Solving Preventive-Corrective SCOPF by a Hybrid Computational Strategy

Preventive control (PC) and corrective control (CC) are complementary actions in protecting large power systems against the risk of blackout. This paper addresses the optimal coordination between PC and CC via a preventive-corrective security-constrained optimal power flow model. The objective is to...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 29; no. 3; pp. 1345 - 1355
Main Authors Xu, Yan, Dong, Zhao Yang, Zhang, Rui, Wong, Kit Po, Lai, Mingyong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8950
1558-0679
DOI10.1109/TPWRS.2013.2293150

Cover

More Information
Summary:Preventive control (PC) and corrective control (CC) are complementary actions in protecting large power systems against the risk of blackout. This paper addresses the optimal coordination between PC and CC via a preventive-corrective security-constrained optimal power flow model. The objective is to minimize the total expected-security-control cost which is the sum of the costs of PC and CC considering the probability of the contingencies. The constraints include system operating limits in pre- and post-contingency states, the existence of the post-contingency short-term equilibrium, and the coupling constraints on the CC actions. To solve the model, a hybrid computational strategy combining evolutionary algorithm and interior-point method is developed. The solution process consists of globally searching the critical feasible region and locally optimizing the operating variables in the found region, the two procedures interact iteratively to progressively tighten the solution region leading to the final solution. The proposed model and computational strategy are demonstrated on the IEEE 14-bus and 118-bus test systems. To speed up the computation, parallel processing of the approach is implemented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2013.2293150