Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development
•RFCM algorithm removes drawbacks of the FCM algorithm.•RFCM algorithm eliminates interactions among clusters.•RFCM algorithm is suitable for data highly contaminated with noise and outliers.•RFCM algorithm is suitable for data with different cluster densities and sizes. Clustering algorithms aim at...
Saved in:
| Published in | Expert systems with applications Vol. 165; p. 113856 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
01.03.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2020.113856 |
Cover
| Abstract | •RFCM algorithm removes drawbacks of the FCM algorithm.•RFCM algorithm eliminates interactions among clusters.•RFCM algorithm is suitable for data highly contaminated with noise and outliers.•RFCM algorithm is suitable for data with different cluster densities and sizes.
Clustering algorithms aim at finding dense regions of data based on similarities and dissimilarities of data points. Noise and outliers contribute to the computational procedure of the algorithms as well as the actual data points that leads to inaccurate and misplaced cluster centers. This problem also arises when sizes of the clusters are different that moves centers of small clusters towards large clusters. Mass of the data points is important as well as their location in engineering and physics where non-uniform mass distribution results displacement of the cluster centers towards heavier clusters even if sizes of the clusters are identical and the data are noise-free. Fuzzy C-Means (FCM) algorithm that suffers from these problems is the most popular fuzzy clustering algorithm and has been subject of numerous researches and developments though improvements are still marginal. This work revises the FCM algorithm to make it applicable to data with unequal cluster sizes, noise and outliers, and non-uniform mass distribution. Revised FCM (RFCM) algorithm employs adaptive exponential functions to eliminate impacts of noise and outliers on the cluster centers and modifies constraint of the FCM algorithm to prevent large or heavier clusters from attracting centers of small clusters. Several algorithms are reviewed and their mathematical structures are discussed in the paper including Possibilistic Fuzzy C-Means (PFCM), Possibilistic C-Means (PCM), Robust Fuzzy C-Means (FCM-σ), Noise Clustering (NC), Kernel Fuzzy C-Means (KFCM), Intuitionistic Fuzzy C-Means (IFCM), Robust Kernel Fuzzy C-Mean (KFCM-σ), Robust Intuitionistic Fuzzy C-Means (IFCM-σ), Kernel Intuitionistic Fuzzy C-Means (KIFCM), Robust Kernel Intuitionistic Fuzzy C-Means (KIFCM-σ), Credibilistic Fuzzy C-Means (CFCM), Size-insensitive integrity-based Fuzzy C-Means (siibFCM), Size-insensitive Fuzzy C-Means (csiFCM), Subtractive Clustering (SC), Density Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), Spectral clustering, and Outlier Removal Clustering (ORC). Some of these algorithms are suitable for noisy data and some others are designed for data with unequal clusters. The study shows that the RFCM algorithm works for both cases and outperforms the both categories of the algorithms. |
|---|---|
| AbstractList | Clustering algorithms aim at finding dense regions of data based on similarities and dissimilarities of data points. Noise and outliers contribute to the computational procedure of the algorithms as well as the actual data points that leads to inaccurate and misplaced cluster centers. This problem also arises when sizes of the clusters are different that moves centers of small clusters towards large clusters. Mass of the data points is important as well as their location in engineering and physics where non-uniform mass distribution results displacement of the cluster centers towards heavier clusters even if sizes of the clusters are identical and the data are noise-free. Fuzzy C-Means (FCM) algorithm that suffers from these problems is the most popular fuzzy clustering algorithm and has been subject of numerous researches and developments though improvements are still marginal. This work revises the FCM algorithm to make it applicable to data with unequal cluster sizes, noise and outliers, and non-uniform mass distribution. Revised FCM (RFCM) algorithm employs adaptive exponential functions to eliminate impacts of noise and outliers on the cluster centers and modifies constraint of the FCM algorithm to prevent large or heavier clusters from attracting centers of small clusters. Several algorithms are reviewed and their mathematical structures are discussed in the paper including Possibilistic Fuzzy C-Means (PFCM), Possibilistic C-Means (PCM), Robust Fuzzy C-Means (FCM-σ), Noise Clustering (NC), Kernel Fuzzy C-Means (KFCM), Intuitionistic Fuzzy C-Means (IFCM), Robust Kernel Fuzzy C-Mean (KFCM-σ), Robust Intuitionistic Fuzzy C-Means (IFCM-σ), Kernel Intuitionistic Fuzzy C-Means (KIFCM), Robust Kernel Intuitionistic Fuzzy C-Means (KIFCM-σ), Credibilistic Fuzzy C-Means (CFCM), Size-insensitive integrity-based Fuzzy C-Means (siibFCM), Size-insensitive Fuzzy C-Means (csiFCM), Subtractive Clustering (SC), Density Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), Spectral clustering, and Outlier Removal Clustering (ORC). Some of these algorithms are suitable for noisy data and some others are designed for data with unequal clusters. The study shows that the RFCM algorithm works for both cases and outperforms the both categories of the algorithms. •RFCM algorithm removes drawbacks of the FCM algorithm.•RFCM algorithm eliminates interactions among clusters.•RFCM algorithm is suitable for data highly contaminated with noise and outliers.•RFCM algorithm is suitable for data with different cluster densities and sizes. Clustering algorithms aim at finding dense regions of data based on similarities and dissimilarities of data points. Noise and outliers contribute to the computational procedure of the algorithms as well as the actual data points that leads to inaccurate and misplaced cluster centers. This problem also arises when sizes of the clusters are different that moves centers of small clusters towards large clusters. Mass of the data points is important as well as their location in engineering and physics where non-uniform mass distribution results displacement of the cluster centers towards heavier clusters even if sizes of the clusters are identical and the data are noise-free. Fuzzy C-Means (FCM) algorithm that suffers from these problems is the most popular fuzzy clustering algorithm and has been subject of numerous researches and developments though improvements are still marginal. This work revises the FCM algorithm to make it applicable to data with unequal cluster sizes, noise and outliers, and non-uniform mass distribution. Revised FCM (RFCM) algorithm employs adaptive exponential functions to eliminate impacts of noise and outliers on the cluster centers and modifies constraint of the FCM algorithm to prevent large or heavier clusters from attracting centers of small clusters. Several algorithms are reviewed and their mathematical structures are discussed in the paper including Possibilistic Fuzzy C-Means (PFCM), Possibilistic C-Means (PCM), Robust Fuzzy C-Means (FCM-σ), Noise Clustering (NC), Kernel Fuzzy C-Means (KFCM), Intuitionistic Fuzzy C-Means (IFCM), Robust Kernel Fuzzy C-Mean (KFCM-σ), Robust Intuitionistic Fuzzy C-Means (IFCM-σ), Kernel Intuitionistic Fuzzy C-Means (KIFCM), Robust Kernel Intuitionistic Fuzzy C-Means (KIFCM-σ), Credibilistic Fuzzy C-Means (CFCM), Size-insensitive integrity-based Fuzzy C-Means (siibFCM), Size-insensitive Fuzzy C-Means (csiFCM), Subtractive Clustering (SC), Density Based Spatial Clustering of Applications with Noise (DBSCAN), Gaussian Mixture Models (GMM), Spectral clustering, and Outlier Removal Clustering (ORC). Some of these algorithms are suitable for noisy data and some others are designed for data with unequal clusters. The study shows that the RFCM algorithm works for both cases and outperforms the both categories of the algorithms. |
| ArticleNumber | 113856 |
| Author | Askari, Salar |
| Author_xml | – sequence: 1 givenname: Salar surname: Askari fullname: Askari, Salar email: s_askari@aut.ac.ir organization: Mechanical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran |
| BookMark | eNp9kMFuGyEQhlHkSLXTvkBPSD2vCws2S9VLZdVNpESRqvSMMMw6WGtwgI0Vv0BeO9ibXnLwCc3M_zGab4JGPnhA6CslU0ro_PtmCmmvpzWpS4OyZja_QGPaCFbNhWQjNCZyJipOBf-EJiltCKGCEDFGr8v-cHjBi-oOtE_YdH3KEJ1fY92tQ3T5cYvbELHVWeN9KXHv4anX3f8oTu4ACWtvsQk-663zOoMdsj64BKdZ6HPnIKYf-C88O9ifmhaeoQu7Lfj8GV22ukvw5f29Qv-Wvx8W19Xt_Z-bxa_byrC6yZW2bMVWnMia8xmXnLdElENACEkbWluwlK1aMpfGQkNZSwzVsmWkZpzKFdPsCn0b_t3F8NRDymoT-ujLSlXzRhQrjMuSqoeUiSGlCK3aRbfV8UVRoo7C1UYdhaujcDUIL1DzATIu6-yKlahddx79OaBQTi96okrGgTdgXQSTlQ3uHP4GBNmftQ |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_119129 crossref_primary_10_1109_TIM_2023_3296766 crossref_primary_10_3390_s24010167 crossref_primary_10_1016_j_apenergy_2021_118314 crossref_primary_10_1016_j_eswa_2024_123696 crossref_primary_10_1016_j_aej_2021_08_056 crossref_primary_10_1155_2022_2895338 crossref_primary_10_1016_j_asoc_2024_112581 crossref_primary_10_3390_fire7040107 crossref_primary_10_3390_s21113684 crossref_primary_10_1016_j_compeleceng_2022_107853 crossref_primary_10_1109_TFUZZ_2023_3247912 crossref_primary_10_1007_s11042_024_18844_2 crossref_primary_10_3390_math12213367 crossref_primary_10_1109_TFUZZ_2024_3443878 crossref_primary_10_1016_j_asoc_2024_111403 crossref_primary_10_3233_JIFS_238016 crossref_primary_10_1016_j_compag_2023_108320 crossref_primary_10_1109_ACCESS_2022_3157941 crossref_primary_10_3390_bios13030389 crossref_primary_10_11611_yead_1373617 crossref_primary_10_3390_rs14143490 crossref_primary_10_3390_land14030598 crossref_primary_10_54097_hset_v42i_7093 crossref_primary_10_1109_TFUZZ_2023_3235384 crossref_primary_10_1016_j_chemolab_2022_104686 crossref_primary_10_1109_TIM_2023_3279913 crossref_primary_10_3390_machines10070582 crossref_primary_10_46632_daai_3_2_4 crossref_primary_10_1016_j_matcom_2025_02_012 crossref_primary_10_1016_j_aei_2024_102921 crossref_primary_10_1109_TFUZZ_2022_3148823 crossref_primary_10_32604_ee_2023_044667 crossref_primary_10_1007_s42835_023_01432_z crossref_primary_10_1016_j_jneumeth_2025_110424 crossref_primary_10_1016_j_bspc_2021_103327 crossref_primary_10_1109_TFUZZ_2024_3435390 crossref_primary_10_1007_s11042_024_19080_4 crossref_primary_10_1109_TFUZZ_2023_3319170 crossref_primary_10_3390_app11083450 crossref_primary_10_1109_ACCESS_2022_3229524 crossref_primary_10_3390_educsci13020160 crossref_primary_10_1016_j_physa_2023_129415 crossref_primary_10_1109_TFUZZ_2024_3405497 crossref_primary_10_1016_j_heliyon_2023_e21188 crossref_primary_10_2166_aqua_2023_202 crossref_primary_10_3390_info13100477 crossref_primary_10_1016_j_engappai_2024_107912 crossref_primary_10_3390_app13148449 crossref_primary_10_3390_biomimetics8020242 crossref_primary_10_1109_ACCESS_2021_3134704 crossref_primary_10_1007_s00500_023_09523_9 crossref_primary_10_1007_s12145_025_01804_1 crossref_primary_10_1109_ACCESS_2022_3189790 crossref_primary_10_1007_s41066_024_00452_y crossref_primary_10_1016_j_eswa_2024_125246 crossref_primary_10_1016_j_ins_2024_120109 crossref_primary_10_1016_j_eswa_2023_123041 crossref_primary_10_3233_JIFS_213172 crossref_primary_10_1371_journal_pone_0302741 crossref_primary_10_1016_j_cageo_2022_105241 crossref_primary_10_3389_fenrg_2022_936592 crossref_primary_10_1016_j_compbiomed_2022_106405 crossref_primary_10_1016_j_eswa_2021_116153 crossref_primary_10_3390_info15010042 crossref_primary_10_1007_s11227_023_05537_0 crossref_primary_10_1016_j_measurement_2025_117051 crossref_primary_10_3233_HIS_210001 crossref_primary_10_1016_j_cja_2024_103346 crossref_primary_10_3390_app122211381 crossref_primary_10_1016_j_jksuci_2022_08_011 crossref_primary_10_1080_00207721_2024_2317354 crossref_primary_10_1016_j_neucom_2025_130026 crossref_primary_10_1155_er_4460462 crossref_primary_10_3390_fintech3040027 crossref_primary_10_1007_s11356_022_20302_1 crossref_primary_10_1007_s12530_021_09367_4 crossref_primary_10_1109_ACCESS_2024_3349427 crossref_primary_10_1109_JIOT_2021_3094725 crossref_primary_10_1145_3587471 crossref_primary_10_1016_j_knosys_2023_110736 crossref_primary_10_1016_j_watres_2024_122701 crossref_primary_10_1515_jisys_2022_0022 crossref_primary_10_1016_j_ins_2023_119449 crossref_primary_10_2139_ssrn_4156558 crossref_primary_10_3233_JIFS_223488 crossref_primary_10_1007_s11042_024_18599_w crossref_primary_10_3390_app13084754 crossref_primary_10_1007_s11082_023_05787_5 crossref_primary_10_1007_s42835_022_01159_3 crossref_primary_10_1016_j_patrec_2022_07_007 crossref_primary_10_1016_j_rcim_2021_102286 crossref_primary_10_1016_j_fss_2024_108860 crossref_primary_10_1016_j_jocs_2024_102465 crossref_primary_10_1016_j_asoc_2024_112263 crossref_primary_10_3233_JIFS_232999 crossref_primary_10_1111_jsr_14349 crossref_primary_10_1109_TSMC_2023_3320680 crossref_primary_10_1007_s11071_024_10070_7 crossref_primary_10_1016_j_neucom_2023_126842 crossref_primary_10_1016_j_simpa_2024_100678 crossref_primary_10_1109_TFUZZ_2022_3195298 crossref_primary_10_1007_s11042_022_13903_y crossref_primary_10_1007_s11042_023_16392_9 crossref_primary_10_3390_e23091217 crossref_primary_10_1007_s00603_024_04351_1 crossref_primary_10_1109_TIP_2023_3263102 crossref_primary_10_17541_optimum_1269918 crossref_primary_10_1007_s00500_024_10338_5 crossref_primary_10_3390_w15203651 crossref_primary_10_1016_j_measurement_2023_113183 crossref_primary_10_1016_j_ins_2023_119283 crossref_primary_10_1109_TIM_2023_3301053 crossref_primary_10_1016_j_scitotenv_2023_169671 crossref_primary_10_1016_j_tust_2024_106117 crossref_primary_10_3233_JIFS_223754 crossref_primary_10_3389_fpsyt_2024_1165424 crossref_primary_10_3390_app13010032 crossref_primary_10_1016_j_knosys_2024_111834 crossref_primary_10_1007_s10660_022_09544_w crossref_primary_10_1016_j_fss_2020_11_007 crossref_primary_10_3390_jmse12112050 crossref_primary_10_3390_atmos13010145 crossref_primary_10_1016_j_cja_2023_09_015 crossref_primary_10_1155_2022_8260283 crossref_primary_10_1109_ACCESS_2021_3125052 crossref_primary_10_1109_TIM_2023_3318673 crossref_primary_10_7717_peerj_cs_2315 crossref_primary_10_3389_fenrg_2022_1073194 crossref_primary_10_1007_s12145_024_01261_2 crossref_primary_10_1016_j_asoc_2024_111712 crossref_primary_10_1007_s40747_024_01758_9 crossref_primary_10_3389_fmars_2022_1075938 crossref_primary_10_1016_j_measen_2024_101260 crossref_primary_10_3233_MGS_220317 crossref_primary_10_1016_j_ejrh_2023_101434 crossref_primary_10_1109_TEM_2024_3458151 crossref_primary_10_3390_app12020612 crossref_primary_10_1016_j_asej_2024_103174 crossref_primary_10_3390_s23229122 crossref_primary_10_1016_j_eswa_2021_114754 crossref_primary_10_1016_j_eswa_2023_119655 crossref_primary_10_3390_foods11142101 crossref_primary_10_1007_s12008_023_01547_7 crossref_primary_10_1016_j_asoc_2023_110656 crossref_primary_10_1016_j_neucom_2024_129176 crossref_primary_10_36456_jstat_vol16_no2_a8240 crossref_primary_10_1016_j_heliyon_2024_e29182 crossref_primary_10_1016_j_jenvman_2024_121087 crossref_primary_10_1109_ACCESS_2022_3155869 crossref_primary_10_1016_j_ijmst_2024_11_012 crossref_primary_10_3390_app15073551 crossref_primary_10_1016_j_jmsy_2021_08_008 crossref_primary_10_1016_j_eswa_2023_122270 crossref_primary_10_1080_00207721_2023_2169059 crossref_primary_10_1016_j_eswa_2024_125049 crossref_primary_10_1109_JPHOT_2024_3361433 crossref_primary_10_1016_j_jprocont_2024_103315 crossref_primary_10_1088_1361_6501_ad5b0e crossref_primary_10_1155_2021_9965813 crossref_primary_10_1155_2022_6469054 crossref_primary_10_1007_s00521_023_08505_0 crossref_primary_10_1016_j_dsp_2024_104492 crossref_primary_10_1016_j_knosys_2021_107590 crossref_primary_10_1038_s41598_022_08637_8 crossref_primary_10_1016_j_asoc_2023_110395 crossref_primary_10_1007_s42979_024_02970_7 crossref_primary_10_1016_j_heliyon_2024_e25375 crossref_primary_10_7717_peerj_cs_1600 crossref_primary_10_3390_agronomy12081931 crossref_primary_10_1016_j_eswa_2023_120377 crossref_primary_10_1016_j_ijmecsci_2023_108369 crossref_primary_10_1109_TIM_2023_3273682 crossref_primary_10_1016_j_ins_2021_12_016 crossref_primary_10_2478_cait_2023_0010 crossref_primary_10_1016_j_asoc_2023_110829 |
| Cites_doi | 10.1109/TFUZZ.2005.856560 10.1007/11499145_99 10.1109/TSMCB.2008.2004818 10.1016/0167-8655(91)90002-4 10.1109/21.299710 10.1109/TSMCB.2012.2223815 10.1016/j.patcog.2011.02.009 10.1109/91.227387 10.1007/s00500-019-04422-4 10.1109/TSMC.2013.2297398 10.1109/91.413225 10.1016/j.patcog.2013.09.036 10.1109/91.580801 10.1016/j.eswa.2014.09.036 10.1016/j.fss.2014.12.007 10.1016/S0169-7439(02)00052-7 10.1016/j.patcog.2019.01.034 10.1007/s11042-018-6988-z 10.1109/TFUZZ.2014.2336871 10.1109/TFUZZ.2012.2201485 10.1016/j.physa.2019.122289 10.1016/j.patcog.2013.11.031 10.1109/TSMCB.2007.906578 10.1016/j.procs.2016.03.014 10.1016/j.chinastron.2019.04.001 10.1016/j.neuroimage.2016.02.044 10.1109/TFUZZ.2004.825079 10.1109/TSMCB.2003.809227 10.1109/TFUZZ.2010.2043440 10.1016/j.eswa.2019.05.030 10.1016/j.neucom.2019.12.004 10.1109/TPAMI.2016.2522425 10.1109/JSYST.2015.2423499 10.1016/j.asoc.2016.12.049 10.1109/TFUZZ.2017.2659739 10.1109/TSMCB.2009.2036860 10.1109/TSMCA.2012.2190399 10.1016/0098-3004(84)90020-7 10.1016/j.patcog.2020.107371 10.1049/el:19981523 10.1016/j.asoc.2015.06.028 10.1109/TSMCB.2011.2124455 10.1016/j.patrec.2018.12.010 10.1109/34.85677 10.1007/978-1-4471-2386-6_47 10.1109/TCYB.2013.2254113 10.1109/TFUZZ.2004.840099 10.1016/j.energy.2015.02.020 10.1109/3477.956035 10.1109/83.923288 10.1016/j.asoc.2020.106332 10.1016/j.asoc.2010.05.005 10.1109/91.531779 10.1109/TSMCB.2009.2038358 10.1109/3468.668967 10.1109/TCYB.2014.2326888 10.1016/j.fss.2017.01.001 10.1109/TSMCA.2004.832820 10.1109/TFUZZ.2010.2052258 10.1016/j.eswa.2017.04.045 10.1016/j.neucom.2016.09.025 10.1007/s11222-007-9033-z 10.1109/TSMCB.2002.1033177 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Mar 1, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Mar 1, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.113856 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_113856 S0957417420306679 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-ad3b3b40924454944f07700e7791812ded13bf069cde813f0c1a9f3023419b3a3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 05:50:54 EDT 2025 Sat Oct 25 05:11:10 EDT 2025 Thu Apr 24 23:06:27 EDT 2025 Fri Feb 23 02:46:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Outlier FCM Fuzzy C-Means Unequal clusters Clustering Noise |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-ad3b3b40924454944f07700e7791812ded13bf069cde813f0c1a9f3023419b3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2487170349 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2487170349 crossref_primary_10_1016_j_eswa_2020_113856 crossref_citationtrail_10_1016_j_eswa_2020_113856 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_113856 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Anderson, Bezdek, Popescu, Keller (b0005) 2010; 18 Askari (b0015) 2017; 30 Dave, Krishnapuram (b0110) 1997; 5 Zeng, Cheung (b0335) 2014; 47 Koutroumbas, Xenaki, Rontogiannis (b0185) 2018; 26 Yager, Filev (b0325) 1994; 24 Filippone, Masulli, Rovetta (b0120) 2010; 18 Lei, Zhu, Chen, Lin, Yang (b0210) 2012; 154 Maji, Pal (b0255) 2007; 37 Krishnapuram, Keller (b0195) 1996; 4 Kwon (b0200) 1998; 34 von Luxburg (b0305) 2007; 17 Xu, Wang, Zhuang, Gao (b0320) 2019; 43 Askari, Montazerin, Zarandi (b0040) 2015; 83 Ester, Kriegel, Sander, Xu (b0115) 1996 Ozdemir, Akarun (b0270) 2001; 10 Hathaway, Bezdek (b0150) 2001; 31 Yu, Chen, Yao, Wang (b0330) 2019; 535 Janani, Vijayarani (b0175) 2019; 134 Gebru, Alameda-Pineda, Forbes, Horaud (b0125) 2016; 38 Askari, Montazerin (b0020) 2015; 42 Askari, Montazerin, Fazel Zarandi (b0030) 2020; 92 Tolias, Panas (b0290) 1998; 28 Boonchoo, Ao, Liu, Zhao, Zhuang, He (b0060) 2019; 90 Beliakov, Li, Vu, Wilkin (b0050) 2015; 23 Zhang, Leung (b0345) 2004; 12 Dave (b0105) 1991; 12 Havens, Bezdek, Leckie, Hall, Palaniswami (b0160) 2012; 20 Pal, Bezdek (b0275) 1995; 3 Askari, Montazerin, Zarandi, Hakimi (b0045) 2017; 219 Lin, Huang, Kuo, Lai (b0235) 2014; 47 Askari, Montazerin, Zarandi (b0035) 2015; 35 Chaira (b0065) 2011; 11 Hamidzadeh, Ghadamyari (b0140) 2020; 24 He, Ho (b0165) 2019; 78 Chintalapudi, Kam (b0095) 1998 Linn, Gaonkar, Satterthwaite, Doshi, Davatzikos, Shinohara (b0240) 2016; 132 Zhang, Hall, Goldgof (b0340) 2002; 32 Xie, Beni (b0315) 1991; 3 Chen, Chen, Lu (b0075) 2011; 41 Li, Zhang, He, Tian, Wei (b0230) 2019; 2019 Liu, Xu, Zhang, Chen (b0245) 2014; 44 Kaur, Soni, Gosain (b0180) 2012; 11 Gosain, Dahiya (b0130) 2016; 79 Siminski (b0285) 2017; 318 Li, Cheng (b0220) 2010; 40 Zhang, Yang, Chen, Xia (b0350) 2017; 11 Hu, Nie, Chang, Hao, Wang, Li (b0170) 2020; 384 Krishnapuram, Keller (b0190) 1993; 1 Hautamaki, Cherednichenko, Karkkainen, Kinnunen, Franti (b0155) 2005 Hariz, Elouedi, Mellouli (b0145) 2006 Askari (b0010) 2017; 84 Chen, Chen (b0070) 2015; 45 Chen, Chu, Sheu (b0080) 2012; 42 Makrogiannis, Economou, Fotopoulos, Bourbakis (b0260) 2005; 35 Chen, Wang (b0090) 2010; 40 Askari, Montazerin, Fazel Zarandi (b0025) 2017; 53 Lee, Chang, Lin (b0205) 2014; 44 Noordam, van den Broek, Buydens (b0265) 2002; 64 Pal, Pal, Keller, Bezdek (b0280) 2005; 13 Chiu (b0100) 1994; 2 Luchi, Loureiros Rodrigues, Miguel Varejão (b0250) 2019; 117 Tung, Quek (b0300) 2004; 34 Chen, Manalu, Pan, Liu (b0085) 2013; 43 Groll, Jakel (b0135) 2005; 13 Bezdek, Ehrlich, Full (b0055) 1984; 10 Leski (b0215) 2016; 286 Li, Hu, Stojmenovic, Liu, Liu (b0225) 2020; 105 Tsai, Lin (b0295) 2011; 44 Zhu, Chung, Wang (b0355) 2009; 39 Kaur (10.1016/j.eswa.2020.113856_b0180) 2012; 11 Li (10.1016/j.eswa.2020.113856_b0225) 2020; 105 Dave (10.1016/j.eswa.2020.113856_b0110) 1997; 5 Lee (10.1016/j.eswa.2020.113856_b0205) 2014; 44 Ester (10.1016/j.eswa.2020.113856_b0115) 1996 Chen (10.1016/j.eswa.2020.113856_b0090) 2010; 40 Zhu (10.1016/j.eswa.2020.113856_b0355) 2009; 39 Chen (10.1016/j.eswa.2020.113856_b0085) 2013; 43 Askari (10.1016/j.eswa.2020.113856_b0010) 2017; 84 Hamidzadeh (10.1016/j.eswa.2020.113856_b0140) 2020; 24 Askari (10.1016/j.eswa.2020.113856_b0045) 2017; 219 Bezdek (10.1016/j.eswa.2020.113856_b0055) 1984; 10 Pal (10.1016/j.eswa.2020.113856_b0280) 2005; 13 Anderson (10.1016/j.eswa.2020.113856_b0005) 2010; 18 Maji (10.1016/j.eswa.2020.113856_b0255) 2007; 37 Zhang (10.1016/j.eswa.2020.113856_b0345) 2004; 12 Hathaway (10.1016/j.eswa.2020.113856_b0150) 2001; 31 Filippone (10.1016/j.eswa.2020.113856_b0120) 2010; 18 Dave (10.1016/j.eswa.2020.113856_b0105) 1991; 12 Janani (10.1016/j.eswa.2020.113856_b0175) 2019; 134 Chiu (10.1016/j.eswa.2020.113856_b0100) 1994; 2 Hautamaki (10.1016/j.eswa.2020.113856_b0155) 2005 Yu (10.1016/j.eswa.2020.113856_b0330) 2019; 535 Askari (10.1016/j.eswa.2020.113856_b0020) 2015; 42 Hu (10.1016/j.eswa.2020.113856_b0170) 2020; 384 Zhang (10.1016/j.eswa.2020.113856_b0340) 2002; 32 Lei (10.1016/j.eswa.2020.113856_b0210) 2012; 154 Tung (10.1016/j.eswa.2020.113856_b0300) 2004; 34 Linn (10.1016/j.eswa.2020.113856_b0240) 2016; 132 Askari (10.1016/j.eswa.2020.113856_b0025) 2017; 53 Li (10.1016/j.eswa.2020.113856_b0230) 2019; 2019 Zhang (10.1016/j.eswa.2020.113856_b0350) 2017; 11 Boonchoo (10.1016/j.eswa.2020.113856_b0060) 2019; 90 Askari (10.1016/j.eswa.2020.113856_b0030) 2020; 92 Zeng (10.1016/j.eswa.2020.113856_b0335) 2014; 47 Yager (10.1016/j.eswa.2020.113856_b0325) 1994; 24 Xu (10.1016/j.eswa.2020.113856_b0320) 2019; 43 Chen (10.1016/j.eswa.2020.113856_b0080) 2012; 42 Krishnapuram (10.1016/j.eswa.2020.113856_b0190) 1993; 1 Xie (10.1016/j.eswa.2020.113856_b0315) 1991; 3 He (10.1016/j.eswa.2020.113856_b0165) 2019; 78 Groll (10.1016/j.eswa.2020.113856_b0135) 2005; 13 Koutroumbas (10.1016/j.eswa.2020.113856_b0185) 2018; 26 Li (10.1016/j.eswa.2020.113856_b0220) 2010; 40 von Luxburg (10.1016/j.eswa.2020.113856_b0305) 2007; 17 Askari (10.1016/j.eswa.2020.113856_b0040) 2015; 83 Krishnapuram (10.1016/j.eswa.2020.113856_b0195) 1996; 4 Chen (10.1016/j.eswa.2020.113856_b0070) 2015; 45 Chen (10.1016/j.eswa.2020.113856_b0075) 2011; 41 Tsai (10.1016/j.eswa.2020.113856_b0295) 2011; 44 Askari (10.1016/j.eswa.2020.113856_b0035) 2015; 35 Liu (10.1016/j.eswa.2020.113856_b0245) 2014; 44 Chaira (10.1016/j.eswa.2020.113856_b0065) 2011; 11 Gebru (10.1016/j.eswa.2020.113856_b0125) 2016; 38 Ozdemir (10.1016/j.eswa.2020.113856_b0270) 2001; 10 Askari (10.1016/j.eswa.2020.113856_b0015) 2017; 30 Kwon (10.1016/j.eswa.2020.113856_b0200) 1998; 34 Pal (10.1016/j.eswa.2020.113856_b0275) 1995; 3 Tolias (10.1016/j.eswa.2020.113856_b0290) 1998; 28 Beliakov (10.1016/j.eswa.2020.113856_b0050) 2015; 23 Noordam (10.1016/j.eswa.2020.113856_b0265) 2002; 64 Chintalapudi (10.1016/j.eswa.2020.113856_b0095) 1998 Hariz (10.1016/j.eswa.2020.113856_b0145) 2006 Havens (10.1016/j.eswa.2020.113856_b0160) 2012; 20 Siminski (10.1016/j.eswa.2020.113856_b0285) 2017; 318 Lin (10.1016/j.eswa.2020.113856_b0235) 2014; 47 Leski (10.1016/j.eswa.2020.113856_b0215) 2016; 286 Luchi (10.1016/j.eswa.2020.113856_b0250) 2019; 117 Makrogiannis (10.1016/j.eswa.2020.113856_b0260) 2005; 35 Gosain (10.1016/j.eswa.2020.113856_b0130) 2016; 79 |
| References_xml | – start-page: 162 year: 2006 end-page: 171 ident: b0145 article-title: Clustering approach using belief function theory publication-title: International Conference on Artificial Intelligence: Methodology, Systems, and Applications – volume: 34 start-page: 686 year: 2004 end-page: 695 ident: b0300 article-title: Falcon: Neural fuzzy control and decision systems using FKP and PFKP clustering algorithms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 84 start-page: 301 year: 2017 end-page: 322 ident: b0010 article-title: A novel and fast MIMO fuzzy inference system based on a class of fuzzy clustering algorithms with interpretability and complexity analysis publication-title: Expert Systems with Applications – volume: 78 start-page: 24285 year: 2019 end-page: 24299 ident: b0165 article-title: An improved clustering algorithm based on finite Gaussian mixture model publication-title: Multimedia Tools and Applications – volume: 3 start-page: 370 year: 1995 end-page: 379 ident: b0275 article-title: On cluster validity for the Fuzzy C-Means model publication-title: IEEE Transactions on Fuzzy Systems – volume: 10 start-page: 923 year: 2001 end-page: 931 ident: b0270 article-title: Fuzzy algorithms for combined quantization and dithering publication-title: IEEE Transactions on Image Processing – volume: 24 start-page: 1279 year: 1994 end-page: 1284 ident: b0325 article-title: Approximate clustering via the mountain method publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 43 start-page: 225 year: 2019 end-page: 236 ident: b0320 article-title: DBSCAN clustering algorithm for the detection of nearby open clusters based on Gaia-DR2 publication-title: Chinese Astronomy and Astrophysics – volume: 45 start-page: 391 year: 2015 end-page: 403 ident: b0070 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships publication-title: IEEE Transactions on Cybernetics – volume: 535 start-page: 122289 year: 2019 ident: b0330 article-title: A three-way clustering method based on an improved DBSCAN algorithm publication-title: Physica A – volume: 13 start-page: 517 year: 2005 end-page: 530 ident: b0280 article-title: A possibilistic fuzzy c-means clustering algorithm publication-title: IEEE Transactions on Fuzzy Systems – volume: 134 start-page: 192 year: 2019 end-page: 200 ident: b0175 article-title: Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization publication-title: Expert Systems with Applications – volume: 40 start-page: 1343 year: 2010 end-page: 1358 ident: b0090 article-title: Fuzzy forecasting based on fuzzy-trend logical relationship groups publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 13 start-page: 717 year: 2005 end-page: 720 ident: b0135 article-title: A new convergence proof of fuzzy c-means publication-title: IEEE Transactions on Fuzzy Systems – volume: 24 start-page: 8955 year: 2020 end-page: 8974 ident: b0140 article-title: Clustering data stream with uncertainty using belief function theory and fading function publication-title: Soft Computing – volume: 39 start-page: 578 year: 2009 end-page: 591 ident: b0355 article-title: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 20 start-page: 1130 year: 2012 end-page: 1146 ident: b0160 article-title: Fuzzy c-means algorithms for very large data publication-title: IEEE Transactions on Fuzzy Systems – volume: 17 start-page: 395 year: 2007 end-page: 416 ident: b0305 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing – volume: 11 start-page: 1711 year: 2011 end-page: 1717 ident: b0065 article-title: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images publication-title: Applied Soft Computing – volume: 47 start-page: 2042 year: 2014 end-page: 2056 ident: b0235 article-title: A size-insensitive integrity-based fuzzy c-means method for data clustering publication-title: Pattern Recognition – volume: 219 start-page: 186 year: 2017 end-page: 202 ident: b0045 article-title: Generalized entropy based possibilistic fuzzy C-Means for clustering noisy data and its convergence proof publication-title: Neurocomputing – volume: 53 start-page: 262 year: 2017 end-page: 283 ident: b0025 article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data publication-title: Applied Soft Computing – volume: 5 start-page: 270 year: 1997 end-page: 293 ident: b0110 article-title: Robust clustering methods: A unified view publication-title: IEEE Transactions on Fuzzy Systems – start-page: 226 year: 1996 end-page: 231 ident: b0115 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining – volume: 18 start-page: 906 year: 2010 end-page: 918 ident: b0005 article-title: Comparing fuzzy, probabilistic, and possibilistic partitions publication-title: IEEE Transactions on Fuzzy Systems – volume: 23 start-page: 1030 year: 2015 end-page: 1043 ident: b0050 article-title: Characterizing compactness of geometrical clusters using fuzzy measures publication-title: IEEE Transactions on Fuzzy Systems – volume: 117 start-page: 90 year: 2019 end-page: 96 ident: b0250 article-title: Sampling approaches for applying DBSCAN to large datasets publication-title: Pattern Recognition Letters – volume: 47 start-page: 2011 year: 2014 end-page: 2030 ident: b0335 article-title: Learning a mixture model for clustering with the completed likelihood minimum message length criterion publication-title: Pattern Recognition – volume: 40 start-page: 1255 year: 2010 end-page: 1266 ident: b0220 article-title: A stochastic HMM-based forecasting model for fuzzy time series publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 32 start-page: 571 year: 2002 end-page: 582 ident: b0340 article-title: A generic knowledge-guided image segmentation and labeling system using fuzzy clustering algorithms publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 1 start-page: 98 year: 1993 end-page: 110 ident: b0190 article-title: A possibilistic approach to clustering publication-title: IEEE Transactions on Fuzzy Systems – volume: 64 start-page: 65 year: 2002 end-page: 78 ident: b0265 article-title: Multivariate image segmentation with cluster size insensitive Fuzzy C-means publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 44 start-page: 329 year: 2014 end-page: 341 ident: b0205 article-title: An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization publication-title: IEEE Transactions on Cybernetics – volume: 132 start-page: 157 year: 2016 end-page: 166 ident: b0240 article-title: Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine publication-title: NeuroImage – volume: 18 start-page: 572 year: 2010 end-page: 584 ident: b0120 article-title: Applying the possibilistic c-means algorithm in kernel-induced spaces publication-title: IEEE Transactions on Fuzzy Systems – volume: 4 start-page: 385 year: 1996 end-page: 393 ident: b0195 article-title: The possibilistic c–means algorithm: Insights and recommendations publication-title: IEEE Transactions on Fuzzy Systems – volume: 34 start-page: 2176 year: 1998 ident: b0200 article-title: Cluster validity index for fuzzy clustering publication-title: Electronics Letters – volume: 28 start-page: 359 year: 1998 end-page: 369 ident: b0290 article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 83 start-page: 252 year: 2015 end-page: 266 ident: b0040 article-title: Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems publication-title: Energy – volume: 3 start-page: 841 year: 1991 end-page: 846 ident: b0315 article-title: Validity measure for fuzzy clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 11 start-page: 2160 year: 2017 end-page: 2169 ident: b0350 article-title: A high-order possibilistic c-means algorithm for clustering incomplete multimedia data publication-title: IEEE Systems Journal – start-page: 978 year: 2005 end-page: 987 ident: b0155 article-title: Improving K-means by outlier removal publication-title: Scandinavian Conference on Image Analysis – volume: 35 start-page: 224 year: 2005 end-page: 238 ident: b0260 article-title: Segmentation of color images using multiscale clustering and graph theoretic region synthesis publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 92 start-page: 106332 year: 2020 ident: b0030 article-title: Modeling energy flow in natural gas networks using time series disaggregation and fuzzy systems tuned by particle swarm optimization publication-title: Applied Soft Computing – volume: 105 year: 2020 ident: b0225 article-title: Revisiting spectral clustering for near-convex decomposition of 2D shape publication-title: Pattern Recognition – volume: 154 start-page: 363 year: 2012 end-page: 372 ident: b0210 article-title: Automatic K-means clustering algorithm for outlier detection publication-title: Information Engineering and Applications – volume: 11 start-page: 65 year: 2012 end-page: 76 ident: b0180 article-title: Novel intuitionistic fuzzy c means clustering for linearly and nonlinearly separable data publication-title: WSEAS Transactions on Computers – start-page: 2034 year: 1998 end-page: 2039 ident: b0095 article-title: The credibilistic fuzzy C-means clustering algorithm publication-title: IEEE International Conference on Systems, Man, and Cybernetics – volume: 42 start-page: 1485 year: 2012 end-page: 1495 ident: b0080 article-title: TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 44 start-page: 1750 year: 2011 end-page: 1760 ident: b0295 article-title: Fuzzy C-means based clustering for linearly and nonlinearly separable data publication-title: Pattern Recognition – volume: 31 start-page: 735 year: 2001 end-page: 744 ident: b0150 article-title: Fuzzy c-means clustering of incomplete data publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 38 start-page: 2402 year: 2016 end-page: 2415 ident: b0125 article-title: EM algorithms for weighted-data clustering with application to audio-visual scene analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 26 start-page: 324 year: 2018 end-page: 337 ident: b0185 article-title: On the convergence of the sparse possibilistic c-means algorithm publication-title: IEEE Transactions on Fuzzy Systems – volume: 37 start-page: 1529 year: 2007 end-page: 1540 ident: b0255 article-title: Rough set based generalized fuzzy c-means algorithm and quantitative indices publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 90 start-page: 271 year: 2019 end-page: 284 ident: b0060 article-title: Grid-based DBSCAN: Indexing and inference publication-title: Pattern Recognition – volume: 384 start-page: 1 year: 2020 end-page: 10 ident: b0170 article-title: Multi-view spectral clustering via sparse graph learning publication-title: Neurocomputing – volume: 2 start-page: 267 year: 1994 end-page: 278 ident: b0100 article-title: Fuzzy model identification based on cluster estimation publication-title: Journal of Intelligent and Fuzzy Systems – volume: 12 start-page: 657 year: 1991 end-page: 664 ident: b0105 article-title: Characterization and detection of noise in clustering publication-title: Pattern Recognition Letters – volume: 35 start-page: 151 year: 2015 end-page: 160 ident: b0035 article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables publication-title: Applied Soft Computing – volume: 79 start-page: 100 year: 2016 end-page: 111 ident: b0130 article-title: Performance analysis of various fuzzy clustering algorithms: A review publication-title: Procedia Computer Science – volume: 30 start-page: 1391 year: 2017 end-page: 1400 ident: b0015 article-title: Oil reservoirs classification using fuzzy clustering publication-title: International Journal of Engineering, Transactions C: Aspects – volume: 43 start-page: 1102 year: 2013 end-page: 1117 ident: b0085 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques publication-title: IEEE Transactions on Cybernetics – volume: 44 start-page: 2232 year: 2014 end-page: 2240 ident: b0245 article-title: A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot publication-title: IEEE Transactions on Cybernetics – volume: 12 start-page: 209 year: 2004 end-page: 217 ident: b0345 article-title: Improved possibilistic C-means clustering algorithms publication-title: IEEE Transactions on Fuzzy Systems – volume: 42 start-page: 2121 year: 2015 end-page: 2135 ident: b0020 article-title: A high-order multi-variable Fuzzy Time Series forecasting algorithm based on fuzzy clustering publication-title: Expert Systems with Applications – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b0055 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Computers & Geosciences – volume: 41 start-page: 1263 year: 2011 end-page: 1274 ident: b0075 article-title: A multiple-kernel fuzzy C-means algorithm for image segmentation publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 286 start-page: 114 year: 2016 end-page: 133 ident: b0215 article-title: Fuzzy c -ordered-means clustering publication-title: Fuzzy Sets and Systems – volume: 2019 start-page: 1 year: 2019 end-page: 10 ident: b0230 article-title: Hybrid DE-EM algorithm for gaussian mixture model-based wireless channel multipath clustering publication-title: International Journal of Antennas and Propagation – volume: 318 start-page: 1 year: 2017 end-page: 33 ident: b0285 article-title: Fuzzy weighted C-ordered means clustering algorithm publication-title: Fuzzy Sets and Systems – volume: 13 start-page: 717 issue: 5 year: 2005 ident: 10.1016/j.eswa.2020.113856_b0135 article-title: A new convergence proof of fuzzy c-means publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2005.856560 – start-page: 226 year: 1996 ident: 10.1016/j.eswa.2020.113856_b0115 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – start-page: 978 year: 2005 ident: 10.1016/j.eswa.2020.113856_b0155 article-title: Improving K-means by outlier removal publication-title: Scandinavian Conference on Image Analysis doi: 10.1007/11499145_99 – volume: 39 start-page: 578 year: 2009 ident: 10.1016/j.eswa.2020.113856_b0355 article-title: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCB.2008.2004818 – volume: 12 start-page: 657 issue: 11 year: 1991 ident: 10.1016/j.eswa.2020.113856_b0105 article-title: Characterization and detection of noise in clustering publication-title: Pattern Recognition Letters doi: 10.1016/0167-8655(91)90002-4 – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.113856_b0230 article-title: Hybrid DE-EM algorithm for gaussian mixture model-based wireless channel multipath clustering publication-title: International Journal of Antennas and Propagation – volume: 24 start-page: 1279 year: 1994 ident: 10.1016/j.eswa.2020.113856_b0325 article-title: Approximate clustering via the mountain method publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/21.299710 – volume: 43 start-page: 1102 year: 2013 ident: 10.1016/j.eswa.2020.113856_b0085 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and particle swarm optimization techniques publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMCB.2012.2223815 – volume: 44 start-page: 1750 issue: 8 year: 2011 ident: 10.1016/j.eswa.2020.113856_b0295 article-title: Fuzzy C-means based clustering for linearly and nonlinearly separable data publication-title: Pattern Recognition doi: 10.1016/j.patcog.2011.02.009 – start-page: 162 year: 2006 ident: 10.1016/j.eswa.2020.113856_b0145 article-title: Clustering approach using belief function theory publication-title: International Conference on Artificial Intelligence: Methodology, Systems, and Applications – volume: 1 start-page: 98 year: 1993 ident: 10.1016/j.eswa.2020.113856_b0190 article-title: A possibilistic approach to clustering publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.227387 – volume: 24 start-page: 8955 issue: 12 year: 2020 ident: 10.1016/j.eswa.2020.113856_b0140 article-title: Clustering data stream with uncertainty using belief function theory and fading function publication-title: Soft Computing doi: 10.1007/s00500-019-04422-4 – volume: 44 start-page: 2232 year: 2014 ident: 10.1016/j.eswa.2020.113856_b0245 article-title: A multiple-feature and multiple-kernel scene segmentation algorithm for humanoid robot publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TSMC.2013.2297398 – volume: 3 start-page: 370 year: 1995 ident: 10.1016/j.eswa.2020.113856_b0275 article-title: On cluster validity for the Fuzzy C-Means model publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.413225 – volume: 47 start-page: 2011 year: 2014 ident: 10.1016/j.eswa.2020.113856_b0335 article-title: Learning a mixture model for clustering with the completed likelihood minimum message length criterion publication-title: Pattern Recognition doi: 10.1016/j.patcog.2013.09.036 – volume: 5 start-page: 270 year: 1997 ident: 10.1016/j.eswa.2020.113856_b0110 article-title: Robust clustering methods: A unified view publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.580801 – volume: 42 start-page: 2121 issue: 4 year: 2015 ident: 10.1016/j.eswa.2020.113856_b0020 article-title: A high-order multi-variable Fuzzy Time Series forecasting algorithm based on fuzzy clustering publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.09.036 – volume: 286 start-page: 114 year: 2016 ident: 10.1016/j.eswa.2020.113856_b0215 article-title: Fuzzy c -ordered-means clustering publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2014.12.007 – volume: 64 start-page: 65 issue: 1 year: 2002 ident: 10.1016/j.eswa.2020.113856_b0265 article-title: Multivariate image segmentation with cluster size insensitive Fuzzy C-means publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/S0169-7439(02)00052-7 – volume: 90 start-page: 271 year: 2019 ident: 10.1016/j.eswa.2020.113856_b0060 article-title: Grid-based DBSCAN: Indexing and inference publication-title: Pattern Recognition doi: 10.1016/j.patcog.2019.01.034 – volume: 78 start-page: 24285 issue: 17 year: 2019 ident: 10.1016/j.eswa.2020.113856_b0165 article-title: An improved clustering algorithm based on finite Gaussian mixture model publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-6988-z – volume: 11 start-page: 65 year: 2012 ident: 10.1016/j.eswa.2020.113856_b0180 article-title: Novel intuitionistic fuzzy c means clustering for linearly and nonlinearly separable data publication-title: WSEAS Transactions on Computers – volume: 23 start-page: 1030 issue: 4 year: 2015 ident: 10.1016/j.eswa.2020.113856_b0050 article-title: Characterizing compactness of geometrical clusters using fuzzy measures publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2014.2336871 – volume: 20 start-page: 1130 issue: 6 year: 2012 ident: 10.1016/j.eswa.2020.113856_b0160 article-title: Fuzzy c-means algorithms for very large data publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2012.2201485 – volume: 535 start-page: 122289 year: 2019 ident: 10.1016/j.eswa.2020.113856_b0330 article-title: A three-way clustering method based on an improved DBSCAN algorithm publication-title: Physica A doi: 10.1016/j.physa.2019.122289 – volume: 47 start-page: 2042 issue: 5 year: 2014 ident: 10.1016/j.eswa.2020.113856_b0235 article-title: A size-insensitive integrity-based fuzzy c-means method for data clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2013.11.031 – volume: 37 start-page: 1529 issue: 6 year: 2007 ident: 10.1016/j.eswa.2020.113856_b0255 article-title: Rough set based generalized fuzzy c-means algorithm and quantitative indices publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCB.2007.906578 – volume: 79 start-page: 100 year: 2016 ident: 10.1016/j.eswa.2020.113856_b0130 article-title: Performance analysis of various fuzzy clustering algorithms: A review publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.03.014 – volume: 43 start-page: 225 year: 2019 ident: 10.1016/j.eswa.2020.113856_b0320 article-title: DBSCAN clustering algorithm for the detection of nearby open clusters based on Gaia-DR2 publication-title: Chinese Astronomy and Astrophysics doi: 10.1016/j.chinastron.2019.04.001 – volume: 132 start-page: 157 year: 2016 ident: 10.1016/j.eswa.2020.113856_b0240 article-title: Control-group feature normalization for multivariate pattern analysis of structural MRI data using the support vector machine publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.02.044 – volume: 12 start-page: 209 issue: 2 year: 2004 ident: 10.1016/j.eswa.2020.113856_b0345 article-title: Improved possibilistic C-means clustering algorithms publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2004.825079 – volume: 34 start-page: 686 issue: 1 year: 2004 ident: 10.1016/j.eswa.2020.113856_b0300 article-title: Falcon: Neural fuzzy control and decision systems using FKP and PFKP clustering algorithms publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCB.2003.809227 – volume: 18 start-page: 572 issue: 3 year: 2010 ident: 10.1016/j.eswa.2020.113856_b0120 article-title: Applying the possibilistic c-means algorithm in kernel-induced spaces publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2010.2043440 – volume: 134 start-page: 192 year: 2019 ident: 10.1016/j.eswa.2020.113856_b0175 article-title: Text document clustering using Spectral Clustering algorithm with Particle Swarm Optimization publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.05.030 – volume: 384 start-page: 1 year: 2020 ident: 10.1016/j.eswa.2020.113856_b0170 article-title: Multi-view spectral clustering via sparse graph learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.12.004 – volume: 2 start-page: 267 year: 1994 ident: 10.1016/j.eswa.2020.113856_b0100 article-title: Fuzzy model identification based on cluster estimation publication-title: Journal of Intelligent and Fuzzy Systems – volume: 38 start-page: 2402 issue: 12 year: 2016 ident: 10.1016/j.eswa.2020.113856_b0125 article-title: EM algorithms for weighted-data clustering with application to audio-visual scene analysis publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2016.2522425 – volume: 11 start-page: 2160 year: 2017 ident: 10.1016/j.eswa.2020.113856_b0350 article-title: A high-order possibilistic c-means algorithm for clustering incomplete multimedia data publication-title: IEEE Systems Journal doi: 10.1109/JSYST.2015.2423499 – volume: 53 start-page: 262 year: 2017 ident: 10.1016/j.eswa.2020.113856_b0025 article-title: Generalized Possibilistic Fuzzy C-Means with novel cluster validity indices for clustering noisy data publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2016.12.049 – volume: 30 start-page: 1391 year: 2017 ident: 10.1016/j.eswa.2020.113856_b0015 article-title: Oil reservoirs classification using fuzzy clustering publication-title: International Journal of Engineering, Transactions C: Aspects – volume: 26 start-page: 324 issue: 1 year: 2018 ident: 10.1016/j.eswa.2020.113856_b0185 article-title: On the convergence of the sparse possibilistic c-means algorithm publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2017.2659739 – volume: 40 start-page: 1255 year: 2010 ident: 10.1016/j.eswa.2020.113856_b0220 article-title: A stochastic HMM-based forecasting model for fuzzy time series publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCB.2009.2036860 – volume: 42 start-page: 1485 issue: 6 year: 2012 ident: 10.1016/j.eswa.2020.113856_b0080 article-title: TAIEX forecasting using fuzzy time series and automatically generated weights of multiple factors publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCA.2012.2190399 – volume: 10 start-page: 191 issue: 2-3 year: 1984 ident: 10.1016/j.eswa.2020.113856_b0055 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Computers & Geosciences doi: 10.1016/0098-3004(84)90020-7 – volume: 105 year: 2020 ident: 10.1016/j.eswa.2020.113856_b0225 article-title: Revisiting spectral clustering for near-convex decomposition of 2D shape publication-title: Pattern Recognition doi: 10.1016/j.patcog.2020.107371 – volume: 34 start-page: 2176 issue: 22 year: 1998 ident: 10.1016/j.eswa.2020.113856_b0200 article-title: Cluster validity index for fuzzy clustering publication-title: Electronics Letters doi: 10.1049/el:19981523 – start-page: 2034 year: 1998 ident: 10.1016/j.eswa.2020.113856_b0095 article-title: The credibilistic fuzzy C-means clustering algorithm publication-title: IEEE International Conference on Systems, Man, and Cybernetics – volume: 35 start-page: 151 year: 2015 ident: 10.1016/j.eswa.2020.113856_b0035 article-title: A clustering based forecasting algorithm for multivariable fuzzy time series using linear combinations of independent variables publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.06.028 – volume: 41 start-page: 1263 issue: 5 year: 2011 ident: 10.1016/j.eswa.2020.113856_b0075 article-title: A multiple-kernel fuzzy C-means algorithm for image segmentation publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCB.2011.2124455 – volume: 117 start-page: 90 year: 2019 ident: 10.1016/j.eswa.2020.113856_b0250 article-title: Sampling approaches for applying DBSCAN to large datasets publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2018.12.010 – volume: 3 start-page: 841 year: 1991 ident: 10.1016/j.eswa.2020.113856_b0315 article-title: Validity measure for fuzzy clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.85677 – volume: 154 start-page: 363 year: 2012 ident: 10.1016/j.eswa.2020.113856_b0210 article-title: Automatic K-means clustering algorithm for outlier detection publication-title: Information Engineering and Applications doi: 10.1007/978-1-4471-2386-6_47 – volume: 44 start-page: 329 issue: 3 year: 2014 ident: 10.1016/j.eswa.2020.113856_b0205 article-title: An efficient interval type-2 fuzzy CMAC for chaos time-series prediction and synchronization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2254113 – volume: 13 start-page: 517 issue: 4 year: 2005 ident: 10.1016/j.eswa.2020.113856_b0280 article-title: A possibilistic fuzzy c-means clustering algorithm publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2004.840099 – volume: 83 start-page: 252 year: 2015 ident: 10.1016/j.eswa.2020.113856_b0040 article-title: Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems publication-title: Energy doi: 10.1016/j.energy.2015.02.020 – volume: 31 start-page: 735 year: 2001 ident: 10.1016/j.eswa.2020.113856_b0150 article-title: Fuzzy c-means clustering of incomplete data publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/3477.956035 – volume: 10 start-page: 923 year: 2001 ident: 10.1016/j.eswa.2020.113856_b0270 article-title: Fuzzy algorithms for combined quantization and dithering publication-title: IEEE Transactions on Image Processing doi: 10.1109/83.923288 – volume: 92 start-page: 106332 year: 2020 ident: 10.1016/j.eswa.2020.113856_b0030 article-title: Modeling energy flow in natural gas networks using time series disaggregation and fuzzy systems tuned by particle swarm optimization publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106332 – volume: 11 start-page: 1711 issue: 2 year: 2011 ident: 10.1016/j.eswa.2020.113856_b0065 article-title: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.05.005 – volume: 4 start-page: 385 year: 1996 ident: 10.1016/j.eswa.2020.113856_b0195 article-title: The possibilistic c–means algorithm: Insights and recommendations publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.531779 – volume: 40 start-page: 1343 issue: 5 year: 2010 ident: 10.1016/j.eswa.2020.113856_b0090 article-title: Fuzzy forecasting based on fuzzy-trend logical relationship groups publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCB.2009.2038358 – volume: 28 start-page: 359 year: 1998 ident: 10.1016/j.eswa.2020.113856_b0290 article-title: Image segmentation by a fuzzy clustering algorithm using adaptive spatially constrained membership functions publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/3468.668967 – volume: 45 start-page: 391 issue: 3 year: 2015 ident: 10.1016/j.eswa.2020.113856_b0070 article-title: Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2326888 – volume: 318 start-page: 1 year: 2017 ident: 10.1016/j.eswa.2020.113856_b0285 article-title: Fuzzy weighted C-ordered means clustering algorithm publication-title: Fuzzy Sets and Systems doi: 10.1016/j.fss.2017.01.001 – volume: 35 start-page: 224 issue: 2 year: 2005 ident: 10.1016/j.eswa.2020.113856_b0260 article-title: Segmentation of color images using multiscale clustering and graph theoretic region synthesis publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCA.2004.832820 – volume: 18 start-page: 906 issue: 5 year: 2010 ident: 10.1016/j.eswa.2020.113856_b0005 article-title: Comparing fuzzy, probabilistic, and possibilistic partitions publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/TFUZZ.2010.2052258 – volume: 84 start-page: 301 year: 2017 ident: 10.1016/j.eswa.2020.113856_b0010 article-title: A novel and fast MIMO fuzzy inference system based on a class of fuzzy clustering algorithms with interpretability and complexity analysis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2017.04.045 – volume: 219 start-page: 186 year: 2017 ident: 10.1016/j.eswa.2020.113856_b0045 article-title: Generalized entropy based possibilistic fuzzy C-Means for clustering noisy data and its convergence proof publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.025 – volume: 17 start-page: 395 issue: 4 year: 2007 ident: 10.1016/j.eswa.2020.113856_b0305 article-title: A tutorial on spectral clustering publication-title: Statistics and Computing doi: 10.1007/s11222-007-9033-z – volume: 32 start-page: 571 issue: 5 year: 2002 ident: 10.1016/j.eswa.2020.113856_b0340 article-title: A generic knowledge-guided image segmentation and labeling system using fuzzy clustering algorithms publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCB.2002.1033177 |
| SSID | ssj0017007 |
| Score | 2.6879582 |
| Snippet | •RFCM algorithm removes drawbacks of the FCM algorithm.•RFCM algorithm eliminates interactions among clusters.•RFCM algorithm is suitable for data highly... Clustering algorithms aim at finding dense regions of data based on similarities and dissimilarities of data points. Noise and outliers contribute to the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113856 |
| SubjectTerms | Adaptive algorithms Algorithms Clustering Data points Exponential functions FCM Fuzzy C-Means Kernels Mass distribution Noise Outlier Outliers (statistics) Probabilistic models Robustness (mathematics) Unequal clusters |
| Title | Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.113856 https://www.proquest.com/docview/2487170349 |
| Volume | 165 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQWVh4I56VBzYU2sROnbChiqqAygKVulnxIxBUUkRaITqw8re5SxwQCHVgdc5R5LPvvnO-uyPkGCBGYCKdelpAbAKIIPRipqzHAdoGiTKd0OA95OCm0x_yq1E4WiLdOhcGaZXO9lc2vbTWbqTlVrP1nGWtWwAH4A4htEPY2xGYxMe5wC4Gp-9fNA8sPyeqenvCQ2mXOFNxvGzxirWHgrK1SYRNrP92Tr_MdOl7eutk1YFGel591wZZsvkmWasbMlB3PrfIR282n7_Rrjew4IGoHs-wDAI4J5qM7ycv2fThiQJIpUgLpXgDS2e5xbTKWpQW2dwWNMkNRQ57gjwZgKSVbD7JCls-QxYRttA-o9WvhXLQfNOPtsmwd3HX7Xuu04KnWRBNvcQwxRSEeuDsIWDkPG0LWDgrRIwIwFjjM5W2O7E2NvJZ2tZ-EqfYb4j7sWIJ2yGNfJLbXUKVAMipQ-vzNOK6zSKeYgmwJOQKQh0d7RG_XmKpXRly7IYxljXf7FGiWiSqRVZq2SMnX3OeqyIcC6XDWnPyx1aS4CUWzjus1SzdQS5kAAEd7CHG4_1_vvaArATIgyl5a4ekMX2Z2SMAMlPVLHdqkyyfX173bz4B-ajyeQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DLDwRpSnBzYU2sROnbChiqo8ygJIbFb8CASVFJFWiA6s_G3uEgcEQgyszjmKfOe775zPd4TsA8QITKRTTwvITQARhF7MlPU4QNsgUaYdGjyH7F-2ezf87Da8nSKd-i4M0iqd7698eumt3UjTrWbzKcuaVwAOIBxCaoewty3iaTLLw0BgBnb49snzwPpzoiq4JzwUdzdnKpKXLV6w-FBQ9jaJsIv179Hph58ug093iSw41EiPqw9bJlM2XyGLdUcG6jboKnnvjieTV9rx-hZCENWDMdZBgOhEk8Hd8Dkb3T9SQKkUeaEUj2DpOLd4r7IWpUU2sQVNckORxJ4gUQYwaSWbD7PCls-QRoQ9tI9o9W-hHDRf_KM1ctM9ue70PNdqwdMsiEZeYphiCnI9iPaQMXKetgQsnBUiRghgrPGZSlvtWBsb-SxtaT-JU2w4xP1YsYStk5l8mNsNQpUAzKlD6_M04rrFIp5iDbAk5ApyHR01iF8vsdSuDjm2wxjImnD2IFEtEtUiK7U0yMHnnKeqCsef0mGtOfnNliSEiT_nbddqlm4nFzKAjA5siPF485-v3SNzvev-hbw4vTzfIvMBkmJKEts2mRk9j-0OoJqR2i2t9gOZR_QO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+C-Means+clustering+algorithm+for+data+with+unequal+cluster+sizes+and+contaminated+with+noise+and+outliers%3A+Review+and+development&rft.jtitle=Expert+systems+with+applications&rft.au=Askari%2C+Salar&rft.date=2021-03-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=165&rft_id=info:doi/10.1016%2Fj.eswa.2020.113856&rft.externalDocID=S0957417420306679 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |