjitWXbZGos8xUDUqp6u8RArOwJXlWeP0Hx88ziaECeaQBT1eUGU78kgVizgypjY_nY60IxqC6u8MBRGGsUl5SYWIkijwFAVK-GnUnIJqoi-pseonb_m-gRhAWm0mqvUM4wZMZCS2tNseDCQoZQyOkVeY61EuYriIGyxTBrq2HMCFk7Awklt4VN09TlmVdfT2Ng7aBYh-bErEuvwN47rNCuWuDNp20MLbWkYM3r2z2nP0TY81UyxDmoXb6W-sJikkN1q03XR1vD2fjL9AIcm4FU |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh7YUGgbO4nDVlVUBdoubUU3y3ZsKaiEiiYrvx1fHryEOjAm9lnJ2b77TvruDqEriJF9ophDLdyFlBzfYVS4jpTCukfBCMuLVY_G_mBGH-bevIZ6VS4M0CpL21_Y9Nxal29apTZbyzhuTQAcMGj_7eaOjmygTeq5AURgN-9fPA8bAQRVP3mYXmbOFCQvCGlvYAng2lHoYfe3d_plp3Pn099DuyVqxN3iw_ZRTScHaOdbLcFD9DTRL7GzypZw-Vc6wmqRQREEO-iAq4pw0SwaW5SKjcgWKY4Kml28wiKJMDC18qdb3MXKSuC89OwRmvXvpr2BU3ZNcBRxWeootyO9UFGPKWNC-9tRW1OiLa7q-L4w0igmCTOhEF4UeIaoUAk3kpJJaIvoanKM6slrok8QFpBHq5mKOoZSI9pSEnudDfPa0pdSBg3UqbTFVVlSHDpbLHjFHXvmoGEOGuaFhhvo-lNmWRTUWDvbqzaB_zgW3Fr8tXLNasd4eSntuG-xLfFDSk7_uewl2hpMR0M-vB8_nqFtGCloY01UT98yfW4BSiov8gP4AdFa4eo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+clustering-based+method+for+fault+diagnosis+and+prognosis%3A+A+case+study&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Azar%2C+Kamyar&rft.au=Hajiakhondi-Meybodi%2C+Zohreh&rft.au=Naderkhani%2C+Farnoosh&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=222&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108405&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |