Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development

•RFCM algorithm removes drawbacks of the FCM algorithm.•RFCM algorithm eliminates interactions among clusters.•RFCM algorithm is suitable for data highly contaminated with noise and outliers.•RFCM algorithm is suitable for data with different cluster densities and sizes. Clustering algorithms aim at...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 165; p. 113856
Main Author Askari, Salar
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.03.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2020.113856

Cover

Abstract •RFCM algorithm removes drawbacks of the FCM algorithm.•RFCM algorithm eliminates interactions among clusters.•RFCM algorithm is suitable for data highly contaminated with noise and outliers.•RFCM algorithm is suitable for data with different cluster densities and sizes. Clustering algorithms aim at finding dense regions of data based on similarities and dissimilarities of data points. Noise and outliers contribute to the computational procedure of the algorithms as well as the actual data points that leads to inaccurate and misplaced cluster centers. This problem also arises when sizes of the clusters are different that moves centers of small clusters towards large clusters. Mass of the data points is important as well as their location in engineering and physics where non-uniform mass distribution results displacement of the cluster centers towards heavier clusters even if sizes of the clusters are identical and the data are noise-free. Fuzzy C-Means (FCM) algorithm that suffers from these problems is the most popular fuzzy clustering algorithm and has been subject of numerous researches and developments though improvements are still marginal. This work revises the FCM algorithm to make it applicable to data with unequal cluster sizes, noise and outliers, and non-uniform mass distribution. Revised FCM (RFCM) algorithm employs adaptive exponential functions to eliminate impacts of noise and outliers on the cluster centers and modifies constraint of the FCM algorithm to prevent large or heavier clusters from attracting centers of small clusters. Several algorithms are reviewed and their mathematical structures are discussed in the paper including Possibilistic Fuzzy C-Means (PFCM), Possibilistic C-Means (PCM), Robust Fuzzy C-Means (FCM-σ), Noise Clustering (NC), Kernel Fuzzy C-Means (KFCM), Intuitionistic Fuzzy C-Means (IFCM), Robust Kernel Fuzzy C-Mean (KFCM-σ), Robust Intuitionistic Fuzzy C-Means (IFCM-σ), Kernel Intuitionistic Fuzzy C-Means (KIFCM), Robust Kernel Intuitionistic Fuzzy C-Means (KIFCM-σ), Credibilistic Fuzzy C-Means (CFCM), Size-insensitive integrity-based Fuzzy C-Means (siibFCM), Size-insensitive Fuzzy C-Means (csiFCM), Subtractive Clustering (SC), Density Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), Spectral clustering, and Outlier Removal Clustering (ORC). Some of these algorithms are suitable for noisy data and some others are designed for data with unequal clusters. The study shows that the RFCM algorithm works for both cases and outperforms the both categories of the algorithms.
AbstractList Clustering algorithms aim at finding dense regions of data based on similarities and dissimilarities of data points. Noise and outliers contribute to the computational procedure of the algorithms as well as the actual data points that leads to inaccurate and misplaced cluster centers. This problem also arises when sizes of the clusters are different that moves centers of small clusters towards large clusters. Mass of the data points is important as well as their location in engineering and physics where non-uniform mass distribution results displacement of the cluster centers towards heavier clusters even if sizes of the clusters are identical and the data are noise-free. Fuzzy C-Means (FCM) algorithm that suffers from these problems is the most popular fuzzy clustering algorithm and has been subject of numerous researches and developments though improvements are still marginal. This work revises the FCM algorithm to make it applicable to data with unequal cluster sizes, noise and outliers, and non-uniform mass distribution. Revised FCM (RFCM) algorithm employs adaptive exponential functions to eliminate impacts of noise and outliers on the cluster centers and modifies constraint of the FCM algorithm to prevent large or heavier clusters from attracting centers of small clusters. Several algorithms are reviewed and their mathematical structures are discussed in the paper including Possibilistic Fuzzy C-Means (PFCM), Possibilistic C-Means (PCM), Robust Fuzzy C-Means (FCM-σ), Noise Clustering (NC), Kernel Fuzzy C-Means (KFCM), Intuitionistic Fuzzy C-Means (IFCM), Robust Kernel Fuzzy C-Mean (KFCM-σ), Robust Intuitionistic Fuzzy C-Means (IFCM-σ), Kernel Intuitionistic Fuzzy C-Means (KIFCM), Robust Kernel Intuitionistic Fuzzy C-Means (KIFCM-σ), Credibilistic Fuzzy C-Means (CFCM), Size-insensitive integrity-based Fuzzy C-Means (siibFCM), Size-insensitive Fuzzy C-Means (csiFCM), Subtractive Clustering (SC), Density Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), Spectral clustering, and Outlier Removal Clustering (ORC). Some of these algorithms are suitable for noisy data and some others are designed for data with unequal clusters. The study shows that the RFCM algorithm works for both cases and outperforms the both categories of the algorithms.
•RFCM algorithm removes drawbacks of the FCM algorithm.•RFCM algorithm eliminates interactions among clusters.•RFCM algorithm is suitable for data highly contaminated with noise and outliers.•RFCM algorithm is suitable for data with different cluster densities and sizes. Clustering algorithms aim at finding dense regions of data based on similarities and dissimilarities of data points. Noise and outliers contribute to the computational procedure of the algorithms as well as the actual data points that leads to inaccurate and misplaced cluster centers. This problem also arises when sizes of the clusters are different that moves centers of small clusters towards large clusters. Mass of the data points is important as well as their location in engineering and physics where non-uniform mass distribution results displacement of the cluster centers towards heavier clusters even if sizes of the clusters are identical and the data are noise-free. Fuzzy C-Means (FCM) algorithm that suffers from these problems is the most popular fuzzy clustering algorithm and has been subject of numerous researches and developments though improvements are still marginal. This work revises the FCM algorithm to make it applicable to data with unequal cluster sizes, noise and outliers, and non-uniform mass distribution. Revised FCM (RFCM) algorithm employs adaptive exponential functions to eliminate impacts of noise and outliers on the cluster centers and modifies constraint of the FCM algorithm to prevent large or heavier clusters from attracting centers of small clusters. Several algorithms are reviewed and their mathematical structures are discussed in the paper including Possibilistic Fuzzy C-Means (PFCM), Possibilistic C-Means (PCM), Robust Fuzzy C-Means (FCM-σ), Noise Clustering (NC), Kernel Fuzzy C-Means (KFCM), Intuitionistic Fuzzy C-Means (IFCM), Robust Kernel Fuzzy C-Mean (KFCM-σ), Robust Intuitionistic Fuzzy C-Means (IFCM-σ), Kernel Intuitionistic Fuzzy C-Means (KIFCM), Robust Kernel Intuitionistic Fuzzy C-Means (KIFCM-σ), Credibilistic Fuzzy C-Means (CFCM), Size-insensitive integrity-based Fuzzy C-Means (siibFCM), Size-insensitive Fuzzy C-Means (csiFCM), Subtractive Clustering (SC), Density Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), Spectral clustering, and Outlier Removal Clustering (ORC). Some of these algorithms are suitable for noisy data and some others are designed for data with unequal clusters. The study shows that the RFCM algorithm works for both cases and outperforms the both categories of the algorithms.
ArticleNumber 113856
Author Askari, Salar
Author_xml – sequence: 1
  givenname: Salar
  surname: Askari
  fullname: Askari, Salar
  email: s_askari@aut.ac.ir
  organization: Mechanical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
BookMark eNp9kMFuGyEQhlHkSLXTvkBPSD2vCws2S9VLZdVNpESRqvSMMMw6WGtwgI0Vv0BeO9ibXnLwCc3M_zGab4JGPnhA6CslU0ro_PtmCmmvpzWpS4OyZja_QGPaCFbNhWQjNCZyJipOBf-EJiltCKGCEDFGr8v-cHjBi-oOtE_YdH3KEJ1fY92tQ3T5cYvbELHVWeN9KXHv4anX3f8oTu4ACWtvsQk-663zOoMdsj64BKdZ6HPnIKYf-C88O9ifmhaeoQu7Lfj8GV22ukvw5f29Qv-Wvx8W19Xt_Z-bxa_byrC6yZW2bMVWnMia8xmXnLdElENACEkbWluwlK1aMpfGQkNZSwzVsmWkZpzKFdPsCn0b_t3F8NRDymoT-ujLSlXzRhQrjMuSqoeUiSGlCK3aRbfV8UVRoo7C1UYdhaujcDUIL1DzATIu6-yKlahddx79OaBQTi96okrGgTdgXQSTlQ3uHP4GBNmftQ
CitedBy_id crossref_primary_10_1016_j_ins_2023_119129
crossref_primary_10_1109_TIM_2023_3296766
crossref_primary_10_3390_s24010167
crossref_primary_10_1016_j_apenergy_2021_118314
crossref_primary_10_1016_j_eswa_2024_123696
crossref_primary_10_1016_j_aej_2021_08_056
crossref_primary_10_1155_2022_2895338
crossref_primary_10_1016_j_asoc_2024_112581
crossref_primary_10_3390_fire7040107
crossref_primary_10_3390_s21113684
crossref_primary_10_1016_j_compeleceng_2022_107853
crossref_primary_10_1109_TFUZZ_2023_3247912
crossref_primary_10_1007_s11042_024_18844_2
crossref_primary_10_3390_math12213367
crossref_primary_10_1109_TFUZZ_2024_3443878
crossref_primary_10_1016_j_asoc_2024_111403
crossref_primary_10_3233_JIFS_238016
crossref_primary_10_1016_j_compag_2023_108320
crossref_primary_10_1109_ACCESS_2022_3157941
crossref_primary_10_3390_bios13030389
crossref_primary_10_11611_yead_1373617
crossref_primary_10_3390_rs14143490
crossref_primary_10_3390_land14030598
crossref_primary_10_54097_hset_v42i_7093
crossref_primary_10_1109_TFUZZ_2023_3235384
crossref_primary_10_1016_j_chemolab_2022_104686
crossref_primary_10_1109_TIM_2023_3279913
crossref_primary_10_3390_machines10070582
crossref_primary_10_46632_daai_3_2_4
crossref_primary_10_1016_j_matcom_2025_02_012
crossref_primary_10_1016_j_aei_2024_102921
crossref_primary_10_1109_TFUZZ_2022_3148823
crossref_primary_10_32604_ee_2023_044667
crossref_primary_10_1007_s42835_023_01432_z
crossref_primary_10_1016_j_jneumeth_2025_110424
crossref_primary_10_1016_j_bspc_2021_103327
crossref_primary_10_1109_TFUZZ_2024_3435390
crossref_primary_10_1007_s11042_024_19080_4
crossref_primary_10_1109_TFUZZ_2023_3319170
crossref_primary_10_3390_app11083450
crossref_primary_10_1109_ACCESS_2022_3229524
crossref_primary_10_3390_educsci13020160
crossref_primary_10_1016_j_physa_2023_129415
crossref_primary_10_1109_TFUZZ_2024_3405497
crossref_primary_10_1016_j_heliyon_2023_e21188
crossref_primary_10_2166_aqua_2023_202
crossref_primary_10_3390_info13100477
crossref_primary_10_1016_j_engappai_2024_107912
crossref_primary_10_3390_app13148449
crossref_primary_10_3390_biomimetics8020242
crossref_primary_10_1109_ACCESS_2021_3134704
crossref_primary_10_1007_s00500_023_09523_9
crossref_primary_10_1007_s12145_025_01804_1
crossref_primary_10_1109_ACCESS_2022_3189790
crossref_primary_10_1007_s41066_024_00452_y
crossref_primary_10_1016_j_eswa_2024_125246
crossref_primary_10_1016_j_ins_2024_120109
crossref_primary_10_1016_j_eswa_2023_123041
crossref_primary_10_3233_JIFS_213172
crossref_primary_10_1371_journal_pone_0302741
crossref_primary_10_1016_j_cageo_2022_105241
crossref_primary_10_3389_fenrg_2022_936592
crossref_primary_10_1016_j_compbiomed_2022_106405
crossref_primary_10_1016_j_eswa_2021_116153
crossref_primary_10_3390_info15010042
crossref_primary_10_1007_s11227_023_05537_0
crossref_primary_10_1016_j_measurement_2025_117051
crossref_primary_10_3233_HIS_210001
crossref_primary_10_1016_j_cja_2024_103346
crossref_primary_10_3390_app122211381
crossref_primary_10_1016_j_jksuci_2022_08_011
crossref_primary_10_1080_00207721_2024_2317354
crossref_primary_10_1016_j_neucom_2025_130026
crossref_primary_10_1155_er_4460462
crossref_primary_10_3390_fintech3040027
crossref_primary_10_1007_s11356_022_20302_1
crossref_primary_10_1007_s12530_021_09367_4
crossref_primary_10_1109_ACCESS_2024_3349427
crossref_primary_10_1109_JIOT_2021_3094725
crossref_primary_10_1145_3587471
crossref_primary_10_1016_j_knosys_2023_110736
crossref_primary_10_1016_j_watres_2024_122701
crossref_primary_10_1515_jisys_2022_0022
crossref_primary_10_1016_j_ins_2023_119449
crossref_primary_10_2139_ssrn_4156558
crossref_primary_10_3233_JIFS_223488
crossref_primary_10_1007_s11042_024_18599_w
crossref_primary_10_3390_app13084754
crossref_primary_10_1007_s11082_023_05787_5
crossref_primary_10_1007_s42835_022_01159_3
crossref_primary_10_1016_j_patrec_2022_07_007
crossref_primary_10_1016_j_rcim_2021_102286
crossref_primary_10_1016_j_fss_2024_108860
crossref_primary_10_1016_j_jocs_2024_102465
crossref_primary_10_1016_j_asoc_2024_112263
crossref_primary_10_3233_JIFS_232999
crossref_primary_10_1111_jsr_14349
crossref_primary_10_1109_TSMC_2023_3320680
crossref_primary_10_1007_s11071_024_10070_7
crossref_primary_10_1016_j_neucom_2023_126842
crossref_primary_10_1016_j_simpa_2024_100678
crossref_primary_10_1109_TFUZZ_2022_3195298
crossref_primary_10_1007_s11042_022_13903_y
crossref_primary_10_1007_s11042_023_16392_9
crossref_primary_10_3390_e23091217
crossref_primary_10_1007_s00603_024_04351_1
crossref_primary_10_1109_TIP_2023_3263102
crossref_primary_10_17541_optimum_1269918
crossref_primary_10_1007_s00500_024_10338_5
crossref_primary_10_3390_w15203651
crossref_primary_10_1016_j_measurement_2023_113183
crossref_primary_10_1016_j_ins_2023_119283
crossref_primary_10_1109_TIM_2023_3301053
crossref_primary_10_1016_j_scitotenv_2023_169671
crossref_primary_10_1016_j_tust_2024_106117
crossref_primary_10_3233_JIFS_223754
crossref_primary_10_3389_fpsyt_2024_1165424
crossref_primary_10_3390_app13010032
crossref_primary_10_1016_j_knosys_2024_111834
crossref_primary_10_1007_s10660_022_09544_w
crossref_primary_10_1016_j_fss_2020_11_007
crossref_primary_10_3390_jmse12112050
crossref_primary_10_3390_atmos13010145
crossref_primary_10_1016_j_cja_2023_09_015
crossref_primary_10_1155_2022_8260283
crossref_primary_10_1109_ACCESS_2021_3125052
crossref_primary_10_1109_TIM_2023_3318673
crossref_primary_10_7717_peerj_cs_2315
crossref_primary_10_3389_fenrg_2022_1073194
crossref_primary_10_1007_s12145_024_01261_2
crossref_primary_10_1016_j_asoc_2024_111712
crossref_primary_10_1007_s40747_024_01758_9
crossref_primary_10_3389_fmars_2022_1075938
crossref_primary_10_1016_j_measen_2024_101260
crossref_primary_10_3233_MGS_220317
crossref_primary_10_1016_j_ejrh_2023_101434
crossref_primary_10_1109_TEM_2024_3458151
crossref_primary_10_3390_app12020612
crossref_primary_10_1016_j_asej_2024_103174
crossref_primary_10_3390_s23229122
crossref_primary_10_1016_j_eswa_2021_114754
crossref_primary_10_1016_j_eswa_2023_119655
crossref_primary_10_3390_foods11142101
crossref_primary_10_1007_s12008_023_01547_7
crossref_primary_10_1016_j_asoc_2023_110656
crossref_primary_10_1016_j_neucom_2024_129176
crossref_primary_10_36456_jstat_vol16_no2_a8240
crossref_primary_10_1016_j_heliyon_2024_e29182
crossref_primary_10_1016_j_jenvman_2024_121087
crossref_primary_10_1109_ACCESS_2022_3155869
crossref_primary_10_1016_j_ijmst_2024_11_012
crossref_primary_10_3390_app15073551
crossref_primary_10_1016_j_jmsy_2021_08_008
crossref_primary_10_1016_j_eswa_2023_122270
crossref_primary_10_1080_00207721_2023_2169059
crossref_primary_10_1016_j_eswa_2024_125049
crossref_primary_10_1109_JPHOT_2024_3361433
crossref_primary_10_1016_j_jprocont_2024_103315
crossref_primary_10_1088_1361_6501_ad5b0e
crossref_primary_10_1155_2021_9965813
crossref_primary_10_1155_2022_6469054
crossref_primary_10_1007_s00521_023_08505_0
crossref_primary_10_1016_j_dsp_2024_104492
crossref_primary_10_1016_j_knosys_2021_107590
crossref_primary_10_1038_s41598_022_08637_8
crossref_primary_10_1016_j_asoc_2023_110395
crossref_primary_10_1007_s42979_024_02970_7
crossref_primary_10_1016_j_heliyon_2024_e25375
crossref_primary_10_7717_peerj_cs_1600
crossref_primary_10_3390_agronomy12081931
crossref_primary_10_1016_j_eswa_2023_120377
crossref_primary_10_1016_j_ijmecsci_2023_108369
crossref_primary_10_1109_TIM_2023_3273682
crossref_primary_10_1016_j_ins_2021_12_016
crossref_primary_10_2478_cait_2023_0010
crossref_primary_10_1016_j_asoc_2023_110829
Cites_doi 10.1109/TFUZZ.2005.856560
10.1007/11499145_99
10.1109/TSMCB.2008.2004818
10.1016/0167-8655(91)90002-4
10.1109/21.299710
10.1109/TSMCB.2012.2223815
10.1016/j.patcog.2011.02.009
10.1109/91.227387
10.1007/s00500-019-04422-4
10.1109/TSMC.2013.2297398
10.1109/91.413225
10.1016/j.patcog.2013.09.036
10.1109/91.580801
10.1016/j.eswa.2014.09.036
10.1016/j.fss.2014.12.007
10.1016/S0169-7439(02)00052-7
10.1016/j.patcog.2019.01.034
10.1007/s11042-018-6988-z
10.1109/TFUZZ.2014.2336871
10.1109/TFUZZ.2012.2201485
10.1016/j.physa.2019.122289
10.1016/j.patcog.2013.11.031
10.1109/TSMCB.2007.906578
10.1016/j.procs.2016.03.014
10.1016/j.chinastron.2019.04.001
10.1016/j.neuroimage.2016.02.044
10.1109/TFUZZ.2004.825079
10.1109/TSMCB.2003.809227
10.1109/TFUZZ.2010.2043440
10.1016/j.eswa.2019.05.030
10.1016/j.neucom.2019.12.004
10.1109/TPAMI.2016.2522425
10.1109/JSYST.2015.2423499
10.1016/j.asoc.2016.12.049
10.1109/TFUZZ.2017.2659739
10.1109/TSMCB.2009.2036860
10.1109/TSMCA.2012.2190399
10.1016/0098-3004(84)90020-7
10.1016/j.patcog.2020.107371
10.1049/el:19981523
10.1016/j.asoc.2015.06.028
10.1109/TSMCB.2011.2124455
10.1016/j.patrec.2018.12.010
10.1109/34.85677
10.1007/978-1-4471-2386-6_47
10.1109/TCYB.2013.2254113
10.1109/TFUZZ.2004.840099
10.1016/j.energy.2015.02.020
10.1109/3477.956035
10.1109/83.923288
10.1016/j.asoc.2020.106332
10.1016/j.asoc.2010.05.005
10.1109/91.531779
10.1109/TSMCB.2009.2038358
10.1109/3468.668967
10.1109/TCYB.2014.2326888
10.1016/j.fss.2017.01.001
10.1109/TSMCA.2004.832820
10.1109/TFUZZ.2010.2052258
10.1016/j.eswa.2017.04.045
10.1016/j.neucom.2016.09.025
10.1007/s11222-007-9033-z
10.1109/TSMCB.2002.1033177
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Mar 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 1, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.113856
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_113856
S0957417420306679
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-ad3b3b40924454944f07700e7791812ded13bf069cde813f0c1a9f3023419b3a3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 05:50:54 EDT 2025
Sat Oct 25 05:11:10 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Fri Feb 23 02:46:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Outlier
FCM
Fuzzy C-Means
Unequal clusters
Clustering
Noise
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-ad3b3b40924454944f07700e7791812ded13bf069cde813f0c1a9f3023419b3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2487170349
PQPubID 2045477
ParticipantIDs proquest_journals_2487170349
crossref_primary_10_1016_j_eswa_2020_113856
crossref_citationtrail_10_1016_j_eswa_2020_113856
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113856
PublicationCentury 2000
PublicationDate 2021-03-01
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Anderson, Bezdek, Popescu, Keller (b0005) 2010; 18
Askari (b0015) 2017; 30
Dave, Krishnapuram (b0110) 1997; 5
Zeng, Cheung (b0335) 2014; 47
Koutroumbas, Xenaki, Rontogiannis (b0185) 2018; 26
Yager, Filev (b0325) 1994; 24
Filippone, Masulli, Rovetta (b0120) 2010; 18
Lei, Zhu, Chen, Lin, Yang (b0210) 2012; 154
Maji, Pal (b0255) 2007; 37
Krishnapuram, Keller (b0195) 1996; 4
Kwon (b0200) 1998; 34
von Luxburg (b0305) 2007; 17
Xu, Wang, Zhuang, Gao (b0320) 2019; 43
Askari, Montazerin, Zarandi (b0040) 2015; 83
Ester, Kriegel, Sander, Xu (b0115) 1996
Ozdemir, Akarun (b0270) 2001; 10
Hathaway, Bezdek (b0150) 2001; 31
Yu, Chen, Yao, Wang (b0330) 2019; 535
Janani, Vijayarani (b0175) 2019; 134
Gebru, Alameda-Pineda, Forbes, Horaud (b0125) 2016; 38
Askari, Montazerin (b0020) 2015; 42
Askari, Montazerin, Fazel Zarandi (b0030) 2020; 92
Tolias, Panas (b0290) 1998; 28
Boonchoo, Ao, Liu, Zhao, Zhuang, He (b0060) 2019; 90
Beliakov, Li, Vu, Wilkin (b0050) 2015; 23
Zhang, Leung (b0345) 2004; 12
Dave (b0105) 1991; 12
Havens, Bezdek, Leckie, Hall, Palaniswami (b0160) 2012; 20
Pal, Bezdek (b0275) 1995; 3
Askari, Montazerin, Zarandi, Hakimi (b0045) 2017; 219
Lin, Huang, Kuo, Lai (b0235) 2014; 47
Askari, Montazerin, Zarandi (b0035) 2015; 35
Chaira (b0065) 2011; 11
Hamidzadeh, Ghadamyari (b0140) 2020; 24
He, Ho (b0165) 2019; 78
Chintalapudi, Kam (b0095) 1998
Linn, Gaonkar, Satterthwaite, Doshi, Davatzikos, Shinohara (b0240) 2016; 132
Zhang, Hall, Goldgof (b0340) 2002; 32
Xie, Beni (b0315) 1991; 3
Chen, Chen, Lu (b0075) 2011; 41
Li, Zhang, He, Tian, Wei (b0230) 2019; 2019
Liu, Xu, Zhang, Chen (b0245) 2014; 44
Kaur, Soni, Gosain (b0180) 2012; 11
Gosain, Dahiya (b0130) 2016; 79
Siminski (b0285) 2017; 318
Li, Cheng (b0220) 2010; 40
Zhang, Yang, Chen, Xia (b0350) 2017; 11
Hu, Nie, Chang, Hao, Wang, Li (b0170) 2020; 384
Krishnapuram, Keller (b0190) 1993; 1
Hautamaki, Cherednichenko, Karkkainen, Kinnunen, Franti (b0155) 2005
Hariz, Elouedi, Mellouli (b0145) 2006
Askari (b0010) 2017; 84
Chen, Chen (b0070) 2015; 45
Chen, Chu, Sheu (b0080) 2012; 42
Makrogiannis, Economou, Fotopoulos, Bourbakis (b0260) 2005; 35
Chen, Wang (b0090) 2010; 40
Askari, Montazerin, Fazel Zarandi (b0025) 2017; 53
Lee, Chang, Lin (b0205) 2014; 44
Noordam, van den Broek, Buydens (b0265) 2002; 64
Pal, Pal, Keller, Bezdek (b0280) 2005; 13
Chiu (b0100) 1994; 2
Luchi, Loureiros Rodrigues, Miguel Varejão (b0250) 2019; 117
Tung, Quek (b0300) 2004; 34
Chen, Manalu, Pan, Liu (b0085) 2013; 43
Groll, Jakel (b0135) 2005; 13
Bezdek, Ehrlich, Full (b0055) 1984; 10
Leski (b0215) 2016; 286
Li, Hu, Stojmenovic, Liu, Liu (b0225) 2020; 105
Tsai, Lin (b0295) 2011; 44
Zhu, Chung, Wang (b0355) 2009; 39
Kaur (10.1016/j.eswa.2020.113856_b0180) 2012; 11
Li (10.1016/j.eswa.2020.113856_b0225) 2020; 105
Dave (10.1016/j.eswa.2020.113856_b0110) 1997; 5
Lee (10.1016/j.eswa.2020.113856_b0205) 2014; 44
Ester (10.1016/j.eswa.2020.113856_b0115) 1996
Chen (10.1016/j.eswa.2020.113856_b0090) 2010; 40
Zhu (10.1016/j.eswa.2020.113856_b0355) 2009; 39
Chen (10.1016/j.eswa.2020.113856_b0085) 2013; 43
Askari (10.1016/j.eswa.2020.113856_b0010) 2017; 84
Hamidzadeh (10.1016/j.eswa.2020.113856_b0140) 2020; 24
Askari (10.1016/j.eswa.2020.113856_b0045) 2017; 219
Bezdek (10.1016/j.eswa.2020.113856_b0055) 1984; 10
Pal (10.1016/j.eswa.2020.113856_b0280) 2005; 13
Anderson (10.1016/j.eswa.2020.113856_b0005) 2010; 18
Maji (10.1016/j.eswa.2020.113856_b0255) 2007; 37
Zhang (10.1016/j.eswa.2020.113856_b0345) 2004; 12
Hathaway (10.1016/j.eswa.2020.113856_b0150) 2001; 31
Filippone (10.1016/j.eswa.2020.113856_b0120) 2010; 18
Dave (10.1016/j.eswa.2020.113856_b0105) 1991; 12
Janani (10.1016/j.eswa.2020.113856_b0175) 2019; 134
Chiu (10.1016/j.eswa.2020.113856_b0100) 1994; 2
Hautamaki (10.1016/j.eswa.2020.113856_b0155) 2005
Yu (10.1016/j.eswa.2020.113856_b0330) 2019; 535
Askari (10.1016/j.eswa.2020.113856_b0020) 2015; 42
Hu (10.1016/j.eswa.2020.113856_b0170) 2020; 384
Zhang (10.1016/j.eswa.2020.113856_b0340) 2002; 32
Lei (10.1016/j.eswa.2020.113856_b0210) 2012; 154
Tung (10.1016/j.eswa.2020.113856_b0300) 2004; 34
Linn (10.1016/j.eswa.2020.113856_b0240) 2016; 132
Askari (10.1016/j.eswa.2020.113856_b0025) 2017; 53
Li (10.1016/j.eswa.2020.113856_b0230) 2019; 2019
Zhang (10.1016/j.eswa.2020.113856_b0350) 2017; 11
Boonchoo (10.1016/j.eswa.2020.113856_b0060) 2019; 90
Askari (10.1016/j.eswa.2020.113856_b0030) 2020; 92
Zeng (10.1016/j.eswa.2020.113856_b0335) 2014; 47
Yager (10.1016/j.eswa.2020.113856_b0325) 1994; 24
Xu (10.1016/j.eswa.2020.113856_b0320) 2019; 43
Chen (10.1016/j.eswa.2020.113856_b0080) 2012; 42
Krishnapuram (10.1016/j.eswa.2020.113856_b0190) 1993; 1
Xie (10.1016/j.eswa.2020.113856_b0315) 1991; 3
He (10.1016/j.eswa.2020.113856_b0165) 2019; 78
Groll (10.1016/j.eswa.2020.113856_b0135) 2005; 13
Koutroumbas (10.1016/j.eswa.2020.113856_b0185) 2018; 26
Li (10.1016/j.eswa.2020.113856_b0220) 2010; 40
von Luxburg (10.1016/j.eswa.2020.113856_b0305) 2007; 17
Askari (10.1016/j.eswa.2020.113856_b0040) 2015; 83
Krishnapuram (10.1016/j.eswa.2020.113856_b0195) 1996; 4
Chen (10.1016/j.eswa.2020.113856_b0070) 2015; 45
Chen (10.1016/j.eswa.2020.113856_b0075) 2011; 41
Tsai (10.1016/j.eswa.2020.113856_b0295) 2011; 44
Askari (10.1016/j.eswa.2020.113856_b0035) 2015; 35
Liu (10.1016/j.eswa.2020.113856_b0245) 2014; 44
Chaira (10.1016/j.eswa.2020.113856_b0065) 2011; 11
Gebru (10.1016/j.eswa.2020.113856_b0125) 2016; 38
Ozdemir (10.1016/j.eswa.2020.113856_b0270) 2001; 10
Askari (10.1016/j.eswa.2020.113856_b0015) 2017; 30
Kwon (10.1016/j.eswa.2020.113856_b0200) 1998; 34
Pal (10.1016/j.eswa.2020.113856_b0275) 1995; 3
Tolias (10.1016/j.eswa.2020.113856_b0290) 1998; 28
Beliakov (10.1016/j.eswa.2020.113856_b0050) 2015; 23
Noordam (10.1016/j.eswa.2020.113856_b0265) 2002; 64
Chintalapudi (10.1016/j.eswa.2020.113856_b0095) 1998
Hariz (10.1016/j.eswa.2020.113856_b0145) 2006
Havens (10.1016/j.eswa.2020.113856_b0160) 2012; 20
Siminski (10.1016/j.eswa.2020.113856_b0285) 2017; 318
Lin (10.1016/j.eswa.2020.113856_b0235) 2014; 47
Leski (10.1016/j.eswa.2020.113856_b0215) 2016; 286
Luchi (10.1016/j.eswa.2020.113856_b0250) 2019; 117
Makrogiannis (10.1016/j.eswa.2020.113856_b0260) 2005; 35
Gosain (10.1016/j.eswa.2020.113856_b0130) 2016; 79
References_xml – start-page: 162
  year: 2006
  end-page: 171
  ident: b0145
  article-title: Clustering approach using belief function theory
  publication-title: International Conference on Artificial Intelligence: Methodology, Systems, and Applications
– volume: 34
  start-page: 686
  year: 2004
  end-page: 695
  ident: b0300
  article-title: Falcon: Neural fuzzy control and decision systems using FKP and PFKP clustering algorithms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 84
  start-page: 301
  year: 2017
  end-page: 322
  ident: b0010
  article-title: A novel and fast MIMO fuzzy inference system based on a class of fuzzy clustering algorithms with interpretability and complexity analysis
  publication-title: Expert Systems with Applications
– volume: 78
  start-page: 24285
  year: 2019
  end-page: 24299
  ident: b0165
  article-title: An improved clustering algorithm based on finite Gaussian mixture model
  publication-title: Multimedia Tools and Applications
– volume: 3
  start-page: 370
  year: 1995
  end-page: 379
  ident: b0275
  article-title: On cluster validity for the Fuzzy C-Means model
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 10
  start-page: 923
  year: 2001
  end-page: 931
  ident: b0270
  article-title: Fuzzy algorithms for combined quantization and dithering
  publication-title: IEEE Transactions on Image Processing
– volume: 24
  start-page: 1279
  year: 1994
  end-page: 1284
  ident: b0325
  article-title: Approximate clustering via the mountain method
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 43
  start-page: 225
  year: 2019
  end-page: 236
  ident: b0320
  article-title: DBSCAN clustering algorithm for the detection of nearby open clusters based on Gaia-DR2
  publication-title: Chinese Astronomy and Astrophysics
– volume: 45
  start-page: 391
  year: 2015
  end-page: 403
  ident: b0070
  article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships
  publication-title: IEEE Transactions on Cybernetics
– volume: 535
  start-page: 122289
  year: 2019
  ident: b0330
  article-title: A three-way clustering method based on an improved DBSCAN algorithm
  publication-title: Physica A
– volume: 13
  start-page: 517
  year: 2005
  end-page: 530
  ident: b0280
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 134
  start-page: 192
  year: 2019
  end-page: 200
  ident: b0175
  article-title: Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 1343
  year: 2010
  end-page: 1358
  ident: b0090
  article-title: Fuzzy forecasting based on fuzzy-trend logical relationship groups
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 13
  start-page: 717
  year: 2005
  end-page: 720
  ident: b0135
  article-title: A new convergence proof of fuzzy c-means
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 24
  start-page: 8955
  year: 2020
  end-page: 8974
  ident: b0140
  article-title: Clustering data stream with uncertainty using belief function theory and fading function
  publication-title: Soft Computing
– volume: 39
  start-page: 578
  year: 2009
  end-page: 591
  ident: b0355
  article-title: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 20
  start-page: 1130
  year: 2012
  end-page: 1146
  ident: b0160
  article-title: Fuzzy c-means algorithms for very large data
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 17
  start-page: 395
  year: 2007
  end-page: 416
  ident: b0305
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
– volume: 11
  start-page: 1711
  year: 2011
  end-page: 1717
  ident: b0065
  article-title: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images
  publication-title: Applied Soft Computing
– volume: 47
  start-page: 2042
  year: 2014
  end-page: 2056
  ident: b0235
  article-title: A size-insensitive integrity-based fuzzy c-means method for data clustering
  publication-title: Pattern Recognition
– volume: 219
  start-page: 186
  year: 2017
  end-page: 202
  ident: b0045
  article-title: Generalized entropy based possibilistic fuzzy C-Means for clustering noisy data and its convergence proof
  publication-title: Neurocomputing
– volume: 53
  start-page: 262
  year: 2017
  end-page: 283
  ident: b0025
  article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing
– volume: 5
  start-page: 270
  year: 1997
  end-page: 293
  ident: b0110
  article-title: Robust clustering methods: A unified view
  publication-title: IEEE Transactions on Fuzzy Systems
– start-page: 226
  year: 1996
  end-page: 231
  ident: b0115
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
– volume: 18
  start-page: 906
  year: 2010
  end-page: 918
  ident: b0005
  article-title: Comparing fuzzy, probabilistic, and possibilistic partitions
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 23
  start-page: 1030
  year: 2015
  end-page: 1043
  ident: b0050
  article-title: Characterizing compactness of geometrical clusters using fuzzy measures
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 117
  start-page: 90
  year: 2019
  end-page: 96
  ident: b0250
  article-title: Sampling approaches for applying DBSCAN to large datasets
  publication-title: Pattern Recognition Letters
– volume: 47
  start-page: 2011
  year: 2014
  end-page: 2030
  ident: b0335
  article-title: Learning a mixture model for clustering with the completed likelihood minimum message length criterion
  publication-title: Pattern Recognition
– volume: 40
  start-page: 1255
  year: 2010
  end-page: 1266
  ident: b0220
  article-title: A stochastic HMM-based forecasting model for fuzzy time series
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 32
  start-page: 571
  year: 2002
  end-page: 582
  ident: b0340
  article-title: A generic knowledge-guided image segmentation and labeling system using fuzzy clustering algorithms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 1
  start-page: 98
  year: 1993
  end-page: 110
  ident: b0190
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 64
  start-page: 65
  year: 2002
  end-page: 78
  ident: b0265
  article-title: Multivariate image segmentation with cluster size insensitive Fuzzy C-means
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 44
  start-page: 329
  year: 2014
  end-page: 341
  ident: b0205
  article-title: An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization
  publication-title: IEEE Transactions on Cybernetics
– volume: 132
  start-page: 157
  year: 2016
  end-page: 166
  ident: b0240
  article-title: Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine
  publication-title: NeuroImage
– volume: 18
  start-page: 572
  year: 2010
  end-page: 584
  ident: b0120
  article-title: Applying the possibilistic c-means algorithm in kernel-induced spaces
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 4
  start-page: 385
  year: 1996
  end-page: 393
  ident: b0195
  article-title: The possibilistic c–means algorithm: Insights and recommendations
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 34
  start-page: 2176
  year: 1998
  ident: b0200
  article-title: Cluster validity index for fuzzy clustering
  publication-title: Electronics Letters
– volume: 28
  start-page: 359
  year: 1998
  end-page: 369
  ident: b0290
  article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 83
  start-page: 252
  year: 2015
  end-page: 266
  ident: b0040
  article-title: Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems
  publication-title: Energy
– volume: 3
  start-page: 841
  year: 1991
  end-page: 846
  ident: b0315
  article-title: Validity measure for fuzzy clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 11
  start-page: 2160
  year: 2017
  end-page: 2169
  ident: b0350
  article-title: A high-order possibilistic c-means algorithm for clustering incomplete multimedia data
  publication-title: IEEE Systems Journal
– start-page: 978
  year: 2005
  end-page: 987
  ident: b0155
  article-title: Improving K-means by outlier removal
  publication-title: Scandinavian Conference on Image Analysis
– volume: 35
  start-page: 224
  year: 2005
  end-page: 238
  ident: b0260
  article-title: Segmentation of color images using multiscale clustering and graph theoretic region synthesis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 92
  start-page: 106332
  year: 2020
  ident: b0030
  article-title: Modeling energy flow in natural gas networks using time series disaggregation and fuzzy systems tuned by particle swarm optimization
  publication-title: Applied Soft Computing
– volume: 105
  year: 2020
  ident: b0225
  article-title: Revisiting spectral clustering for near-convex decomposition of 2D shape
  publication-title: Pattern Recognition
– volume: 154
  start-page: 363
  year: 2012
  end-page: 372
  ident: b0210
  article-title: Automatic K-means clustering algorithm for outlier detection
  publication-title: Information Engineering and Applications
– volume: 11
  start-page: 65
  year: 2012
  end-page: 76
  ident: b0180
  article-title: Novel intuitionistic fuzzy c means clustering for linearly and nonlinearly separable data
  publication-title: WSEAS Transactions on Computers
– start-page: 2034
  year: 1998
  end-page: 2039
  ident: b0095
  article-title: The credibilistic fuzzy C-means clustering algorithm
  publication-title: IEEE International Conference on Systems, Man, and Cybernetics
– volume: 42
  start-page: 1485
  year: 2012
  end-page: 1495
  ident: b0080
  article-title: TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 44
  start-page: 1750
  year: 2011
  end-page: 1760
  ident: b0295
  article-title: Fuzzy C-means based clustering for linearly and nonlinearly separable data
  publication-title: Pattern Recognition
– volume: 31
  start-page: 735
  year: 2001
  end-page: 744
  ident: b0150
  article-title: Fuzzy c-means clustering of incomplete data
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 38
  start-page: 2402
  year: 2016
  end-page: 2415
  ident: b0125
  article-title: EM algorithms for weighted-data clustering with application to audio-visual scene analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 26
  start-page: 324
  year: 2018
  end-page: 337
  ident: b0185
  article-title: On the convergence of the sparse possibilistic c-means algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 37
  start-page: 1529
  year: 2007
  end-page: 1540
  ident: b0255
  article-title: Rough set based generalized fuzzy c-means algorithm and quantitative indices
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 90
  start-page: 271
  year: 2019
  end-page: 284
  ident: b0060
  article-title: Grid-based DBSCAN: Indexing and inference
  publication-title: Pattern Recognition
– volume: 384
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0170
  article-title: Multi-view spectral clustering via sparse graph learning
  publication-title: Neurocomputing
– volume: 2
  start-page: 267
  year: 1994
  end-page: 278
  ident: b0100
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: Journal of Intelligent and Fuzzy Systems
– volume: 12
  start-page: 657
  year: 1991
  end-page: 664
  ident: b0105
  article-title: Characterization and detection of noise in clustering
  publication-title: Pattern Recognition Letters
– volume: 35
  start-page: 151
  year: 2015
  end-page: 160
  ident: b0035
  article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables
  publication-title: Applied Soft Computing
– volume: 79
  start-page: 100
  year: 2016
  end-page: 111
  ident: b0130
  article-title: Performance analysis of various fuzzy clustering algorithms: A review
  publication-title: Procedia Computer Science
– volume: 30
  start-page: 1391
  year: 2017
  end-page: 1400
  ident: b0015
  article-title: Oil reservoirs classification using fuzzy clustering
  publication-title: International Journal of Engineering, Transactions C: Aspects
– volume: 43
  start-page: 1102
  year: 2013
  end-page: 1117
  ident: b0085
  article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques
  publication-title: IEEE Transactions on Cybernetics
– volume: 44
  start-page: 2232
  year: 2014
  end-page: 2240
  ident: b0245
  article-title: A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot
  publication-title: IEEE Transactions on Cybernetics
– volume: 12
  start-page: 209
  year: 2004
  end-page: 217
  ident: b0345
  article-title: Improved possibilistic C-means clustering algorithms
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 42
  start-page: 2121
  year: 2015
  end-page: 2135
  ident: b0020
  article-title: A high-order multi-variable Fuzzy Time Series forecasting algorithm based on fuzzy clustering
  publication-title: Expert Systems with Applications
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b0055
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computers & Geosciences
– volume: 41
  start-page: 1263
  year: 2011
  end-page: 1274
  ident: b0075
  article-title: A multiple-kernel fuzzy C-means algorithm for image segmentation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 286
  start-page: 114
  year: 2016
  end-page: 133
  ident: b0215
  article-title: Fuzzy c -ordered-means clustering
  publication-title: Fuzzy Sets and Systems
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 10
  ident: b0230
  article-title: Hybrid DE-EM algorithm for gaussian mixture model-based wireless channel multipath clustering
  publication-title: International Journal of Antennas and Propagation
– volume: 318
  start-page: 1
  year: 2017
  end-page: 33
  ident: b0285
  article-title: Fuzzy weighted C-ordered means clustering algorithm
  publication-title: Fuzzy Sets and Systems
– volume: 13
  start-page: 717
  issue: 5
  year: 2005
  ident: 10.1016/j.eswa.2020.113856_b0135
  article-title: A new convergence proof of fuzzy c-means
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2005.856560
– start-page: 226
  year: 1996
  ident: 10.1016/j.eswa.2020.113856_b0115
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– start-page: 978
  year: 2005
  ident: 10.1016/j.eswa.2020.113856_b0155
  article-title: Improving K-means by outlier removal
  publication-title: Scandinavian Conference on Image Analysis
  doi: 10.1007/11499145_99
– volume: 39
  start-page: 578
  year: 2009
  ident: 10.1016/j.eswa.2020.113856_b0355
  article-title: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCB.2008.2004818
– volume: 12
  start-page: 657
  issue: 11
  year: 1991
  ident: 10.1016/j.eswa.2020.113856_b0105
  article-title: Characterization and detection of noise in clustering
  publication-title: Pattern Recognition Letters
  doi: 10.1016/0167-8655(91)90002-4
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.113856_b0230
  article-title: Hybrid DE-EM algorithm for gaussian mixture model-based wireless channel multipath clustering
  publication-title: International Journal of Antennas and Propagation
– volume: 24
  start-page: 1279
  year: 1994
  ident: 10.1016/j.eswa.2020.113856_b0325
  article-title: Approximate clustering via the mountain method
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/21.299710
– volume: 43
  start-page: 1102
  year: 2013
  ident: 10.1016/j.eswa.2020.113856_b0085
  article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMCB.2012.2223815
– volume: 44
  start-page: 1750
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2020.113856_b0295
  article-title: Fuzzy C-means based clustering for linearly and nonlinearly separable data
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2011.02.009
– start-page: 162
  year: 2006
  ident: 10.1016/j.eswa.2020.113856_b0145
  article-title: Clustering approach using belief function theory
  publication-title: International Conference on Artificial Intelligence: Methodology, Systems, and Applications
– volume: 1
  start-page: 98
  year: 1993
  ident: 10.1016/j.eswa.2020.113856_b0190
  article-title: A possibilistic approach to clustering
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.227387
– volume: 24
  start-page: 8955
  issue: 12
  year: 2020
  ident: 10.1016/j.eswa.2020.113856_b0140
  article-title: Clustering data stream with uncertainty using belief function theory and fading function
  publication-title: Soft Computing
  doi: 10.1007/s00500-019-04422-4
– volume: 44
  start-page: 2232
  year: 2014
  ident: 10.1016/j.eswa.2020.113856_b0245
  article-title: A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TSMC.2013.2297398
– volume: 3
  start-page: 370
  year: 1995
  ident: 10.1016/j.eswa.2020.113856_b0275
  article-title: On cluster validity for the Fuzzy C-Means model
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.413225
– volume: 47
  start-page: 2011
  year: 2014
  ident: 10.1016/j.eswa.2020.113856_b0335
  article-title: Learning a mixture model for clustering with the completed likelihood minimum message length criterion
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.09.036
– volume: 5
  start-page: 270
  year: 1997
  ident: 10.1016/j.eswa.2020.113856_b0110
  article-title: Robust clustering methods: A unified view
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.580801
– volume: 42
  start-page: 2121
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2020.113856_b0020
  article-title: A high-order multi-variable Fuzzy Time Series forecasting algorithm based on fuzzy clustering
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.09.036
– volume: 286
  start-page: 114
  year: 2016
  ident: 10.1016/j.eswa.2020.113856_b0215
  article-title: Fuzzy c -ordered-means clustering
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2014.12.007
– volume: 64
  start-page: 65
  issue: 1
  year: 2002
  ident: 10.1016/j.eswa.2020.113856_b0265
  article-title: Multivariate image segmentation with cluster size insensitive Fuzzy C-means
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(02)00052-7
– volume: 90
  start-page: 271
  year: 2019
  ident: 10.1016/j.eswa.2020.113856_b0060
  article-title: Grid-based DBSCAN: Indexing and inference
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.01.034
– volume: 78
  start-page: 24285
  issue: 17
  year: 2019
  ident: 10.1016/j.eswa.2020.113856_b0165
  article-title: An improved clustering algorithm based on finite Gaussian mixture model
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-6988-z
– volume: 11
  start-page: 65
  year: 2012
  ident: 10.1016/j.eswa.2020.113856_b0180
  article-title: Novel intuitionistic fuzzy c means clustering for linearly and nonlinearly separable data
  publication-title: WSEAS Transactions on Computers
– volume: 23
  start-page: 1030
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2020.113856_b0050
  article-title: Characterizing compactness of geometrical clusters using fuzzy measures
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2014.2336871
– volume: 20
  start-page: 1130
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2020.113856_b0160
  article-title: Fuzzy c-means algorithms for very large data
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2012.2201485
– volume: 535
  start-page: 122289
  year: 2019
  ident: 10.1016/j.eswa.2020.113856_b0330
  article-title: A three-way clustering method based on an improved DBSCAN algorithm
  publication-title: Physica A
  doi: 10.1016/j.physa.2019.122289
– volume: 47
  start-page: 2042
  issue: 5
  year: 2014
  ident: 10.1016/j.eswa.2020.113856_b0235
  article-title: A size-insensitive integrity-based fuzzy c-means method for data clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2013.11.031
– volume: 37
  start-page: 1529
  issue: 6
  year: 2007
  ident: 10.1016/j.eswa.2020.113856_b0255
  article-title: Rough set based generalized fuzzy c-means algorithm and quantitative indices
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCB.2007.906578
– volume: 79
  start-page: 100
  year: 2016
  ident: 10.1016/j.eswa.2020.113856_b0130
  article-title: Performance analysis of various fuzzy clustering algorithms: A review
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.03.014
– volume: 43
  start-page: 225
  year: 2019
  ident: 10.1016/j.eswa.2020.113856_b0320
  article-title: DBSCAN clustering algorithm for the detection of nearby open clusters based on Gaia-DR2
  publication-title: Chinese Astronomy and Astrophysics
  doi: 10.1016/j.chinastron.2019.04.001
– volume: 132
  start-page: 157
  year: 2016
  ident: 10.1016/j.eswa.2020.113856_b0240
  article-title: Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.02.044
– volume: 12
  start-page: 209
  issue: 2
  year: 2004
  ident: 10.1016/j.eswa.2020.113856_b0345
  article-title: Improved possibilistic C-means clustering algorithms
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2004.825079
– volume: 34
  start-page: 686
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2020.113856_b0300
  article-title: Falcon: Neural fuzzy control and decision systems using FKP and PFKP clustering algorithms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCB.2003.809227
– volume: 18
  start-page: 572
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2020.113856_b0120
  article-title: Applying the possibilistic c-means algorithm in kernel-induced spaces
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2010.2043440
– volume: 134
  start-page: 192
  year: 2019
  ident: 10.1016/j.eswa.2020.113856_b0175
  article-title: Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.05.030
– volume: 384
  start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2020.113856_b0170
  article-title: Multi-view spectral clustering via sparse graph learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.004
– volume: 2
  start-page: 267
  year: 1994
  ident: 10.1016/j.eswa.2020.113856_b0100
  article-title: Fuzzy model identification based on cluster estimation
  publication-title: Journal of Intelligent and Fuzzy Systems
– volume: 38
  start-page: 2402
  issue: 12
  year: 2016
  ident: 10.1016/j.eswa.2020.113856_b0125
  article-title: EM algorithms for weighted-data clustering with application to audio-visual scene analysis
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2016.2522425
– volume: 11
  start-page: 2160
  year: 2017
  ident: 10.1016/j.eswa.2020.113856_b0350
  article-title: A high-order possibilistic c-means algorithm for clustering incomplete multimedia data
  publication-title: IEEE Systems Journal
  doi: 10.1109/JSYST.2015.2423499
– volume: 53
  start-page: 262
  year: 2017
  ident: 10.1016/j.eswa.2020.113856_b0025
  article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2016.12.049
– volume: 30
  start-page: 1391
  year: 2017
  ident: 10.1016/j.eswa.2020.113856_b0015
  article-title: Oil reservoirs classification using fuzzy clustering
  publication-title: International Journal of Engineering, Transactions C: Aspects
– volume: 26
  start-page: 324
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2020.113856_b0185
  article-title: On the convergence of the sparse possibilistic c-means algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2017.2659739
– volume: 40
  start-page: 1255
  year: 2010
  ident: 10.1016/j.eswa.2020.113856_b0220
  article-title: A stochastic HMM-based forecasting model for fuzzy time series
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCB.2009.2036860
– volume: 42
  start-page: 1485
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2020.113856_b0080
  article-title: TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCA.2012.2190399
– volume: 10
  start-page: 191
  issue: 2-3
  year: 1984
  ident: 10.1016/j.eswa.2020.113856_b0055
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Computers & Geosciences
  doi: 10.1016/0098-3004(84)90020-7
– volume: 105
  year: 2020
  ident: 10.1016/j.eswa.2020.113856_b0225
  article-title: Revisiting spectral clustering for near-convex decomposition of 2D shape
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2020.107371
– volume: 34
  start-page: 2176
  issue: 22
  year: 1998
  ident: 10.1016/j.eswa.2020.113856_b0200
  article-title: Cluster validity index for fuzzy clustering
  publication-title: Electronics Letters
  doi: 10.1049/el:19981523
– start-page: 2034
  year: 1998
  ident: 10.1016/j.eswa.2020.113856_b0095
  article-title: The credibilistic fuzzy C-means clustering algorithm
  publication-title: IEEE International Conference on Systems, Man, and Cybernetics
– volume: 35
  start-page: 151
  year: 2015
  ident: 10.1016/j.eswa.2020.113856_b0035
  article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.06.028
– volume: 41
  start-page: 1263
  issue: 5
  year: 2011
  ident: 10.1016/j.eswa.2020.113856_b0075
  article-title: A multiple-kernel fuzzy C-means algorithm for image segmentation
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCB.2011.2124455
– volume: 117
  start-page: 90
  year: 2019
  ident: 10.1016/j.eswa.2020.113856_b0250
  article-title: Sampling approaches for applying DBSCAN to large datasets
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2018.12.010
– volume: 3
  start-page: 841
  year: 1991
  ident: 10.1016/j.eswa.2020.113856_b0315
  article-title: Validity measure for fuzzy clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.85677
– volume: 154
  start-page: 363
  year: 2012
  ident: 10.1016/j.eswa.2020.113856_b0210
  article-title: Automatic K-means clustering algorithm for outlier detection
  publication-title: Information Engineering and Applications
  doi: 10.1007/978-1-4471-2386-6_47
– volume: 44
  start-page: 329
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2020.113856_b0205
  article-title: An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2254113
– volume: 13
  start-page: 517
  issue: 4
  year: 2005
  ident: 10.1016/j.eswa.2020.113856_b0280
  article-title: A possibilistic fuzzy c-means clustering algorithm
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2004.840099
– volume: 83
  start-page: 252
  year: 2015
  ident: 10.1016/j.eswa.2020.113856_b0040
  article-title: Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems
  publication-title: Energy
  doi: 10.1016/j.energy.2015.02.020
– volume: 31
  start-page: 735
  year: 2001
  ident: 10.1016/j.eswa.2020.113856_b0150
  article-title: Fuzzy c-means clustering of incomplete data
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/3477.956035
– volume: 10
  start-page: 923
  year: 2001
  ident: 10.1016/j.eswa.2020.113856_b0270
  article-title: Fuzzy algorithms for combined quantization and dithering
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/83.923288
– volume: 92
  start-page: 106332
  year: 2020
  ident: 10.1016/j.eswa.2020.113856_b0030
  article-title: Modeling energy flow in natural gas networks using time series disaggregation and fuzzy systems tuned by particle swarm optimization
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106332
– volume: 11
  start-page: 1711
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2020.113856_b0065
  article-title: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.05.005
– volume: 4
  start-page: 385
  year: 1996
  ident: 10.1016/j.eswa.2020.113856_b0195
  article-title: The possibilistic c–means algorithm: Insights and recommendations
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.531779
– volume: 40
  start-page: 1343
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2020.113856_b0090
  article-title: Fuzzy forecasting based on fuzzy-trend logical relationship groups
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCB.2009.2038358
– volume: 28
  start-page: 359
  year: 1998
  ident: 10.1016/j.eswa.2020.113856_b0290
  article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/3468.668967
– volume: 45
  start-page: 391
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2020.113856_b0070
  article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2326888
– volume: 318
  start-page: 1
  year: 2017
  ident: 10.1016/j.eswa.2020.113856_b0285
  article-title: Fuzzy weighted C-ordered means clustering algorithm
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/j.fss.2017.01.001
– volume: 35
  start-page: 224
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2020.113856_b0260
  article-title: Segmentation of color images using multiscale clustering and graph theoretic region synthesis
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCA.2004.832820
– volume: 18
  start-page: 906
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2020.113856_b0005
  article-title: Comparing fuzzy, probabilistic, and possibilistic partitions
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/TFUZZ.2010.2052258
– volume: 84
  start-page: 301
  year: 2017
  ident: 10.1016/j.eswa.2020.113856_b0010
  article-title: A novel and fast MIMO fuzzy inference system based on a class of fuzzy clustering algorithms with interpretability and complexity analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.04.045
– volume: 219
  start-page: 186
  year: 2017
  ident: 10.1016/j.eswa.2020.113856_b0045
  article-title: Generalized entropy based possibilistic fuzzy C-Means for clustering noisy data and its convergence proof
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.025
– volume: 17
  start-page: 395
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2020.113856_b0305
  article-title: A tutorial on spectral clustering
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– volume: 32
  start-page: 571
  issue: 5
  year: 2002
  ident: 10.1016/j.eswa.2020.113856_b0340
  article-title: A generic knowledge-guided image segmentation and labeling system using fuzzy clustering algorithms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCB.2002.1033177
SSID ssj0017007
Score 2.6879582
Snippet •RFCM algorithm removes drawbacks of the FCM algorithm.•RFCM algorithm eliminates interactions among clusters.•RFCM algorithm is suitable for data highly...
Clustering algorithms aim at finding dense regions of data based on similarities and dissimilarities of data points. Noise and outliers contribute to the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113856
SubjectTerms Adaptive algorithms
Algorithms
Clustering
Data points
Exponential functions
FCM
Fuzzy C-Means
Kernels
Mass distribution
Noise
Outlier
Outliers (statistics)
Probabilistic models
Robustness (mathematics)
Unequal clusters
Title Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development
URI https://dx.doi.org/10.1016/j.eswa.2020.113856
https://www.proquest.com/docview/2487170349
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I56VBzYU2sROnbChiqqAygKVulnxIxBUUkRaITqw8re5SxwQCHVgdc5R5LPvvnO-uyPkGCBGYCKdelpAbAKIIPRipqzHAdoGiTKd0OA95OCm0x_yq1E4WiLdOhcGaZXO9lc2vbTWbqTlVrP1nGWtWwAH4A4htEPY2xGYxMe5wC4Gp-9fNA8sPyeqenvCQ2mXOFNxvGzxirWHgrK1SYRNrP92Tr_MdOl7eutk1YFGel591wZZsvkmWasbMlB3PrfIR282n7_Rrjew4IGoHs-wDAI4J5qM7ycv2fThiQJIpUgLpXgDS2e5xbTKWpQW2dwWNMkNRQ57gjwZgKSVbD7JCls-QxYRttA-o9WvhXLQfNOPtsmwd3HX7Xuu04KnWRBNvcQwxRSEeuDsIWDkPG0LWDgrRIwIwFjjM5W2O7E2NvJZ2tZ-EqfYb4j7sWIJ2yGNfJLbXUKVAMipQ-vzNOK6zSKeYgmwJOQKQh0d7RG_XmKpXRly7IYxljXf7FGiWiSqRVZq2SMnX3OeqyIcC6XDWnPyx1aS4CUWzjus1SzdQS5kAAEd7CHG4_1_vvaArATIgyl5a4ekMX2Z2SMAMlPVLHdqkyyfX173bz4B-ajyeQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRpSnBzYU2sROnbChiqo8ygJIbFb8CASVFJFWiA6s_G3uEgcEQgyszjmKfOe775zPd4TsA8QITKRTTwvITQARhF7MlPU4QNsgUaYdGjyH7F-2ezf87Da8nSKd-i4M0iqd7698eumt3UjTrWbzKcuaVwAOIBxCaoewty3iaTLLw0BgBnb49snzwPpzoiq4JzwUdzdnKpKXLV6w-FBQ9jaJsIv179Hph58ug093iSw41EiPqw9bJlM2XyGLdUcG6jboKnnvjieTV9rx-hZCENWDMdZBgOhEk8Hd8Dkb3T9SQKkUeaEUj2DpOLd4r7IWpUU2sQVNckORxJ4gUQYwaSWbD7PCls-QRoQ9tI9o9W-hHDRf_KM1ctM9ue70PNdqwdMsiEZeYphiCnI9iPaQMXKetgQsnBUiRghgrPGZSlvtWBsb-SxtaT-JU2w4xP1YsYStk5l8mNsNQpUAzKlD6_M04rrFIp5iDbAk5ApyHR01iF8vsdSuDjm2wxjImnD2IFEtEtUiK7U0yMHnnKeqCsef0mGtOfnNliSEiT_nbddqlm4nFzKAjA5siPF485-v3SNzvev-hbw4vTzfIvMBkmJKEts2mRk9j-0OoJqR2i2t9gOZR_QO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+C-Means+clustering+algorithm+for+data+with+unequal+cluster+sizes+and+contaminated+with+noise+and+outliers%3A+Review+and+development&rft.jtitle=Expert+systems+with+applications&rft.au=Askari%2C+Salar&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=165&rft_id=info:doi/10.1016%2Fj.eswa.2020.113856&rft.externalDocID=S0957417420306679
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon