OptiFel: A Convergent Heterogeneous Particle Swarm Optimization Algorithm for Takagi-Sugeno Fuzzy Modeling

Data-driven design of accurate and reliable Takagi-Sugeno (T-S) fuzzy systems has attracted a lot of attention, where the model structures and parameters are important and often solved in an optimization framework. The particle swarm optimization (PSO) algorithm is widely applied in the field. Howev...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 22; no. 4; pp. 919 - 933
Main Authors Cheung, Ngaam J., Ding, Xue-Ming, Shen, Hong-Bin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2013.2278972

Cover

Abstract Data-driven design of accurate and reliable Takagi-Sugeno (T-S) fuzzy systems has attracted a lot of attention, where the model structures and parameters are important and often solved in an optimization framework. The particle swarm optimization (PSO) algorithm is widely applied in the field. However, the classical PSO suffers from premature convergence, and it is trapped easily into local optima, which will significantly affect the model accuracy. To overcome these drawbacks, we have developed a new T-S fuzzy system parameters searching strategy called OptiFel with a heterogeneous multiswarm PSO (MsPSO) to enhance the searching performance. MsPSO groups the whole population into multiple cooperative subswarms, which perform different search behaviors for the potential solutions. We have found that the multiple subswarms strategy proposed in this paper is greatly helpful for finding the optimal parameters suitable for the subspaces of the T-S fuzzy model. Our theoretical proof has also demonstrated that the cooperation among the subswarms can maintain a balance between exploration and exploitation to ensure the particles converge to stable points. Experimental results show that MsPSO performs significantly better than traditional PSO algorithms on six benchmark functions. With the improved MsPSO, OptiFel can generate a good fuzzy system model with high accuracy and strong generalization ability.
AbstractList Data-driven design of accurate and reliable Takagi-Sugeno (T-S) fuzzy systems has attracted a lot of attention, where the model structures and parameters are important and often solved in an optimization framework. The particle swarm optimization (PSO) algorithm is widely applied in the field. However, the classical PSO suffers from premature convergence, and it is trapped easily into local optima, which will significantly affect the model accuracy. To overcome these drawbacks, we have developed a new T-S fuzzy system parameters searching strategy called OptiFel with a heterogeneous multiswarm PSO (MsPSO) to enhance the searching performance. MsPSO groups the whole population into multiple cooperative subswarms, which perform different search behaviors for the potential solutions. We have found that the multiple subswarms strategy proposed in this paper is greatly helpful for finding the optimal parameters suitable for the subspaces of the T-S fuzzy model. Our theoretical proof has also demonstrated that the cooperation among the subswarms can maintain a balance between exploration and exploitation to ensure the particles converge to stable points. Experimental results show that MsPSO performs significantly better than traditional PSO algorithms on six benchmark functions. With the improved MsPSO, OptiFel can generate a good fuzzy system model with high accuracy and strong generalization ability.
Author Shen, Hong-Bin
Ding, Xue-Ming
Cheung, Ngaam J.
Author_xml – sequence: 1
  givenname: Ngaam J.
  surname: Cheung
  fullname: Cheung, Ngaam J.
  email: ngaam.ch@gmail.com
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Xue-Ming
  surname: Ding
  fullname: Ding, Xue-Ming
  email: xuemingding@usst.edu.cn
  organization: School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai , China
– sequence: 3
  givenname: Hong-Bin
  surname: Shen
  fullname: Shen, Hong-Bin
  email: hbshen@sjtu.edu.cn
  organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
BookMark eNp9kD1v2zAQhokiBZqvP5AuBLp0kcsjKUrqZhh1UyBFCsRZsggn5ejSlUSXolrEv760HXTIkInv8D53vOeMnQx-IMauQMwARPVptbx_eJhJAWomZVFWhXzDTqHSkAmh9EnKwqjMFMK8Y2fjuBECdA7lKdvcbqNbUveZz_nCD38orGmI_JoiBZ8i-WnkPzBE13bE7_5i6Pke6d0Oo_MDn3drH1z82XPrA1_hL1y77G5KqOfLabd74t_9I3VuWF-wtxa7kS6f33N2v_yyWlxnN7dfvy3mN1mrZBmzBi1Jox91aaWtsNApVpoEgrAF2Kq0iFoaJGiKHFqyuW0aU1KDGtGUQp2zj8e52-B_TzTGundjS12Hh2tqyE0ByY1WqfrhRXXjpzCk36VWDgq0AZ1a8thqgx_HQLbeBtdjeKpB1Hv99UF_vddfP-tPUPkCal08KIsBXfc6-v6IOiL6v8vkpVLSqH9vF5bI
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_TCYB_2016_2517140
crossref_primary_10_1007_s40815_023_01623_w
crossref_primary_10_1049_iet_ipr_2016_0489
crossref_primary_10_1016_j_ins_2017_02_027
crossref_primary_10_1016_j_aei_2024_102516
crossref_primary_10_1109_TCYB_2017_2701900
crossref_primary_10_1109_TCYB_2018_2857815
crossref_primary_10_1007_s10614_024_10670_w
crossref_primary_10_1109_TASE_2016_2544749
crossref_primary_10_1007_s40815_019_00747_2
crossref_primary_10_1177_0142331217696348
crossref_primary_10_1177_01423312211029509
crossref_primary_10_1002_jcc_24232
crossref_primary_10_1177_01423312231225992
crossref_primary_10_1109_ACCESS_2019_2960890
crossref_primary_10_1016_j_knosys_2018_04_014
crossref_primary_10_1142_S1469026822500225
crossref_primary_10_3233_JIFS_211093
crossref_primary_10_1016_j_epsr_2021_107422
crossref_primary_10_1371_journal_pone_0112634
crossref_primary_10_1109_TFUZZ_2020_3009757
crossref_primary_10_1109_TFUZZ_2017_2774187
crossref_primary_10_4018_IJCINI_294566
crossref_primary_10_1109_TFUZZ_2016_2598850
crossref_primary_10_1007_s13748_019_00183_1
crossref_primary_10_1016_j_knosys_2022_109773
crossref_primary_10_1016_j_jmgm_2014_10_002
crossref_primary_10_1109_ACCESS_2020_3043275
crossref_primary_10_1016_j_neucom_2014_10_063
crossref_primary_10_1109_TFUZZ_2019_2907513
crossref_primary_10_1007_s10489_015_0683_9
crossref_primary_10_1109_TIM_2015_2450352
crossref_primary_10_1016_j_ejor_2015_03_047
crossref_primary_10_1016_j_swevo_2017_12_004
crossref_primary_10_1109_TASE_2016_2526781
crossref_primary_10_1007_s00607_019_00782_9
crossref_primary_10_1016_j_swevo_2017_10_003
crossref_primary_10_1016_j_engappai_2017_12_005
crossref_primary_10_1109_TFUZZ_2017_2704542
crossref_primary_10_1007_s00500_020_05238_3
crossref_primary_10_1109_TFUZZ_2022_3223700
crossref_primary_10_1109_TFUZZ_2021_3133083
crossref_primary_10_1177_0959651818756246
crossref_primary_10_1109_TCYB_2021_3072851
crossref_primary_10_1155_2021_4194263
crossref_primary_10_1007_s00521_020_05133_w
crossref_primary_10_1007_s10489_020_01819_9
crossref_primary_10_1080_02286203_2017_1376172
crossref_primary_10_1109_TFUZZ_2021_3117437
crossref_primary_10_1007_s10489_015_0752_0
crossref_primary_10_1109_TIM_2019_2895482
crossref_primary_10_1016_j_jfranklin_2017_06_014
crossref_primary_10_1142_S0218126618500597
crossref_primary_10_3233_JIFS_221434
crossref_primary_10_1016_j_isatra_2018_02_005
crossref_primary_10_1007_s00500_019_04631_x
crossref_primary_10_1109_TCYB_2018_2870981
crossref_primary_10_1016_j_asoc_2018_02_042
crossref_primary_10_1109_TSMC_2017_2756447
crossref_primary_10_1007_s40815_022_01366_0
crossref_primary_10_1109_JSYST_2015_2475702
crossref_primary_10_1142_S1469026820500297
crossref_primary_10_1186_s12918_018_0610_x
crossref_primary_10_1016_j_ijhydene_2023_10_151
crossref_primary_10_1049_iet_gtd_2015_1025
crossref_primary_10_1049_iet_gtd_2016_0989
crossref_primary_10_1007_s40815_024_01743_x
crossref_primary_10_1109_TIA_2018_2871392
crossref_primary_10_1007_s40313_018_0393_8
Cites_doi 10.1109/ICNN.1995.488968
10.1109/TFUZZ.2006.882472
10.1109/TFUZZ.2011.2150757
10.1109/TFUZZ.2011.2173694
10.1080/00207179208934253
10.1016/j.asoc.2007.05.006
10.1109/72.712150
10.1016/S0165-0114(01)00227-5
10.1109/TFUZZ.2003.812693
10.1080/01969720600886980
10.1016/j.neucom.2008.03.002
10.1109/91.755393
10.1016/j.asoc.2009.10.012
10.1016/0165-0114(95)00413-0
10.1109/ICEC.1998.699146
10.1049/iet-cta:20060415
10.1109/INDCON.2005.1590196
10.1109/SIS.2007.368035
10.1109/TFUZZ.2011.2173581
10.1109/TFUZZ.2011.2168406
10.1016/j.isatra.2007.09.001
10.1109/21.199466
10.1109/TFUZZ.2011.2173693
10.1016/j.asoc.2012.04.030
10.1109/91.618271
10.1109/TFUZZ.2008.925918
10.1109/TFUZZ.2010.2047949
10.1109/TFUZZ.1993.390281
10.1109/SIS.2005.1501611
10.1016/j.ins.2005.02.003
10.1109/4235.771163
10.1109/TFUZZ.2011.2172689
10.1109/TSMCB.2009.2015956
10.1109/91.755394
10.1109/SIS.2011.5952563
10.1109/91.388173
10.1109/TFUZZ.2011.2147320
10.1109/91.728458
10.1109/91.995117
10.1109/TFUZZ.2010.2042960
10.1016/S0954-1810(98)00013-2
10.1016/j.advengsoft.2004.12.001
10.1109/TFUZZ.2011.2164083
10.1109/TSMCA.2009.2013915
10.1109/TSMC.1985.6313399
10.1016/S0165-0114(02)00111-2
10.1109/TSMCB.2006.872265
10.1109/TEVC.2005.857610
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
7SP
F28
FR3
DOI 10.1109/TFUZZ.2013.2278972
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 933
ExternalDocumentID 3393404991
10_1109_TFUZZ_2013_2278972
6583326
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China
  grantid: 61222306; 91130033; 61175024
  funderid: 10.13039/501100001809
– fundername: a Foundation for the Author of National Excellent Doctoral Dissertation of China
  grantid: 201048
– fundername: Shanghai Science and Technology Commission
  grantid: 11JC1404800
– fundername: Program for New Century Excellent Talents in University
  grantid: NCET-11-0330
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
RIG
7SP
F28
FR3
ID FETCH-LOGICAL-c328t-bafe264d48f2f9a744d494e0a10f71f98faa426ae1b751cef5fbb68eba4aa6803
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Sat Sep 27 23:59:30 EDT 2025
Sun Jun 29 12:39:35 EDT 2025
Wed Oct 01 02:37:20 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Wed Aug 27 08:30:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-bafe264d48f2f9a744d494e0a10f71f98faa426ae1b751cef5fbb68eba4aa6803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1551314614
PQPubID 85428
PageCount 15
ParticipantIDs proquest_journals_1551314614
proquest_miscellaneous_1567119443
crossref_primary_10_1109_TFUZZ_2013_2278972
crossref_citationtrail_10_1109_TFUZZ_2013_2278972
ieee_primary_6583326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref51
ref50
ref46
ref45
ref47
ref42
luo (ref8) 0
chen (ref48) 2000
ref41
ref44
ref43
box (ref38) 1990
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
van den bergh (ref26) 2006; 176
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref27
zhao (ref18) 2010; 10
ref29
References_xml – ident: ref31
  doi: 10.1109/ICNN.1995.488968
– ident: ref47
  doi: 10.1109/TFUZZ.2006.882472
– ident: ref3
  doi: 10.1109/TFUZZ.2011.2150757
– year: 0
  ident: ref8
  article-title: T-S fuzzy systems identification based on hierarchical sparse representation
  publication-title: IEEE Trans Fuzzy Syst
– ident: ref16
  doi: 10.1109/TFUZZ.2011.2173694
– ident: ref35
  doi: 10.1080/00207179208934253
– ident: ref12
  doi: 10.1016/j.asoc.2007.05.006
– ident: ref43
  doi: 10.1109/72.712150
– ident: ref7
  doi: 10.1016/S0165-0114(01)00227-5
– ident: ref42
  doi: 10.1109/TFUZZ.2003.812693
– ident: ref21
  doi: 10.1080/01969720600886980
– ident: ref49
  doi: 10.1016/j.neucom.2008.03.002
– ident: ref17
  doi: 10.1109/91.755393
– volume: 10
  start-page: 938
  year: 2010
  ident: ref18
  article-title: Automatically extracting T-S fuzzy models using cooperative random learning particle swarm optimization
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.10.012
– ident: ref39
  doi: 10.1016/0165-0114(95)00413-0
– year: 1990
  ident: ref38
  publication-title: Time Series Analysis Forecasting and Control
– ident: ref33
  doi: 10.1109/ICEC.1998.699146
– ident: ref9
  doi: 10.1049/iet-cta:20060415
– ident: ref19
  doi: 10.1109/INDCON.2005.1590196
– ident: ref27
  doi: 10.1109/SIS.2007.368035
– ident: ref6
  doi: 10.1109/TFUZZ.2011.2173581
– ident: ref22
  doi: 10.1109/TFUZZ.2011.2168406
– ident: ref45
  doi: 10.1016/j.isatra.2007.09.001
– ident: ref13
  doi: 10.1109/21.199466
– start-page: 279
  year: 2000
  ident: ref48
  article-title: Evolving wavelet neural networks for system identification
  publication-title: Int Electr Eng Proc C
– ident: ref14
  doi: 10.1109/TFUZZ.2011.2173693
– ident: ref25
  doi: 10.1016/j.asoc.2012.04.030
– ident: ref40
  doi: 10.1109/91.618271
– ident: ref2
  doi: 10.1109/TFUZZ.2008.925918
– ident: ref32
  doi: 10.1109/TFUZZ.2010.2047949
– ident: ref37
  doi: 10.1109/TFUZZ.1993.390281
– ident: ref28
  doi: 10.1109/SIS.2005.1501611
– volume: 176
  start-page: 937
  year: 2006
  ident: ref26
  article-title: A study of particle swarm optimization particle trajectories
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2005.02.003
– ident: ref36
  doi: 10.1109/4235.771163
– ident: ref15
  doi: 10.1109/TFUZZ.2011.2172689
– ident: ref24
  doi: 10.1109/TSMCB.2009.2015956
– ident: ref23
  doi: 10.1109/91.755394
– ident: ref30
  doi: 10.1109/SIS.2011.5952563
– ident: ref51
  doi: 10.1109/91.388173
– ident: ref4
  doi: 10.1109/TFUZZ.2011.2147320
– ident: ref41
  doi: 10.1109/91.728458
– ident: ref11
  doi: 10.1109/91.995117
– ident: ref10
  doi: 10.1109/TFUZZ.2010.2042960
– ident: ref46
  doi: 10.1016/S0954-1810(98)00013-2
– ident: ref50
  doi: 10.1016/j.advengsoft.2004.12.001
– ident: ref5
  doi: 10.1109/TFUZZ.2011.2164083
– ident: ref29
  doi: 10.1109/TSMCA.2009.2013915
– ident: ref1
  doi: 10.1109/TSMC.1985.6313399
– ident: ref44
  doi: 10.1016/S0165-0114(02)00111-2
– ident: ref20
  doi: 10.1109/TSMCB.2006.872265
– ident: ref34
  doi: 10.1109/TEVC.2005.857610
SSID ssj0014518
Score 2.456552
Snippet Data-driven design of accurate and reliable Takagi-Sugeno (T-S) fuzzy systems has attracted a lot of attention, where the model structures and parameters are...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 919
SubjectTerms Algorithms
Computational modeling
Convergence
Convergence analysis
Fuzzy
Fuzzy logic
Fuzzy set theory
Fuzzy systems
heterogeneous search
Mathematical model
Mathematical models
OptiFel
Optimization
Particle swarm optimization
particle swarm optimization (PSO)
Searching
Strategy
Swarm intelligence
Takagi-Sugeno (T-S) fuzzy system
Vectors
Title OptiFel: A Convergent Heterogeneous Particle Swarm Optimization Algorithm for Takagi-Sugeno Fuzzy Modeling
URI https://ieeexplore.ieee.org/document/6583326
https://www.proquest.com/docview/1551314614
https://www.proquest.com/docview/1567119443
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQgtioSAjcYNs8_Aj5raqiFZIBaTuSlUvkZ2MKXR3g7aJEPvrsR0n4iXEzVLsxMqM7RnPfPMBvETB6sxgFUk0OqLCYKQFNZHKuPW3ai4ydNjh8_d8vqTvLtnlHrwesTCI6JPPcOqaPpZfN1XnrspOuYMIpXwf9oWQPVZrjBhQlvSwN55FXMR8AMjE8nRRLK-uXBZXNvXAT5H-cgh5VpU_tmJ_vhSHcD7MrE8ruZl2rZ5Wu9-KNv7v1O_DvWBoklmvGQ9gDzdHcDiQOJCwpo_g7k8VCY_hywe7hRS4ekNm5MwlpDtsZkvmLmmmsU1sulvyMagbufimtmvihqwDnJPMVp-a7ef2ek2sNUwW6kZZ7_uic6VgSdHtdt-JY19zGPiHsCzeLs7mUaBjiKoszdtIK4PWfKppblIjlaC2KSnGKomNSIzMjVL2vFeYaMGSCg0zWvMctaJK8TzOHsHBptngYyCGIlo7iLG6tv5PzJSprd1mUncrKyumJ5AM8imrUKvcUWasSu-zxLL0Mi2dTMsg0wm8Gsd87St1_LP3sRPS2DPIZwIngxqUYTHflp4Ex_Gf0wm8GB_bZehiK8r_eduHiySRlGZP_v7mp3DHfp_2uYMncNBuO3xm7ZlWP_eK_AOdmPQM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoQCwWMxA2yzcOPhNuqIlqgW5C6K1W9RHYy5tHdDdomQuyvx3aciJcQN0uxLSsztmc8880H8BwFqxKNZZChVgEVGgMlqA5kwo2_VXGRoMUOz075dEHfnrPzHXg5YGEQ0SWf4dg2XSy_qsvWPpUdcQsRivk1uM6MVyE6tNYQM6As6oBvPAm4CHkPkQmzo3m-uLiweVzJ2EE_RfzLNeR4Vf44jN0Nk-_BrF9bl1hyOW4bNS63v5Vt_N_F34Hb3tQkk0437sIOrvdhr6dxIH5X78Otn2oSHsCX9-YQyXH5ikzIsU1Jt-jMhkxt2kxtmli3V-SDVzhy9k1uVsQOWXlAJ5ksP9abz82nFTH2MJnLS2n877PWFoMlebvdfieWf82i4O_BIn89P54GnpAhKJM4bQIlNRoDqqKpjnUmBTXNjGIoo1CLSGepltLc-BIjJVhUomZaKZ6iklRKnobJfdhd12t8AERTRGMJMVZVxgMKmdSVsdx0bN9ls5KpEUS9fIrSVyu3pBnLwnktYVY4mRZWpoWX6QheDGO-drU6_tn7wApp6OnlM4LDXg0Kv52vCkeDYxnQ6QieDZ_NRrTRFen-vOnDRRRllCYP_z7zU7gxnc9OipM3p-8ewU2zFtplEh7CbrNp8bGxbhr1xCn1D5Fo910
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OptiFel%3A+A+Convergent+Heterogeneous+Particle+Swarm+Optimization+Algorithm+for+Takagi-Sugeno+Fuzzy+Modeling&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Cheung%2C+Ngaam+J.&rft.au=Ding%2C+Xue-Ming&rft.au=Shen%2C+Hong-Bin&rft.date=2014-08-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=22&rft.issue=4&rft.spage=919&rft.epage=933&rft_id=info:doi/10.1109%2FTFUZZ.2013.2278972&rft.externalDocID=6583326
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon