A review on recent progress in computational and empirical studies of compression ignition internal combustion engine
The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental concerns. Although it has been almost 150 years since the introduction of internal combustion engine, researches seeking engineering solutions still...
Saved in:
| Published in | Fuel (Guildford) Vol. 279; p. 118469 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
Elsevier Ltd
01.11.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0016-2361 1873-7153 |
| DOI | 10.1016/j.fuel.2020.118469 |
Cover
| Abstract | The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental concerns. Although it has been almost 150 years since the introduction of internal combustion engine, researches seeking engineering solutions still continue. Driving quality, performance and fuel economy have been improved while emissions have been lowered significantly. But there has not been any unified analytical model that can capture the internal combustion engine as a complete system from thermodynamic, mechanical or chemical perspective per se. With experimental research methods usually too involving in terms of engineering costs, computational approaches to deliver numerical solutions have been inevitable as a research methodology – or even sometimes, is left as the only feasible method. In light of these concerns, this article reviews a few trending modelling methods of (1) analytical, (2) regression and (3) artificial neural network methods, and optimisation methods of (1) response surface methodology, (2) Taguchi method and (3) genetic algorithm which have been popularly employed in internal combustion engine research. The review recommends to confluence of advanced statistical methods and emerging popular machine learning algorithms to engine research for deriving comprehensive pragmatic models as empirical compromise. |
|---|---|
| AbstractList | The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental concerns. Although it has been almost 150 years since the introduction of internal combustion engine, researches seeking engineering solutions still continue. Driving quality, performance and fuel economy have been improved while emissions have been lowered significantly. But there has not been any unified analytical model that can capture the internal combustion engine as a complete system from thermodynamic, mechanical or chemical perspective per se. With experimental research methods usually too involving in terms of engineering costs, computational approaches to deliver numerical solutions have been inevitable as a research methodology – or even sometimes, is left as the only feasible method. In light of these concerns, this article reviews a few trending modelling methods of (1) analytical, (2) regression and (3) artificial neural network methods, and optimisation methods of (1) response surface methodology, (2) Taguchi method and (3) genetic algorithm which have been popularly employed in internal combustion engine research. The review recommends to confluence of advanced statistical methods and emerging popular machine learning algorithms to engine research for deriving comprehensive pragmatic models as empirical compromise. The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental concerns. Although it has been almost 150 years since the introduction of internal combustion engine, researches seeking engineering solutions still continue. Driving quality, performance and fuel economy have been improved while emissions have been lowered significantly. But there has not been any unified analytical model that can capture the internal combustion engine as a complete system from thermodynamic, mechanical or chemical perspective per se. With experimental research methods usually too involving in terms of engineering costs, computational approaches to deliver numerical solutions have been inevitable as a research methodology – or even sometimes, is left as the only feasible method. In light of these concerns, this article reviews a few trending modelling methods of (1) analytical, (2) regression and (3) artificial neural network methods, and optimisation methods of (1) response surface methodology, (2) Taguchi method and (3) genetic algorithm which have been popularly employed in internal combustion engine research. The review recommends to confluence of advanced statistical methods and emerging popular machine learning algorithms to engine research for deriving comprehensive pragmatic models as empirical compromise. |
| ArticleNumber | 118469 |
| Author | Pugazhendhi, Arivalagan Salam, Satishchandra Choudhary, Tushar Verma, Tikendra Nath Sharma, Abhishek |
| Author_xml | – sequence: 1 givenname: Satishchandra orcidid: 0000-0002-7271-5553 surname: Salam fullname: Salam, Satishchandra email: satisji@gmail.com organization: Department of Mechanical Engineering, National Institute of Technology, Manipur 795004, India – sequence: 2 givenname: Tushar surname: Choudhary fullname: Choudhary, Tushar organization: Mechanical Engineering Department, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur 482005, India – sequence: 3 givenname: Arivalagan orcidid: 0000-0002-9529-3306 surname: Pugazhendhi fullname: Pugazhendhi, Arivalagan organization: Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton DucThang University, Ho Chi Minh City, Viet Nam – sequence: 4 givenname: Tikendra Nath surname: Verma fullname: Verma, Tikendra Nath organization: Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, India – sequence: 5 givenname: Abhishek surname: Sharma fullname: Sharma, Abhishek email: drasharma58@gmail.com organization: Department of Mechanical Engineering, Manipal University, Jaipur 303007, India |
| BookMark | eNp9kU1P9CAUhYnRxPHjD7gicd0RLrRlEjfG6PuamLjRNaH0dsJkBkagGv-9dOrKhSsuh_MQzuGMHPvgkZArzpac8eZmsxxG3C6BQRG4ks3qiCy4akXV8lockwUrrgpEw0_JWUobxlirarkg4x2N-OHwkwZfJos-030M64gpUeepDbv9mE12wZstNb6nuNu76GzZpTz2DhMNw8E2IcVG3dq7fBh8xjhh5bQb00FDv3YeL8jJYLYJL3_Wc_L2-PB6_796fvn3dH_3XFkBKlemEzWsFJcANTR90aRt6w5VUw8dA-gROwBoQArRQTvUq9YMvZWyQc6NtOKcXM_3lkjvI6asN2GcnpQ0SKkaBYqL4lKzy8aQUsRBWzdHztG4reZMTyXrjZ5K1lPJei65oPAL3Ue3M_Hrb-h2hrBEL91HnaxDb7F35Qey7oP7C_8GSxqZxQ |
| CitedBy_id | crossref_primary_10_1177_14680874231208338 crossref_primary_10_1016_j_icheatmasstransfer_2024_107703 crossref_primary_10_1016_j_matpr_2021_02_700 crossref_primary_10_2139_ssrn_4183418 crossref_primary_10_3390_math10030420 crossref_primary_10_20964_2021_03_54 crossref_primary_10_1016_j_fuel_2022_126036 crossref_primary_10_1016_j_fuel_2021_121590 crossref_primary_10_1016_j_fuel_2023_128637 crossref_primary_10_1016_j_fuel_2021_122262 crossref_primary_10_1016_j_matpr_2023_03_785 crossref_primary_10_1016_j_matpr_2020_12_247 crossref_primary_10_1088_1742_6596_2385_1_012116 crossref_primary_10_3390_fermentation9070598 crossref_primary_10_3390_nano13101596 crossref_primary_10_1016_j_combustflame_2023_113288 crossref_primary_10_1016_j_ress_2023_109466 crossref_primary_10_1615_JEnhHeatTransf_2024051522 crossref_primary_10_1016_j_fuel_2025_134294 crossref_primary_10_1007_s11356_024_35137_1 crossref_primary_10_1016_j_advengsoft_2023_103501 crossref_primary_10_1021_acsenvironau_3c00013 crossref_primary_10_1016_j_jece_2023_111030 crossref_primary_10_1080_15567036_2021_1934193 crossref_primary_10_1016_j_energy_2024_131570 crossref_primary_10_1016_j_matpr_2023_02_037 crossref_primary_10_1016_j_psep_2021_12_014 crossref_primary_10_1016_j_seta_2022_102751 crossref_primary_10_1088_1755_1315_1110_1_012007 crossref_primary_10_1016_j_matpr_2022_07_273 crossref_primary_10_3390_pr10030525 crossref_primary_10_1007_s42452_021_04618_0 crossref_primary_10_1016_j_ijft_2025_101103 crossref_primary_10_1016_j_rser_2022_112578 crossref_primary_10_1016_j_psep_2024_05_142 crossref_primary_10_1016_j_jclepro_2024_144284 crossref_primary_10_1016_j_fuel_2022_124820 crossref_primary_10_1016_j_energy_2023_128336 crossref_primary_10_1016_j_matpr_2021_03_436 crossref_primary_10_1115_1_4066393 crossref_primary_10_1155_2021_2154258 crossref_primary_10_1016_j_fuel_2022_124607 crossref_primary_10_1088_1742_6596_2893_1_012038 crossref_primary_10_1016_j_ecmx_2023_100426 crossref_primary_10_1016_j_ijhydene_2024_04_083 crossref_primary_10_1016_j_icheatmasstransfer_2024_108156 crossref_primary_10_1007_s11356_023_28965_0 crossref_primary_10_1016_j_energy_2022_125869 |
| Cites_doi | 10.1016/j.biombioe.2011.02.031 10.1016/j.renene.2008.08.008 10.1016/j.fuel.2016.03.028 10.1016/j.apenergy.2009.08.016 10.1016/j.enconman.2018.03.017 10.1016/j.rser.2017.03.080 10.1016/0017-9310(81)90003-X 10.1016/j.fuel.2003.10.025 10.1093/ejcts/ezy169 10.1007/s10745-009-9215-8 10.1016/j.apenergy.2011.01.069 10.1016/j.rser.2017.01.059 10.1016/j.egypro.2014.10.298 10.1016/0360-1285(79)90015-7 10.1214/10-STS330 10.1109/25.45470 10.1016/j.fuel.2016.04.098 10.4271/852070 10.1016/j.energy.2014.05.006 10.1016/j.enconman.2015.12.010 10.1243/0954407011528734 10.1016/j.enconman.2018.11.014 10.1016/j.fuel.2015.07.055 10.1007/s00170-004-2102-y 10.1016/j.rser.2017.01.001 10.1016/j.apenergy.2014.01.021 10.1243/13506501JET254 10.1016/j.enconman.2017.07.047 10.1016/j.applthermaleng.2017.06.026 10.1016/j.enconman.2018.04.070 10.1007/978-1-4612-4380-9_23 10.1016/j.cattod.2017.05.012 10.1016/j.enconman.2018.11.044 10.1115/1.3658902 10.1016/j.aej.2016.08.011 10.1016/j.fuel.2010.05.015 10.4271/2002-01-0847 10.1016/j.renene.2018.01.071 10.1016/j.apenergy.2009.02.008 10.4271/1999-01-0912 10.4271/2007-01-4023 10.1016/j.apenergy.2012.12.061 10.1016/j.applthermaleng.2011.11.019 10.1007/s12239-011-0070-4 10.1007/s12649-016-9504-6 10.4271/2000-01-2036 10.4271/860328 10.1016/j.enconman.2017.09.021 10.1016/j.energy.2012.09.027 10.1016/j.compfluid.2017.06.022 10.1016/j.fuel.2012.12.040 10.1016/j.apenergy.2011.08.027 10.1016/j.procs.2017.11.274 10.1016/j.jngse.2014.09.022 10.1016/j.enconman.2020.112520 10.1109/TEVC.2006.876364 10.1016/0926-3373(96)00021-5 10.1007/978-981-15-1201-8_6 10.1016/j.enconman.2013.12.005 10.1016/j.enconman.2012.07.023 10.1016/j.rser.2016.11.075 10.1016/j.enconman.2017.11.017 10.1016/j.apenergy.2010.12.030 10.1109/37.7726 10.1109/ACC.1994.752336 10.1016/j.enconman.2016.12.001 10.1016/j.enconman.2014.11.057 10.4271/2002-01-0371 10.1007/BF02478259 10.1016/j.renene.2017.06.096 10.1016/j.energy.2012.10.052 10.1016/j.ejpe.2017.03.001 10.1016/S0360-3199(99)00103-2 10.4271/740191 10.1016/j.energy.2015.12.091 10.1016/j.enbuild.2017.02.012 10.1108/02656719710170639 10.1016/j.aej.2016.04.006 10.1016/j.fuel.2013.09.005 10.1016/j.ijhydene.2014.09.171 10.1007/s40430-016-0539-1 10.1016/S0082-0784(77)80366-4 10.1007/s13762-013-0273-5 10.1016/j.fuel.2005.01.015 10.1109/TCST.2007.912243 10.1016/j.enconman.2018.12.077 10.1016/j.enconman.2009.05.010 10.1016/j.applthermaleng.2017.03.126 10.1016/j.enconman.2010.02.028 10.1016/j.fuel.2012.04.019 10.1557/mrs2008.84 10.4271/2008-01-0949 10.1016/j.pecs.2016.08.001 10.1016/j.rser.2017.03.045 10.1108/00438020110391873 10.1016/j.energy.2018.10.098 10.1016/j.enconman.2014.11.029 10.1016/j.fuel.2013.11.039 10.1016/j.jclepro.2018.08.057 10.1016/j.applthermaleng.2016.01.022 10.1109/MCI.2006.329691 10.1016/j.apenergy.2016.11.030 10.1016/j.apenergy.2012.10.055 10.1016/j.fuel.2012.03.017 10.1007/978-981-10-7185-0_5 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Nov 1, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Nov 1, 2020 |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| DOI | 10.1016/j.fuel.2020.118469 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-7153 |
| ExternalDocumentID | 10_1016_j_fuel_2020_118469 S0016236120314654 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW VH1 WUQ XPP ZY4 ~HD 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 |
| ID | FETCH-LOGICAL-c328t-ab352981422526d3284c75be865fb022deeb22262433b27f597afdc446e11a4c3 |
| IEDL.DBID | .~1 |
| ISSN | 0016-2361 |
| IngestDate | Wed Aug 13 02:43:57 EDT 2025 Wed Oct 01 05:17:22 EDT 2025 Thu Apr 24 23:05:40 EDT 2025 Fri Feb 23 02:46:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | IC engine Response surface methodology Analytical modelling Genetic algorithm Artificial neural networks Taguchi method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-ab352981422526d3284c75be865fb022deeb22262433b27f597afdc446e11a4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7271-5553 0000-0002-9529-3306 |
| PQID | 2448682813 |
| PQPubID | 2045474 |
| ParticipantIDs | proquest_journals_2448682813 crossref_citationtrail_10_1016_j_fuel_2020_118469 crossref_primary_10_1016_j_fuel_2020_118469 elsevier_sciencedirect_doi_10_1016_j_fuel_2020_118469 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-01 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Fuel (Guildford) |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Maheshwari NC, Balaji, Ramesh A. A nonlinear regression based multi-objective optimization of parameters based on experimental data from an IC engine fueled with biodiesel blends. Biomass Bioenergy 35.5 (2011): 2171-2183. SPSS: https://www.ibm.com/in-en/analytics/spss-statistics-software [Accessed 1 February 2020]. Singh, ThokchomSubhaschandra, et al. BS-III Diesel Vehicles in Imphal, India: an emission perspective. Air Pollution and Control. Springer, Singapore, 2018. 73-86. Wu, Horng-Wen, Hung (b0530) 2014; 117 Myers, Montgomery, Anderson-Cook (b0155) 2016 Togun, Necla Kara, SedatBaysec. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Appl Energy 87.1 (2010), 349–355. Zhao, Min (b0600) 2013; 105 Pandian, Sivapirakasam, Udayakumar (b0395) 2011; 88 Verma, Tikendra Nath, et al. ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes. Appl Thermal Eng 120 (2017): 219-227. Box GEP, Jenkins GM, Reinsel GC, 1994. Time Series Analysis; Forecasting and Control. 3rd Edition, Prentice Hall, Englewood Cliff, New Jersey. MatLAB: https://in.mathworks.com/products/deep-learning.html [Accessed 1 February 2020]. Shi, Ge, Reitz (b0065) 2011 Minitab: https://www.minitab.com/en-us/ [Accessed 1 February 2020]. Özokcu, ÖzlemÖzdemir (b0010) 2017; 72 Fang, Kittelson, Northrop (b0420) 2015; 160 Yusri (b0445) 2017; 133 Tosun, Aydin, Bilgili (b0350) 2016; 55 Khoobbakht (b0440) 2016; 99 Jeyapaul, Shahabudeen, Krishnaiah (b0500) 2005; 26 Magnussen, Bjørn F, Bjørn H Hjertager. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (international) on Combustion. Vol. 16. No. 1. Elsevier, 1977. Foster, David E. An overview of zero-dimensional thermodynamic models for IC engine data analysis. SAE transactions (1985): 436-449. Cook, Powell (b0195) 1988; 8 Singh, Verma (b0475) 2019; 182 Blumberg, Lavoie, Tabaczynski (b0175) 1979; 5 Petroleum B. BP energy outlook 2016 edition; 2016. P2035. Hasan, Rahman (b0030) 2017; 74 Rajak, Verma (b0115) 2019; 180 Rahimi-Gorji (b0290) 2017; 39 McCulloch, Pitts (b0300) 1943; 5 Dorigo, Birattari, Stutzle (b0380) 2006; 1 Taghavifar, ShahramKhalilarya, SamadJafarmadar (b0605) 2014; 71 Benajes (b0430) 2016; 110 Şener (b0165) 2018; 299 Rajak, Verma (b0055) 2018; 201 Antony, Antony (b0495) 2001; 50 Hickey (b0235) 2018; 54 Kolmogorov, Andrey Nikolaevich. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR. Vol. 30. No. 4. 1941. Salam, Verma (b0305) 2019; 180 Muske, Kenneth R, James C Peyton Jones, Franceschi EM. Adaptive analytical model-based control for SI engine air–fuel ratio. IEEE Trans Control Systems Technol 16.4 (2008): 763-768. Molina (b0410) 2014; 119 KIVA: https://www.lanl.gov [Accessed 1 February 2020]. Atmanlı (b0415) 2015; 90 Pai, Shrinivasa Rao (b0320) 2011; 88 Zweiri, Whidborne, Seneviratne (b0205) 2001; 215 AVL-Fire: https://www.avl.com/fire [Accessed 1 February 2020]. Su, Huang (b0575) 2005; 84 Larsson, Olle, et al. Estimation of air fuel ratio of individual cylinders in SI engines by means of MISiC sensor signals in a linear regression model. No. 2002-01-0847. SAE Technical Paper, 2002. Dai, Wen, NizarTrigui, Yi Lu. Modeling of cyclic variations in spark-ignition engines. SAE transactions (2000): 1851-1861. Luh, Guan-Chun, Giorgio Rizzoni. Identification of a nonlinear mimoic engine model during I/M240 driving cycle for on-board diagnosis. American Control Conference, 1994. Vol. 2. IEEE, 1994. Mahmudul (b0025) 2017; 72 Galindo (b0225) 2010; 51 Ganapathy, Murugesan, Gakkhar (b0505) 2009; 86 Roy, Das, Banerjee (b0540) 2014; 21 Shi, Yu, Rolf D. Reitz. Assessment of optimization methodologies to study the effects of bowl geometry, spray targeting and swirl ratio for a heavy-duty diesel engine operated at high-load. SAE Int J Engines1.1 (2009): 537-557. Cay (b0330) 2013; 50 Wu, Zhan-Yi (b0525) 2013; 104 Awad (b0460) 2017; 150 Zhang (b0560) 2018; 164 Channapattana, Pawar, Prashant (b0355) 2017; 187 Uludamar, ErdiTosun, Aydın (b0285) 2016; 177 Caton, Heywood (b0185) 1981; 24 GT-Power: https://www.gtisoft.com/ [Accessed 1 February 2020]. Bharadwaz (b0425) 2016; 55 Durković, Radan, and MilankoDamjanović. Regression models of specific fuel consumption curves and characteristics of economic operation of internal combustion engines. (2006). Jadhav, Tandale (b0550) 2016; 7 Mäkelä (b0140) 2017; 151 Ismail (b0345) 2012; 92 Blizard, Norman C, James C Keck. Experimental and theoretical investigation of turbulent burning model for internal combustion engines. No. 740191. SAE Technical Paper, 1974. Wu (b0555) 2017; 124 Kalman, Bucy (b0220) 1961; 83 Rajak (b0110) 2018; 156 Das, Gulati, Gupta (b0050) 2000; 25 Papadopoulos, Priest, Rainforth (b0610) 2007; 221 Suzuki, Kunihiko, Mamoru Nemoto, Kenichi Machida. Computer-aided calibration methodology for spark advance control using engine cycle simulation and polynomial regression analysis. No. 2007-01-4023. SAE Technical Paper, 2007. Atmanli, ErolIleri, Yilmaz (b0435) 2016; 96 Diesel-RK: http://www.diesel-rk.bmstu.ru/Eng/index.php [Accessed 1 February 2020]. Zelenka, Cartellieri, Herzog (b0020) 1996; 10 Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyesuniversity, engineering faculty, computer engineering department; 2005 Oct. GRI-Mech: http://combustion.berkeley.edu/gri-mech/ [Accessed 1 February 2020]. Pimentel (b0005) 2009; 37 Knothe, Razon (b0060) 2017; 58 Rajak, Verma (b0100) 2018; 166 vonKuensbergSarre, Christopher, Song-Charng Kong, and Rolf D. Reitz. Modeling the effects of injector nozzle geometry on diesel sprays. No. 1999-01-0912. SAE Technical Paper, 1999. Bahlouli (b0585) 2014; 79 Saravanan, Nagarajan, Sampath (b0510) 2010; 89 Cay (b0335) 2013; 111 Box, George EP, and Kenneth B. Wilson. On the experimental attainment of optimum conditions. Breakthroughs in statistics. Springer, New York, NY, 1992. 270-310. Rizzoni (b0200) 1989; 38 Wu, Horng-Wen, Zhan-Yi Wu. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen. Energy 47.1 (2012): 411-420. Rajak, Upendra, PreranaNashine, and Tikendra Nath Verma. Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy 166 (2019): 1025-1036. Yusri (b0035) 2017; 77 Shrivastava, Salam, Verma, Samuel (b0360) 2020; 15 Salam S, Verma TN. (2020) Identifying Empirically Important Variables in IC Engine Operation Through Redundancy Analysis. In: Voruganti H., Kumar K., Krishna P., Jin X. (eds) Advances in Applied Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. Holland (b0565) 1992 Shmueli (b0615) 2010; 25 Natarajan (b0150) 2017; 113 Salam, Verma (b0370) 2020; 207 Demirbas (b0045) 2009; 50 Sharon (b0340) 2012; 99 Tong, Chao-Ton, Wang (b0490) 1997; 14 Sivaramakrishnan (b0465) 2018; 27 Afram (b0135) 2017; 141 Servati, Hamid B., and Robert G. DeLosh. A regression model for volumetric efficiency. No. 860328. SAE Technical Paper, 1986. Balki, Mustafa Kemal, CenkSayin, Murat Sarıkaya. Optimization of the operating parameters based on Taguchi method in an SI engine used pure gasoline, ethanol and methanol. Fuel 180 (2016): 630-637. CHEMKIN: https://www.ansys.com/products/fluids/ansys-chemkin-pro[Accessed 1 February 2020]. Sivaramakrishnan, Ravikumar (b0400) 2014; 11 Pandal (b0450) 2017; 156 Alonso (b0590) 2007; 11 Cay (b0325) 2012; 37 Anderson (b0160) 2012; 97 Piloto-Rodríguez, Ramón, et al. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Convers Manage 65 (2013): 255-261.3. Patel (b0470) 2018; 122 Ghobadian (b0310) 2009; 34 Kassem, HüseyinÇamur, EnginEsenel (b0455) 2017; 120 Kesgin (b0570) 2004; 83 Almonacid (b0145) 2017; 75 Hirkude, Padalkar (b0405) 2014; 119 Deb (b0535) 2014; 39 Eriksson, Lars, IngemarAndersson. An analytic model for cylinder pressure in a four stroke SI engine. No. 2002-01-0371. SAE Technical Paper, 2002. Crabtree, Dresselhaus (b0040) 2008; 33 Karnwal (b0515) 2011; 12 Neshat, KhoshbakhtiSaray (b0580) 2015; 92 Melo-Espinosa (b0280) 2014; 57 Melo-Espinosa (10.1016/j.fuel.2020.118469_b0280) 2014; 57 Alonso (10.1016/j.fuel.2020.118469_b0590) 2007; 11 Yusri (10.1016/j.fuel.2020.118469_b0445) 2017; 133 10.1016/j.fuel.2020.118469_b0105 Rajak (10.1016/j.fuel.2020.118469_b0115) 2019; 180 Bahlouli (10.1016/j.fuel.2020.118469_b0585) 2014; 79 10.1016/j.fuel.2020.118469_b0075 Kalman (10.1016/j.fuel.2020.118469_b0220) 1961; 83 Sivaramakrishnan (10.1016/j.fuel.2020.118469_b0400) 2014; 11 10.1016/j.fuel.2020.118469_b0230 Kesgin (10.1016/j.fuel.2020.118469_b0570) 2004; 83 10.1016/j.fuel.2020.118469_b0595 Ismail (10.1016/j.fuel.2020.118469_b0345) 2012; 92 Wu (10.1016/j.fuel.2020.118469_b0555) 2017; 124 10.1016/j.fuel.2020.118469_b0190 10.1016/j.fuel.2020.118469_b0070 Pai (10.1016/j.fuel.2020.118469_b0320) 2011; 88 Singh (10.1016/j.fuel.2020.118469_b0475) 2019; 182 Uludamar (10.1016/j.fuel.2020.118469_b0285) 2016; 177 10.1016/j.fuel.2020.118469_b0215 Pandal (10.1016/j.fuel.2020.118469_b0450) 2017; 156 Holland (10.1016/j.fuel.2020.118469_b0565) 1992 Karnwal (10.1016/j.fuel.2020.118469_b0515) 2011; 12 Zhang (10.1016/j.fuel.2020.118469_b0560) 2018; 164 Deb (10.1016/j.fuel.2020.118469_b0535) 2014; 39 Ghobadian (10.1016/j.fuel.2020.118469_b0310) 2009; 34 McCulloch (10.1016/j.fuel.2020.118469_b0300) 1943; 5 Atmanli (10.1016/j.fuel.2020.118469_b0435) 2016; 96 Mäkelä (10.1016/j.fuel.2020.118469_b0140) 2017; 151 Crabtree (10.1016/j.fuel.2020.118469_b0040) 2008; 33 10.1016/j.fuel.2020.118469_b0180 Taghavifar (10.1016/j.fuel.2020.118469_b0605) 2014; 71 Hickey (10.1016/j.fuel.2020.118469_b0235) 2018; 54 Shmueli (10.1016/j.fuel.2020.118469_b0615) 2010; 25 10.1016/j.fuel.2020.118469_b0295 Hasan (10.1016/j.fuel.2020.118469_b0030) 2017; 74 10.1016/j.fuel.2020.118469_b0210 Neshat (10.1016/j.fuel.2020.118469_b0580) 2015; 92 10.1016/j.fuel.2020.118469_b0170 Cay (10.1016/j.fuel.2020.118469_b0325) 2012; 37 Rajak (10.1016/j.fuel.2020.118469_b0055) 2018; 201 10.1016/j.fuel.2020.118469_b0315 Zhao (10.1016/j.fuel.2020.118469_b0600) 2013; 105 Mahmudul (10.1016/j.fuel.2020.118469_b0025) 2017; 72 Kassem (10.1016/j.fuel.2020.118469_b0455) 2017; 120 Özokcu (10.1016/j.fuel.2020.118469_b0010) 2017; 72 Rajak (10.1016/j.fuel.2020.118469_b0110) 2018; 156 Anderson (10.1016/j.fuel.2020.118469_b0160) 2012; 97 Zweiri (10.1016/j.fuel.2020.118469_b0205) 2001; 215 Almonacid (10.1016/j.fuel.2020.118469_b0145) 2017; 75 Salam (10.1016/j.fuel.2020.118469_b0370) 2020; 207 Jadhav (10.1016/j.fuel.2020.118469_b0550) 2016; 7 Roy (10.1016/j.fuel.2020.118469_b0540) 2014; 21 Şener (10.1016/j.fuel.2020.118469_b0165) 2018; 299 Blumberg (10.1016/j.fuel.2020.118469_b0175) 1979; 5 Rajak (10.1016/j.fuel.2020.118469_b0100) 2018; 166 Salam (10.1016/j.fuel.2020.118469_b0305) 2019; 180 10.1016/j.fuel.2020.118469_b0545 Jeyapaul (10.1016/j.fuel.2020.118469_b0500) 2005; 26 Zelenka (10.1016/j.fuel.2020.118469_b0020) 1996; 10 Das (10.1016/j.fuel.2020.118469_b0050) 2000; 25 Shrivastava (10.1016/j.fuel.2020.118469_b0360) 2020; 15 10.1016/j.fuel.2020.118469_b0275 Saravanan (10.1016/j.fuel.2020.118469_b0510) 2010; 89 Pandian (10.1016/j.fuel.2020.118469_b0395) 2011; 88 Khoobbakht (10.1016/j.fuel.2020.118469_b0440) 2016; 99 10.1016/j.fuel.2020.118469_b0390 10.1016/j.fuel.2020.118469_b0270 Molina (10.1016/j.fuel.2020.118469_b0410) 2014; 119 Rizzoni (10.1016/j.fuel.2020.118469_b0200) 1989; 38 Benajes (10.1016/j.fuel.2020.118469_b0430) 2016; 110 Tosun (10.1016/j.fuel.2020.118469_b0350) 2016; 55 10.1016/j.fuel.2020.118469_b0015 Fang (10.1016/j.fuel.2020.118469_b0420) 2015; 160 Patel (10.1016/j.fuel.2020.118469_b0470) 2018; 122 10.1016/j.fuel.2020.118469_b0260 Dorigo (10.1016/j.fuel.2020.118469_b0380) 2006; 1 Hirkude (10.1016/j.fuel.2020.118469_b0405) 2014; 119 Rahimi-Gorji (10.1016/j.fuel.2020.118469_b0290) 2017; 39 10.1016/j.fuel.2020.118469_b0385 Ganapathy (10.1016/j.fuel.2020.118469_b0505) 2009; 86 10.1016/j.fuel.2020.118469_b0265 Cay (10.1016/j.fuel.2020.118469_b0335) 2013; 111 Myers (10.1016/j.fuel.2020.118469_b0155) 2016 Sivaramakrishnan (10.1016/j.fuel.2020.118469_b0465) 2018; 27 Wu (10.1016/j.fuel.2020.118469_b0530) 2014; 117 Caton (10.1016/j.fuel.2020.118469_b0185) 1981; 24 Yusri (10.1016/j.fuel.2020.118469_b0035) 2017; 77 Channapattana (10.1016/j.fuel.2020.118469_b0355) 2017; 187 Demirbas (10.1016/j.fuel.2020.118469_b0045) 2009; 50 10.1016/j.fuel.2020.118469_b0125 Cook (10.1016/j.fuel.2020.118469_b0195) 1988; 8 Sharon (10.1016/j.fuel.2020.118469_b0340) 2012; 99 10.1016/j.fuel.2020.118469_b0130 Afram (10.1016/j.fuel.2020.118469_b0135) 2017; 141 Galindo (10.1016/j.fuel.2020.118469_b0225) 2010; 51 10.1016/j.fuel.2020.118469_b0095 10.1016/j.fuel.2020.118469_b0250 10.1016/j.fuel.2020.118469_b0255 10.1016/j.fuel.2020.118469_b0375 10.1016/j.fuel.2020.118469_b0090 Pimentel (10.1016/j.fuel.2020.118469_b0005) 2009; 37 Antony (10.1016/j.fuel.2020.118469_b0495) 2001; 50 Knothe (10.1016/j.fuel.2020.118469_b0060) 2017; 58 Awad (10.1016/j.fuel.2020.118469_b0460) 2017; 150 Atmanlı (10.1016/j.fuel.2020.118469_b0415) 2015; 90 Tong (10.1016/j.fuel.2020.118469_b0490) 1997; 14 10.1016/j.fuel.2020.118469_b0240 10.1016/j.fuel.2020.118469_b0120 Su (10.1016/j.fuel.2020.118469_b0575) 2005; 84 10.1016/j.fuel.2020.118469_b0480 10.1016/j.fuel.2020.118469_b0085 10.1016/j.fuel.2020.118469_b0365 10.1016/j.fuel.2020.118469_b0245 10.1016/j.fuel.2020.118469_b0520 Papadopoulos (10.1016/j.fuel.2020.118469_b0610) 2007; 221 10.1016/j.fuel.2020.118469_b0485 Cay (10.1016/j.fuel.2020.118469_b0330) 2013; 50 Natarajan (10.1016/j.fuel.2020.118469_b0150) 2017; 113 Wu (10.1016/j.fuel.2020.118469_b0525) 2013; 104 Shi (10.1016/j.fuel.2020.118469_b0065) 2011 10.1016/j.fuel.2020.118469_b0080 Bharadwaz (10.1016/j.fuel.2020.118469_b0425) 2016; 55 |
| References_xml | – reference: Piloto-Rodríguez, Ramón, et al. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energy Convers Manage 65 (2013): 255-261.3. – reference: Minitab: https://www.minitab.com/en-us/ [Accessed 1 February 2020]. – reference: Dai, Wen, NizarTrigui, Yi Lu. Modeling of cyclic variations in spark-ignition engines. SAE transactions (2000): 1851-1861. – volume: 74 start-page: 938 year: 2017 end-page: 948 ident: b0030 article-title: Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review publication-title: Renew Sustain Energy Rev – reference: Suzuki, Kunihiko, Mamoru Nemoto, Kenichi Machida. Computer-aided calibration methodology for spark advance control using engine cycle simulation and polynomial regression analysis. No. 2007-01-4023. SAE Technical Paper, 2007. – volume: 96 start-page: 569 year: 2016 end-page: 580 ident: b0435 article-title: Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters publication-title: Energy – volume: 180 start-page: 496 year: 2019 end-page: 510 ident: b0305 article-title: Appending empirical modelling to numerical solution for behaviour characterisation of microalgae biodiesel publication-title: Energy Convers Manage – volume: 111 start-page: 324 year: 2013 end-page: 331 ident: b0335 article-title: Prediction of a gasoline engine performance with artificial neural network publication-title: Fuel – volume: 38 start-page: 168 year: 1989 end-page: 179 ident: b0200 article-title: Estimate of indicated torque from crankshaft speed fluctuations: a model for the dynamics of the IC engine publication-title: IEEE Trans Veh Technol – volume: 160 start-page: 446 year: 2015 end-page: 457 ident: b0420 article-title: Optimization of reactivity-controlled compression ignition combustion fueled with diesel and hydrous ethanol using response surface methodology publication-title: Fuel – volume: 34 start-page: 976 year: 2009 end-page: 982 ident: b0310 article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network publication-title: Renewable Energy – reference: MatLAB: https://in.mathworks.com/products/deep-learning.html [Accessed 1 February 2020]. – volume: 11 start-page: 949 year: 2014 end-page: 958 ident: b0400 article-title: Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel publication-title: Int J Environ Sci Technol – reference: Balki, Mustafa Kemal, CenkSayin, Murat Sarıkaya. Optimization of the operating parameters based on Taguchi method in an SI engine used pure gasoline, ethanol and methanol. Fuel 180 (2016): 630-637. – volume: 10 start-page: 3 year: 1996 end-page: 28 ident: b0020 article-title: Worldwide diesel emission standards, current experiences and future needs publication-title: Appl Catal B – reference: Togun, Necla Kara, SedatBaysec. Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks. Appl Energy 87.1 (2010), 349–355. – volume: 151 start-page: 630 year: 2017 end-page: 640 ident: b0140 article-title: Experimental design and response surface methodology in energy applications: a tutorial review publication-title: Energy Convers Manage – volume: 25 start-page: 783 year: 2000 end-page: 793 ident: b0050 article-title: A comparative evaluation of the performance characteristics of a spark ignition engine using hydrogen and compressed natural gas as alternative fuels publication-title: Int J Hydrogen Energy – reference: Maheshwari NC, Balaji, Ramesh A. A nonlinear regression based multi-objective optimization of parameters based on experimental data from an IC engine fueled with biodiesel blends. Biomass Bioenergy 35.5 (2011): 2171-2183. – reference: Verma, Tikendra Nath, et al. ANN: Prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes. Appl Thermal Eng 120 (2017): 219-227. – reference: Box GEP, Jenkins GM, Reinsel GC, 1994. Time Series Analysis; Forecasting and Control. 3rd Edition, Prentice Hall, Englewood Cliff, New Jersey. – volume: 71 start-page: 656 year: 2014 end-page: 664 ident: b0605 article-title: Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm publication-title: Energy – volume: 7 start-page: 1309 year: 2016 end-page: 1325 ident: b0550 article-title: Multi-objective performance optimization of compression ignition engine operated on Mangiferaindica biodiesel by applying Taguchi grey relational analysis publication-title: Waste Biomass Valorization – reference: Muske, Kenneth R, James C Peyton Jones, Franceschi EM. Adaptive analytical model-based control for SI engine air–fuel ratio. IEEE Trans Control Systems Technol 16.4 (2008): 763-768. – volume: 54 start-page: 4 year: 2018 end-page: 9 ident: b0235 article-title: Statistical primer: sample size and power calculations — why, when and how? publication-title: Eur J Cardiothorac Surg – reference: AVL-Fire: https://www.avl.com/fire [Accessed 1 February 2020]. – volume: 110 start-page: 212 year: 2016 end-page: 229 ident: b0430 article-title: Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation publication-title: Energy Convers Manage – volume: 104 start-page: 362 year: 2013 end-page: 370 ident: b0525 article-title: Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2 publication-title: Appl Energy – volume: 124 start-page: 381 year: 2017 end-page: 392 ident: b0555 article-title: Optimal performance and emissions of diesel/hydrogen-rich gas engine varying intake air temperature and EGR ratio publication-title: Appl Therm Eng – reference: Luh, Guan-Chun, Giorgio Rizzoni. Identification of a nonlinear mimoic engine model during I/M240 driving cycle for on-board diagnosis. American Control Conference, 1994. Vol. 2. IEEE, 1994. – reference: Singh, ThokchomSubhaschandra, et al. BS-III Diesel Vehicles in Imphal, India: an emission perspective. Air Pollution and Control. Springer, Singapore, 2018. 73-86. – reference: Eriksson, Lars, IngemarAndersson. An analytic model for cylinder pressure in a four stroke SI engine. No. 2002-01-0371. SAE Technical Paper, 2002. – reference: Kolmogorov, Andrey Nikolaevich. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR. Vol. 30. No. 4. 1941. – volume: 50 start-page: 141 year: 2001 end-page: 149 ident: b0495 article-title: Teaching the Taguchi method to industrial engineers publication-title: Work Study – year: 2016 ident: b0155 article-title: Response surface methodology: process and product optimization using designed experiments – reference: Salam S, Verma TN. (2020) Identifying Empirically Important Variables in IC Engine Operation Through Redundancy Analysis. In: Voruganti H., Kumar K., Krishna P., Jin X. (eds) Advances in Applied Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. – reference: SPSS: https://www.ibm.com/in-en/analytics/spss-statistics-software [Accessed 1 February 2020]. – reference: GRI-Mech: http://combustion.berkeley.edu/gri-mech/ [Accessed 1 February 2020]. – volume: 83 start-page: 95 year: 1961 end-page: 108 ident: b0220 article-title: New results in linear filtering and prediction theory publication-title: J Basic Eng – reference: Petroleum B. BP energy outlook 2016 edition; 2016. P2035. – volume: 14 start-page: 367 year: 1997 end-page: 380 ident: b0490 article-title: The optimization of multi-response problems in the Taguchi method publication-title: Int J Quality Reliability Manage – volume: 39 start-page: 375 year: 2017 end-page: 384 ident: b0290 article-title: Modeling of the air conditions effects on the power and fuel consumption of the SI engine using neural networks and regression publication-title: J Braz Soc Mech Sci Eng – volume: 117 start-page: 8 year: 2014 end-page: 14 ident: b0530 article-title: Applying Taguchi method to combustion characteristics and optimal factors determination in diesel/biodiesel engines with port-injecting LPG publication-title: Fuel – volume: 105 start-page: 335 year: 2013 end-page: 348 ident: b0600 article-title: Fuel economy optimization of an Atkinson cycle engine using genetic algorithm publication-title: Appl Energy – volume: 5 start-page: 123 year: 1979 end-page: 167 ident: b0175 article-title: Phenomenological models for reciprocating internal combustion engines publication-title: Prog Energy Combust Sci – reference: KIVA: https://www.lanl.gov [Accessed 1 February 2020]. – volume: 72 start-page: 639 year: 2017 end-page: 647 ident: b0010 article-title: Economic growth, energy, and environmental Kuznets curve publication-title: Renew Sustain Energy Rev – volume: 15 year: 2020 ident: b0360 article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel publication-title: Fuel – volume: 55 start-page: 1201 year: 2016 end-page: 1209 ident: b0425 article-title: Improvement of biodiesel methanol blends performance in a variable compression ratio engine using response surface methodology publication-title: Alexandria Eng J – reference: Blizard, Norman C, James C Keck. Experimental and theoretical investigation of turbulent burning model for internal combustion engines. No. 740191. SAE Technical Paper, 1974. – reference: Shi, Yu, Rolf D. Reitz. Assessment of optimization methodologies to study the effects of bowl geometry, spray targeting and swirl ratio for a heavy-duty diesel engine operated at high-load. SAE Int J Engines1.1 (2009): 537-557. – volume: 88 start-page: 2344 year: 2011 end-page: 2354 ident: b0320 article-title: Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings publication-title: Appl Energy – volume: 51 start-page: 1958 year: 2010 end-page: 1969 ident: b0225 article-title: Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model publication-title: Energy Convers Manage – volume: 177 start-page: 326 year: 2016 end-page: 333 ident: b0285 article-title: Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels publication-title: Fuel – reference: Box, George EP, and Kenneth B. Wilson. On the experimental attainment of optimum conditions. Breakthroughs in statistics. Springer, New York, NY, 1992. 270-310. – volume: 12 start-page: 599 year: 2011 end-page: 610 ident: b0515 article-title: Multi-response optimization of diesel engine performance parameters using thumba biodiesel-diesel blends by applying the Taguchi method and grey relational analysis publication-title: Int J Automot Technol – volume: 156 start-page: 235 year: 2018 end-page: 252 ident: b0110 article-title: Numerical investigation of performance, combustion and emission characteristics of various biofuels publication-title: Energy Convers Manage – volume: 11 start-page: 46 year: 2007 end-page: 55 ident: b0590 article-title: Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions publication-title: IEEE Trans Evol Comput – volume: 39 start-page: 20276 year: 2014 end-page: 20293 ident: b0535 article-title: A Taguchi-fuzzy based multi-objective optimization study on the soot-NOx-BTHE characteristics of an existing CI engine under dual fuel operation with hydrogen publication-title: Int J Hydrogen Energy – reference: Magnussen, Bjørn F, Bjørn H Hjertager. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symposium (international) on Combustion. Vol. 16. No. 1. Elsevier, 1977. – volume: 299 start-page: 289 year: 2018 end-page: 302 ident: b0165 article-title: Statistical review of dry reforming of methane literature using decision tree and artificial neural network analysis publication-title: Catal Today – volume: 8 start-page: 20 year: 1988 end-page: 26 ident: b0195 article-title: Modeling of an internal combustion engine for control analysis publication-title: IEEE Control Syst Mag – volume: 92 start-page: 172 year: 2015 end-page: 183 ident: b0580 article-title: An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm publication-title: Energy Convers Manage – volume: 113 start-page: 1193 year: 2017 end-page: 1200 ident: b0150 article-title: Convective solar drying of Vitisvinifera&Momordicacharantia using thermal storage materials publication-title: Renewable Energy – volume: 187 start-page: 84 year: 2017 end-page: 95 ident: b0355 article-title: Kamble. Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model publication-title: Appl Energy – volume: 150 start-page: 222 year: 2017 end-page: 241 ident: b0460 article-title: Response surface methodology (RSM) based multi-objective optimization of fusel oil-gasoline blends at different water content in SI engine publication-title: Energy Convers Manage – volume: 21 start-page: 524 year: 2014 end-page: 531 ident: b0540 article-title: Application of Grey-Taguchi based multi-objective optimization strategy to calibrate the PM–NHC–BSFC trade-off characteristics of a CRDI assisted CNG dual-fuel engine publication-title: J Nat Gas Sci Eng – reference: Diesel-RK: http://www.diesel-rk.bmstu.ru/Eng/index.php [Accessed 1 February 2020]. – volume: 182 start-page: 383 year: 2019 end-page: 397 ident: b0475 article-title: Taguchi design approach for extraction of methyl ester from waste cooking oil using synthesized CaO as heterogeneous catalyst: Response surface methodology optimization publication-title: Energy Convers Manage – volume: 133 start-page: 178 year: 2017 end-page: 195 ident: b0445 article-title: Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine publication-title: Energy Convers Manage – volume: 58 start-page: 36 year: 2017 end-page: 59 ident: b0060 article-title: Biodiesel fuels publication-title: Prog Energy Combust Sci – volume: 72 start-page: 497 year: 2017 end-page: 509 ident: b0025 article-title: Production, characterization and performance of biodiesel as an alternative fuel in diesel engines–a review publication-title: Renew Sustain Energy Rev – volume: 99 start-page: 720 year: 2016 end-page: 729 ident: b0440 article-title: Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a diesel engine publication-title: Appl Therm Eng – volume: 33 start-page: 421 year: 2008 end-page: 428 ident: b0040 article-title: The hydrogen fuel alternative publication-title: Mrs Bull – volume: 156 start-page: 9 year: 2017 end-page: 20 ident: b0450 article-title: Optimization of spray break-up CFD simulations by combining Σ-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A) publication-title: Comput Fluids – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: b0300 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Mathematical Biophys – volume: 207 year: 2020 ident: b0370 article-title: Analysis of significance of variables in IC engine operation: an empirical methodology publication-title: Energy Convers Manage – volume: 55 start-page: 3081 year: 2016 end-page: 3089 ident: b0350 article-title: Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures publication-title: Alexandria Eng J – reference: Wu, Horng-Wen, Zhan-Yi Wu. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen. Energy 47.1 (2012): 411-420. – volume: 75 start-page: 938 year: 2017 end-page: 953 ident: b0145 article-title: Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology publication-title: Renew Sustain Energy Rev – volume: 83 start-page: 885 year: 2004 end-page: 895 ident: b0570 article-title: Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission publication-title: Fuel – volume: 166 start-page: 704 year: 2018 end-page: 718 ident: b0100 article-title: Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine publication-title: Energy Convers Manage – volume: 84 start-page: 1029 year: 2005 end-page: 1040 ident: b0575 article-title: Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion publication-title: Fuel – reference: Durković, Radan, and MilankoDamjanović. Regression models of specific fuel consumption curves and characteristics of economic operation of internal combustion engines. (2006). – volume: 90 start-page: 383 year: 2015 end-page: 394 ident: b0415 article-title: Response surface methodology based optimization of diesel–n-butanol–cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics publication-title: Energy Convers Manage – reference: Servati, Hamid B., and Robert G. DeLosh. A regression model for volumetric efficiency. No. 860328. SAE Technical Paper, 1986. – volume: 88 start-page: 2663 year: 2011 end-page: 2676 ident: b0395 article-title: Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology publication-title: Appl Energy – reference: Rajak, Upendra, PreranaNashine, and Tikendra Nath Verma. Assessment of diesel engine performance using spirulina microalgae biodiesel. Energy 166 (2019): 1025-1036. – volume: 92 start-page: 769 year: 2012 end-page: 777 ident: b0345 article-title: Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends publication-title: Appl Energy – volume: 50 start-page: 177 year: 2013 end-page: 186 ident: b0330 article-title: Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network publication-title: Energy – volume: 99 start-page: 197 year: 2012 end-page: 203 ident: b0340 article-title: Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network publication-title: Fuel – volume: 120 start-page: 521 year: 2017 end-page: 528 ident: b0455 article-title: Adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM) prediction of biodiesel dynamic viscosity at 313 K publication-title: Procedia Comput Sci – volume: 50 start-page: 2239 year: 2009 end-page: 2249 ident: b0045 article-title: Biofuels securing the planet’s future energy needs publication-title: Energy Convers Manage – volume: 24 start-page: 581 year: 1981 end-page: 595 ident: b0185 article-title: An experimental and analytical study of heat transfer in an engine exhaust port publication-title: Int J Heat Mass Transf – reference: vonKuensbergSarre, Christopher, Song-Charng Kong, and Rolf D. Reitz. Modeling the effects of injector nozzle geometry on diesel sprays. No. 1999-01-0912. SAE Technical Paper, 1999. – volume: 77 start-page: 169 year: 2017 end-page: 181 ident: b0035 article-title: Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions publication-title: Renew Sustain Energy Rev – volume: 57 start-page: 886 year: 2014 end-page: 895 ident: b0280 article-title: Surface tension prediction of vegetable oils using artificial neural networks and multiple linear regression publication-title: Energy Procedia – volume: 119 start-page: 405 year: 2014 end-page: 416 ident: b0410 article-title: Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine publication-title: Appl Energy – volume: 79 start-page: 85 year: 2014 end-page: 96 ident: b0585 article-title: A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine publication-title: Energy Convers Manage – volume: 221 start-page: 333 year: 2007 end-page: 343 ident: b0610 article-title: Investigation of fundamental wear mechanisms at the piston ring and cylinder wall interface in internal combustion engines publication-title: Proc Inst Mech Eng, Part J: J Eng Tribol – year: 1992 ident: b0565 article-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence – volume: 97 start-page: 585 year: 2012 end-page: 594 ident: b0160 article-title: High octane number ethanol–gasoline blends: Quantifying the potential benefits in the United States publication-title: Fuel – volume: 27 start-page: 177 year: 2018 end-page: 186 ident: b0465 article-title: Investigation on performance and emission characteristics of a variable compression multi fuel engine fuelled with Karanja biodiesel–diesel blend publication-title: Egypt J Pet – volume: 180 start-page: 904 year: 2019 end-page: 923 ident: b0115 article-title: A comparative analysis of engine characteristics from various biodiesels: numerical study publication-title: Energy Convers Manage – volume: 89 start-page: 3235 year: 2010 end-page: 3240 ident: b0510 article-title: Multi response optimization of NOx emission of a stationary diesel engine publication-title: Fuel – year: 2011 ident: b0065 article-title: Computational optimization of internal combustion engines – volume: 37 start-page: 1 year: 2009 ident: b0005 article-title: Food versus biofuels: environmental and economic costs publication-title: Human Ecol – reference: Karaboga D. An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyesuniversity, engineering faculty, computer engineering department; 2005 Oct. – volume: 25 start-page: 289 year: 2010 end-page: 310 ident: b0615 article-title: To explain or to predict? publication-title: Statistical Sci – volume: 215 start-page: 1197 year: 2001 end-page: 1216 ident: b0205 article-title: Detailed analytical model of a single-cylinder diesel engine in the crank angle domain publication-title: Proc Inst Mech Eng, Part D: J Automobile Eng – reference: Larsson, Olle, et al. Estimation of air fuel ratio of individual cylinders in SI engines by means of MISiC sensor signals in a linear regression model. No. 2002-01-0847. SAE Technical Paper, 2002. – reference: GT-Power: https://www.gtisoft.com/ [Accessed 1 February 2020]. – volume: 141 start-page: 96 year: 2017 end-page: 113 ident: b0135 article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system publication-title: Energy Build – volume: 119 start-page: 266 year: 2014 end-page: 273 ident: b0405 article-title: Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology publication-title: Fuel – reference: CHEMKIN: https://www.ansys.com/products/fluids/ansys-chemkin-pro[Accessed 1 February 2020]. – volume: 86 start-page: 2476 year: 2009 end-page: 2486 ident: b0505 article-title: Performance optimization of Jatropha biodiesel engine model using Taguchi approach publication-title: Appl Energy – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b0380 article-title: Ant colony optimization publication-title: IEEE Comput Intell Mag – volume: 37 start-page: 217 year: 2012 end-page: 225 ident: b0325 article-title: Prediction of engine performance for an alternative fuel using artificial neural network publication-title: Appl Therm Eng – volume: 122 start-page: 310 year: 2018 end-page: 322 ident: b0470 article-title: Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM publication-title: Renewable Energy – volume: 164 start-page: 344 year: 2018 end-page: 352 ident: b0560 article-title: Combustion, performance and particulate matter emissions analysis of operating parameters on a GDI engine by traditional experimental investigation and Taguchi method publication-title: Energy Convers Manage – reference: Foster, David E. An overview of zero-dimensional thermodynamic models for IC engine data analysis. SAE transactions (1985): 436-449. – volume: 201 start-page: 343 year: 2018 end-page: 357 ident: b0055 article-title: Spirulina microalgae biodiesel–a novel renewable alternative energy source for compression ignition engine publication-title: J Cleaner Prod – volume: 26 start-page: 1331 year: 2005 end-page: 1337 ident: b0500 article-title: Quality management research by considering multi-response problems in the Taguchi method–a review publication-title: Int J Adv Manuf Technol – ident: 10.1016/j.fuel.2020.118469_b0270 doi: 10.1016/j.biombioe.2011.02.031 – volume: 15 issue: 262 year: 2020 ident: 10.1016/j.fuel.2020.118469_b0360 article-title: Experimental and empirical analysis of an IC engine operating with ternary blends of diesel, karanja and roselle biodiesel publication-title: Fuel – volume: 34 start-page: 976 issue: 4 year: 2009 ident: 10.1016/j.fuel.2020.118469_b0310 article-title: Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network publication-title: Renewable Energy doi: 10.1016/j.renene.2008.08.008 – volume: 177 start-page: 326 year: 2016 ident: 10.1016/j.fuel.2020.118469_b0285 article-title: Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels publication-title: Fuel doi: 10.1016/j.fuel.2016.03.028 – ident: 10.1016/j.fuel.2020.118469_b0315 doi: 10.1016/j.apenergy.2009.08.016 – volume: 164 start-page: 344 year: 2018 ident: 10.1016/j.fuel.2020.118469_b0560 article-title: Combustion, performance and particulate matter emissions analysis of operating parameters on a GDI engine by traditional experimental investigation and Taguchi method publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.03.017 – volume: 77 start-page: 169 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0035 article-title: Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.03.080 – volume: 24 start-page: 581 issue: 4 year: 1981 ident: 10.1016/j.fuel.2020.118469_b0185 article-title: An experimental and analytical study of heat transfer in an engine exhaust port publication-title: Int J Heat Mass Transf doi: 10.1016/0017-9310(81)90003-X – volume: 83 start-page: 885 issue: 7-8 year: 2004 ident: 10.1016/j.fuel.2020.118469_b0570 article-title: Genetic algorithm and artificial neural network for engine optimisation of efficiency and NOx emission publication-title: Fuel doi: 10.1016/j.fuel.2003.10.025 – volume: 54 start-page: 4 issue: 1 year: 2018 ident: 10.1016/j.fuel.2020.118469_b0235 article-title: Statistical primer: sample size and power calculations — why, when and how? publication-title: Eur J Cardiothorac Surg doi: 10.1093/ejcts/ezy169 – volume: 37 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.fuel.2020.118469_b0005 article-title: Food versus biofuels: environmental and economic costs publication-title: Human Ecol doi: 10.1007/s10745-009-9215-8 – volume: 88 start-page: 2663 issue: 8 year: 2011 ident: 10.1016/j.fuel.2020.118469_b0395 article-title: Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.01.069 – volume: 72 start-page: 639 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0010 article-title: Economic growth, energy, and environmental Kuznets curve publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.059 – volume: 57 start-page: 886 year: 2014 ident: 10.1016/j.fuel.2020.118469_b0280 article-title: Surface tension prediction of vegetable oils using artificial neural networks and multiple linear regression publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.10.298 – volume: 5 start-page: 123 issue: 2 year: 1979 ident: 10.1016/j.fuel.2020.118469_b0175 article-title: Phenomenological models for reciprocating internal combustion engines publication-title: Prog Energy Combust Sci doi: 10.1016/0360-1285(79)90015-7 – volume: 25 start-page: 289 issue: 3 year: 2010 ident: 10.1016/j.fuel.2020.118469_b0615 article-title: To explain or to predict? publication-title: Statistical Sci doi: 10.1214/10-STS330 – volume: 38 start-page: 168 issue: 3 year: 1989 ident: 10.1016/j.fuel.2020.118469_b0200 article-title: Estimate of indicated torque from crankshaft speed fluctuations: a model for the dynamics of the IC engine publication-title: IEEE Trans Veh Technol doi: 10.1109/25.45470 – ident: 10.1016/j.fuel.2020.118469_b0545 doi: 10.1016/j.fuel.2016.04.098 – ident: 10.1016/j.fuel.2020.118469_b0260 – ident: 10.1016/j.fuel.2020.118469_b0190 doi: 10.4271/852070 – volume: 71 start-page: 656 year: 2014 ident: 10.1016/j.fuel.2020.118469_b0605 article-title: Diesel engine spray characteristics prediction with hybridized artificial neural network optimized by genetic algorithm publication-title: Energy doi: 10.1016/j.energy.2014.05.006 – volume: 110 start-page: 212 year: 2016 ident: 10.1016/j.fuel.2020.118469_b0430 article-title: Optimization of the combustion system of a medium duty direct injection diesel engine by combining CFD modeling with experimental validation publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2015.12.010 – volume: 215 start-page: 1197 issue: 11 year: 2001 ident: 10.1016/j.fuel.2020.118469_b0205 article-title: Detailed analytical model of a single-cylinder diesel engine in the crank angle domain publication-title: Proc Inst Mech Eng, Part D: J Automobile Eng doi: 10.1243/0954407011528734 – volume: 180 start-page: 496 year: 2019 ident: 10.1016/j.fuel.2020.118469_b0305 article-title: Appending empirical modelling to numerical solution for behaviour characterisation of microalgae biodiesel publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.11.014 – volume: 160 start-page: 446 year: 2015 ident: 10.1016/j.fuel.2020.118469_b0420 article-title: Optimization of reactivity-controlled compression ignition combustion fueled with diesel and hydrous ethanol using response surface methodology publication-title: Fuel doi: 10.1016/j.fuel.2015.07.055 – ident: 10.1016/j.fuel.2020.118469_b0080 – volume: 26 start-page: 1331 issue: 11-12 year: 2005 ident: 10.1016/j.fuel.2020.118469_b0500 article-title: Quality management research by considering multi-response problems in the Taguchi method–a review publication-title: Int J Adv Manuf Technol doi: 10.1007/s00170-004-2102-y – volume: 72 start-page: 497 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0025 article-title: Production, characterization and performance of biodiesel as an alternative fuel in diesel engines–a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.001 – ident: 10.1016/j.fuel.2020.118469_b0120 – volume: 119 start-page: 405 year: 2014 ident: 10.1016/j.fuel.2020.118469_b0410 article-title: Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.01.021 – volume: 221 start-page: 333 issue: 3 year: 2007 ident: 10.1016/j.fuel.2020.118469_b0610 article-title: Investigation of fundamental wear mechanisms at the piston ring and cylinder wall interface in internal combustion engines publication-title: Proc Inst Mech Eng, Part J: J Eng Tribol doi: 10.1243/13506501JET254 – ident: 10.1016/j.fuel.2020.118469_b0095 – volume: 150 start-page: 222 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0460 article-title: Response surface methodology (RSM) based multi-objective optimization of fusel oil-gasoline blends at different water content in SI engine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.07.047 – volume: 124 start-page: 381 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0555 article-title: Optimal performance and emissions of diesel/hydrogen-rich gas engine varying intake air temperature and EGR ratio publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.06.026 – volume: 166 start-page: 704 year: 2018 ident: 10.1016/j.fuel.2020.118469_b0100 article-title: Effect of emission from ethylic biodiesel of edible and non-edible vegetable oil, animal fats, waste oil and alcohol in CI engine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.04.070 – ident: 10.1016/j.fuel.2020.118469_b0390 doi: 10.1007/978-1-4612-4380-9_23 – volume: 299 start-page: 289 year: 2018 ident: 10.1016/j.fuel.2020.118469_b0165 article-title: Statistical review of dry reforming of methane literature using decision tree and artificial neural network analysis publication-title: Catal Today doi: 10.1016/j.cattod.2017.05.012 – ident: 10.1016/j.fuel.2020.118469_b0075 – volume: 180 start-page: 904 year: 2019 ident: 10.1016/j.fuel.2020.118469_b0115 article-title: A comparative analysis of engine characteristics from various biodiesels: numerical study publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.11.044 – volume: 83 start-page: 95 issue: 1 year: 1961 ident: 10.1016/j.fuel.2020.118469_b0220 article-title: New results in linear filtering and prediction theory publication-title: J Basic Eng doi: 10.1115/1.3658902 – volume: 55 start-page: 3081 issue: 4 year: 2016 ident: 10.1016/j.fuel.2020.118469_b0350 article-title: Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures publication-title: Alexandria Eng J doi: 10.1016/j.aej.2016.08.011 – volume: 89 start-page: 3235 issue: 11 year: 2010 ident: 10.1016/j.fuel.2020.118469_b0510 article-title: Multi response optimization of NOx emission of a stationary diesel engine publication-title: Fuel doi: 10.1016/j.fuel.2010.05.015 – ident: 10.1016/j.fuel.2020.118469_b0255 doi: 10.4271/2002-01-0847 – volume: 122 start-page: 310 year: 2018 ident: 10.1016/j.fuel.2020.118469_b0470 article-title: Study of Jatropha curcas shell bio-oil-diesel blend in VCR CI engine using RSM publication-title: Renewable Energy doi: 10.1016/j.renene.2018.01.071 – volume: 86 start-page: 2476 issue: 11 year: 2009 ident: 10.1016/j.fuel.2020.118469_b0505 article-title: Performance optimization of Jatropha biodiesel engine model using Taguchi approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.02.008 – ident: 10.1016/j.fuel.2020.118469_b0130 doi: 10.4271/1999-01-0912 – ident: 10.1016/j.fuel.2020.118469_b0265 doi: 10.4271/2007-01-4023 – ident: 10.1016/j.fuel.2020.118469_b0480 – volume: 105 start-page: 335 year: 2013 ident: 10.1016/j.fuel.2020.118469_b0600 article-title: Fuel economy optimization of an Atkinson cycle engine using genetic algorithm publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.12.061 – volume: 37 start-page: 217 year: 2012 ident: 10.1016/j.fuel.2020.118469_b0325 article-title: Prediction of engine performance for an alternative fuel using artificial neural network publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2011.11.019 – volume: 12 start-page: 599 issue: 4 year: 2011 ident: 10.1016/j.fuel.2020.118469_b0515 article-title: Multi-response optimization of diesel engine performance parameters using thumba biodiesel-diesel blends by applying the Taguchi method and grey relational analysis publication-title: Int J Automot Technol doi: 10.1007/s12239-011-0070-4 – volume: 7 start-page: 1309 issue: 5 year: 2016 ident: 10.1016/j.fuel.2020.118469_b0550 article-title: Multi-objective performance optimization of compression ignition engine operated on Mangiferaindica biodiesel by applying Taguchi grey relational analysis publication-title: Waste Biomass Valorization doi: 10.1007/s12649-016-9504-6 – ident: 10.1016/j.fuel.2020.118469_b0375 – ident: 10.1016/j.fuel.2020.118469_b0250 doi: 10.4271/2000-01-2036 – ident: 10.1016/j.fuel.2020.118469_b0485 – ident: 10.1016/j.fuel.2020.118469_b0240 doi: 10.4271/860328 – volume: 151 start-page: 630 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0140 article-title: Experimental design and response surface methodology in energy applications: a tutorial review publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.09.021 – ident: 10.1016/j.fuel.2020.118469_b0520 doi: 10.1016/j.energy.2012.09.027 – volume: 156 start-page: 9 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0450 article-title: Optimization of spray break-up CFD simulations by combining Σ-Y Eulerian atomization model with a response surface methodology under diesel engine-like conditions (ECN Spray A) publication-title: Comput Fluids doi: 10.1016/j.compfluid.2017.06.022 – year: 1992 ident: 10.1016/j.fuel.2020.118469_b0565 – volume: 111 start-page: 324 year: 2013 ident: 10.1016/j.fuel.2020.118469_b0335 article-title: Prediction of a gasoline engine performance with artificial neural network publication-title: Fuel doi: 10.1016/j.fuel.2012.12.040 – volume: 92 start-page: 769 year: 2012 ident: 10.1016/j.fuel.2020.118469_b0345 article-title: Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.08.027 – volume: 120 start-page: 521 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0455 article-title: Adaptive neuro-fuzzy inference system (ANFIS) and response surface methodology (RSM) prediction of biodiesel dynamic viscosity at 313 K publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2017.11.274 – volume: 21 start-page: 524 year: 2014 ident: 10.1016/j.fuel.2020.118469_b0540 article-title: Application of Grey-Taguchi based multi-objective optimization strategy to calibrate the PM–NHC–BSFC trade-off characteristics of a CRDI assisted CNG dual-fuel engine publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2014.09.022 – volume: 207 year: 2020 ident: 10.1016/j.fuel.2020.118469_b0370 article-title: Analysis of significance of variables in IC engine operation: an empirical methodology publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2020.112520 – volume: 11 start-page: 46 issue: 1 year: 2007 ident: 10.1016/j.fuel.2020.118469_b0590 article-title: Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2006.876364 – volume: 10 start-page: 3 issue: 1-3 year: 1996 ident: 10.1016/j.fuel.2020.118469_b0020 article-title: Worldwide diesel emission standards, current experiences and future needs publication-title: Appl Catal B doi: 10.1016/0926-3373(96)00021-5 – ident: 10.1016/j.fuel.2020.118469_b0365 doi: 10.1007/978-981-15-1201-8_6 – volume: 79 start-page: 85 year: 2014 ident: 10.1016/j.fuel.2020.118469_b0585 article-title: A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2013.12.005 – ident: 10.1016/j.fuel.2020.118469_b0275 doi: 10.1016/j.enconman.2012.07.023 – ident: 10.1016/j.fuel.2020.118469_b0070 – volume: 75 start-page: 938 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0145 article-title: Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.11.075 – volume: 156 start-page: 235 year: 2018 ident: 10.1016/j.fuel.2020.118469_b0110 article-title: Numerical investigation of performance, combustion and emission characteristics of various biofuels publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.11.017 – volume: 88 start-page: 2344 issue: 7 year: 2011 ident: 10.1016/j.fuel.2020.118469_b0320 article-title: Artificial neural network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings publication-title: Appl Energy doi: 10.1016/j.apenergy.2010.12.030 – volume: 8 start-page: 20 issue: 4 year: 1988 ident: 10.1016/j.fuel.2020.118469_b0195 article-title: Modeling of an internal combustion engine for control analysis publication-title: IEEE Control Syst Mag doi: 10.1109/37.7726 – ident: 10.1016/j.fuel.2020.118469_b0245 doi: 10.1109/ACC.1994.752336 – volume: 133 start-page: 178 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0445 article-title: Application of response surface methodology in optimization of performance and exhaust emissions of secondary butyl alcohol-gasoline blends in SI engine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.12.001 – ident: 10.1016/j.fuel.2020.118469_b0385 – ident: 10.1016/j.fuel.2020.118469_b0230 – volume: 92 start-page: 172 year: 2015 ident: 10.1016/j.fuel.2020.118469_b0580 article-title: An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.11.057 – ident: 10.1016/j.fuel.2020.118469_b0210 doi: 10.4271/2002-01-0371 – ident: 10.1016/j.fuel.2020.118469_b0090 – volume: 5 start-page: 115 issue: 4 year: 1943 ident: 10.1016/j.fuel.2020.118469_b0300 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull Mathematical Biophys doi: 10.1007/BF02478259 – ident: 10.1016/j.fuel.2020.118469_b0015 – volume: 113 start-page: 1193 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0150 article-title: Convective solar drying of Vitisvinifera&Momordicacharantia using thermal storage materials publication-title: Renewable Energy doi: 10.1016/j.renene.2017.06.096 – volume: 50 start-page: 177 year: 2013 ident: 10.1016/j.fuel.2020.118469_b0330 article-title: Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network publication-title: Energy doi: 10.1016/j.energy.2012.10.052 – volume: 27 start-page: 177 issue: 2 year: 2018 ident: 10.1016/j.fuel.2020.118469_b0465 article-title: Investigation on performance and emission characteristics of a variable compression multi fuel engine fuelled with Karanja biodiesel–diesel blend publication-title: Egypt J Pet doi: 10.1016/j.ejpe.2017.03.001 – volume: 25 start-page: 783 issue: 8 year: 2000 ident: 10.1016/j.fuel.2020.118469_b0050 article-title: A comparative evaluation of the performance characteristics of a spark ignition engine using hydrogen and compressed natural gas as alternative fuels publication-title: Int J Hydrogen Energy doi: 10.1016/S0360-3199(99)00103-2 – ident: 10.1016/j.fuel.2020.118469_b0180 doi: 10.4271/740191 – volume: 96 start-page: 569 year: 2016 ident: 10.1016/j.fuel.2020.118469_b0435 article-title: Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters publication-title: Energy doi: 10.1016/j.energy.2015.12.091 – volume: 141 start-page: 96 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0135 article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system publication-title: Energy Build doi: 10.1016/j.enbuild.2017.02.012 – volume: 14 start-page: 367 issue: 4 year: 1997 ident: 10.1016/j.fuel.2020.118469_b0490 article-title: The optimization of multi-response problems in the Taguchi method publication-title: Int J Quality Reliability Manage doi: 10.1108/02656719710170639 – volume: 55 start-page: 1201 issue: 2 year: 2016 ident: 10.1016/j.fuel.2020.118469_b0425 article-title: Improvement of biodiesel methanol blends performance in a variable compression ratio engine using response surface methodology publication-title: Alexandria Eng J doi: 10.1016/j.aej.2016.04.006 – volume: 117 start-page: 8 year: 2014 ident: 10.1016/j.fuel.2020.118469_b0530 article-title: Applying Taguchi method to combustion characteristics and optimal factors determination in diesel/biodiesel engines with port-injecting LPG publication-title: Fuel doi: 10.1016/j.fuel.2013.09.005 – volume: 39 start-page: 20276 issue: 35 year: 2014 ident: 10.1016/j.fuel.2020.118469_b0535 article-title: A Taguchi-fuzzy based multi-objective optimization study on the soot-NOx-BTHE characteristics of an existing CI engine under dual fuel operation with hydrogen publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2014.09.171 – volume: 39 start-page: 375 issue: 2 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0290 article-title: Modeling of the air conditions effects on the power and fuel consumption of the SI engine using neural networks and regression publication-title: J Braz Soc Mech Sci Eng doi: 10.1007/s40430-016-0539-1 – ident: 10.1016/j.fuel.2020.118469_b0125 doi: 10.1016/S0082-0784(77)80366-4 – volume: 11 start-page: 949 issue: 4 year: 2014 ident: 10.1016/j.fuel.2020.118469_b0400 article-title: Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-013-0273-5 – volume: 84 start-page: 1029 issue: 9 year: 2005 ident: 10.1016/j.fuel.2020.118469_b0575 article-title: Development and calibration of a reduced chemical kinetic model of n-heptane for HCCI engine combustion publication-title: Fuel doi: 10.1016/j.fuel.2005.01.015 – ident: 10.1016/j.fuel.2020.118469_b0215 doi: 10.1109/TCST.2007.912243 – volume: 182 start-page: 383 year: 2019 ident: 10.1016/j.fuel.2020.118469_b0475 article-title: Taguchi design approach for extraction of methyl ester from waste cooking oil using synthesized CaO as heterogeneous catalyst: Response surface methodology optimization publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2018.12.077 – volume: 50 start-page: 2239 issue: 9 year: 2009 ident: 10.1016/j.fuel.2020.118469_b0045 article-title: Biofuels securing the planet’s future energy needs publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2009.05.010 – ident: 10.1016/j.fuel.2020.118469_b0295 doi: 10.1016/j.applthermaleng.2017.03.126 – volume: 51 start-page: 1958 issue: 10 year: 2010 ident: 10.1016/j.fuel.2020.118469_b0225 article-title: Impact of two-stage turbocharging architectures on pumping losses of automotive engines based on an analytical model publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.02.028 – ident: 10.1016/j.fuel.2020.118469_b0085 – volume: 99 start-page: 197 year: 2012 ident: 10.1016/j.fuel.2020.118469_b0340 article-title: Biodiesel production and prediction of engine performance using SIMULINK model of trained neural network publication-title: Fuel doi: 10.1016/j.fuel.2012.04.019 – volume: 33 start-page: 421 issue: 4 year: 2008 ident: 10.1016/j.fuel.2020.118469_b0040 article-title: The hydrogen fuel alternative publication-title: Mrs Bull doi: 10.1557/mrs2008.84 – ident: 10.1016/j.fuel.2020.118469_b0595 doi: 10.4271/2008-01-0949 – volume: 58 start-page: 36 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0060 article-title: Biodiesel fuels publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2016.08.001 – volume: 74 start-page: 938 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0030 article-title: Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.03.045 – volume: 50 start-page: 141 issue: 4 year: 2001 ident: 10.1016/j.fuel.2020.118469_b0495 article-title: Teaching the Taguchi method to industrial engineers publication-title: Work Study doi: 10.1108/00438020110391873 – ident: 10.1016/j.fuel.2020.118469_b0105 doi: 10.1016/j.energy.2018.10.098 – volume: 90 start-page: 383 year: 2015 ident: 10.1016/j.fuel.2020.118469_b0415 article-title: Response surface methodology based optimization of diesel–n-butanol–cotton oil ternary blend ratios to improve engine performance and exhaust emission characteristics publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.11.029 – volume: 119 start-page: 266 year: 2014 ident: 10.1016/j.fuel.2020.118469_b0405 article-title: Performance optimization of CI engine fuelled with waste fried oil methyl ester-diesel blend using response surface methodology publication-title: Fuel doi: 10.1016/j.fuel.2013.11.039 – volume: 201 start-page: 343 year: 2018 ident: 10.1016/j.fuel.2020.118469_b0055 article-title: Spirulina microalgae biodiesel–a novel renewable alternative energy source for compression ignition engine publication-title: J Cleaner Prod doi: 10.1016/j.jclepro.2018.08.057 – year: 2016 ident: 10.1016/j.fuel.2020.118469_b0155 – volume: 99 start-page: 720 year: 2016 ident: 10.1016/j.fuel.2020.118469_b0440 article-title: Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a diesel engine publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.01.022 – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.fuel.2020.118469_b0380 article-title: Ant colony optimization publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2006.329691 – year: 2011 ident: 10.1016/j.fuel.2020.118469_b0065 – volume: 187 start-page: 84 year: 2017 ident: 10.1016/j.fuel.2020.118469_b0355 article-title: Kamble. Optimisation of operating parameters of DI-CI engine fueled with second generation Bio-fuel and development of ANN based prediction model publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.11.030 – volume: 104 start-page: 362 year: 2013 ident: 10.1016/j.fuel.2020.118469_b0525 article-title: Using Taguchi method on combustion performance of a diesel engine with diesel/biodiesel blend and port-inducting H2 publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.10.055 – volume: 97 start-page: 585 year: 2012 ident: 10.1016/j.fuel.2020.118469_b0160 article-title: High octane number ethanol–gasoline blends: Quantifying the potential benefits in the United States publication-title: Fuel doi: 10.1016/j.fuel.2012.03.017 – ident: 10.1016/j.fuel.2020.118469_b0170 doi: 10.1007/978-981-10-7185-0_5 |
| SSID | ssj0007854 |
| Score | 2.5556872 |
| SecondaryResourceType | review_article |
| Snippet | The use of biodiesel as an alternative fuel in the pursuit of renewable and sustainable energy has raised new technological, economic and environmental... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118469 |
| SubjectTerms | Algorithms Alternative fuels Analytical modelling Artificial neural networks Biodiesel fuels Biofuels Combustion Compression Computer applications Empirical analysis Experimental methods Experimental research Fuel economy Genetic algorithm Genetic algorithms IC engine Internal combustion engines Learning algorithms Machine learning Mathematical models Neural networks Optimization Regression analysis Research methods Response surface methodology Statistical analysis Statistical methods Sustainable energy Taguchi method Taguchi methods |
| Title | A review on recent progress in computational and empirical studies of compression ignition internal combustion engine |
| URI | https://dx.doi.org/10.1016/j.fuel.2020.118469 https://www.proquest.com/docview/2448682813 |
| Volume | 279 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-7153 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007854 issn: 0016-2361 databaseCode: AKRWK dateStart: 19700101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPEWhVB7YUGiTOE4yVhVVAdGJSt2sOLaloJJWtF357dzZDi-JDmyJYyfR2bmH8913hFwbpRRLCxZwE-mA8VIGMldFkOcM_BOwf5GlUnqa8PGUPcySWYsMm1wYhFV63e90utXWvqXnpdlbVhXm-IYcqUMiZGDnCXKCMpZiFYPb9y-YR5oljok55AH29okzDuNlNhp_P0SoOcAQ538Zp19q2tqe0SE58E4jHbj3OiItXR-T_W9UgidkM6AuC4UuajhCzCW12CvQZLSqaWmrN_idP1rUiurXZWX5QejKYQnpwthuDhlb08oCi_DA7RrO8arE6l_Qpu3DT8l0dPc8HAe-pEJQxlG2DgoJDlee4cZPEnEFbaxME6kznhgJ5lxpiLTBI4tYHMsoNRBuFEaVEDPqMCxYGZ-RnXpR63NC477UBTgLsog14wxDI1AIRmWJ6eu0r9skbGQpSs83jmUv5qIBlr0IlL9A-Qsn_za5-RyzdGwbW3snzRSJH2tGgDnYOq7TzKfwX-xKgJuTcQg_w_jin7e9JHt45hIVO2Rn_bbRV-CxrGXXLsku2R3cP44nH1CN62I |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8QgECarHtSD8RnfcvBmqlsKtD0ao1l19aSJN1IKJDXa3eju1d_uDFBfiR68EQptM9B50G--IeTQGWN4XvFEOmYTLmud6NJUSVly8E_A_jFPpXRzKwf3_OpBPPTIWZcLg7DKqPuDTvfaOvacRGmejJsGc3xTidQhDBnYpeAzZI4LlmMEdvz2ifPICxGomFOZ4PCYORNAXm5q8f8DQ9UBlrj8zTr90NPe-Fwsk6XoNdLT8GIrpGfbVbL4hUtwjUxPaUhDoaMWWgi6pB58BaqMNi2tffmGePRHq9ZQ-zxuPEEIfQ1gQjpyfliAxra08cgibIRjwye8qrH8F_RZ__B1cn9xfnc2SGJNhaTOWDFJKg0eV1ngyY9g0kAfr3OhbSGF02DPjYVQG1wyxrNMs9xBvFE5U0PQaNO04nW2QWbbUWs3Cc362lbgLegqs1xyjI1AIzhTCNe3ed9ukbSTpaoj4TjWvXhSHbLsUaH8FcpfBflvkaOPOeNAt_HnaNEtkfq2aRTYgz_n7XbrqeIn-6rAzykkxJ9ptv3P2x6Q-cHdzVANL2-vd8gCXglZi7tkdvIytXvgvkz0vt-e788M7Pc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+recent+progress+in+computational+and+empirical+studies+of+compression+ignition+internal+combustion+engine&rft.jtitle=Fuel+%28Guildford%29&rft.au=Salam%2C+Satishchandra&rft.au=Choudhary%2C+Tushar&rft.au=Pugazhendhi%2C+Arivalagan&rft.au=Verma%2C+Tikendra+Nath&rft.date=2020-11-01&rft.issn=0016-2361&rft.volume=279&rft.spage=118469&rft_id=info:doi/10.1016%2Fj.fuel.2020.118469&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2020_118469 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |