A review on recent progress in computational and empirical studies of compression ignition internal combustion engine

The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental concerns. Although it has been almost 150 years since the introduction of internal combustion engine, researches seeking engineering solutions still...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 279; p. 118469
Main Authors Salam, Satishchandra, Choudhary, Tushar, Pugazhendhi, Arivalagan, Verma, Tikendra Nath, Sharma, Abhishek
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.11.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0016-2361
1873-7153
DOI10.1016/j.fuel.2020.118469

Cover

Abstract The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental concerns. Although it has been almost 150 years since the introduction of internal combustion engine, researches seeking engineering solutions still continue. Driving quality, performance and fuel economy have been improved while emissions have been lowered significantly. But there has not been any unified analytical model that can capture the internal combustion engine as a complete system from thermodynamic, mechanical or chemical perspective per se. With experimental research methods usually too involving in terms of engineering costs, computational approaches to deliver numerical solutions have been inevitable as a research methodology – or even sometimes, is left as the only feasible method. In light of these concerns, this article reviews a few trending modelling methods of (1) analytical, (2) regression and (3) artificial neural network methods, and optimisation methods of (1) response surface methodology, (2) Taguchi method and (3) genetic algorithm which have been popularly employed in internal combustion engine research. The review recommends to confluence of advanced statistical methods and emerging popular machine learning algorithms to engine research for deriving comprehensive pragmatic models as empirical compromise.
AbstractList The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental concerns. Although it has been almost 150 years since the introduction of internal combustion engine, researches seeking engineering solutions still continue. Driving quality, performance and fuel economy have been improved while emissions have been lowered significantly. But there has not been any unified analytical model that can capture the internal combustion engine as a complete system from thermodynamic, mechanical or chemical perspective per se. With experimental research methods usually too involving in terms of engineering costs, computational approaches to deliver numerical solutions have been inevitable as a research methodology – or even sometimes, is left as the only feasible method. In light of these concerns, this article reviews a few trending modelling methods of (1) analytical, (2) regression and (3) artificial neural network methods, and optimisation methods of (1) response surface methodology, (2) Taguchi method and (3) genetic algorithm which have been popularly employed in internal combustion engine research. The review recommends to confluence of advanced statistical methods and emerging popular machine learning algorithms to engine research for deriving comprehensive pragmatic models as empirical compromise.
The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental concerns. Although it has been almost 150 years since the introduction of internal combustion engine, researches seeking engineering solutions still continue. Driving quality, performance and fuel economy have been improved while emissions have been lowered significantly. But there has not been any unified analytical model that can capture the internal combustion engine as a complete system from thermodynamic, mechanical or chemical perspective per se. With experimental research methods usually too involving in terms of engineering costs, computational approaches to deliver numerical solutions have been inevitable as a research methodology – or even sometimes, is left as the only feasible method. In light of these concerns, this article reviews a few trending modelling methods of (1) analytical, (2) regression and (3) artificial neural network methods, and optimisation methods of (1) response surface methodology, (2) Taguchi method and (3) genetic algorithm which have been popularly employed in internal combustion engine research. The review recommends to confluence of advanced statistical methods and emerging popular machine learning algorithms to engine research for deriving comprehensive pragmatic models as empirical compromise.
ArticleNumber 118469
Author Pugazhendhi, Arivalagan
Salam, Satishchandra
Choudhary, Tushar
Verma, Tikendra Nath
Sharma, Abhishek
Author_xml – sequence: 1
  givenname: Satishchandra
  orcidid: 0000-0002-7271-5553
  surname: Salam
  fullname: Salam, Satishchandra
  email: satisji@gmail.com
  organization: Department of Mechanical Engineering, National Institute of Technology, Manipur 795004, India
– sequence: 2
  givenname: Tushar
  surname: Choudhary
  fullname: Choudhary, Tushar
  organization: Mechanical Engineering Department, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India
– sequence: 3
  givenname: Arivalagan
  orcidid: 0000-0002-9529-3306
  surname: Pugazhendhi
  fullname: Pugazhendhi, Arivalagan
  organization: Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton DucThang University, Ho Chi Minh City, Viet Nam
– sequence: 4
  givenname: Tikendra Nath
  surname: Verma
  fullname: Verma, Tikendra Nath
  organization: Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, India
– sequence: 5
  givenname: Abhishek
  surname: Sharma
  fullname: Sharma, Abhishek
  email: drasharma58@gmail.com
  organization: Department of Mechanical Engineering, Manipal University, Jaipur 303007, India
BookMark eNp9kU1P9CAUhYnRxPHjD7gicd0RLrRlEjfG6PuamLjRNaH0dsJkBkagGv-9dOrKhSsuh_MQzuGMHPvgkZArzpac8eZmsxxG3C6BQRG4ks3qiCy4akXV8lockwUrrgpEw0_JWUobxlirarkg4x2N-OHwkwZfJos-030M64gpUeepDbv9mE12wZstNb6nuNu76GzZpTz2DhMNw8E2IcVG3dq7fBh8xjhh5bQb00FDv3YeL8jJYLYJL3_Wc_L2-PB6_796fvn3dH_3XFkBKlemEzWsFJcANTR90aRt6w5VUw8dA-gROwBoQArRQTvUq9YMvZWyQc6NtOKcXM_3lkjvI6asN2GcnpQ0SKkaBYqL4lKzy8aQUsRBWzdHztG4reZMTyXrjZ5K1lPJei65oPAL3Ue3M_Hrb-h2hrBEL91HnaxDb7F35Qey7oP7C_8GSxqZxQ
CitedBy_id crossref_primary_10_1177_14680874231208338
crossref_primary_10_1016_j_icheatmasstransfer_2024_107703
crossref_primary_10_1016_j_matpr_2021_02_700
crossref_primary_10_2139_ssrn_4183418
crossref_primary_10_3390_math10030420
crossref_primary_10_20964_2021_03_54
crossref_primary_10_1016_j_fuel_2022_126036
crossref_primary_10_1016_j_fuel_2021_121590
crossref_primary_10_1016_j_fuel_2023_128637
crossref_primary_10_1016_j_fuel_2021_122262
crossref_primary_10_1016_j_matpr_2023_03_785
crossref_primary_10_1016_j_matpr_2020_12_247
crossref_primary_10_1088_1742_6596_2385_1_012116
crossref_primary_10_3390_fermentation9070598
crossref_primary_10_3390_nano13101596
crossref_primary_10_1016_j_combustflame_2023_113288
crossref_primary_10_1016_j_ress_2023_109466
crossref_primary_10_1615_JEnhHeatTransf_2024051522
crossref_primary_10_1016_j_fuel_2025_134294
crossref_primary_10_1007_s11356_024_35137_1
crossref_primary_10_1016_j_advengsoft_2023_103501
crossref_primary_10_1021_acsenvironau_3c00013
crossref_primary_10_1016_j_jece_2023_111030
crossref_primary_10_1080_15567036_2021_1934193
crossref_primary_10_1016_j_energy_2024_131570
crossref_primary_10_1016_j_matpr_2023_02_037
crossref_primary_10_1016_j_psep_2021_12_014
crossref_primary_10_1016_j_seta_2022_102751
crossref_primary_10_1088_1755_1315_1110_1_012007
crossref_primary_10_1016_j_matpr_2022_07_273
crossref_primary_10_3390_pr10030525
crossref_primary_10_1007_s42452_021_04618_0
crossref_primary_10_1016_j_ijft_2025_101103
crossref_primary_10_1016_j_rser_2022_112578
crossref_primary_10_1016_j_psep_2024_05_142
crossref_primary_10_1016_j_jclepro_2024_144284
crossref_primary_10_1016_j_fuel_2022_124820
crossref_primary_10_1016_j_energy_2023_128336
crossref_primary_10_1016_j_matpr_2021_03_436
crossref_primary_10_1115_1_4066393
crossref_primary_10_1155_2021_2154258
crossref_primary_10_1016_j_fuel_2022_124607
crossref_primary_10_1088_1742_6596_2893_1_012038
crossref_primary_10_1016_j_ecmx_2023_100426
crossref_primary_10_1016_j_ijhydene_2024_04_083
crossref_primary_10_1016_j_icheatmasstransfer_2024_108156
crossref_primary_10_1007_s11356_023_28965_0
crossref_primary_10_1016_j_energy_2022_125869
Cites_doi 10.1016/j.biombioe.2011.02.031
10.1016/j.renene.2008.08.008
10.1016/j.fuel.2016.03.028
10.1016/j.apenergy.2009.08.016
10.1016/j.enconman.2018.03.017
10.1016/j.rser.2017.03.080
10.1016/0017-9310(81)90003-X
10.1016/j.fuel.2003.10.025
10.1093/ejcts/ezy169
10.1007/s10745-009-9215-8
10.1016/j.apenergy.2011.01.069
10.1016/j.rser.2017.01.059
10.1016/j.egypro.2014.10.298
10.1016/0360-1285(79)90015-7
10.1214/10-STS330
10.1109/25.45470
10.1016/j.fuel.2016.04.098
10.4271/852070
10.1016/j.energy.2014.05.006
10.1016/j.enconman.2015.12.010
10.1243/0954407011528734
10.1016/j.enconman.2018.11.014
10.1016/j.fuel.2015.07.055
10.1007/s00170-004-2102-y
10.1016/j.rser.2017.01.001
10.1016/j.apenergy.2014.01.021
10.1243/13506501JET254
10.1016/j.enconman.2017.07.047
10.1016/j.applthermaleng.2017.06.026
10.1016/j.enconman.2018.04.070
10.1007/978-1-4612-4380-9_23
10.1016/j.cattod.2017.05.012
10.1016/j.enconman.2018.11.044
10.1115/1.3658902
10.1016/j.aej.2016.08.011
10.1016/j.fuel.2010.05.015
10.4271/2002-01-0847
10.1016/j.renene.2018.01.071
10.1016/j.apenergy.2009.02.008
10.4271/1999-01-0912
10.4271/2007-01-4023
10.1016/j.apenergy.2012.12.061
10.1016/j.applthermaleng.2011.11.019
10.1007/s12239-011-0070-4
10.1007/s12649-016-9504-6
10.4271/2000-01-2036
10.4271/860328
10.1016/j.enconman.2017.09.021
10.1016/j.energy.2012.09.027
10.1016/j.compfluid.2017.06.022
10.1016/j.fuel.2012.12.040
10.1016/j.apenergy.2011.08.027
10.1016/j.procs.2017.11.274
10.1016/j.jngse.2014.09.022
10.1016/j.enconman.2020.112520
10.1109/TEVC.2006.876364
10.1016/0926-3373(96)00021-5
10.1007/978-981-15-1201-8_6
10.1016/j.enconman.2013.12.005
10.1016/j.enconman.2012.07.023
10.1016/j.rser.2016.11.075
10.1016/j.enconman.2017.11.017
10.1016/j.apenergy.2010.12.030
10.1109/37.7726
10.1109/ACC.1994.752336
10.1016/j.enconman.2016.12.001
10.1016/j.enconman.2014.11.057
10.4271/2002-01-0371
10.1007/BF02478259
10.1016/j.renene.2017.06.096
10.1016/j.energy.2012.10.052
10.1016/j.ejpe.2017.03.001
10.1016/S0360-3199(99)00103-2
10.4271/740191
10.1016/j.energy.2015.12.091
10.1016/j.enbuild.2017.02.012
10.1108/02656719710170639
10.1016/j.aej.2016.04.006
10.1016/j.fuel.2013.09.005
10.1016/j.ijhydene.2014.09.171
10.1007/s40430-016-0539-1
10.1016/S0082-0784(77)80366-4
10.1007/s13762-013-0273-5
10.1016/j.fuel.2005.01.015
10.1109/TCST.2007.912243
10.1016/j.enconman.2018.12.077
10.1016/j.enconman.2009.05.010
10.1016/j.applthermaleng.2017.03.126
10.1016/j.enconman.2010.02.028
10.1016/j.fuel.2012.04.019
10.1557/mrs2008.84
10.4271/2008-01-0949
10.1016/j.pecs.2016.08.001
10.1016/j.rser.2017.03.045
10.1108/00438020110391873
10.1016/j.energy.2018.10.098
10.1016/j.enconman.2014.11.029
10.1016/j.fuel.2013.11.039
10.1016/j.jclepro.2018.08.057
10.1016/j.applthermaleng.2016.01.022
10.1109/MCI.2006.329691
10.1016/j.apenergy.2016.11.030
10.1016/j.apenergy.2012.10.055
10.1016/j.fuel.2012.03.017
10.1007/978-981-10-7185-0_5
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Nov 1, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Nov 1, 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
DOI 10.1016/j.fuel.2020.118469
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7153
ExternalDocumentID 10_1016_j_fuel_2020_118469
S0016236120314654
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
VH1
WUQ
XPP
ZY4
~HD
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
ID FETCH-LOGICAL-c328t-ab352981422526d3284c75be865fb022deeb22262433b27f597afdc446e11a4c3
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Wed Aug 13 02:43:57 EDT 2025
Wed Oct 01 05:17:22 EDT 2025
Thu Apr 24 23:05:40 EDT 2025
Fri Feb 23 02:46:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords IC engine
Response surface methodology
Analytical modelling
Genetic algorithm
Artificial neural networks
Taguchi method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-ab352981422526d3284c75be865fb022deeb22262433b27f597afdc446e11a4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7271-5553
0000-0002-9529-3306
PQID 2448682813
PQPubID 2045474
ParticipantIDs proquest_journals_2448682813
crossref_citationtrail_10_1016_j_fuel_2020_118469
crossref_primary_10_1016_j_fuel_2020_118469
elsevier_sciencedirect_doi_10_1016_j_fuel_2020_118469
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Maheshwari NC, Balaji, Ramesh A. A nonlinear regression based multi-objective optimization of parameters based on experimental data from an IC engine fueled with biodiesel blends. Biomass Bioenergy 35.5 (2011): 2171-2183.
SPSS: https://www.ibm.com/in-en/analytics/spss-statistics-software [Accessed 1 February 2020].
Singh, ThokchomSubhaschandra, et al. BS-III Diesel Vehicles in Imphal, India: an emission perspective. Air Pollution and Control. Springer, Singapore, 2018. 73-86.
Wu, Horng-Wen, Hung (b0530) 2014; 117
Myers, Montgomery, Anderson-Cook (b0155) 2016
Togun, Necla Kara, SedatBaysec. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Appl Energy 87.1 (2010), 349–355.
Zhao, Min (b0600) 2013; 105
Pandian, Sivapirakasam, Udayakumar (b0395) 2011; 88
Verma, Tikendra Nath, et al. ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes. Appl Thermal Eng 120 (2017): 219-227.
Box GEP, Jenkins GM, Reinsel GC, 1994. Time Series Analysis; Forecasting and Control. 3rd Edition, Prentice Hall, Englewood Cliff, New Jersey.
MatLAB: https://in.mathworks.com/products/deep-learning.html [Accessed 1 February 2020].
Shi, Ge, Reitz (b0065) 2011
Minitab: https://www.minitab.com/en-us/ [Accessed 1 February 2020].
Özokcu, ÖzlemÖzdemir (b0010) 2017; 72
Fang, Kittelson, Northrop (b0420) 2015; 160
Yusri (b0445) 2017; 133
Tosun, Aydin, Bilgili (b0350) 2016; 55
Khoobbakht (b0440) 2016; 99
Jeyapaul, Shahabudeen, Krishnaiah (b0500) 2005; 26
Magnussen, Bjørn F, Bjørn H Hjertager. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (international) on Combustion. Vol. 16. No. 1. Elsevier, 1977.
Foster, David E. An overview of zero-dimensional thermodynamic models for IC engine data analysis. SAE transactions (1985): 436-449.
Cook, Powell (b0195) 1988; 8
Singh, Verma (b0475) 2019; 182
Blumberg, Lavoie, Tabaczynski (b0175) 1979; 5
Petroleum B. BP energy outlook 2016 edition; 2016. P2035.
Hasan, Rahman (b0030) 2017; 74
Rajak, Verma (b0115) 2019; 180
Rahimi-Gorji (b0290) 2017; 39
McCulloch, Pitts (b0300) 1943; 5
Dorigo, Birattari, Stutzle (b0380) 2006; 1
Taghavifar, ShahramKhalilarya, SamadJafarmadar (b0605) 2014; 71
Benajes (b0430) 2016; 110
Şener (b0165) 2018; 299
Rajak, Verma (b0055) 2018; 201
Antony, Antony (b0495) 2001; 50
Hickey (b0235) 2018; 54
Kolmogorov, Andrey Nikolaevich. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR. Vol. 30. No. 4. 1941.
Salam, Verma (b0305) 2019; 180
Muske, Kenneth R, James C Peyton Jones, Franceschi EM. Adaptive analytical model-based control for SI engine air–fuel ratio. IEEE Trans Control Systems Technol 16.4 (2008): 763-768.
Molina (b0410) 2014; 119
KIVA: https://www.lanl.gov [Accessed 1 February 2020].
Atmanlı (b0415) 2015; 90
Pai, Shrinivasa Rao (b0320) 2011; 88
Zweiri, Whidborne, Seneviratne (b0205) 2001; 215
AVL-Fire: https://www.avl.com/fire [Accessed 1 February 2020].
Su, Huang (b0575) 2005; 84
Larsson, Olle, et al. Estimation of air fuel ratio of individual cylinders in SI engines by means of MISiC sensor signals in a linear regression model. No. 2002-01-0847. SAE Technical Paper, 2002.
Dai, Wen, NizarTrigui, Yi Lu. Modeling of cyclic variations in spark-ignition engines. SAE transactions (2000): 1851-1861.
Luh, Guan-Chun, Giorgio Rizzoni. Identification of a nonlinear mimoic engine model during I/M240 driving cycle for on-board diagnosis. American Control Conference, 1994. Vol. 2. IEEE, 1994.
Mahmudul (b0025) 2017; 72
Galindo (b0225) 2010; 51
Ganapathy, Murugesan, Gakkhar (b0505) 2009; 86
Roy, Das, Banerjee (b0540) 2014; 21
Shi, Yu, Rolf D. Reitz. Assessment of optimization methodologies to study the effects of bowl geometry, spray targeting and swirl ratio for a heavy-duty diesel engine operated at high-load. SAE Int J Engines1.1 (2009): 537-557.
Cay (b0330) 2013; 50
Wu, Zhan-Yi (b0525) 2013; 104
Awad (b0460) 2017; 150
Zhang (b0560) 2018; 164
Channapattana, Pawar, Prashant (b0355) 2017; 187
Uludamar, ErdiTosun, Aydın (b0285) 2016; 177
Caton, Heywood (b0185) 1981; 24
GT-Power: https://www.gtisoft.com/ [Accessed 1 February 2020].
Bharadwaz (b0425) 2016; 55
Durković, Radan, and MilankoDamjanović. Regression models of specific fuel consumption curves and characteristics of economic operation of internal combustion engines. (2006).
Jadhav, Tandale (b0550) 2016; 7
Mäkelä (b0140) 2017; 151
Ismail (b0345) 2012; 92
Blizard, Norman C, James C Keck. Experimental and theoretical investigation of turbulent burning model for internal combustion engines. No. 740191. SAE Technical Paper, 1974.
Wu (b0555) 2017; 124
Kalman, Bucy (b0220) 1961; 83
Rajak (b0110) 2018; 156
Das, Gulati, Gupta (b0050) 2000; 25
Papadopoulos, Priest, Rainforth (b0610) 2007; 221
Suzuki, Kunihiko, Mamoru Nemoto, Kenichi Machida. Computer-aided calibration methodology for spark advance control using engine cycle simulation and polynomial regression analysis. No. 2007-01-4023. SAE Technical Paper, 2007.
Atmanli, ErolIleri, Yilmaz (b0435) 2016; 96
Diesel-RK: http://www.diesel-rk.bmstu.ru/Eng/index.php [Accessed 1 February 2020].
Zelenka, Cartellieri, Herzog (b0020) 1996; 10
Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyesuniversity, engineering faculty, computer engineering department; 2005 Oct.
GRI-Mech: http://combustion.berkeley.edu/gri-mech/ [Accessed 1 February 2020].
Pimentel (b0005) 2009; 37
Knothe, Razon (b0060) 2017; 58
Rajak, Verma (b0100) 2018; 166
vonKuensbergSarre, Christopher, Song-Charng Kong, and Rolf D. Reitz. Modeling the effects of injector nozzle geometry on diesel sprays. No. 1999-01-0912. SAE Technical Paper, 1999.
Bahlouli (b0585) 2014; 79
Saravanan, Nagarajan, Sampath (b0510) 2010; 89
Cay (b0335) 2013; 111
Box, George EP, and Kenneth B. Wilson. On the experimental attainment of optimum conditions. Breakthroughs in statistics. Springer, New York, NY, 1992. 270-310.
Rizzoni (b0200) 1989; 38
Wu, Horng-Wen, Zhan-Yi Wu. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen. Energy 47.1 (2012): 411-420.
Rajak, Upendra, PreranaNashine, and Tikendra Nath Verma. Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy 166 (2019): 1025-1036.
Yusri (b0035) 2017; 77
Shrivastava, Salam, Verma, Samuel (b0360) 2020; 15
Salam S, Verma TN. (2020) Identifying Empirically Important Variables in IC Engine Operation Through Redundancy Analysis. In: Voruganti H., Kumar K., Krishna P., Jin X. (eds) Advances in Applied Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore.
Holland (b0565) 1992
Shmueli (b0615) 2010; 25
Natarajan (b0150) 2017; 113
Salam, Verma (b0370) 2020; 207
Demirbas (b0045) 2009; 50
Sharon (b0340) 2012; 99
Tong, Chao-Ton, Wang (b0490) 1997; 14
Sivaramakrishnan (b0465) 2018; 27
Afram (b0135) 2017; 141
Servati, Hamid B., and Robert G. DeLosh. A regression model for volumetric efficiency. No. 860328. SAE Technical Paper, 1986.
Balki, Mustafa Kemal, CenkSayin, Murat Sarıkaya. Optimization of the operating parameters based on Taguchi method in an SI engine used pure gasoline, ethanol and methanol. Fuel 180 (2016): 630-637.
CHEMKIN: https://www.ansys.com/products/fluids/ansys-chemkin-pro[Accessed 1 February 2020].
Sivaramakrishnan, Ravikumar (b0400) 2014; 11
Pandal (b0450) 2017; 156
Alonso (b0590) 2007; 11
Cay (b0325) 2012; 37
Anderson (b0160) 2012; 97
Piloto-Rodríguez, Ramón, et al. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Convers Manage 65 (2013): 255-261.3.
Patel (b0470) 2018; 122
Ghobadian (b0310) 2009; 34
Kassem, HüseyinÇamur, EnginEsenel (b0455) 2017; 120
Kesgin (b0570) 2004; 83
Almonacid (b0145) 2017; 75
Hirkude, Padalkar (b0405) 2014; 119
Deb (b0535) 2014; 39
Eriksson, Lars, IngemarAndersson. An analytic model for cylinder pressure in a four stroke SI engine. No. 2002-01-0371. SAE Technical Paper, 2002.
Crabtree, Dresselhaus (b0040) 2008; 33
Karnwal (b0515) 2011; 12
Neshat, KhoshbakhtiSaray (b0580) 2015; 92
Melo-Espinosa (b0280) 2014; 57
Melo-Espinosa (10.1016/j.fuel.2020.118469_b0280) 2014; 57
Alonso (10.1016/j.fuel.2020.118469_b0590) 2007; 11
Yusri (10.1016/j.fuel.2020.118469_b0445) 2017; 133
10.1016/j.fuel.2020.118469_b0105
Rajak (10.1016/j.fuel.2020.118469_b0115) 2019; 180
Bahlouli (10.1016/j.fuel.2020.118469_b0585) 2014; 79
10.1016/j.fuel.2020.118469_b0075
Kalman (10.1016/j.fuel.2020.118469_b0220) 1961; 83
Sivaramakrishnan (10.1016/j.fuel.2020.118469_b0400) 2014; 11
10.1016/j.fuel.2020.118469_b0230
Kesgin (10.1016/j.fuel.2020.118469_b0570) 2004; 83
10.1016/j.fuel.2020.118469_b0595
Ismail (10.1016/j.fuel.2020.118469_b0345) 2012; 92
Wu (10.1016/j.fuel.2020.118469_b0555) 2017; 124
10.1016/j.fuel.2020.118469_b0190
10.1016/j.fuel.2020.118469_b0070
Pai (10.1016/j.fuel.2020.118469_b0320) 2011; 88
Singh (10.1016/j.fuel.2020.118469_b0475) 2019; 182
Uludamar (10.1016/j.fuel.2020.118469_b0285) 2016; 177
10.1016/j.fuel.2020.118469_b0215
Pandal (10.1016/j.fuel.2020.118469_b0450) 2017; 156
Holland (10.1016/j.fuel.2020.118469_b0565) 1992
Karnwal (10.1016/j.fuel.2020.118469_b0515) 2011; 12
Zhang (10.1016/j.fuel.2020.118469_b0560) 2018; 164
Deb (10.1016/j.fuel.2020.118469_b0535) 2014; 39
Ghobadian (10.1016/j.fuel.2020.118469_b0310) 2009; 34
McCulloch (10.1016/j.fuel.2020.118469_b0300) 1943; 5
Atmanli (10.1016/j.fuel.2020.118469_b0435) 2016; 96
Mäkelä (10.1016/j.fuel.2020.118469_b0140) 2017; 151
Crabtree (10.1016/j.fuel.2020.118469_b0040) 2008; 33
10.1016/j.fuel.2020.118469_b0180
Taghavifar (10.1016/j.fuel.2020.118469_b0605) 2014; 71
Hickey (10.1016/j.fuel.2020.118469_b0235) 2018; 54
Shmueli (10.1016/j.fuel.2020.118469_b0615) 2010; 25
10.1016/j.fuel.2020.118469_b0295
Hasan (10.1016/j.fuel.2020.118469_b0030) 2017; 74
10.1016/j.fuel.2020.118469_b0210
Neshat (10.1016/j.fuel.2020.118469_b0580) 2015; 92
10.1016/j.fuel.2020.118469_b0170
Cay (10.1016/j.fuel.2020.118469_b0325) 2012; 37
Rajak (10.1016/j.fuel.2020.118469_b0055) 2018; 201
10.1016/j.fuel.2020.118469_b0315
Zhao (10.1016/j.fuel.2020.118469_b0600) 2013; 105
Mahmudul (10.1016/j.fuel.2020.118469_b0025) 2017; 72
Kassem (10.1016/j.fuel.2020.118469_b0455) 2017; 120
Özokcu (10.1016/j.fuel.2020.118469_b0010) 2017; 72
Rajak (10.1016/j.fuel.2020.118469_b0110) 2018; 156
Anderson (10.1016/j.fuel.2020.118469_b0160) 2012; 97
Zweiri (10.1016/j.fuel.2020.118469_b0205) 2001; 215
Almonacid (10.1016/j.fuel.2020.118469_b0145) 2017; 75
Salam (10.1016/j.fuel.2020.118469_b0370) 2020; 207
Jadhav (10.1016/j.fuel.2020.118469_b0550) 2016; 7
Roy (10.1016/j.fuel.2020.118469_b0540) 2014; 21
Şener (10.1016/j.fuel.2020.118469_b0165) 2018; 299
Blumberg (10.1016/j.fuel.2020.118469_b0175) 1979; 5
Rajak (10.1016/j.fuel.2020.118469_b0100) 2018; 166
Salam (10.1016/j.fuel.2020.118469_b0305) 2019; 180
10.1016/j.fuel.2020.118469_b0545
Jeyapaul (10.1016/j.fuel.2020.118469_b0500) 2005; 26
Zelenka (10.1016/j.fuel.2020.118469_b0020) 1996; 10
Das (10.1016/j.fuel.2020.118469_b0050) 2000; 25
Shrivastava (10.1016/j.fuel.2020.118469_b0360) 2020; 15
10.1016/j.fuel.2020.118469_b0275
Saravanan (10.1016/j.fuel.2020.118469_b0510) 2010; 89
Pandian (10.1016/j.fuel.2020.118469_b0395) 2011; 88
Khoobbakht (10.1016/j.fuel.2020.118469_b0440) 2016; 99
10.1016/j.fuel.2020.118469_b0390
10.1016/j.fuel.2020.118469_b0270
Molina (10.1016/j.fuel.2020.118469_b0410) 2014; 119
Rizzoni (10.1016/j.fuel.2020.118469_b0200) 1989; 38
Benajes (10.1016/j.fuel.2020.118469_b0430) 2016; 110
Tosun (10.1016/j.fuel.2020.118469_b0350) 2016; 55
10.1016/j.fuel.2020.118469_b0015
Fang (10.1016/j.fuel.2020.118469_b0420) 2015; 160
Patel (10.1016/j.fuel.2020.118469_b0470) 2018; 122
10.1016/j.fuel.2020.118469_b0260
Dorigo (10.1016/j.fuel.2020.118469_b0380) 2006; 1
Hirkude (10.1016/j.fuel.2020.118469_b0405) 2014; 119
Rahimi-Gorji (10.1016/j.fuel.2020.118469_b0290) 2017; 39
10.1016/j.fuel.2020.118469_b0385
Ganapathy (10.1016/j.fuel.2020.118469_b0505) 2009; 86
10.1016/j.fuel.2020.118469_b0265
Cay (10.1016/j.fuel.2020.118469_b0335) 2013; 111
Myers (10.1016/j.fuel.2020.118469_b0155) 2016
Sivaramakrishnan (10.1016/j.fuel.2020.118469_b0465) 2018; 27
Wu (10.1016/j.fuel.2020.118469_b0530) 2014; 117
Caton (10.1016/j.fuel.2020.118469_b0185) 1981; 24
Yusri (10.1016/j.fuel.2020.118469_b0035) 2017; 77
Channapattana (10.1016/j.fuel.2020.118469_b0355) 2017; 187
Demirbas (10.1016/j.fuel.2020.118469_b0045) 2009; 50
10.1016/j.fuel.2020.118469_b0125
Cook (10.1016/j.fuel.2020.118469_b0195) 1988; 8
Sharon (10.1016/j.fuel.2020.118469_b0340) 2012; 99
10.1016/j.fuel.2020.118469_b0130
Afram (10.1016/j.fuel.2020.118469_b0135) 2017; 141
Galindo (10.1016/j.fuel.2020.118469_b0225) 2010; 51
10.1016/j.fuel.2020.118469_b0095
10.1016/j.fuel.2020.118469_b0250
10.1016/j.fuel.2020.118469_b0255
10.1016/j.fuel.2020.118469_b0375
10.1016/j.fuel.2020.118469_b0090
Pimentel (10.1016/j.fuel.2020.118469_b0005) 2009; 37
Antony (10.1016/j.fuel.2020.118469_b0495) 2001; 50
Knothe (10.1016/j.fuel.2020.118469_b0060) 2017; 58
Awad (10.1016/j.fuel.2020.118469_b0460) 2017; 150
Atmanlı (10.1016/j.fuel.2020.118469_b0415) 2015; 90
Tong (10.1016/j.fuel.2020.118469_b0490) 1997; 14
10.1016/j.fuel.2020.118469_b0240
10.1016/j.fuel.2020.118469_b0120
Su (10.1016/j.fuel.2020.118469_b0575) 2005; 84
10.1016/j.fuel.2020.118469_b0480
10.1016/j.fuel.2020.118469_b0085
10.1016/j.fuel.2020.118469_b0365
10.1016/j.fuel.2020.118469_b0245
10.1016/j.fuel.2020.118469_b0520
Papadopoulos (10.1016/j.fuel.2020.118469_b0610) 2007; 221
10.1016/j.fuel.2020.118469_b0485
Cay (10.1016/j.fuel.2020.118469_b0330) 2013; 50
Natarajan (10.1016/j.fuel.2020.118469_b0150) 2017; 113
Wu (10.1016/j.fuel.2020.118469_b0525) 2013; 104
Shi (10.1016/j.fuel.2020.118469_b0065) 2011
10.1016/j.fuel.2020.118469_b0080
Bharadwaz (10.1016/j.fuel.2020.118469_b0425) 2016; 55
References_xml – reference: Piloto-Rodríguez, Ramón, et al. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Convers Manage 65 (2013): 255-261.3.
– reference: Minitab: https://www.minitab.com/en-us/ [Accessed 1 February 2020].
– reference: Dai, Wen, NizarTrigui, Yi Lu. Modeling of cyclic variations in spark-ignition engines. SAE transactions (2000): 1851-1861.
– volume: 74
  start-page: 938
  year: 2017
  end-page: 948
  ident: b0030
  article-title: Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review
  publication-title: Renew Sustain Energy Rev
– reference: Suzuki, Kunihiko, Mamoru Nemoto, Kenichi Machida. Computer-aided calibration methodology for spark advance control using engine cycle simulation and polynomial regression analysis. No. 2007-01-4023. SAE Technical Paper, 2007.
– volume: 96
  start-page: 569
  year: 2016
  end-page: 580
  ident: b0435
  article-title: Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters
  publication-title: Energy
– volume: 180
  start-page: 496
  year: 2019
  end-page: 510
  ident: b0305
  article-title: Appending empirical modelling to numerical solution for behaviour characterisation of microalgae biodiesel
  publication-title: Energy Convers Manage
– volume: 111
  start-page: 324
  year: 2013
  end-page: 331
  ident: b0335
  article-title: Prediction of a gasoline engine performance with artificial neural network
  publication-title: Fuel
– volume: 38
  start-page: 168
  year: 1989
  end-page: 179
  ident: b0200
  article-title: Estimate of indicated torque from crankshaft speed fluctuations: a model for the dynamics of the IC engine
  publication-title: IEEE Trans Veh Technol
– volume: 160
  start-page: 446
  year: 2015
  end-page: 457
  ident: b0420
  article-title: Optimization of reactivity-controlled compression ignition combustion fueled with diesel and hydrous ethanol using response surface methodology
  publication-title: Fuel
– volume: 34
  start-page: 976
  year: 2009
  end-page: 982
  ident: b0310
  article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
  publication-title: Renewable Energy
– reference: MatLAB: https://in.mathworks.com/products/deep-learning.html [Accessed 1 February 2020].
– volume: 11
  start-page: 949
  year: 2014
  end-page: 958
  ident: b0400
  article-title: Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel
  publication-title: Int J Environ Sci Technol
– reference: Balki, Mustafa Kemal, CenkSayin, Murat Sarıkaya. Optimization of the operating parameters based on Taguchi method in an SI engine used pure gasoline, ethanol and methanol. Fuel 180 (2016): 630-637.
– volume: 10
  start-page: 3
  year: 1996
  end-page: 28
  ident: b0020
  article-title: Worldwide diesel emission standards, current experiences and future needs
  publication-title: Appl Catal B
– reference: Togun, Necla Kara, SedatBaysec. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Appl Energy 87.1 (2010), 349–355.
– volume: 151
  start-page: 630
  year: 2017
  end-page: 640
  ident: b0140
  article-title: Experimental design and response surface methodology in energy applications: a tutorial review
  publication-title: Energy Convers Manage
– volume: 25
  start-page: 783
  year: 2000
  end-page: 793
  ident: b0050
  article-title: A comparative evaluation of the performance characteristics of a spark ignition engine using hydrogen and compressed natural gas as alternative fuels
  publication-title: Int J Hydrogen Energy
– reference: Maheshwari NC, Balaji, Ramesh A. A nonlinear regression based multi-objective optimization of parameters based on experimental data from an IC engine fueled with biodiesel blends. Biomass Bioenergy 35.5 (2011): 2171-2183.
– reference: Verma, Tikendra Nath, et al. ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes. Appl Thermal Eng 120 (2017): 219-227.
– reference: Box GEP, Jenkins GM, Reinsel GC, 1994. Time Series Analysis; Forecasting and Control. 3rd Edition, Prentice Hall, Englewood Cliff, New Jersey.
– volume: 71
  start-page: 656
  year: 2014
  end-page: 664
  ident: b0605
  article-title: Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm
  publication-title: Energy
– volume: 7
  start-page: 1309
  year: 2016
  end-page: 1325
  ident: b0550
  article-title: Multi-objective performance optimization of compression ignition engine operated on Mangiferaindica biodiesel by applying Taguchi grey relational analysis
  publication-title: Waste Biomass Valorization
– reference: Muske, Kenneth R, James C Peyton Jones, Franceschi EM. Adaptive analytical model-based control for SI engine air–fuel ratio. IEEE Trans Control Systems Technol 16.4 (2008): 763-768.
– volume: 54
  start-page: 4
  year: 2018
  end-page: 9
  ident: b0235
  article-title: Statistical primer: sample size and power calculations — why, when and how?
  publication-title: Eur J Cardiothorac Surg
– reference: AVL-Fire: https://www.avl.com/fire [Accessed 1 February 2020].
– volume: 110
  start-page: 212
  year: 2016
  end-page: 229
  ident: b0430
  article-title: Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation
  publication-title: Energy Convers Manage
– volume: 104
  start-page: 362
  year: 2013
  end-page: 370
  ident: b0525
  article-title: Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2
  publication-title: Appl Energy
– volume: 124
  start-page: 381
  year: 2017
  end-page: 392
  ident: b0555
  article-title: Optimal performance and emissions of diesel/hydrogen-rich gas engine varying intake air temperature and EGR ratio
  publication-title: Appl Therm Eng
– reference: Luh, Guan-Chun, Giorgio Rizzoni. Identification of a nonlinear mimoic engine model during I/M240 driving cycle for on-board diagnosis. American Control Conference, 1994. Vol. 2. IEEE, 1994.
– reference: Singh, ThokchomSubhaschandra, et al. BS-III Diesel Vehicles in Imphal, India: an emission perspective. Air Pollution and Control. Springer, Singapore, 2018. 73-86.
– reference: Eriksson, Lars, IngemarAndersson. An analytic model for cylinder pressure in a four stroke SI engine. No. 2002-01-0371. SAE Technical Paper, 2002.
– reference: Kolmogorov, Andrey Nikolaevich. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR. Vol. 30. No. 4. 1941.
– volume: 50
  start-page: 141
  year: 2001
  end-page: 149
  ident: b0495
  article-title: Teaching the Taguchi method to industrial engineers
  publication-title: Work Study
– year: 2016
  ident: b0155
  article-title: Response surface methodology: process and product optimization using designed experiments
– reference: Salam S, Verma TN. (2020) Identifying Empirically Important Variables in IC Engine Operation Through Redundancy Analysis. In: Voruganti H., Kumar K., Krishna P., Jin X. (eds) Advances in Applied Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore.
– reference: SPSS: https://www.ibm.com/in-en/analytics/spss-statistics-software [Accessed 1 February 2020].
– reference: GRI-Mech: http://combustion.berkeley.edu/gri-mech/ [Accessed 1 February 2020].
– volume: 83
  start-page: 95
  year: 1961
  end-page: 108
  ident: b0220
  article-title: New results in linear filtering and prediction theory
  publication-title: J Basic Eng
– reference: Petroleum B. BP energy outlook 2016 edition; 2016. P2035.
– volume: 14
  start-page: 367
  year: 1997
  end-page: 380
  ident: b0490
  article-title: The optimization of multi-response problems in the Taguchi method
  publication-title: Int J Quality Reliability Manage
– volume: 39
  start-page: 375
  year: 2017
  end-page: 384
  ident: b0290
  article-title: Modeling of the air conditions effects on the power and fuel consumption of the SI engine using neural networks and regression
  publication-title: J Braz Soc Mech Sci Eng
– volume: 117
  start-page: 8
  year: 2014
  end-page: 14
  ident: b0530
  article-title: Applying Taguchi method to combustion characteristics and optimal factors determination in diesel/biodiesel engines with port-injecting LPG
  publication-title: Fuel
– volume: 105
  start-page: 335
  year: 2013
  end-page: 348
  ident: b0600
  article-title: Fuel economy optimization of an Atkinson cycle engine using genetic algorithm
  publication-title: Appl Energy
– volume: 5
  start-page: 123
  year: 1979
  end-page: 167
  ident: b0175
  article-title: Phenomenological models for reciprocating internal combustion engines
  publication-title: Prog Energy Combust Sci
– reference: KIVA: https://www.lanl.gov [Accessed 1 February 2020].
– volume: 72
  start-page: 639
  year: 2017
  end-page: 647
  ident: b0010
  article-title: Economic growth, energy, and environmental Kuznets curve
  publication-title: Renew Sustain Energy Rev
– volume: 15
  year: 2020
  ident: b0360
  article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel
  publication-title: Fuel
– volume: 55
  start-page: 1201
  year: 2016
  end-page: 1209
  ident: b0425
  article-title: Improvement of biodiesel methanol blends performance in a variable compression ratio engine using response surface methodology
  publication-title: Alexandria Eng J
– reference: Blizard, Norman C, James C Keck. Experimental and theoretical investigation of turbulent burning model for internal combustion engines. No. 740191. SAE Technical Paper, 1974.
– reference: Shi, Yu, Rolf D. Reitz. Assessment of optimization methodologies to study the effects of bowl geometry, spray targeting and swirl ratio for a heavy-duty diesel engine operated at high-load. SAE Int J Engines1.1 (2009): 537-557.
– volume: 88
  start-page: 2344
  year: 2011
  end-page: 2354
  ident: b0320
  article-title: Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings
  publication-title: Appl Energy
– volume: 51
  start-page: 1958
  year: 2010
  end-page: 1969
  ident: b0225
  article-title: Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model
  publication-title: Energy Convers Manage
– volume: 177
  start-page: 326
  year: 2016
  end-page: 333
  ident: b0285
  article-title: Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels
  publication-title: Fuel
– reference: Box, George EP, and Kenneth B. Wilson. On the experimental attainment of optimum conditions. Breakthroughs in statistics. Springer, New York, NY, 1992. 270-310.
– volume: 12
  start-page: 599
  year: 2011
  end-page: 610
  ident: b0515
  article-title: Multi-response optimization of diesel engine performance parameters using thumba biodiesel-diesel blends by applying the Taguchi method and grey relational analysis
  publication-title: Int J Automot Technol
– volume: 156
  start-page: 235
  year: 2018
  end-page: 252
  ident: b0110
  article-title: Numerical investigation of performance, combustion and emission characteristics of various biofuels
  publication-title: Energy Convers Manage
– volume: 11
  start-page: 46
  year: 2007
  end-page: 55
  ident: b0590
  article-title: Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions
  publication-title: IEEE Trans Evol Comput
– volume: 39
  start-page: 20276
  year: 2014
  end-page: 20293
  ident: b0535
  article-title: A Taguchi-fuzzy based multi-objective optimization study on the soot-NOx-BTHE characteristics of an existing CI engine under dual fuel operation with hydrogen
  publication-title: Int J Hydrogen Energy
– reference: Magnussen, Bjørn F, Bjørn H Hjertager. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (international) on Combustion. Vol. 16. No. 1. Elsevier, 1977.
– volume: 299
  start-page: 289
  year: 2018
  end-page: 302
  ident: b0165
  article-title: Statistical review of dry reforming of methane literature using decision tree and artificial neural network analysis
  publication-title: Catal Today
– volume: 8
  start-page: 20
  year: 1988
  end-page: 26
  ident: b0195
  article-title: Modeling of an internal combustion engine for control analysis
  publication-title: IEEE Control Syst Mag
– volume: 92
  start-page: 172
  year: 2015
  end-page: 183
  ident: b0580
  article-title: An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm
  publication-title: Energy Convers Manage
– volume: 113
  start-page: 1193
  year: 2017
  end-page: 1200
  ident: b0150
  article-title: Convective solar drying of Vitisvinifera&Momordicacharantia using thermal storage materials
  publication-title: Renewable Energy
– volume: 187
  start-page: 84
  year: 2017
  end-page: 95
  ident: b0355
  article-title: Kamble. Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model
  publication-title: Appl Energy
– volume: 150
  start-page: 222
  year: 2017
  end-page: 241
  ident: b0460
  article-title: Response surface methodology (RSM) based multi-objective optimization of fusel oil-gasoline blends at different water content in SI engine
  publication-title: Energy Convers Manage
– volume: 21
  start-page: 524
  year: 2014
  end-page: 531
  ident: b0540
  article-title: Application of Grey-Taguchi based multi-objective optimization strategy to calibrate the PM–NHC–BSFC trade-off characteristics of a CRDI assisted CNG dual-fuel engine
  publication-title: J Nat Gas Sci Eng
– reference: Diesel-RK: http://www.diesel-rk.bmstu.ru/Eng/index.php [Accessed 1 February 2020].
– volume: 182
  start-page: 383
  year: 2019
  end-page: 397
  ident: b0475
  article-title: Taguchi design approach for extraction of methyl ester from waste cooking oil using synthesized CaO as heterogeneous catalyst: Response surface methodology optimization
  publication-title: Energy Convers Manage
– volume: 133
  start-page: 178
  year: 2017
  end-page: 195
  ident: b0445
  article-title: Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine
  publication-title: Energy Convers Manage
– volume: 58
  start-page: 36
  year: 2017
  end-page: 59
  ident: b0060
  article-title: Biodiesel fuels
  publication-title: Prog Energy Combust Sci
– volume: 72
  start-page: 497
  year: 2017
  end-page: 509
  ident: b0025
  article-title: Production, characterization and performance of biodiesel as an alternative fuel in diesel engines–a review
  publication-title: Renew Sustain Energy Rev
– volume: 99
  start-page: 720
  year: 2016
  end-page: 729
  ident: b0440
  article-title: Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a diesel engine
  publication-title: Appl Therm Eng
– volume: 33
  start-page: 421
  year: 2008
  end-page: 428
  ident: b0040
  article-title: The hydrogen fuel alternative
  publication-title: Mrs Bull
– volume: 156
  start-page: 9
  year: 2017
  end-page: 20
  ident: b0450
  article-title: Optimization of spray break-up CFD simulations by combining Σ-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A)
  publication-title: Comput Fluids
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: b0300
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Mathematical Biophys
– volume: 207
  year: 2020
  ident: b0370
  article-title: Analysis of significance of variables in IC engine operation: an empirical methodology
  publication-title: Energy Convers Manage
– volume: 55
  start-page: 3081
  year: 2016
  end-page: 3089
  ident: b0350
  article-title: Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures
  publication-title: Alexandria Eng J
– reference: Wu, Horng-Wen, Zhan-Yi Wu. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen. Energy 47.1 (2012): 411-420.
– volume: 75
  start-page: 938
  year: 2017
  end-page: 953
  ident: b0145
  article-title: Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology
  publication-title: Renew Sustain Energy Rev
– volume: 83
  start-page: 885
  year: 2004
  end-page: 895
  ident: b0570
  article-title: Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission
  publication-title: Fuel
– volume: 166
  start-page: 704
  year: 2018
  end-page: 718
  ident: b0100
  article-title: Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine
  publication-title: Energy Convers Manage
– volume: 84
  start-page: 1029
  year: 2005
  end-page: 1040
  ident: b0575
  article-title: Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion
  publication-title: Fuel
– reference: Durković, Radan, and MilankoDamjanović. Regression models of specific fuel consumption curves and characteristics of economic operation of internal combustion engines. (2006).
– volume: 90
  start-page: 383
  year: 2015
  end-page: 394
  ident: b0415
  article-title: Response surface methodology based optimization of diesel–n-butanol–cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics
  publication-title: Energy Convers Manage
– reference: Servati, Hamid B., and Robert G. DeLosh. A regression model for volumetric efficiency. No. 860328. SAE Technical Paper, 1986.
– volume: 88
  start-page: 2663
  year: 2011
  end-page: 2676
  ident: b0395
  article-title: Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology
  publication-title: Appl Energy
– reference: Rajak, Upendra, PreranaNashine, and Tikendra Nath Verma. Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy 166 (2019): 1025-1036.
– volume: 92
  start-page: 769
  year: 2012
  end-page: 777
  ident: b0345
  article-title: Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends
  publication-title: Appl Energy
– volume: 50
  start-page: 177
  year: 2013
  end-page: 186
  ident: b0330
  article-title: Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network
  publication-title: Energy
– volume: 99
  start-page: 197
  year: 2012
  end-page: 203
  ident: b0340
  article-title: Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network
  publication-title: Fuel
– volume: 120
  start-page: 521
  year: 2017
  end-page: 528
  ident: b0455
  article-title: Adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM) prediction of biodiesel dynamic viscosity at 313 K
  publication-title: Procedia Comput Sci
– volume: 50
  start-page: 2239
  year: 2009
  end-page: 2249
  ident: b0045
  article-title: Biofuels securing the planet’s future energy needs
  publication-title: Energy Convers Manage
– volume: 24
  start-page: 581
  year: 1981
  end-page: 595
  ident: b0185
  article-title: An experimental and analytical study of heat transfer in an engine exhaust port
  publication-title: Int J Heat Mass Transf
– reference: vonKuensbergSarre, Christopher, Song-Charng Kong, and Rolf D. Reitz. Modeling the effects of injector nozzle geometry on diesel sprays. No. 1999-01-0912. SAE Technical Paper, 1999.
– volume: 77
  start-page: 169
  year: 2017
  end-page: 181
  ident: b0035
  article-title: Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions
  publication-title: Renew Sustain Energy Rev
– volume: 57
  start-page: 886
  year: 2014
  end-page: 895
  ident: b0280
  article-title: Surface tension prediction of vegetable oils using artificial neural networks and multiple linear regression
  publication-title: Energy Procedia
– volume: 119
  start-page: 405
  year: 2014
  end-page: 416
  ident: b0410
  article-title: Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine
  publication-title: Appl Energy
– volume: 79
  start-page: 85
  year: 2014
  end-page: 96
  ident: b0585
  article-title: A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine
  publication-title: Energy Convers Manage
– volume: 221
  start-page: 333
  year: 2007
  end-page: 343
  ident: b0610
  article-title: Investigation of fundamental wear mechanisms at the piston ring and cylinder wall interface in internal combustion engines
  publication-title: Proc Inst Mech Eng, Part J: J Eng Tribol
– year: 1992
  ident: b0565
  article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence
– volume: 97
  start-page: 585
  year: 2012
  end-page: 594
  ident: b0160
  article-title: High octane number ethanol–gasoline blends: Quantifying the potential benefits in the United States
  publication-title: Fuel
– volume: 27
  start-page: 177
  year: 2018
  end-page: 186
  ident: b0465
  article-title: Investigation on performance and emission characteristics of a variable compression multi fuel engine fuelled with Karanja biodiesel–diesel blend
  publication-title: Egypt J Pet
– volume: 180
  start-page: 904
  year: 2019
  end-page: 923
  ident: b0115
  article-title: A comparative analysis of engine characteristics from various biodiesels: numerical study
  publication-title: Energy Convers Manage
– volume: 89
  start-page: 3235
  year: 2010
  end-page: 3240
  ident: b0510
  article-title: Multi response optimization of NOx emission of a stationary diesel engine
  publication-title: Fuel
– year: 2011
  ident: b0065
  article-title: Computational optimization of internal combustion engines
– volume: 37
  start-page: 1
  year: 2009
  ident: b0005
  article-title: Food versus biofuels: environmental and economic costs
  publication-title: Human Ecol
– reference: Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyesuniversity, engineering faculty, computer engineering department; 2005 Oct.
– volume: 25
  start-page: 289
  year: 2010
  end-page: 310
  ident: b0615
  article-title: To explain or to predict?
  publication-title: Statistical Sci
– volume: 215
  start-page: 1197
  year: 2001
  end-page: 1216
  ident: b0205
  article-title: Detailed analytical model of a single-cylinder diesel engine in the crank angle domain
  publication-title: Proc Inst Mech Eng, Part D: J Automobile Eng
– reference: Larsson, Olle, et al. Estimation of air fuel ratio of individual cylinders in SI engines by means of MISiC sensor signals in a linear regression model. No. 2002-01-0847. SAE Technical Paper, 2002.
– reference: GT-Power: https://www.gtisoft.com/ [Accessed 1 February 2020].
– volume: 141
  start-page: 96
  year: 2017
  end-page: 113
  ident: b0135
  article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system
  publication-title: Energy Build
– volume: 119
  start-page: 266
  year: 2014
  end-page: 273
  ident: b0405
  article-title: Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology
  publication-title: Fuel
– reference: CHEMKIN: https://www.ansys.com/products/fluids/ansys-chemkin-pro[Accessed 1 February 2020].
– volume: 86
  start-page: 2476
  year: 2009
  end-page: 2486
  ident: b0505
  article-title: Performance optimization of Jatropha biodiesel engine model using Taguchi approach
  publication-title: Appl Energy
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b0380
  article-title: Ant colony optimization
  publication-title: IEEE Comput Intell Mag
– volume: 37
  start-page: 217
  year: 2012
  end-page: 225
  ident: b0325
  article-title: Prediction of engine performance for an alternative fuel using artificial neural network
  publication-title: Appl Therm Eng
– volume: 122
  start-page: 310
  year: 2018
  end-page: 322
  ident: b0470
  article-title: Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM
  publication-title: Renewable Energy
– volume: 164
  start-page: 344
  year: 2018
  end-page: 352
  ident: b0560
  article-title: Combustion, performance and particulate matter emissions analysis of operating parameters on a GDI engine by traditional experimental investigation and Taguchi method
  publication-title: Energy Convers Manage
– reference: Foster, David E. An overview of zero-dimensional thermodynamic models for IC engine data analysis. SAE transactions (1985): 436-449.
– volume: 201
  start-page: 343
  year: 2018
  end-page: 357
  ident: b0055
  article-title: Spirulina microalgae biodiesel–a novel renewable alternative energy source for compression ignition engine
  publication-title: J Cleaner Prod
– volume: 26
  start-page: 1331
  year: 2005
  end-page: 1337
  ident: b0500
  article-title: Quality management research by considering multi-response problems in the Taguchi method–a review
  publication-title: Int J Adv Manuf Technol
– ident: 10.1016/j.fuel.2020.118469_b0270
  doi: 10.1016/j.biombioe.2011.02.031
– volume: 15
  issue: 262
  year: 2020
  ident: 10.1016/j.fuel.2020.118469_b0360
  article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel
  publication-title: Fuel
– volume: 34
  start-page: 976
  issue: 4
  year: 2009
  ident: 10.1016/j.fuel.2020.118469_b0310
  article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2008.08.008
– volume: 177
  start-page: 326
  year: 2016
  ident: 10.1016/j.fuel.2020.118469_b0285
  article-title: Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.03.028
– ident: 10.1016/j.fuel.2020.118469_b0315
  doi: 10.1016/j.apenergy.2009.08.016
– volume: 164
  start-page: 344
  year: 2018
  ident: 10.1016/j.fuel.2020.118469_b0560
  article-title: Combustion, performance and particulate matter emissions analysis of operating parameters on a GDI engine by traditional experimental investigation and Taguchi method
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.03.017
– volume: 77
  start-page: 169
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0035
  article-title: Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.03.080
– volume: 24
  start-page: 581
  issue: 4
  year: 1981
  ident: 10.1016/j.fuel.2020.118469_b0185
  article-title: An experimental and analytical study of heat transfer in an engine exhaust port
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/0017-9310(81)90003-X
– volume: 83
  start-page: 885
  issue: 7-8
  year: 2004
  ident: 10.1016/j.fuel.2020.118469_b0570
  article-title: Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission
  publication-title: Fuel
  doi: 10.1016/j.fuel.2003.10.025
– volume: 54
  start-page: 4
  issue: 1
  year: 2018
  ident: 10.1016/j.fuel.2020.118469_b0235
  article-title: Statistical primer: sample size and power calculations — why, when and how?
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1093/ejcts/ezy169
– volume: 37
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.fuel.2020.118469_b0005
  article-title: Food versus biofuels: environmental and economic costs
  publication-title: Human Ecol
  doi: 10.1007/s10745-009-9215-8
– volume: 88
  start-page: 2663
  issue: 8
  year: 2011
  ident: 10.1016/j.fuel.2020.118469_b0395
  article-title: Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.01.069
– volume: 72
  start-page: 639
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0010
  article-title: Economic growth, energy, and environmental Kuznets curve
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.059
– volume: 57
  start-page: 886
  year: 2014
  ident: 10.1016/j.fuel.2020.118469_b0280
  article-title: Surface tension prediction of vegetable oils using artificial neural networks and multiple linear regression
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.10.298
– volume: 5
  start-page: 123
  issue: 2
  year: 1979
  ident: 10.1016/j.fuel.2020.118469_b0175
  article-title: Phenomenological models for reciprocating internal combustion engines
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/0360-1285(79)90015-7
– volume: 25
  start-page: 289
  issue: 3
  year: 2010
  ident: 10.1016/j.fuel.2020.118469_b0615
  article-title: To explain or to predict?
  publication-title: Statistical Sci
  doi: 10.1214/10-STS330
– volume: 38
  start-page: 168
  issue: 3
  year: 1989
  ident: 10.1016/j.fuel.2020.118469_b0200
  article-title: Estimate of indicated torque from crankshaft speed fluctuations: a model for the dynamics of the IC engine
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/25.45470
– ident: 10.1016/j.fuel.2020.118469_b0545
  doi: 10.1016/j.fuel.2016.04.098
– ident: 10.1016/j.fuel.2020.118469_b0260
– ident: 10.1016/j.fuel.2020.118469_b0190
  doi: 10.4271/852070
– volume: 71
  start-page: 656
  year: 2014
  ident: 10.1016/j.fuel.2020.118469_b0605
  article-title: Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.006
– volume: 110
  start-page: 212
  year: 2016
  ident: 10.1016/j.fuel.2020.118469_b0430
  article-title: Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2015.12.010
– volume: 215
  start-page: 1197
  issue: 11
  year: 2001
  ident: 10.1016/j.fuel.2020.118469_b0205
  article-title: Detailed analytical model of a single-cylinder diesel engine in the crank angle domain
  publication-title: Proc Inst Mech Eng, Part D: J Automobile Eng
  doi: 10.1243/0954407011528734
– volume: 180
  start-page: 496
  year: 2019
  ident: 10.1016/j.fuel.2020.118469_b0305
  article-title: Appending empirical modelling to numerical solution for behaviour characterisation of microalgae biodiesel
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.11.014
– volume: 160
  start-page: 446
  year: 2015
  ident: 10.1016/j.fuel.2020.118469_b0420
  article-title: Optimization of reactivity-controlled compression ignition combustion fueled with diesel and hydrous ethanol using response surface methodology
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.07.055
– ident: 10.1016/j.fuel.2020.118469_b0080
– volume: 26
  start-page: 1331
  issue: 11-12
  year: 2005
  ident: 10.1016/j.fuel.2020.118469_b0500
  article-title: Quality management research by considering multi-response problems in the Taguchi method–a review
  publication-title: Int J Adv Manuf Technol
  doi: 10.1007/s00170-004-2102-y
– volume: 72
  start-page: 497
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0025
  article-title: Production, characterization and performance of biodiesel as an alternative fuel in diesel engines–a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.001
– ident: 10.1016/j.fuel.2020.118469_b0120
– volume: 119
  start-page: 405
  year: 2014
  ident: 10.1016/j.fuel.2020.118469_b0410
  article-title: Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.01.021
– volume: 221
  start-page: 333
  issue: 3
  year: 2007
  ident: 10.1016/j.fuel.2020.118469_b0610
  article-title: Investigation of fundamental wear mechanisms at the piston ring and cylinder wall interface in internal combustion engines
  publication-title: Proc Inst Mech Eng, Part J: J Eng Tribol
  doi: 10.1243/13506501JET254
– ident: 10.1016/j.fuel.2020.118469_b0095
– volume: 150
  start-page: 222
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0460
  article-title: Response surface methodology (RSM) based multi-objective optimization of fusel oil-gasoline blends at different water content in SI engine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.07.047
– volume: 124
  start-page: 381
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0555
  article-title: Optimal performance and emissions of diesel/hydrogen-rich gas engine varying intake air temperature and EGR ratio
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.06.026
– volume: 166
  start-page: 704
  year: 2018
  ident: 10.1016/j.fuel.2020.118469_b0100
  article-title: Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.04.070
– ident: 10.1016/j.fuel.2020.118469_b0390
  doi: 10.1007/978-1-4612-4380-9_23
– volume: 299
  start-page: 289
  year: 2018
  ident: 10.1016/j.fuel.2020.118469_b0165
  article-title: Statistical review of dry reforming of methane literature using decision tree and artificial neural network analysis
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2017.05.012
– ident: 10.1016/j.fuel.2020.118469_b0075
– volume: 180
  start-page: 904
  year: 2019
  ident: 10.1016/j.fuel.2020.118469_b0115
  article-title: A comparative analysis of engine characteristics from various biodiesels: numerical study
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.11.044
– volume: 83
  start-page: 95
  issue: 1
  year: 1961
  ident: 10.1016/j.fuel.2020.118469_b0220
  article-title: New results in linear filtering and prediction theory
  publication-title: J Basic Eng
  doi: 10.1115/1.3658902
– volume: 55
  start-page: 3081
  issue: 4
  year: 2016
  ident: 10.1016/j.fuel.2020.118469_b0350
  article-title: Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2016.08.011
– volume: 89
  start-page: 3235
  issue: 11
  year: 2010
  ident: 10.1016/j.fuel.2020.118469_b0510
  article-title: Multi response optimization of NOx emission of a stationary diesel engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.05.015
– ident: 10.1016/j.fuel.2020.118469_b0255
  doi: 10.4271/2002-01-0847
– volume: 122
  start-page: 310
  year: 2018
  ident: 10.1016/j.fuel.2020.118469_b0470
  article-title: Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2018.01.071
– volume: 86
  start-page: 2476
  issue: 11
  year: 2009
  ident: 10.1016/j.fuel.2020.118469_b0505
  article-title: Performance optimization of Jatropha biodiesel engine model using Taguchi approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.02.008
– ident: 10.1016/j.fuel.2020.118469_b0130
  doi: 10.4271/1999-01-0912
– ident: 10.1016/j.fuel.2020.118469_b0265
  doi: 10.4271/2007-01-4023
– ident: 10.1016/j.fuel.2020.118469_b0480
– volume: 105
  start-page: 335
  year: 2013
  ident: 10.1016/j.fuel.2020.118469_b0600
  article-title: Fuel economy optimization of an Atkinson cycle engine using genetic algorithm
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.12.061
– volume: 37
  start-page: 217
  year: 2012
  ident: 10.1016/j.fuel.2020.118469_b0325
  article-title: Prediction of engine performance for an alternative fuel using artificial neural network
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2011.11.019
– volume: 12
  start-page: 599
  issue: 4
  year: 2011
  ident: 10.1016/j.fuel.2020.118469_b0515
  article-title: Multi-response optimization of diesel engine performance parameters using thumba biodiesel-diesel blends by applying the Taguchi method and grey relational analysis
  publication-title: Int J Automot Technol
  doi: 10.1007/s12239-011-0070-4
– volume: 7
  start-page: 1309
  issue: 5
  year: 2016
  ident: 10.1016/j.fuel.2020.118469_b0550
  article-title: Multi-objective performance optimization of compression ignition engine operated on Mangiferaindica biodiesel by applying Taguchi grey relational analysis
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-016-9504-6
– ident: 10.1016/j.fuel.2020.118469_b0375
– ident: 10.1016/j.fuel.2020.118469_b0250
  doi: 10.4271/2000-01-2036
– ident: 10.1016/j.fuel.2020.118469_b0485
– ident: 10.1016/j.fuel.2020.118469_b0240
  doi: 10.4271/860328
– volume: 151
  start-page: 630
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0140
  article-title: Experimental design and response surface methodology in energy applications: a tutorial review
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.09.021
– ident: 10.1016/j.fuel.2020.118469_b0520
  doi: 10.1016/j.energy.2012.09.027
– volume: 156
  start-page: 9
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0450
  article-title: Optimization of spray break-up CFD simulations by combining Σ-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A)
  publication-title: Comput Fluids
  doi: 10.1016/j.compfluid.2017.06.022
– year: 1992
  ident: 10.1016/j.fuel.2020.118469_b0565
– volume: 111
  start-page: 324
  year: 2013
  ident: 10.1016/j.fuel.2020.118469_b0335
  article-title: Prediction of a gasoline engine performance with artificial neural network
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.12.040
– volume: 92
  start-page: 769
  year: 2012
  ident: 10.1016/j.fuel.2020.118469_b0345
  article-title: Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.08.027
– volume: 120
  start-page: 521
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0455
  article-title: Adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM) prediction of biodiesel dynamic viscosity at 313 K
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.11.274
– volume: 21
  start-page: 524
  year: 2014
  ident: 10.1016/j.fuel.2020.118469_b0540
  article-title: Application of Grey-Taguchi based multi-objective optimization strategy to calibrate the PM–NHC–BSFC trade-off characteristics of a CRDI assisted CNG dual-fuel engine
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2014.09.022
– volume: 207
  year: 2020
  ident: 10.1016/j.fuel.2020.118469_b0370
  article-title: Analysis of significance of variables in IC engine operation: an empirical methodology
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2020.112520
– volume: 11
  start-page: 46
  issue: 1
  year: 2007
  ident: 10.1016/j.fuel.2020.118469_b0590
  article-title: Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2006.876364
– volume: 10
  start-page: 3
  issue: 1-3
  year: 1996
  ident: 10.1016/j.fuel.2020.118469_b0020
  article-title: Worldwide diesel emission standards, current experiences and future needs
  publication-title: Appl Catal B
  doi: 10.1016/0926-3373(96)00021-5
– ident: 10.1016/j.fuel.2020.118469_b0365
  doi: 10.1007/978-981-15-1201-8_6
– volume: 79
  start-page: 85
  year: 2014
  ident: 10.1016/j.fuel.2020.118469_b0585
  article-title: A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2013.12.005
– ident: 10.1016/j.fuel.2020.118469_b0275
  doi: 10.1016/j.enconman.2012.07.023
– ident: 10.1016/j.fuel.2020.118469_b0070
– volume: 75
  start-page: 938
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0145
  article-title: Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.11.075
– volume: 156
  start-page: 235
  year: 2018
  ident: 10.1016/j.fuel.2020.118469_b0110
  article-title: Numerical investigation of performance, combustion and emission characteristics of various biofuels
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.11.017
– volume: 88
  start-page: 2344
  issue: 7
  year: 2011
  ident: 10.1016/j.fuel.2020.118469_b0320
  article-title: Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2010.12.030
– volume: 8
  start-page: 20
  issue: 4
  year: 1988
  ident: 10.1016/j.fuel.2020.118469_b0195
  article-title: Modeling of an internal combustion engine for control analysis
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/37.7726
– ident: 10.1016/j.fuel.2020.118469_b0245
  doi: 10.1109/ACC.1994.752336
– volume: 133
  start-page: 178
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0445
  article-title: Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.12.001
– ident: 10.1016/j.fuel.2020.118469_b0385
– ident: 10.1016/j.fuel.2020.118469_b0230
– volume: 92
  start-page: 172
  year: 2015
  ident: 10.1016/j.fuel.2020.118469_b0580
  article-title: An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.11.057
– ident: 10.1016/j.fuel.2020.118469_b0210
  doi: 10.4271/2002-01-0371
– ident: 10.1016/j.fuel.2020.118469_b0090
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 10.1016/j.fuel.2020.118469_b0300
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull Mathematical Biophys
  doi: 10.1007/BF02478259
– ident: 10.1016/j.fuel.2020.118469_b0015
– volume: 113
  start-page: 1193
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0150
  article-title: Convective solar drying of Vitisvinifera&Momordicacharantia using thermal storage materials
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.06.096
– volume: 50
  start-page: 177
  year: 2013
  ident: 10.1016/j.fuel.2020.118469_b0330
  article-title: Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.052
– volume: 27
  start-page: 177
  issue: 2
  year: 2018
  ident: 10.1016/j.fuel.2020.118469_b0465
  article-title: Investigation on performance and emission characteristics of a variable compression multi fuel engine fuelled with Karanja biodiesel–diesel blend
  publication-title: Egypt J Pet
  doi: 10.1016/j.ejpe.2017.03.001
– volume: 25
  start-page: 783
  issue: 8
  year: 2000
  ident: 10.1016/j.fuel.2020.118469_b0050
  article-title: A comparative evaluation of the performance characteristics of a spark ignition engine using hydrogen and compressed natural gas as alternative fuels
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/S0360-3199(99)00103-2
– ident: 10.1016/j.fuel.2020.118469_b0180
  doi: 10.4271/740191
– volume: 96
  start-page: 569
  year: 2016
  ident: 10.1016/j.fuel.2020.118469_b0435
  article-title: Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.091
– volume: 141
  start-page: 96
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0135
  article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.02.012
– volume: 14
  start-page: 367
  issue: 4
  year: 1997
  ident: 10.1016/j.fuel.2020.118469_b0490
  article-title: The optimization of multi-response problems in the Taguchi method
  publication-title: Int J Quality Reliability Manage
  doi: 10.1108/02656719710170639
– volume: 55
  start-page: 1201
  issue: 2
  year: 2016
  ident: 10.1016/j.fuel.2020.118469_b0425
  article-title: Improvement of biodiesel methanol blends performance in a variable compression ratio engine using response surface methodology
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2016.04.006
– volume: 117
  start-page: 8
  year: 2014
  ident: 10.1016/j.fuel.2020.118469_b0530
  article-title: Applying Taguchi method to combustion characteristics and optimal factors determination in diesel/biodiesel engines with port-injecting LPG
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.09.005
– volume: 39
  start-page: 20276
  issue: 35
  year: 2014
  ident: 10.1016/j.fuel.2020.118469_b0535
  article-title: A Taguchi-fuzzy based multi-objective optimization study on the soot-NOx-BTHE characteristics of an existing CI engine under dual fuel operation with hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.09.171
– volume: 39
  start-page: 375
  issue: 2
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0290
  article-title: Modeling of the air conditions effects on the power and fuel consumption of the SI engine using neural networks and regression
  publication-title: J Braz Soc Mech Sci Eng
  doi: 10.1007/s40430-016-0539-1
– ident: 10.1016/j.fuel.2020.118469_b0125
  doi: 10.1016/S0082-0784(77)80366-4
– volume: 11
  start-page: 949
  issue: 4
  year: 2014
  ident: 10.1016/j.fuel.2020.118469_b0400
  article-title: Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-013-0273-5
– volume: 84
  start-page: 1029
  issue: 9
  year: 2005
  ident: 10.1016/j.fuel.2020.118469_b0575
  article-title: Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2005.01.015
– ident: 10.1016/j.fuel.2020.118469_b0215
  doi: 10.1109/TCST.2007.912243
– volume: 182
  start-page: 383
  year: 2019
  ident: 10.1016/j.fuel.2020.118469_b0475
  article-title: Taguchi design approach for extraction of methyl ester from waste cooking oil using synthesized CaO as heterogeneous catalyst: Response surface methodology optimization
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2018.12.077
– volume: 50
  start-page: 2239
  issue: 9
  year: 2009
  ident: 10.1016/j.fuel.2020.118469_b0045
  article-title: Biofuels securing the planet’s future energy needs
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.05.010
– ident: 10.1016/j.fuel.2020.118469_b0295
  doi: 10.1016/j.applthermaleng.2017.03.126
– volume: 51
  start-page: 1958
  issue: 10
  year: 2010
  ident: 10.1016/j.fuel.2020.118469_b0225
  article-title: Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.02.028
– ident: 10.1016/j.fuel.2020.118469_b0085
– volume: 99
  start-page: 197
  year: 2012
  ident: 10.1016/j.fuel.2020.118469_b0340
  article-title: Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.04.019
– volume: 33
  start-page: 421
  issue: 4
  year: 2008
  ident: 10.1016/j.fuel.2020.118469_b0040
  article-title: The hydrogen fuel alternative
  publication-title: Mrs Bull
  doi: 10.1557/mrs2008.84
– ident: 10.1016/j.fuel.2020.118469_b0595
  doi: 10.4271/2008-01-0949
– volume: 58
  start-page: 36
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0060
  article-title: Biodiesel fuels
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2016.08.001
– volume: 74
  start-page: 938
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0030
  article-title: Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.03.045
– volume: 50
  start-page: 141
  issue: 4
  year: 2001
  ident: 10.1016/j.fuel.2020.118469_b0495
  article-title: Teaching the Taguchi method to industrial engineers
  publication-title: Work Study
  doi: 10.1108/00438020110391873
– ident: 10.1016/j.fuel.2020.118469_b0105
  doi: 10.1016/j.energy.2018.10.098
– volume: 90
  start-page: 383
  year: 2015
  ident: 10.1016/j.fuel.2020.118469_b0415
  article-title: Response surface methodology based optimization of diesel–n-butanol–cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.11.029
– volume: 119
  start-page: 266
  year: 2014
  ident: 10.1016/j.fuel.2020.118469_b0405
  article-title: Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.11.039
– volume: 201
  start-page: 343
  year: 2018
  ident: 10.1016/j.fuel.2020.118469_b0055
  article-title: Spirulina microalgae biodiesel–a novel renewable alternative energy source for compression ignition engine
  publication-title: J Cleaner Prod
  doi: 10.1016/j.jclepro.2018.08.057
– year: 2016
  ident: 10.1016/j.fuel.2020.118469_b0155
– volume: 99
  start-page: 720
  year: 2016
  ident: 10.1016/j.fuel.2020.118469_b0440
  article-title: Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a diesel engine
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.01.022
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.fuel.2020.118469_b0380
  article-title: Ant colony optimization
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2006.329691
– year: 2011
  ident: 10.1016/j.fuel.2020.118469_b0065
– volume: 187
  start-page: 84
  year: 2017
  ident: 10.1016/j.fuel.2020.118469_b0355
  article-title: Kamble. Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.11.030
– volume: 104
  start-page: 362
  year: 2013
  ident: 10.1016/j.fuel.2020.118469_b0525
  article-title: Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.10.055
– volume: 97
  start-page: 585
  year: 2012
  ident: 10.1016/j.fuel.2020.118469_b0160
  article-title: High octane number ethanol–gasoline blends: Quantifying the potential benefits in the United States
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.03.017
– ident: 10.1016/j.fuel.2020.118469_b0170
  doi: 10.1007/978-981-10-7185-0_5
SSID ssj0007854
Score 2.5556872
SecondaryResourceType review_article
Snippet The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118469
SubjectTerms Algorithms
Alternative fuels
Analytical modelling
Artificial neural networks
Biodiesel fuels
Biofuels
Combustion
Compression
Computer applications
Empirical analysis
Experimental methods
Experimental research
Fuel economy
Genetic algorithm
Genetic algorithms
IC engine
Internal combustion engines
Learning algorithms
Machine learning
Mathematical models
Neural networks
Optimization
Regression analysis
Research methods
Response surface methodology
Statistical analysis
Statistical methods
Sustainable energy
Taguchi method
Taguchi methods
Title A review on recent progress in computational and empirical studies of compression ignition internal combustion engine
URI https://dx.doi.org/10.1016/j.fuel.2020.118469
https://www.proquest.com/docview/2448682813
Volume 279
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-7153
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007854
  issn: 0016-2361
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEWhVB7YUGiTOE4yVhVVAdGJSt2sOLaloJJWtF357dzZDi-JDmyJYyfR2bmH8913hFwbpRRLCxZwE-mA8VIGMldFkOcM_BOwf5GlUnqa8PGUPcySWYsMm1wYhFV63e90utXWvqXnpdlbVhXm-IYcqUMiZGDnCXKCMpZiFYPb9y-YR5oljok55AH29okzDuNlNhp_P0SoOcAQ538Zp19q2tqe0SE58E4jHbj3OiItXR-T_W9UgidkM6AuC4UuajhCzCW12CvQZLSqaWmrN_idP1rUiurXZWX5QejKYQnpwthuDhlb08oCi_DA7RrO8arE6l_Qpu3DT8l0dPc8HAe-pEJQxlG2DgoJDlee4cZPEnEFbaxME6kznhgJ5lxpiLTBI4tYHMsoNRBuFEaVEDPqMCxYGZ-RnXpR63NC477UBTgLsog14wxDI1AIRmWJ6eu0r9skbGQpSs83jmUv5qIBlr0IlL9A-Qsn_za5-RyzdGwbW3snzRSJH2tGgDnYOq7TzKfwX-xKgJuTcQg_w_jin7e9JHt45hIVO2Rn_bbRV-CxrGXXLsku2R3cP44nH1CN62I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECarHtSD8RnfcvBmqlsKtD0ao1l19aSJN1IKJDXa3eju1d_uDFBfiR68EQptM9B50G--IeTQGWN4XvFEOmYTLmud6NJUSVly8E_A_jFPpXRzKwf3_OpBPPTIWZcLg7DKqPuDTvfaOvacRGmejJsGc3xTidQhDBnYpeAzZI4LlmMEdvz2ifPICxGomFOZ4PCYORNAXm5q8f8DQ9UBlrj8zTr90NPe-Fwsk6XoNdLT8GIrpGfbVbL4hUtwjUxPaUhDoaMWWgi6pB58BaqMNi2tffmGePRHq9ZQ-zxuPEEIfQ1gQjpyfliAxra08cgibIRjwye8qrH8F_RZ__B1cn9xfnc2SGJNhaTOWDFJKg0eV1ngyY9g0kAfr3OhbSGF02DPjYVQG1wyxrNMs9xBvFE5U0PQaNO04nW2QWbbUWs3Cc362lbgLegqs1xyjI1AIzhTCNe3ed9ukbSTpaoj4TjWvXhSHbLsUaH8FcpfBflvkaOPOeNAt_HnaNEtkfq2aRTYgz_n7XbrqeIn-6rAzykkxJ9ptv3P2x6Q-cHdzVANL2-vd8gCXglZi7tkdvIytXvgvkz0vt-e788M7Pc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+recent+progress+in+computational+and+empirical+studies+of+compression+ignition+internal+combustion+engine&rft.jtitle=Fuel+%28Guildford%29&rft.au=Salam%2C+Satishchandra&rft.au=Choudhary%2C+Tushar&rft.au=Pugazhendhi%2C+Arivalagan&rft.au=Verma%2C+Tikendra+Nath&rft.date=2020-11-01&rft.issn=0016-2361&rft.volume=279&rft.spage=118469&rft_id=info:doi/10.1016%2Fj.fuel.2020.118469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2020_118469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon