OptiFel: A Convergent Heterogeneous Particle Swarm Optimization Algorithm for Takagi-Sugeno Fuzzy Modeling
Data-driven design of accurate and reliable Takagi-Sugeno (T-S) fuzzy systems has attracted a lot of attention, where the model structures and parameters are important and often solved in an optimization framework. The particle swarm optimization (PSO) algorithm is widely applied in the field. Howev...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 22; no. 4; pp. 919 - 933 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6706 1941-0034 |
DOI | 10.1109/TFUZZ.2013.2278972 |
Cover
Abstract | Data-driven design of accurate and reliable Takagi-Sugeno (T-S) fuzzy systems has attracted a lot of attention, where the model structures and parameters are important and often solved in an optimization framework. The particle swarm optimization (PSO) algorithm is widely applied in the field. However, the classical PSO suffers from premature convergence, and it is trapped easily into local optima, which will significantly affect the model accuracy. To overcome these drawbacks, we have developed a new T-S fuzzy system parameters searching strategy called OptiFel with a heterogeneous multiswarm PSO (MsPSO) to enhance the searching performance. MsPSO groups the whole population into multiple cooperative subswarms, which perform different search behaviors for the potential solutions. We have found that the multiple subswarms strategy proposed in this paper is greatly helpful for finding the optimal parameters suitable for the subspaces of the T-S fuzzy model. Our theoretical proof has also demonstrated that the cooperation among the subswarms can maintain a balance between exploration and exploitation to ensure the particles converge to stable points. Experimental results show that MsPSO performs significantly better than traditional PSO algorithms on six benchmark functions. With the improved MsPSO, OptiFel can generate a good fuzzy system model with high accuracy and strong generalization ability. |
---|---|
AbstractList | Data-driven design of accurate and reliable Takagi-Sugeno (T-S) fuzzy systems has attracted a lot of attention, where the model structures and parameters are important and often solved in an optimization framework. The particle swarm optimization (PSO) algorithm is widely applied in the field. However, the classical PSO suffers from premature convergence, and it is trapped easily into local optima, which will significantly affect the model accuracy. To overcome these drawbacks, we have developed a new T-S fuzzy system parameters searching strategy called OptiFel with a heterogeneous multiswarm PSO (MsPSO) to enhance the searching performance. MsPSO groups the whole population into multiple cooperative subswarms, which perform different search behaviors for the potential solutions. We have found that the multiple subswarms strategy proposed in this paper is greatly helpful for finding the optimal parameters suitable for the subspaces of the T-S fuzzy model. Our theoretical proof has also demonstrated that the cooperation among the subswarms can maintain a balance between exploration and exploitation to ensure the particles converge to stable points. Experimental results show that MsPSO performs significantly better than traditional PSO algorithms on six benchmark functions. With the improved MsPSO, OptiFel can generate a good fuzzy system model with high accuracy and strong generalization ability. |
Author | Shen, Hong-Bin Ding, Xue-Ming Cheung, Ngaam J. |
Author_xml | – sequence: 1 givenname: Ngaam J. surname: Cheung fullname: Cheung, Ngaam J. email: ngaam.ch@gmail.com organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Xue-Ming surname: Ding fullname: Ding, Xue-Ming email: xuemingding@usst.edu.cn organization: School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai , China – sequence: 3 givenname: Hong-Bin surname: Shen fullname: Shen, Hong-Bin email: hbshen@sjtu.edu.cn organization: Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China |
BookMark | eNp9kD1v2zAQhokiBZqvP5AuBLp0kcsjKUrqZhh1UyBFCsRZsggn5ejSlUSXolrEv760HXTIkInv8D53vOeMnQx-IMauQMwARPVptbx_eJhJAWomZVFWhXzDTqHSkAmh9EnKwqjMFMK8Y2fjuBECdA7lKdvcbqNbUveZz_nCD38orGmI_JoiBZ8i-WnkPzBE13bE7_5i6Pke6d0Oo_MDn3drH1z82XPrA1_hL1y77G5KqOfLabd74t_9I3VuWF-wtxa7kS6f33N2v_yyWlxnN7dfvy3mN1mrZBmzBi1Jox91aaWtsNApVpoEgrAF2Kq0iFoaJGiKHFqyuW0aU1KDGtGUQp2zj8e52-B_TzTGundjS12Hh2tqyE0ByY1WqfrhRXXjpzCk36VWDgq0AZ1a8thqgx_HQLbeBtdjeKpB1Hv99UF_vddfP-tPUPkCal08KIsBXfc6-v6IOiL6v8vkpVLSqH9vF5bI |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_1109_TCYB_2016_2517140 crossref_primary_10_1007_s40815_023_01623_w crossref_primary_10_1049_iet_ipr_2016_0489 crossref_primary_10_1016_j_ins_2017_02_027 crossref_primary_10_1016_j_aei_2024_102516 crossref_primary_10_1109_TCYB_2017_2701900 crossref_primary_10_1109_TCYB_2018_2857815 crossref_primary_10_1007_s10614_024_10670_w crossref_primary_10_1109_TASE_2016_2544749 crossref_primary_10_1007_s40815_019_00747_2 crossref_primary_10_1177_0142331217696348 crossref_primary_10_1177_01423312211029509 crossref_primary_10_1002_jcc_24232 crossref_primary_10_1177_01423312231225992 crossref_primary_10_1109_ACCESS_2019_2960890 crossref_primary_10_1016_j_knosys_2018_04_014 crossref_primary_10_1142_S1469026822500225 crossref_primary_10_3233_JIFS_211093 crossref_primary_10_1016_j_epsr_2021_107422 crossref_primary_10_1371_journal_pone_0112634 crossref_primary_10_1109_TFUZZ_2020_3009757 crossref_primary_10_1109_TFUZZ_2017_2774187 crossref_primary_10_4018_IJCINI_294566 crossref_primary_10_1109_TFUZZ_2016_2598850 crossref_primary_10_1007_s13748_019_00183_1 crossref_primary_10_1016_j_knosys_2022_109773 crossref_primary_10_1016_j_jmgm_2014_10_002 crossref_primary_10_1109_ACCESS_2020_3043275 crossref_primary_10_1016_j_neucom_2014_10_063 crossref_primary_10_1109_TFUZZ_2019_2907513 crossref_primary_10_1007_s10489_015_0683_9 crossref_primary_10_1109_TIM_2015_2450352 crossref_primary_10_1016_j_ejor_2015_03_047 crossref_primary_10_1016_j_swevo_2017_12_004 crossref_primary_10_1109_TASE_2016_2526781 crossref_primary_10_1007_s00607_019_00782_9 crossref_primary_10_1016_j_swevo_2017_10_003 crossref_primary_10_1016_j_engappai_2017_12_005 crossref_primary_10_1109_TFUZZ_2017_2704542 crossref_primary_10_1007_s00500_020_05238_3 crossref_primary_10_1109_TFUZZ_2022_3223700 crossref_primary_10_1109_TFUZZ_2021_3133083 crossref_primary_10_1177_0959651818756246 crossref_primary_10_1109_TCYB_2021_3072851 crossref_primary_10_1155_2021_4194263 crossref_primary_10_1007_s00521_020_05133_w crossref_primary_10_1007_s10489_020_01819_9 crossref_primary_10_1080_02286203_2017_1376172 crossref_primary_10_1109_TFUZZ_2021_3117437 crossref_primary_10_1007_s10489_015_0752_0 crossref_primary_10_1109_TIM_2019_2895482 crossref_primary_10_1016_j_jfranklin_2017_06_014 crossref_primary_10_1142_S0218126618500597 crossref_primary_10_3233_JIFS_221434 crossref_primary_10_1016_j_isatra_2018_02_005 crossref_primary_10_1007_s00500_019_04631_x crossref_primary_10_1109_TCYB_2018_2870981 crossref_primary_10_1016_j_asoc_2018_02_042 crossref_primary_10_1109_TSMC_2017_2756447 crossref_primary_10_1007_s40815_022_01366_0 crossref_primary_10_1109_JSYST_2015_2475702 crossref_primary_10_1142_S1469026820500297 crossref_primary_10_1186_s12918_018_0610_x crossref_primary_10_1016_j_ijhydene_2023_10_151 crossref_primary_10_1049_iet_gtd_2015_1025 crossref_primary_10_1049_iet_gtd_2016_0989 crossref_primary_10_1007_s40815_024_01743_x crossref_primary_10_1109_TIA_2018_2871392 crossref_primary_10_1007_s40313_018_0393_8 |
Cites_doi | 10.1109/ICNN.1995.488968 10.1109/TFUZZ.2006.882472 10.1109/TFUZZ.2011.2150757 10.1109/TFUZZ.2011.2173694 10.1080/00207179208934253 10.1016/j.asoc.2007.05.006 10.1109/72.712150 10.1016/S0165-0114(01)00227-5 10.1109/TFUZZ.2003.812693 10.1080/01969720600886980 10.1016/j.neucom.2008.03.002 10.1109/91.755393 10.1016/j.asoc.2009.10.012 10.1016/0165-0114(95)00413-0 10.1109/ICEC.1998.699146 10.1049/iet-cta:20060415 10.1109/INDCON.2005.1590196 10.1109/SIS.2007.368035 10.1109/TFUZZ.2011.2173581 10.1109/TFUZZ.2011.2168406 10.1016/j.isatra.2007.09.001 10.1109/21.199466 10.1109/TFUZZ.2011.2173693 10.1016/j.asoc.2012.04.030 10.1109/91.618271 10.1109/TFUZZ.2008.925918 10.1109/TFUZZ.2010.2047949 10.1109/TFUZZ.1993.390281 10.1109/SIS.2005.1501611 10.1016/j.ins.2005.02.003 10.1109/4235.771163 10.1109/TFUZZ.2011.2172689 10.1109/TSMCB.2009.2015956 10.1109/91.755394 10.1109/SIS.2011.5952563 10.1109/91.388173 10.1109/TFUZZ.2011.2147320 10.1109/91.728458 10.1109/91.995117 10.1109/TFUZZ.2010.2042960 10.1016/S0954-1810(98)00013-2 10.1016/j.advengsoft.2004.12.001 10.1109/TFUZZ.2011.2164083 10.1109/TSMCA.2009.2013915 10.1109/TSMC.1985.6313399 10.1016/S0165-0114(02)00111-2 10.1109/TSMCB.2006.872265 10.1109/TEVC.2005.857610 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 7SP F28 FR3 |
DOI | 10.1109/TFUZZ.2013.2278972 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Electronics & Communications Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Computer and Information Systems Abstracts Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 933 |
ExternalDocumentID | 3393404991 10_1109_TFUZZ_2013_2278972 6583326 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Natural Science Foundation of China grantid: 61222306; 91130033; 61175024 funderid: 10.13039/501100001809 – fundername: a Foundation for the Author of National Excellent Doctoral Dissertation of China grantid: 201048 – fundername: Shanghai Science and Technology Commission grantid: 11JC1404800 – fundername: Program for New Century Excellent Talents in University grantid: NCET-11-0330 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D RIG 7SP F28 FR3 |
ID | FETCH-LOGICAL-c328t-bafe264d48f2f9a744d494e0a10f71f98faa426ae1b751cef5fbb68eba4aa6803 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Sat Sep 27 23:59:30 EDT 2025 Sun Jun 29 12:39:35 EDT 2025 Wed Oct 01 02:37:20 EDT 2025 Thu Apr 24 22:59:39 EDT 2025 Wed Aug 27 08:30:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-bafe264d48f2f9a744d494e0a10f71f98faa426ae1b751cef5fbb68eba4aa6803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 1551314614 |
PQPubID | 85428 |
PageCount | 15 |
ParticipantIDs | proquest_journals_1551314614 proquest_miscellaneous_1567119443 crossref_primary_10_1109_TFUZZ_2013_2278972 crossref_citationtrail_10_1109_TFUZZ_2013_2278972 ieee_primary_6583326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2014 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref51 ref50 ref46 ref45 ref47 ref42 luo (ref8) 0 chen (ref48) 2000 ref41 ref44 ref43 box (ref38) 1990 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 van den bergh (ref26) 2006; 176 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref27 zhao (ref18) 2010; 10 ref29 |
References_xml | – ident: ref31 doi: 10.1109/ICNN.1995.488968 – ident: ref47 doi: 10.1109/TFUZZ.2006.882472 – ident: ref3 doi: 10.1109/TFUZZ.2011.2150757 – year: 0 ident: ref8 article-title: T-S fuzzy systems identification based on hierarchical sparse representation publication-title: IEEE Trans Fuzzy Syst – ident: ref16 doi: 10.1109/TFUZZ.2011.2173694 – ident: ref35 doi: 10.1080/00207179208934253 – ident: ref12 doi: 10.1016/j.asoc.2007.05.006 – ident: ref43 doi: 10.1109/72.712150 – ident: ref7 doi: 10.1016/S0165-0114(01)00227-5 – ident: ref42 doi: 10.1109/TFUZZ.2003.812693 – ident: ref21 doi: 10.1080/01969720600886980 – ident: ref49 doi: 10.1016/j.neucom.2008.03.002 – ident: ref17 doi: 10.1109/91.755393 – volume: 10 start-page: 938 year: 2010 ident: ref18 article-title: Automatically extracting T-S fuzzy models using cooperative random learning particle swarm optimization publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.10.012 – ident: ref39 doi: 10.1016/0165-0114(95)00413-0 – year: 1990 ident: ref38 publication-title: Time Series Analysis Forecasting and Control – ident: ref33 doi: 10.1109/ICEC.1998.699146 – ident: ref9 doi: 10.1049/iet-cta:20060415 – ident: ref19 doi: 10.1109/INDCON.2005.1590196 – ident: ref27 doi: 10.1109/SIS.2007.368035 – ident: ref6 doi: 10.1109/TFUZZ.2011.2173581 – ident: ref22 doi: 10.1109/TFUZZ.2011.2168406 – ident: ref45 doi: 10.1016/j.isatra.2007.09.001 – ident: ref13 doi: 10.1109/21.199466 – start-page: 279 year: 2000 ident: ref48 article-title: Evolving wavelet neural networks for system identification publication-title: Int Electr Eng Proc C – ident: ref14 doi: 10.1109/TFUZZ.2011.2173693 – ident: ref25 doi: 10.1016/j.asoc.2012.04.030 – ident: ref40 doi: 10.1109/91.618271 – ident: ref2 doi: 10.1109/TFUZZ.2008.925918 – ident: ref32 doi: 10.1109/TFUZZ.2010.2047949 – ident: ref37 doi: 10.1109/TFUZZ.1993.390281 – ident: ref28 doi: 10.1109/SIS.2005.1501611 – volume: 176 start-page: 937 year: 2006 ident: ref26 article-title: A study of particle swarm optimization particle trajectories publication-title: Inf Sci doi: 10.1016/j.ins.2005.02.003 – ident: ref36 doi: 10.1109/4235.771163 – ident: ref15 doi: 10.1109/TFUZZ.2011.2172689 – ident: ref24 doi: 10.1109/TSMCB.2009.2015956 – ident: ref23 doi: 10.1109/91.755394 – ident: ref30 doi: 10.1109/SIS.2011.5952563 – ident: ref51 doi: 10.1109/91.388173 – ident: ref4 doi: 10.1109/TFUZZ.2011.2147320 – ident: ref41 doi: 10.1109/91.728458 – ident: ref11 doi: 10.1109/91.995117 – ident: ref10 doi: 10.1109/TFUZZ.2010.2042960 – ident: ref46 doi: 10.1016/S0954-1810(98)00013-2 – ident: ref50 doi: 10.1016/j.advengsoft.2004.12.001 – ident: ref5 doi: 10.1109/TFUZZ.2011.2164083 – ident: ref29 doi: 10.1109/TSMCA.2009.2013915 – ident: ref1 doi: 10.1109/TSMC.1985.6313399 – ident: ref44 doi: 10.1016/S0165-0114(02)00111-2 – ident: ref20 doi: 10.1109/TSMCB.2006.872265 – ident: ref34 doi: 10.1109/TEVC.2005.857610 |
SSID | ssj0014518 |
Score | 2.456552 |
Snippet | Data-driven design of accurate and reliable Takagi-Sugeno (T-S) fuzzy systems has attracted a lot of attention, where the model structures and parameters are... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 919 |
SubjectTerms | Algorithms Computational modeling Convergence Convergence analysis Fuzzy Fuzzy logic Fuzzy set theory Fuzzy systems heterogeneous search Mathematical model Mathematical models OptiFel Optimization Particle swarm optimization particle swarm optimization (PSO) Searching Strategy Swarm intelligence Takagi-Sugeno (T-S) fuzzy system Vectors |
Title | OptiFel: A Convergent Heterogeneous Particle Swarm Optimization Algorithm for Takagi-Sugeno Fuzzy Modeling |
URI | https://ieeexplore.ieee.org/document/6583326 https://www.proquest.com/docview/1551314614 https://www.proquest.com/docview/1567119443 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQgtioSAjcYNs8_Aj5raqiFZIBaTuSlUvkZ2MKXR3g7aJEPvrsR0n4iXEzVLsxMqM7RnPfPMBvETB6sxgFUk0OqLCYKQFNZHKuPW3ai4ydNjh8_d8vqTvLtnlHrwesTCI6JPPcOqaPpZfN1XnrspOuYMIpXwf9oWQPVZrjBhQlvSwN55FXMR8AMjE8nRRLK-uXBZXNvXAT5H-cgh5VpU_tmJ_vhSHcD7MrE8ruZl2rZ5Wu9-KNv7v1O_DvWBoklmvGQ9gDzdHcDiQOJCwpo_g7k8VCY_hywe7hRS4ekNm5MwlpDtsZkvmLmmmsU1sulvyMagbufimtmvihqwDnJPMVp-a7ef2ek2sNUwW6kZZ7_uic6VgSdHtdt-JY19zGPiHsCzeLs7mUaBjiKoszdtIK4PWfKppblIjlaC2KSnGKomNSIzMjVL2vFeYaMGSCg0zWvMctaJK8TzOHsHBptngYyCGIlo7iLG6tv5PzJSprd1mUncrKyumJ5AM8imrUKvcUWasSu-zxLL0Mi2dTMsg0wm8Gsd87St1_LP3sRPS2DPIZwIngxqUYTHflp4Ex_Gf0wm8GB_bZehiK8r_eduHiySRlGZP_v7mp3DHfp_2uYMncNBuO3xm7ZlWP_eK_AOdmPQM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoQCwWMxA2yzcOPhNuqIlqgW5C6K1W9RHYy5tHdDdomQuyvx3aciJcQN0uxLSsztmc8880H8BwFqxKNZZChVgEVGgMlqA5kwo2_VXGRoMUOz075dEHfnrPzHXg5YGEQ0SWf4dg2XSy_qsvWPpUdcQsRivk1uM6MVyE6tNYQM6As6oBvPAm4CHkPkQmzo3m-uLiweVzJ2EE_RfzLNeR4Vf44jN0Nk-_BrF9bl1hyOW4bNS63v5Vt_N_F34Hb3tQkk0437sIOrvdhr6dxIH5X78Otn2oSHsCX9-YQyXH5ikzIsU1Jt-jMhkxt2kxtmli3V-SDVzhy9k1uVsQOWXlAJ5ksP9abz82nFTH2MJnLS2n877PWFoMlebvdfieWf82i4O_BIn89P54GnpAhKJM4bQIlNRoDqqKpjnUmBTXNjGIoo1CLSGepltLc-BIjJVhUomZaKZ6iklRKnobJfdhd12t8AERTRGMJMVZVxgMKmdSVsdx0bN9ls5KpEUS9fIrSVyu3pBnLwnktYVY4mRZWpoWX6QheDGO-drU6_tn7wApp6OnlM4LDXg0Kv52vCkeDYxnQ6QieDZ_NRrTRFen-vOnDRRRllCYP_z7zU7gxnc9OipM3p-8ewU2zFtplEh7CbrNp8bGxbhr1xCn1D5Fo910 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OptiFel%3A+A+Convergent+Heterogeneous+Particle+Swarm+Optimization+Algorithm+for+Takagi-Sugeno+Fuzzy+Modeling&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Cheung%2C+Ngaam+J.&rft.au=Ding%2C+Xue-Ming&rft.au=Shen%2C+Hong-Bin&rft.date=2014-08-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=22&rft.issue=4&rft.spage=919&rft.epage=933&rft_id=info:doi/10.1109%2FTFUZZ.2013.2278972&rft.externalDocID=6583326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |