Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study

Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in simultaneous incorporation of several Condition Monitoring (CM) technologies within manufacturing/industrial sectors. Smart utilization of CM data lead...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 222; p. 108405
Main Authors Azar, Kamyar, Hajiakhondi-Meybodi, Zohreh, Naderkhani, Farnoosh
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.06.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0951-8320
1879-0836
DOI10.1016/j.ress.2022.108405

Cover

Abstract Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in simultaneous incorporation of several Condition Monitoring (CM) technologies within manufacturing/industrial sectors. Smart utilization of CM data leads to enhanced safety, reliability and availability of manufacturing systems. Conventional system monitoring techniques, however, cannot efficiently cope with such rich CM information content. In this regard, the paper proposes a novel hybrid Maintenance Decision Support System (MDSS) for fault diagnostic and prognostics considering event-triggered CM data. The proposed MDSS is a hybrid framework designed by coupling Machine Learning (ML)-based models and statistical techniques. More specifically, the MDSS is a time-dependent Proportional Hazard Model (PHM) augmented with semi-supervised ML approaches and Reinforcement Learning (RL) to find an optimal maintenance policy for systems subject to stochastic degradations with focus on cost minimization. The developed hybrid model is capable of inferring and fusing high-volume CM data sources in an adaptive and autonomous fashion to recommend optimal maintenance decisions without human intervention, which is a step-forward contribution in the maintenance context. To evaluate the structure and performance of the proposed model, comprehensive ML-based solutions are developed based on a dataset provided by NASA containing run-to-failure and CM data associated with aircraft engines. •A novel hybrid Maintenance Decision Support System (MDSS) is proposed.•The MDSS framework is designed by coupling Machine Learning (ML) and statistical models.•Semi-supervised learning along with RL are applied for optimizing CBM policy.
AbstractList Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in simultaneous incorporation of several Condition Monitoring (CM) technologies within manufacturing/industrial sectors. Smart utilization of CM data leads to enhanced safety, reliability and availability of manufacturing systems. Conventional system monitoring techniques, however, cannot efficiently cope with such rich CM information content. In this regard, the paper proposes a novel hybrid Maintenance Decision Support System (MDSS) for fault diagnostic and prognostics considering event-triggered CM data. The proposed MDSS is a hybrid framework designed by coupling Machine Learning (ML)-based models and statistical techniques. More specifically, the MDSS is a time-dependent Proportional Hazard Model (PHM) augmented with semi-supervised ML approaches and Reinforcement Learning (RL) to find an optimal maintenance policy for systems subject to stochastic degradations with focus on cost minimization. The developed hybrid model is capable of inferring and fusing high-volume CM data sources in an adaptive and autonomous fashion to recommend optimal maintenance decisions without human intervention, which is a step-forward contribution in the maintenance context. To evaluate the structure and performance of the proposed model, comprehensive ML-based solutions are developed based on a dataset provided by NASA containing run-to-failure and CM data associated with aircraft engines.
Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in simultaneous incorporation of several Condition Monitoring (CM) technologies within manufacturing/industrial sectors. Smart utilization of CM data leads to enhanced safety, reliability and availability of manufacturing systems. Conventional system monitoring techniques, however, cannot efficiently cope with such rich CM information content. In this regard, the paper proposes a novel hybrid Maintenance Decision Support System (MDSS) for fault diagnostic and prognostics considering event-triggered CM data. The proposed MDSS is a hybrid framework designed by coupling Machine Learning (ML)-based models and statistical techniques. More specifically, the MDSS is a time-dependent Proportional Hazard Model (PHM) augmented with semi-supervised ML approaches and Reinforcement Learning (RL) to find an optimal maintenance policy for systems subject to stochastic degradations with focus on cost minimization. The developed hybrid model is capable of inferring and fusing high-volume CM data sources in an adaptive and autonomous fashion to recommend optimal maintenance decisions without human intervention, which is a step-forward contribution in the maintenance context. To evaluate the structure and performance of the proposed model, comprehensive ML-based solutions are developed based on a dataset provided by NASA containing run-to-failure and CM data associated with aircraft engines. •A novel hybrid Maintenance Decision Support System (MDSS) is proposed.•The MDSS framework is designed by coupling Machine Learning (ML) and statistical models.•Semi-supervised learning along with RL are applied for optimizing CBM policy.
ArticleNumber 108405
Author Naderkhani, Farnoosh
Azar, Kamyar
Hajiakhondi-Meybodi, Zohreh
Author_xml – sequence: 1
  givenname: Kamyar
  surname: Azar
  fullname: Azar, Kamyar
  email: k_zar@encs.concordia.ca
  organization: Concordia Institute for Information System Engineering, Concordia University, Montreal, Canada
– sequence: 2
  givenname: Zohreh
  surname: Hajiakhondi-Meybodi
  fullname: Hajiakhondi-Meybodi, Zohreh
  organization: Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada
– sequence: 3
  givenname: Farnoosh
  surname: Naderkhani
  fullname: Naderkhani, Farnoosh
  email: farnoosh.naderkhani@concordia.ca
  organization: Concordia Institute for Information System Engineering, Concordia University, Montreal, Canada
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz1vzsbtNxEspfkHBg4rHkE0mNaXd1CRb6L93y3ry4GmY4X1m3nknaNSGFhC6pmRGCa1vN7MIKc0YYawfiJJUZ2hMxVwWRPB6hMZEVrQQnJELNElpQwgpZTUfo8832PkidXuIB5_AYrPtUobo23XR6NNgB_krWOxCxE5324yt1-s2JJ-wbi3exzB0d3iBTU_glDt7vETnTm8TXP3WKfp4fHhfPher16eX5WJVGM5ELgyjTSVNWQnjnOxNWgIlB0oZrWvtGmdEw4WTWld2XjlupNHMNo1o5rXkDPgU3Qx7ex_fHaSsNqGLbX9SsbrinNey5L2KDSoTQ0oRnNpHv9PxqChRpwDVRp0CVKcA1RBgD4k_kPFZZx_aHLXf_o_eDyj0rx88RJWMh9aA9RFMVjb4__AfcXSPNw
CitedBy_id crossref_primary_10_1016_j_array_2023_100321
crossref_primary_10_1016_j_ijar_2023_108988
crossref_primary_10_1007_s42417_023_01141_x
crossref_primary_10_1088_1361_6501_acc602
crossref_primary_10_1016_j_engappai_2024_108802
crossref_primary_10_3390_machines11040418
crossref_primary_10_1002_qre_3714
crossref_primary_10_1016_j_ress_2024_110749
crossref_primary_10_1016_j_ress_2022_108932
crossref_primary_10_1016_j_ress_2025_110907
crossref_primary_10_1016_j_apenergy_2024_123773
crossref_primary_10_1016_j_ress_2022_108714
crossref_primary_10_3390_s23052402
crossref_primary_10_1016_j_ress_2023_109107
crossref_primary_10_1016_j_ress_2023_109321
crossref_primary_10_1007_s40964_024_00816_5
crossref_primary_10_1016_j_engappai_2025_110503
crossref_primary_10_1016_j_ress_2023_109186
crossref_primary_10_1016_j_ress_2024_110030
crossref_primary_10_1109_TIM_2024_3385829
crossref_primary_10_1016_j_ress_2024_110297
crossref_primary_10_1016_j_ijpe_2024_109218
crossref_primary_10_3390_s23198124
crossref_primary_10_1080_14786451_2024_2326296
crossref_primary_10_1111_exsy_13360
crossref_primary_10_1016_j_ress_2022_108921
crossref_primary_10_1016_j_ymssp_2024_111527
crossref_primary_10_1115_1_4066194
crossref_primary_10_1088_1361_6501_ad950c
crossref_primary_10_1109_TIM_2025_3545531
crossref_primary_10_1016_j_ress_2025_110910
crossref_primary_10_1016_j_ress_2023_109235
crossref_primary_10_1016_j_ress_2023_109873
crossref_primary_10_1007_s40430_023_04042_y
crossref_primary_10_1016_j_ress_2022_108981
crossref_primary_10_1016_j_ress_2023_109591
crossref_primary_10_1049_cim2_12122
Cites_doi 10.1109/ICPHM.2019.8819420
10.1016/j.rser.2019.03.049
10.1016/j.ymssp.2018.05.050
10.1016/j.ress.2021.107530
10.1016/j.ress.2021.107713
10.1080/07408170600847168
10.1016/j.ress.2019.106676
10.1016/j.cie.2020.106322
10.1016/j.ress.2017.11.021
10.1016/j.ejor.2019.10.049
10.1080/00207541003694811
10.1016/j.ress.2018.11.027
10.3390/su10010085
10.1080/07408170903232571
10.1057/s41274-016-0160-9
10.1016/j.eswa.2020.113701
10.1108/13552519810213644
10.3390/s20030723
10.1016/j.apenergy.2019.03.027
10.1016/j.ress.2018.11.011
10.1016/j.renene.2010.10.028
10.1016/j.ress.2016.08.009
10.1002/qre.4680030204
10.1016/j.ymssp.2005.09.012
10.1016/j.ress.2020.107257
10.1016/j.strusafe.2019.101906
10.1016/j.apor.2018.02.016
10.1016/j.ress.2020.107123
10.1108/JQME-07-2015-0030
10.1016/j.ress.2020.106926
10.1016/j.ress.2014.10.015
10.1016/j.ress.2021.107551
10.1111/mice.12558
10.1109/PHM-Chongqing.2018.00184
10.1109/TNNLS.2016.2582798
10.1109/TII.2019.2900295
10.1002/qre.1466
10.4172/2155-6180.1000392
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 2022
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2022.108405
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2022_108405
S0951832022000783
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-c21b59c458cff9095d0e43e112166afbfc8b38f9aa5d75f3c9ca2dbb8b76932e3
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Wed Aug 13 08:00:16 EDT 2025
Sat Oct 25 04:59:41 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Fri Feb 23 02:39:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Prognostic and health management
Condition-based maintenance
Maintenance decision support system
Machine learning
Proportional hazard model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-c21b59c458cff9095d0e43e112166afbfc8b38f9aa5d75f3c9ca2dbb8b76932e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2653336943
PQPubID 2045406
ParticipantIDs proquest_journals_2653336943
crossref_primary_10_1016_j_ress_2022_108405
crossref_citationtrail_10_1016_j_ress_2022_108405
elsevier_sciencedirect_doi_10_1016_j_ress_2022_108405
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Li, Zhou, Choubey, Sievenpiper (b29) 2007; 39
Makis, Jardine (b19) 1992; 30
Babu, Zhao, Li (b16) 2016
Liu, Chen, Jiang (b36) 2020; 283
Zheng, Makis (b47) 2020; 141
Makis, Jardine (b20) 1991; 3
Davidson-Pilon, Kalderstam, Jacobson, Reed, Kuhn, Zivich (b48) 2020
Jardine, Makis, Banjevic, Braticevic, Ennis (b51) 1998
Wang J, Wen G, Yang S, Liu Y. Remaining useful life estimation in prognostics using deep bidirectional lstm neural network. In: 2018 prognostics and system health management conference. 2018, p. 1037–42.
Makis, Jardine (b50) 1992; 30
Tang, Makis, Jafari, Yu (b22) 2015; 134
Jardine, Lin, Banjevic (b5) 2006; 20
Shi, Chehade (b11) 2021; 205
Alaswad, Xiang (b25) 2017; 157
Xia, Ning, Huang (b49) 2018; 9
Chen, Chen, Li, Zhou, Sievenpiper (b28) 2011; 49
Ma, Chen, Wang, Liu, Li (b44) 2016
Jardine, Tsang (b41) 2005
Zheng, Ristovski, Farahat, Gupta (b15) 2017
Tian, Jin, Wu, Ding (b4) 2011; 36
Rengasamy, Jafari, Rothwell, Chen, Figueredo (b13) 2020; 20
Jardine, Anderson, Mann (b43) 1987; 3
Zhou, Yin (b45) 2019; 109
Zhao, Yan, Chen, Mao, Wang, Gao (b1) 2019; 115
Saxena, Goebel, Simon, Eklund (b6) 2008
Yu, Kim, Mechefske (b10) 2020; 199
Huang, Chang, Arinez (b35) 2020; 160
Zhan, Si (b38) 2020; 203
Lu, Sun, Zhang, Feng, Kang, Fu (b46) 2018; 74
Naderkhani, Jafari, Makis (b30) 2017
Wong, Jefferis, Montgomery (b26) 2010
Jafari, Naderkhani, Makis (b31) 2018; 69
Xu, Saleh (b12) 2021
Ellefsen, Bjørlykhaug, Æsøy, Ushakov, Zhang (b17) 2019; 183
Duan, Makis, Deng (b23) 2020; 193
Andriotis, Papakonstantinou (b37) 2021; 212
Wu, Ryan (b21) 2010; 42
Rocchetta, Bellani, Compare, Zio, Patelli (b34) 2019; 241
Miao, Li, Sun, Liu (b8) 2019; 15
Li, Zhang, Ding (b14) 2019; 182
Yang, Li, Wang (b39) 2021
Banjevic, Jardine, Makis, Ennis (b42) 2001; 39
Jardine, Makis, Banjevic, Braticevic, Ennis (b27) 1998
Bai, Sun, Deng, Li, Long, Li (b2) 2018; 10
Wang Q, Zheng S, Farahat A, Serita S, Gupta C. Remaining useful life estimation using functional data analysis. In: 2019 IEEE international conference on prognostics and health management. 2019, p. 1–8.
Li, Ding, Sun (b9) 2018; 172
Wu, Tian, Chen (b3) 2013; 29
Zhang, Lim, Qin, Tan (b40) 2017; 28
Zheng, Chen, Gu (b24) 2020; 204
Wei, Bao, Li (b33) 2020; 83
Yao, Dong, Jiang, Ni (b32) 2020; 35
Makis (10.1016/j.ress.2022.108405_b20) 1991; 3
Jardine (10.1016/j.ress.2022.108405_b41) 2005
Zhan (10.1016/j.ress.2022.108405_b38) 2020; 203
Zhao (10.1016/j.ress.2022.108405_b1) 2019; 115
Saxena (10.1016/j.ress.2022.108405_b6) 2008
Chen (10.1016/j.ress.2022.108405_b28) 2011; 49
Yang (10.1016/j.ress.2022.108405_b39) 2021
Jardine (10.1016/j.ress.2022.108405_b5) 2006; 20
Xia (10.1016/j.ress.2022.108405_b49) 2018; 9
Liu (10.1016/j.ress.2022.108405_b36) 2020; 283
Lu (10.1016/j.ress.2022.108405_b46) 2018; 74
Rengasamy (10.1016/j.ress.2022.108405_b13) 2020; 20
Alaswad (10.1016/j.ress.2022.108405_b25) 2017; 157
Jardine (10.1016/j.ress.2022.108405_b51) 1998
Ma (10.1016/j.ress.2022.108405_b44) 2016
Shi (10.1016/j.ress.2022.108405_b11) 2021; 205
Davidson-Pilon (10.1016/j.ress.2022.108405_b48) 2020
Ellefsen (10.1016/j.ress.2022.108405_b17) 2019; 183
10.1016/j.ress.2022.108405_b18
Naderkhani (10.1016/j.ress.2022.108405_b30) 2017
Yu (10.1016/j.ress.2022.108405_b10) 2020; 199
Zhang (10.1016/j.ress.2022.108405_b40) 2017; 28
Rocchetta (10.1016/j.ress.2022.108405_b34) 2019; 241
Miao (10.1016/j.ress.2022.108405_b8) 2019; 15
Yao (10.1016/j.ress.2022.108405_b32) 2020; 35
Wei (10.1016/j.ress.2022.108405_b33) 2020; 83
Andriotis (10.1016/j.ress.2022.108405_b37) 2021; 212
Wu (10.1016/j.ress.2022.108405_b3) 2013; 29
Makis (10.1016/j.ress.2022.108405_b19) 1992; 30
Huang (10.1016/j.ress.2022.108405_b35) 2020; 160
Banjevic (10.1016/j.ress.2022.108405_b42) 2001; 39
Jardine (10.1016/j.ress.2022.108405_b43) 1987; 3
Zhou (10.1016/j.ress.2022.108405_b45) 2019; 109
10.1016/j.ress.2022.108405_b7
Makis (10.1016/j.ress.2022.108405_b50) 1992; 30
Zheng (10.1016/j.ress.2022.108405_b15) 2017
Xu (10.1016/j.ress.2022.108405_b12) 2021
Tang (10.1016/j.ress.2022.108405_b22) 2015; 134
Tian (10.1016/j.ress.2022.108405_b4) 2011; 36
Wu (10.1016/j.ress.2022.108405_b21) 2010; 42
Bai (10.1016/j.ress.2022.108405_b2) 2018; 10
Wong (10.1016/j.ress.2022.108405_b26) 2010
Zheng (10.1016/j.ress.2022.108405_b47) 2020; 141
Li (10.1016/j.ress.2022.108405_b29) 2007; 39
Zheng (10.1016/j.ress.2022.108405_b24) 2020; 204
Li (10.1016/j.ress.2022.108405_b9) 2018; 172
Duan (10.1016/j.ress.2022.108405_b23) 2020; 193
Jardine (10.1016/j.ress.2022.108405_b27) 1998
Li (10.1016/j.ress.2022.108405_b14) 2019; 182
Babu (10.1016/j.ress.2022.108405_b16) 2016
Jafari (10.1016/j.ress.2022.108405_b31) 2018; 69
References_xml – volume: 283
  start-page: 166
  year: 2020
  end-page: 181
  ident: b36
  article-title: Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach
  publication-title: European J Oper Res
– year: 2021
  ident: b12
  article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities
  publication-title: Reliab Eng Syst Saf
– volume: 49
  start-page: 2083
  year: 2011
  end-page: 2100
  ident: b28
  article-title: Optimal variability sensitive condition-based maintenance with a cox ph model
  publication-title: Int J Prod Res
– start-page: 88
  year: 2017
  end-page: 95
  ident: b15
  article-title: Long short-term memory network for remaining useful life estimation
– volume: 204
  year: 2020
  ident: b24
  article-title: Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model
  publication-title: Reliab Eng Syst Saf
– volume: 69
  start-page: 36
  year: 2018
  end-page: 48
  ident: b31
  article-title: Joint optimization of maintenance policy and inspection interval for a multi-unit series system using proportional hazards model
  publication-title: J Oper Res Soc
– year: 1998
  ident: b27
  article-title: A decision optimization model for condition-based maintenance
  publication-title: J Qual Maintenance Eng
– volume: 39
  start-page: 303
  year: 2007
  end-page: 315
  ident: b29
  article-title: Failure event prediction using the cox proportional hazard model driven by frequent failure signatures
  publication-title: IIE Trans
– year: 2017
  ident: b30
  article-title: Optimal cbm policy with two sampling intervals
  publication-title: J Qual Maintenance Eng
– year: 2021
  ident: b39
  article-title: Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning
  publication-title: Reliab Eng Syst Saf
– volume: 183
  start-page: 240
  year: 2019
  end-page: 251
  ident: b17
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab Eng Syst Saf
– volume: 10
  start-page: 85
  year: 2018
  ident: b2
  article-title: Manufacturing quality prediction using intelligent learning approaches: A comparative study
  publication-title: Sustainability
– volume: 199
  year: 2020
  ident: b10
  article-title: An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme
  publication-title: Reliab Eng Syst Saf
– volume: 74
  start-page: 69
  year: 2018
  end-page: 79
  ident: b46
  article-title: Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach
  publication-title: Appl Ocean Res
– volume: 205
  year: 2021
  ident: b11
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
– volume: 29
  start-page: 1151
  year: 2013
  end-page: 1163
  ident: b3
  article-title: Condition-based maintenance optimization using neural network-based health condition prediction
  publication-title: Qual Reliab Eng Int
– volume: 134
  start-page: 198
  year: 2015
  end-page: 207
  ident: b22
  article-title: Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring
  publication-title: Reliab Eng Syst Saf
– volume: 28
  start-page: 2306
  year: 2017
  end-page: 2318
  ident: b40
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 182
  start-page: 208
  year: 2019
  end-page: 218
  ident: b14
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliab Eng Syst Saf
– start-page: 214
  year: 2016
  end-page: 228
  ident: b16
  article-title: Deep convolutional neural network based regression approach for estimation of remaining useful life
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: b5
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Signal Process
– volume: 141
  year: 2020
  ident: b47
  article-title: Optimal condition-based maintenance with general repair and two dependent failure modes
  publication-title: Comput Ind Eng
– volume: 157
  start-page: 54
  year: 2017
  end-page: 63
  ident: b25
  article-title: A review on condition-based maintenance optimization models for stochastically deteriorating system
  publication-title: Reliab Eng Syst Saf
– volume: 30
  start-page: 172
  year: 1992
  end-page: 183
  ident: b19
  article-title: Optimal replacement in the proportional hazards model
  publication-title: INFOR: Inf Syst Oper Res
– year: 2010
  ident: b26
  article-title: Proportional hazards modeling of engine failures in military vehicles
  publication-title: J Qual Maintenance Eng
– volume: 241
  start-page: 291
  year: 2019
  end-page: 301
  ident: b34
  article-title: A reinforcement learning framework for optimal operation and maintenance of power grids
  publication-title: Appl Energy
– start-page: 1
  year: 2008
  end-page: 9
  ident: b6
  article-title: Damage propagation modeling for aircraft engine run-to-failure simulation
– volume: 83
  year: 2020
  ident: b33
  article-title: Optimal policy for structure maintenance: A deep reinforcement learning framework
  publication-title: Struct Saf
– volume: 36
  start-page: 1502
  year: 2011
  end-page: 1509
  ident: b4
  article-title: Condition based maintenance optimization for wind power generation systems under continuous monitoring
  publication-title: Renew Energy
– volume: 30
  start-page: 172
  year: 1992
  end-page: 183
  ident: b50
  article-title: Optimal replacement in proportional hazard model
  publication-title: Inf Syst Oper Res
– volume: 20
  start-page: 723
  year: 2020
  ident: b13
  article-title: Deep learning with dynamically weighted loss function for sensor-based prognostics and health management
  publication-title: Sensors
– volume: 39
  start-page: 32
  year: 2001
  end-page: 50
  ident: b42
  article-title: A control-limit policy and software for condition-based maintenance optimization
  publication-title: INFOR: Inf Syst Oper Res
– volume: 193
  year: 2020
  ident: b23
  article-title: A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes
  publication-title: Reliab Eng Syst Saf
– year: 1998
  ident: b51
  article-title: A decision optimization model for condition-based maintenance
  publication-title: J Qual Maintenance Eng
– volume: 3
  start-page: 169
  year: 1991
  end-page: 175
  ident: b20
  article-title: Computation of optimal policies in replacement models
  publication-title: IMA J Manag Math
– reference: Wang J, Wen G, Yang S, Liu Y. Remaining useful life estimation in prognostics using deep bidirectional lstm neural network. In: 2018 prognostics and system health management conference. 2018, p. 1037–42.
– volume: 42
  start-page: 553
  year: 2010
  end-page: 563
  ident: b21
  article-title: Value of condition monitoring for optimal replacement in the proportional hazards model with continuous degradation
  publication-title: IIE Trans
– year: 2020
  ident: b48
  article-title: Camdavidsonpilon/lifelines: v0.24.16 (version v0.24.16). Zenodo
– volume: 9
  start-page: 2
  year: 2018
  ident: b49
  article-title: Empirical comparison of the Breslow estimator and the kalbfleisch prentice estimator for survival functions
  publication-title: J Biom Biostat
– volume: 160
  year: 2020
  ident: b35
  article-title: Deep reinforcement learning based preventive maintenance policy for serial production lines
  publication-title: Expert Syst Appl
– volume: 15
  start-page: 5023
  year: 2019
  end-page: 5032
  ident: b8
  article-title: Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks
  publication-title: IEEE Trans Ind Inf
– volume: 3
  start-page: 77
  year: 1987
  end-page: 82
  ident: b43
  article-title: Application of the weibull proportional hazards model to aircraft and marine engine failure data
  publication-title: Qual Reliab Eng
– start-page: 382
  year: 2016
  end-page: 385
  ident: b44
  article-title: Bearing degradation assessment based on weibull distribution and deep belief network
  publication-title: 2016 international symposium on flexible automation
– volume: 172
  start-page: 1
  year: 2018
  end-page: 11
  ident: b9
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab Eng Syst Saf
– volume: 35
  start-page: 1230
  year: 2020
  end-page: 1245
  ident: b32
  article-title: Deep reinforcement learning for long-term pavement maintenance planning
  publication-title: Comput-Aided Civ Infrastruct Eng
– volume: 203
  year: 2020
  ident: b38
  article-title: Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks
  publication-title: Reliab Eng Syst Saf
– volume: 109
  year: 2019
  ident: b45
  article-title: An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics
  publication-title: Renew Sustain Energy Rev
– reference: Wang Q, Zheng S, Farahat A, Serita S, Gupta C. Remaining useful life estimation using functional data analysis. In: 2019 IEEE international conference on prognostics and health management. 2019, p. 1–8.
– year: 2005
  ident: b41
  article-title: Maintenance, replacement, and reliability: theory and applications
– volume: 212
  year: 2021
  ident: b37
  article-title: Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints
  publication-title: Reliab Eng Syst Saf
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: b1
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech Syst Signal Process
– volume: 203
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b38
  article-title: Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks
  publication-title: Reliab Eng Syst Saf
– ident: 10.1016/j.ress.2022.108405_b18
  doi: 10.1109/ICPHM.2019.8819420
– volume: 109
  year: 2019
  ident: 10.1016/j.ress.2022.108405_b45
  article-title: An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.03.049
– volume: 39
  start-page: 32
  issue: 1
  year: 2001
  ident: 10.1016/j.ress.2022.108405_b42
  article-title: A control-limit policy and software for condition-based maintenance optimization
  publication-title: INFOR: Inf Syst Oper Res
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.ress.2022.108405_b1
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.050
– year: 2021
  ident: 10.1016/j.ress.2022.108405_b12
  article-title: Machine learning for reliability engineering and safety applications: Review of current status and future opportunities
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107530
– year: 2021
  ident: 10.1016/j.ress.2022.108405_b39
  article-title: Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107713
– volume: 39
  start-page: 303
  issue: 3
  year: 2007
  ident: 10.1016/j.ress.2022.108405_b29
  article-title: Failure event prediction using the cox proportional hazard model driven by frequent failure signatures
  publication-title: IIE Trans
  doi: 10.1080/07408170600847168
– volume: 193
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b23
  article-title: A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.106676
– volume: 141
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b47
  article-title: Optimal condition-based maintenance with general repair and two dependent failure modes
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.106322
– volume: 172
  start-page: 1
  year: 2018
  ident: 10.1016/j.ress.2022.108405_b9
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.11.021
– year: 2010
  ident: 10.1016/j.ress.2022.108405_b26
  article-title: Proportional hazards modeling of engine failures in military vehicles
  publication-title: J Qual Maintenance Eng
– start-page: 382
  year: 2016
  ident: 10.1016/j.ress.2022.108405_b44
  article-title: Bearing degradation assessment based on weibull distribution and deep belief network
– year: 2005
  ident: 10.1016/j.ress.2022.108405_b41
– volume: 283
  start-page: 166
  issue: 1
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b36
  article-title: Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach
  publication-title: European J Oper Res
  doi: 10.1016/j.ejor.2019.10.049
– volume: 49
  start-page: 2083
  issue: 7
  year: 2011
  ident: 10.1016/j.ress.2022.108405_b28
  article-title: Optimal variability sensitive condition-based maintenance with a cox ph model
  publication-title: Int J Prod Res
  doi: 10.1080/00207541003694811
– volume: 183
  start-page: 240
  year: 2019
  ident: 10.1016/j.ress.2022.108405_b17
  article-title: Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.027
– start-page: 214
  year: 2016
  ident: 10.1016/j.ress.2022.108405_b16
– volume: 10
  start-page: 85
  issue: 1
  year: 2018
  ident: 10.1016/j.ress.2022.108405_b2
  article-title: Manufacturing quality prediction using intelligent learning approaches: A comparative study
  publication-title: Sustainability
  doi: 10.3390/su10010085
– volume: 42
  start-page: 553
  issue: 8
  year: 2010
  ident: 10.1016/j.ress.2022.108405_b21
  article-title: Value of condition monitoring for optimal replacement in the proportional hazards model with continuous degradation
  publication-title: IIE Trans
  doi: 10.1080/07408170903232571
– volume: 69
  start-page: 36
  issue: 1
  year: 2018
  ident: 10.1016/j.ress.2022.108405_b31
  article-title: Joint optimization of maintenance policy and inspection interval for a multi-unit series system using proportional hazards model
  publication-title: J Oper Res Soc
  doi: 10.1057/s41274-016-0160-9
– volume: 160
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b35
  article-title: Deep reinforcement learning based preventive maintenance policy for serial production lines
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113701
– year: 1998
  ident: 10.1016/j.ress.2022.108405_b51
  article-title: A decision optimization model for condition-based maintenance
  publication-title: J Qual Maintenance Eng
  doi: 10.1108/13552519810213644
– volume: 20
  start-page: 723
  issue: 3
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b13
  article-title: Deep learning with dynamically weighted loss function for sensor-based prognostics and health management
  publication-title: Sensors
  doi: 10.3390/s20030723
– volume: 241
  start-page: 291
  year: 2019
  ident: 10.1016/j.ress.2022.108405_b34
  article-title: A reinforcement learning framework for optimal operation and maintenance of power grids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.027
– volume: 182
  start-page: 208
  year: 2019
  ident: 10.1016/j.ress.2022.108405_b14
  article-title: Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.11.011
– year: 1998
  ident: 10.1016/j.ress.2022.108405_b27
  article-title: A decision optimization model for condition-based maintenance
  publication-title: J Qual Maintenance Eng
  doi: 10.1108/13552519810213644
– volume: 36
  start-page: 1502
  issue: 5
  year: 2011
  ident: 10.1016/j.ress.2022.108405_b4
  article-title: Condition based maintenance optimization for wind power generation systems under continuous monitoring
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.10.028
– volume: 157
  start-page: 54
  year: 2017
  ident: 10.1016/j.ress.2022.108405_b25
  article-title: A review on condition-based maintenance optimization models for stochastically deteriorating system
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.08.009
– volume: 3
  start-page: 77
  year: 1987
  ident: 10.1016/j.ress.2022.108405_b43
  article-title: Application of the weibull proportional hazards model to aircraft and marine engine failure data
  publication-title: Qual Reliab Eng
  doi: 10.1002/qre.4680030204
– volume: 20
  start-page: 1483
  issue: 7
  year: 2006
  ident: 10.1016/j.ress.2022.108405_b5
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2005.09.012
– volume: 205
  year: 2021
  ident: 10.1016/j.ress.2022.108405_b11
  article-title: A dual-LSTM framework combining change point detection and remaining useful life prediction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107257
– start-page: 1
  year: 2008
  ident: 10.1016/j.ress.2022.108405_b6
– year: 2020
  ident: 10.1016/j.ress.2022.108405_b48
– volume: 83
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b33
  article-title: Optimal policy for structure maintenance: A deep reinforcement learning framework
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2019.101906
– volume: 74
  start-page: 69
  year: 2018
  ident: 10.1016/j.ress.2022.108405_b46
  article-title: Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2018.02.016
– volume: 204
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b24
  article-title: Condition-based maintenance with dynamic thresholds for a system using the proportional hazards model
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107123
– year: 2017
  ident: 10.1016/j.ress.2022.108405_b30
  article-title: Optimal cbm policy with two sampling intervals
  publication-title: J Qual Maintenance Eng
  doi: 10.1108/JQME-07-2015-0030
– volume: 199
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b10
  article-title: An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.106926
– volume: 134
  start-page: 198
  year: 2015
  ident: 10.1016/j.ress.2022.108405_b22
  article-title: Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2014.10.015
– volume: 212
  year: 2021
  ident: 10.1016/j.ress.2022.108405_b37
  article-title: Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107551
– volume: 35
  start-page: 1230
  issue: 11
  year: 2020
  ident: 10.1016/j.ress.2022.108405_b32
  article-title: Deep reinforcement learning for long-term pavement maintenance planning
  publication-title: Comput-Aided Civ Infrastruct Eng
  doi: 10.1111/mice.12558
– volume: 3
  start-page: 169
  issue: 3
  year: 1991
  ident: 10.1016/j.ress.2022.108405_b20
  article-title: Computation of optimal policies in replacement models
  publication-title: IMA J Manag Math
– ident: 10.1016/j.ress.2022.108405_b7
  doi: 10.1109/PHM-Chongqing.2018.00184
– volume: 28
  start-page: 2306
  issue: 10
  year: 2017
  ident: 10.1016/j.ress.2022.108405_b40
  article-title: Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2582798
– start-page: 88
  year: 2017
  ident: 10.1016/j.ress.2022.108405_b15
– volume: 30
  start-page: 172
  issue: 1
  year: 1992
  ident: 10.1016/j.ress.2022.108405_b19
  article-title: Optimal replacement in the proportional hazards model
  publication-title: INFOR: Inf Syst Oper Res
– volume: 30
  start-page: 172
  issue: 1
  year: 1992
  ident: 10.1016/j.ress.2022.108405_b50
  article-title: Optimal replacement in proportional hazard model
  publication-title: Inf Syst Oper Res
– volume: 15
  start-page: 5023
  issue: 9
  year: 2019
  ident: 10.1016/j.ress.2022.108405_b8
  article-title: Joint learning of degradation assessment and RUL prediction for aeroengines via dual-task deep LSTM networks
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2019.2900295
– volume: 29
  start-page: 1151
  issue: 8
  year: 2013
  ident: 10.1016/j.ress.2022.108405_b3
  article-title: Condition-based maintenance optimization using neural network-based health condition prediction
  publication-title: Qual Reliab Eng Int
  doi: 10.1002/qre.1466
– volume: 9
  start-page: 2
  year: 2018
  ident: 10.1016/j.ress.2022.108405_b49
  article-title: Empirical comparison of the Breslow estimator and the kalbfleisch prentice estimator for survival functions
  publication-title: J Biom Biostat
  doi: 10.4172/2155-6180.1000392
SSID ssj0004957
Score 2.5366879
Snippet Recent increased enthusiasm towards Industrial Artificial Intelligence (IAI) coupled with advancements in smart sensor technologies have resulted in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108405
SubjectTerms Aircraft engines
Artificial intelligence
Clustering
Condition monitoring
Condition-based maintenance
Decision support systems
Fault diagnosis
Hybrid systems
Machine learning
Maintenance
Maintenance decision support system
Manufacturing
Mathematical models
Optimization
Prognostic and health management
Proportional hazard model
Reliability engineering
Smart sensors
Statistical analysis
Statistical models
Title Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study
URI https://dx.doi.org/10.1016/j.ress.2022.108405
https://www.proquest.com/docview/2653336943
Volume 222
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpHqTywIbdN7CQOW1VRFRBdSkW3yHZsKaiEiiYrvx1f4vAS6sCY-KHkbN99lr67D6FLuCOHVHHCLNyFlJyQcCZ8IqWw4VFwyqti1Q_TcDJnd4tg0UKjJhcGaJXO99c-vfLW7k3fWbO_yrL-DMABB_lvvwp0UPGTsQhUDHrvXzQPewGIGjl56O0SZ2qOF9xoezADUO0YSNj9HZx-uekq9oz30K4DjXhYf9c-aun8AO18KyV4iJ5m-iUj63IFZ3-tU6yWJdRAsI0EIlWKa61obEEqNqJcFjitWXbZGos8xUDUqp6u8RArOwJXlWeP0Hx88ziaECeaQBT1eUGU78kgVizgypjY_nY60IxqC6u8MBRGGsUl5SYWIkijwFAVK-GnUnIJqoi-pseonb_m-gRhAWm0mqvUM4wZMZCS2tNseDCQoZQyOkVeY61EuYriIGyxTBrq2HMCFk7Awklt4VN09TlmVdfT2Ng7aBYh-bErEuvwN47rNCuWuDNp20MLbWkYM3r2z2nP0TY81UyxDmoXb6W-sJikkN1q03XR1vD2fjL9AIcm4FU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGYAB8RSFAh7YUGgbO4nDVlVUBdoubUU3y3ZsKaiEiiYrvx1fHryEOjAm9lnJ2b77TvruDqEriJF9ophDLdyFlBzfYVS4jpTCukfBCMuLVY_G_mBGH-bevIZ6VS4M0CpL21_Y9Nxal29apTZbyzhuTQAcMGj_7eaOjmygTeq5AURgN-9fPA8bAQRVP3mYXmbOFCQvCGlvYAng2lHoYfe3d_plp3Pn099DuyVqxN3iw_ZRTScHaOdbLcFD9DTRL7GzypZw-Vc6wmqRQREEO-iAq4pw0SwaW5SKjcgWKY4Kml28wiKJMDC18qdb3MXKSuC89OwRmvXvpr2BU3ZNcBRxWeootyO9UFGPKWNC-9tRW1OiLa7q-L4w0igmCTOhEF4UeIaoUAk3kpJJaIvoanKM6slrok8QFpBHq5mKOoZSI9pSEnudDfPa0pdSBg3UqbTFVVlSHDpbLHjFHXvmoGEOGuaFhhvo-lNmWRTUWDvbqzaB_zgW3Fr8tXLNasd4eSntuG-xLfFDSk7_uewl2hpMR0M-vB8_nqFtGCloY01UT98yfW4BSiov8gP4AdFa4eo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-supervised+clustering-based+method+for+fault+diagnosis+and+prognosis%3A+A+case+study&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Azar%2C+Kamyar&rft.au=Hajiakhondi-Meybodi%2C+Zohreh&rft.au=Naderkhani%2C+Farnoosh&rft.date=2022-06-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=222&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108405&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon