CSE-IDS: Using cost-sensitive deep learning and ensemble algorithms to handle class imbalance in network-based intrusion detection systems

In recent times, Network-based Intrusion Detection Systems (NIDSs) have become very popular for detecting intrusions in computer networks. Existing NIDSs can easily identify those intrusions that have been frequently witnessed in the network (majority attacks), but they cannot identify new and infre...

Full description

Saved in:
Bibliographic Details
Published inComputers & security Vol. 112; p. 102499
Main Authors Gupta, Neha, Jindal, Vinita, Bedi, Punam
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.01.2022
Elsevier Sequoia S.A
Subjects
Online AccessGet full text
ISSN0167-4048
1872-6208
DOI10.1016/j.cose.2021.102499

Cover

Abstract In recent times, Network-based Intrusion Detection Systems (NIDSs) have become very popular for detecting intrusions in computer networks. Existing NIDSs can easily identify those intrusions that have been frequently witnessed in the network (majority attacks), but they cannot identify new and infrequent intrusions (minority attacks) accurately. Moreover, such systems solely focus on maximizing the overall Attack Detection Rate while overlooking the number of false alarms. To address these issues, this paper proposes CSE-IDS, a three-layer NIDS, based on Cost-Sensitive Deep Learning and Ensemble algorithms. Layer 1 of the proposed CSE-IDS uses Cost-Sensitive Deep Neural Network to separate normal traffic from suspicious network traffic. These suspicious samples are then sent to Layer 2, which uses the eXtreme Gradient Boosting algorithm to classify them into normal class, different majority attack classes, and a single class representing all minority attack classes. At last, Random Forest is used at Layer 3 to classify the minority attacks identified at Layer 2 into their respective classes. The performance of the proposed CSE-IDS was evaluated on the NSL-KDD, CIDDS-001, and CICIDS2017 datasets with respect to Accuracy, Recall, Precision, F1-score, ROC curve, AUC values, and computational times. The proposed system outperforms its counterparts by achieving a high Attack Detection Rate for both majority attacks and minority attacks present in the network. Further, it minimizes the number of false alarms by correctly segregating normal traffic from attack traffic. The obtained results confirm that the proposed CSE-IDS can be deployed in the real world for performing network-based intrusion detection.
AbstractList In recent times, Network-based Intrusion Detection Systems (NIDSs) have become very popular for detecting intrusions in computer networks. Existing NIDSs can easily identify those intrusions that have been frequently witnessed in the network (majority attacks), but they cannot identify new and infrequent intrusions (minority attacks) accurately. Moreover, such systems solely focus on maximizing the overall Attack Detection Rate while overlooking the number of false alarms. To address these issues, this paper proposes CSE-IDS, a three-layer NIDS, based on Cost-Sensitive Deep Learning and Ensemble algorithms. Layer 1 of the proposed CSE-IDS uses Cost-Sensitive Deep Neural Network to separate normal traffic from suspicious network traffic. These suspicious samples are then sent to Layer 2, which uses the eXtreme Gradient Boosting algorithm to classify them into normal class, different majority attack classes, and a single class representing all minority attack classes. At last, Random Forest is used at Layer 3 to classify the minority attacks identified at Layer 2 into their respective classes. The performance of the proposed CSE-IDS was evaluated on the NSL-KDD, CIDDS-001, and CICIDS2017 datasets with respect to Accuracy, Recall, Precision, F1-score, ROC curve, AUC values, and computational times. The proposed system outperforms its counterparts by achieving a high Attack Detection Rate for both majority attacks and minority attacks present in the network. Further, it minimizes the number of false alarms by correctly segregating normal traffic from attack traffic. The obtained results confirm that the proposed CSE-IDS can be deployed in the real world for performing network-based intrusion detection.
ArticleNumber 102499
Author Bedi, Punam
Jindal, Vinita
Gupta, Neha
Author_xml – sequence: 1
  givenname: Neha
  orcidid: 0000-0001-8299-4317
  surname: Gupta
  fullname: Gupta, Neha
  email: neha.phd.2018@gmail.com
  organization: Department of Computer Science, University of Delhi, India
– sequence: 2
  givenname: Vinita
  orcidid: 0000-0002-0481-4840
  surname: Jindal
  fullname: Jindal, Vinita
  email: vjindal@keshav.du.ac.in
  organization: Keshav Mahavidyalaya, University of Delhi, India
– sequence: 3
  givenname: Punam
  orcidid: 0000-0002-6007-7961
  surname: Bedi
  fullname: Bedi, Punam
  email: pbedi@cs.du.ac.in
  organization: Department of Computer Science, University of Delhi, India
BookMark eNp9kMtO3DAUhq2KSh0oL9CVpa4z-JLEnqobNFBAQmIBrC3HOQFPE3vq45mKV-CpcTSsWLCydf6Lfb5jchRiAEJ-cLbkjLdnm6WLCEvBBC8DUa9WX8iCayWqVjB9RBbFpKqa1fobOUbcMMZVq_WCvK7vL6ubi_tf9BF9eKKlJlcIAX32e6A9wJaOYFOYRRt6WiSYuhGoHZ9i8vl5QpojfS5aGbrRIlI_dXa0wQH1gQbI_2P6W3UWoS-DnHboYyjVGVyeb_iCGSb8Tr4OdkQ4fT9PyOOfy4f1dXV7d3WzPr-tnBQ6V6uBt7rWemgHK8TQ1LIbhIW6rxkDCVzaztaNlEqzsqVjnWJyaFoFoLrGWilPyM9D7zbFfzvAbDZxl0J50ohWcK0btVLFpQ8ulyJigsE4n-3835ysHw1nZiZvNmYmb2by5kC-RMWH6Db5yaaXz0O_DyEoq-89JIPOQ2HY-1Q4mT76z-JvrPeg0A
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124982
crossref_primary_10_1109_TII_2023_3326544
crossref_primary_10_3390_s22051847
crossref_primary_10_1109_ACCESS_2022_3201869
crossref_primary_10_1016_j_eswa_2022_119030
crossref_primary_10_1109_ACCESS_2024_3420080
crossref_primary_10_1007_s10586_023_04168_7
crossref_primary_10_1016_j_engappai_2023_107697
crossref_primary_10_1109_JIOT_2023_3324302
crossref_primary_10_1016_j_cose_2024_104154
crossref_primary_10_1038_s41598_025_88243_6
crossref_primary_10_1016_j_isatra_2024_03_018
crossref_primary_10_1080_23270012_2024_2377168
crossref_primary_10_7717_peerj_cs_1552
crossref_primary_10_1016_j_eswa_2023_120420
crossref_primary_10_1016_j_jksuci_2023_03_001
crossref_primary_10_1007_s11227_024_06263_x
crossref_primary_10_3390_electronics13224560
crossref_primary_10_3934_mbe_2022536
crossref_primary_10_3390_app15063362
crossref_primary_10_1016_j_aej_2023_07_063
crossref_primary_10_1016_j_engappai_2023_107506
crossref_primary_10_1016_j_eswa_2023_121084
crossref_primary_10_3390_computers14010004
crossref_primary_10_3390_electronics12153300
crossref_primary_10_1007_s11042_024_19695_7
crossref_primary_10_1080_0952813X_2022_2104384
crossref_primary_10_1016_j_cose_2022_102940
crossref_primary_10_1109_TIFS_2023_3331240
crossref_primary_10_1016_j_inffus_2023_101804
crossref_primary_10_1016_j_asoc_2024_112603
crossref_primary_10_1016_j_asoc_2024_111517
crossref_primary_10_1016_j_eswa_2023_121366
crossref_primary_10_1186_s13677_023_00584_7
crossref_primary_10_3390_s23135829
crossref_primary_10_15803_ijnc_12_2_467
crossref_primary_10_1007_s12083_024_01650_w
crossref_primary_10_1109_ACCESS_2023_3276863
crossref_primary_10_1109_ACCESS_2025_3538170
crossref_primary_10_3390_fi16120481
crossref_primary_10_32604_cmc_2022_031734
crossref_primary_10_1016_j_neucom_2024_128959
crossref_primary_10_1016_j_future_2023_01_027
crossref_primary_10_7717_peerj_cs_2745
crossref_primary_10_1016_j_asej_2024_102807
crossref_primary_10_1093_comjnl_bxae011
crossref_primary_10_3390_electronics12030643
crossref_primary_10_1016_j_neucom_2023_126544
crossref_primary_10_3390_sym16091151
crossref_primary_10_1109_JIOT_2023_3342638
crossref_primary_10_1016_j_comnet_2024_110423
crossref_primary_10_1155_2022_9851463
crossref_primary_10_1109_TNSM_2024_3383218
crossref_primary_10_1016_j_cose_2022_103054
crossref_primary_10_3390_bdcc6040137
crossref_primary_10_1016_j_jisa_2024_103736
crossref_primary_10_1002_cpe_7110
crossref_primary_10_1007_s42979_023_01926_7
crossref_primary_10_1016_j_jisa_2023_103516
crossref_primary_10_3390_sym14071461
crossref_primary_10_1016_j_cose_2022_102919
crossref_primary_10_1016_j_neucom_2024_128538
crossref_primary_10_1016_j_comcom_2023_03_005
crossref_primary_10_1631_FITEE_2200314
crossref_primary_10_1155_2023_4374385
Cites_doi 10.1016/j.cose.2020.102151
10.1016/j.neucom.2018.11.099
10.1109/ACCESS.2019.2933437
10.1109/ACCESS.2019.2895334
10.1109/ACCESS.2017.2762418
10.3390/fi12100167
10.1613/jair.953
10.1016/j.ecoinf.2020.101202
10.1186/s40537-020-00390-x
10.1109/ACCESS.2020.2987364
10.1007/s10489-020-01886-y
10.3390/pr9050834
10.1016/j.asoc.2017.03.016
10.1109/ACCESS.2019.2929487
10.1016/j.cose.2019.06.013
10.1504/IJKESDP.2011.039875
10.1186/s40537-018-0151-6
10.1016/j.cose.2021.102435
10.1016/j.cose.2021.102289
10.1023/A:1010933404324
10.1016/j.cose.2020.102158
10.3390/info9070149
10.3390/app11041674
10.1109/ACCESS.2019.2905041
10.1016/j.artmed.2020.101815
10.1016/j.comnet.2021.108076
10.1016/j.eswa.2016.12.035
10.1007/s13748-016-0094-0
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Sequoia S.A. Jan 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Sequoia S.A. Jan 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
K7.
L7M
L~C
L~D
DOI 10.1016/j.cose.2021.102499
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Criminal Justice (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ProQuest Criminal Justice (Alumni)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
ProQuest Criminal Justice (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6208
ExternalDocumentID 10_1016_j_cose_2021_102499
S0167404821003230
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
BNPGV
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG8
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SBM
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
XJE
XPP
XSW
YK3
ZMT
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
7SC
8FD
AGRNS
JQ2
K7.
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-9f168488f6fa22f543bf2ae4d400e3e13aba4533780001c0b703f567ee7b5aa33
IEDL.DBID .~1
ISSN 0167-4048
IngestDate Mon Jul 14 08:15:28 EDT 2025
Wed Oct 01 06:31:29 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Sat May 03 15:56:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Boosting
Cybersecurity
Cost-sensitive algorithms
Network-based intrusion detection system
Bagging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-9f168488f6fa22f543bf2ae4d400e3e13aba4533780001c0b703f567ee7b5aa33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0481-4840
0000-0002-6007-7961
0000-0001-8299-4317
PQID 2621885797
PQPubID 46289
ParticipantIDs proquest_journals_2621885797
crossref_citationtrail_10_1016_j_cose_2021_102499
crossref_primary_10_1016_j_cose_2021_102499
elsevier_sciencedirect_doi_10_1016_j_cose_2021_102499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & security
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Sequoia S.A
References Bedi, Gupta, Jindal (bib0004) 2019; 171
Johnson, Khoshgoftaar (bib0021) 2019; 6
Bagui, Li (bib0002) 2021; 8
Leevy, Khoshgoftaar, Bauder, Seliya (bib0024) 2018; 5
Khan (bib0022) 2021; 9
Feng, Li, Shen, Zhou, Yang (bib0014) 2020; 8
Nguyen, Cooper, Kamei (bib0027) 2011; 3
Chiba, Abghour, Moussaid, Omri, Rida (bib0010) 2019; 86
Gupta, Jindal, Bedi (bib0018) 2021; 192
Chawla, Bowyer, Hall, Kegelmeyer (bib0008) 2002; 16
Liu, Gao, Hu (bib0026) 2021; 106
Tang, Mhamdi, McLernon, Zaidi, Ghogho (bib0035) 2016
Chuan-long, Zhu, Fei, He (bib0012) 2017; 5
Kukar, Kononenko (bib0023) 1998
Shin, J., Yoon, S., Kim, Y., Kim, T., Go, B., & Cha, Y. (2021, March). Effects of class imbalance on resampling and ensemble learning for improved prediction of cyanobacteria blooms.
Zhang, Luo, García, Herrera (bib0043) 2017; 56
Rekha, Tyagi (bib0030) 2020
Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat, Venkatraman (bib0038) 2019; 7
Iranmehr, Masnadi-Shirazi, Vasconcelos (bib0020) 2019; 343
Bartosz (bib0003) 2016; 5
Tavallaee, Bagheri, Lu, Ghorbani (bib0036) 2009
Oliveira, Praça, Maia, Sousa (bib0029) 2021; 11
Zefrehi, Altınçay (bib0041) 2020; 142
Sohi, Seifert, Ganji (bib0034) 2021; 102
Thapa, Liu, KC, Gokaraju, Roy (bib0037) 2020; 12
Li, Chen, Zhang, Wu (bib0025) 2020; 95
Bedi, Gupta, Jindal (bib0005) 2020; 51
Al, Dener (bib0001) 2021; 110
Yu, Li, Zhang, Wang (bib0040) 2019; 7
Dhaliwal, Nahid, Abbas (bib0013) 2018; 9
Wan, Wang, Ting (bib0039) 1999
1-38. doi:arXiv:2009.07352v1
Gupta, Bedi, Jindal (bib0017) 2019
61, 1-13. doi:https://doi.org/10.1016/j.ecoinf.2020.101202
Binbusayyis, Vaiyapuri (bib0006) 2019; 7
Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (bib0019) 2017; 73
Breiman (bib0007) 2001; 45
Ring, Wunderlich, Grüdl, Landes, Hotho (bib0031) 2017
Chen, Guestrin (bib0009) 2016
Zhang, Chen, Jin, Wang, Guo (bib0042) 2019; 7
Fernández, García, Galar, Prati, Krawczyk, Herrera (bib0015) 2018
Sharafaldin, Lashkari, Ghorbani (bib0032) 2018
Chou, D., & Jiang, M. (2020, September 15). Data-driven network intrusion detection: a taxonomy of challenges and methods.
Nnamoko, Korkontzelos (bib0028) 2020; 104
Gu, Lu (bib0016) 2021; 103
Vinayakumar (10.1016/j.cose.2021.102499_bib0038) 2019; 7
Fernández (10.1016/j.cose.2021.102499_bib0015) 2018
Gupta (10.1016/j.cose.2021.102499_bib0017) 2019
Bartosz (10.1016/j.cose.2021.102499_bib0003) 2016; 5
Zefrehi (10.1016/j.cose.2021.102499_bib0041) 2020; 142
Chuan-long (10.1016/j.cose.2021.102499_bib0012) 2017; 5
Johnson (10.1016/j.cose.2021.102499_bib0021) 2019; 6
Feng (10.1016/j.cose.2021.102499_bib0014) 2020; 8
Oliveira (10.1016/j.cose.2021.102499_bib0029) 2021; 11
Li (10.1016/j.cose.2021.102499_bib0025) 2020; 95
Sharafaldin (10.1016/j.cose.2021.102499_bib0032) 2018
Liu (10.1016/j.cose.2021.102499_bib0026) 2021; 106
Tang (10.1016/j.cose.2021.102499_bib0035) 2016
Yu (10.1016/j.cose.2021.102499_bib0040) 2019; 7
Bedi (10.1016/j.cose.2021.102499_bib0004) 2019; 171
Iranmehr (10.1016/j.cose.2021.102499_bib0020) 2019; 343
Thapa (10.1016/j.cose.2021.102499_bib0037) 2020; 12
Wan (10.1016/j.cose.2021.102499_bib0039) 1999
Rekha (10.1016/j.cose.2021.102499_bib0030) 2020
Ring (10.1016/j.cose.2021.102499_bib0031) 2017
Sohi (10.1016/j.cose.2021.102499_bib0034) 2021; 102
Bedi (10.1016/j.cose.2021.102499_bib0005) 2020; 51
Bagui (10.1016/j.cose.2021.102499_bib0002) 2021; 8
Binbusayyis (10.1016/j.cose.2021.102499_bib0006) 2019; 7
Kukar (10.1016/j.cose.2021.102499_bib0023) 1998
Zhang (10.1016/j.cose.2021.102499_bib0042) 2019; 7
Gu (10.1016/j.cose.2021.102499_bib0016) 2021; 103
Breiman (10.1016/j.cose.2021.102499_bib0007) 2001; 45
Chen (10.1016/j.cose.2021.102499_bib0009) 2016
Nnamoko (10.1016/j.cose.2021.102499_bib0028) 2020; 104
10.1016/j.cose.2021.102499_bib0011
10.1016/j.cose.2021.102499_bib0033
Gupta (10.1016/j.cose.2021.102499_bib0018) 2021; 192
Leevy (10.1016/j.cose.2021.102499_bib0024) 2018; 5
Al (10.1016/j.cose.2021.102499_bib0001) 2021; 110
Chawla (10.1016/j.cose.2021.102499_bib0008) 2002; 16
Nguyen (10.1016/j.cose.2021.102499_bib0027) 2011; 3
Khan (10.1016/j.cose.2021.102499_bib0022) 2021; 9
Dhaliwal (10.1016/j.cose.2021.102499_bib0013) 2018; 9
Haixiang (10.1016/j.cose.2021.102499_bib0019) 2017; 73
Zhang (10.1016/j.cose.2021.102499_bib0043) 2017; 56
Tavallaee (10.1016/j.cose.2021.102499_bib0036) 2009
Chiba (10.1016/j.cose.2021.102499_bib0010) 2019; 86
References_xml – start-page: 108
  year: 2018
  end-page: 116
  ident: bib0032
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018)
– volume: 5
  start-page: 221
  year: 2016
  end-page: 232
  ident: bib0003
  article-title: Learning from imbalanced data: open challenges and future directions
  publication-title: Prog. Artif. Intell.
– volume: 73
  start-page: 220
  year: 2017
  end-page: 239
  ident: bib0019
  article-title: Learning from class-imbalanced data: review of methods and applications
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 4
  year: 2011
  end-page: 21
  ident: bib0027
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: Int. J. Knowl. Eng.Soft Data Paradigms
– start-page: 361
  year: 2017
  end-page: 369
  ident: bib0031
  article-title: Flow-based benchmark data sets for intrusion detection
  publication-title: Proceedings of the 16th European Conference on Cyber Warfare and Security (ECCWS)
– start-page: 258
  year: 2016
  end-page: 263
  ident: bib0035
  article-title: Deep learning approach for network intrusion detection in software defined networking
  publication-title: International Conference on Wireless Networks and Mobile Communications (WINCOM)
– volume: 142
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib0041
  article-title: Imbalance learning using heterogeneous ensembles
  publication-title: Expert Syst. Appl.
– volume: 102
  start-page: 1
  year: 2021
  end-page: 23
  ident: bib0034
  article-title: RNNIDS: Enhancing network intrusion detection systems through deep learning
  publication-title: Comput. Security
– volume: 56
  start-page: 357
  year: 2017
  end-page: 367
  ident: bib0043
  article-title: Cost-Sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: 1674
  year: 2021
  ident: bib0029
  article-title: Intelligent cyber attack detection and classification for network-based intrusion detection systems
  publication-title: Appl. Sci.
– volume: 7
  start-page: 118931
  year: 2019
  end-page: 118942
  ident: bib0040
  article-title: The OCS-SVM: an objective-cost-sensitive SVM with sample-based misclassification cost invariance
  publication-title: IEEE Access
– volume: 7
  start-page: 41525
  year: 2019
  end-page: 41550
  ident: bib0038
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access
– start-page: 949
  year: 2019
  end-page: 960
  ident: bib0017
  article-title: Effect of activation functions on the performance of deep learning algorithms for network intrusion detection systems
  publication-title: Proceedings of International Conference on Emerging Trends in Information Technology (ICETIT-2019), Part of Lecture Notes in Electrical Engineering (LNEE). 605
– volume: 110
  year: 2021
  ident: bib0001
  article-title: STL-HDL: A new hybrid network intrusion detection system for imbalanced dataset on big data environment
  publication-title: Comput. Security
– volume: 103
  year: 2021
  ident: bib0016
  article-title: An effective intrusion detection approach using SVM with naïve Bayes feature embedding
  publication-title: Comput. Security
– volume: 6
  start-page: 1
  year: 2019
  end-page: 54
  ident: bib0021
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
– volume: 8
  start-page: 69979
  year: 2020
  end-page: 69996
  ident: bib0014
  article-title: Using cost-sensitive learning and feature selection algorithms to improve the performance of imbalanced classification
  publication-title: IEEE Access
– volume: 343
  start-page: 50
  year: 2019
  end-page: 64
  ident: bib0020
  article-title: Cost-sensitive support vector machines
  publication-title: Neurocomputing
– year: 2009
  ident: bib0036
  article-title: NSL-KDD Dataset
– volume: 9
  start-page: 149
  year: 2018
  ident: bib0013
  article-title: Effective intrusion detection system using XGBoost
  publication-title: Information
– start-page: 445
  year: 1998
  end-page: 449
  ident: bib0023
  article-title: Cost-sensitive learning with neural networks
  publication-title: 13th European Conference on Artificial Intelligence (ECAI 1998)
– volume: 7
  start-page: 37004
  year: 2019
  end-page: 37016
  ident: bib0042
  article-title: Network intrusion detection: based on deep hierarchical network and original flow data
  publication-title: IEEE Access
– volume: 192
  year: 2021
  ident: bib0018
  article-title: LIO-IDS:handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system
  publication-title: Comput. Netw.
– volume: 171
  start-page: 780
  year: 2019
  end-page: 789
  ident: bib0004
  article-title: Siam-IDS: Handling class imbalance problem in intrusion detection systems using siamese neural network
  publication-title: Third International Conference on Computing and Network Communications
– volume: 95
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib0025
  article-title: Building auto-encoder intrusion detection system based on random forest feature selection
  publication-title: Comput. Security
– volume: 106
  year: 2021
  ident: bib0026
  article-title: A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM
  publication-title: Comput. Security
– reference: Shin, J., Yoon, S., Kim, Y., Kim, T., Go, B., & Cha, Y. (2021, March). Effects of class imbalance on resampling and ensemble learning for improved prediction of cyanobacteria blooms.
– volume: 86
  start-page: 291
  year: 2019
  end-page: 317
  ident: bib0010
  article-title: Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms
  publication-title: Comput. Security
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: bib0008
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0007
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: Chou, D., & Jiang, M. (2020, September 15). Data-driven network intrusion detection: a taxonomy of challenges and methods.
– volume: 5
  start-page: 1
  year: 2018
  end-page: 30
  ident: bib0024
  article-title: A survey on addressing high-class imbalance in big data
  publication-title: J. Big Data
– volume: 104
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib0028
  article-title: Efficient treatment of outliers and class imbalance for diabetes prediction
  publication-title: Artif. Intell. Med.
– start-page: 645
  year: 2020
  end-page: 658
  ident: bib0030
  article-title: Necessary Information to Know to Solve Class Imbalance Problem: From a User's Perspective
  publication-title: Proceedings of International Conference on Recent Innovations in Computing 2019
– volume: 12
  start-page: 167
  year: 2020
  ident: bib0037
  article-title: Comparison of machine learning and deep learning models for network intrusion detection systems
  publication-title: Future Internet
– volume: 8
  start-page: 1
  year: 2021
  end-page: 41
  ident: bib0002
  article-title: Resampling imbalanced data for network intrusion detection datasets
  publication-title: J. Big Data
– volume: 7
  start-page: 106495
  year: 2019
  end-page: 106513
  ident: bib0006
  article-title: Identifying and benchmarking key features for cyber intrusion detection: an ensemble approach
  publication-title: IEEE Access
– start-page: 1
  year: 1999
  end-page: 4
  ident: bib0039
  article-title: Introducing cost-sensitive neural networks
  publication-title: Proceedings of the second international conference on information, communications and signal processing
– volume: 5
  start-page: 21954
  year: 2017
  end-page: 21961
  ident: bib0012
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: IEEE Access
– reference: , 1-38. doi:arXiv:2009.07352v1
– year: 2018
  ident: bib0015
  article-title: Learning from Imbalanced Data Sets
– reference: 61, 1-13. doi:https://doi.org/10.1016/j.ecoinf.2020.101202
– volume: 9
  start-page: 834
  year: 2021
  end-page: 847
  ident: bib0022
  article-title: HCRNNIDS: hybrid convolutional recurrent neural network-based network intrusion detection system
  publication-title: Processes
– volume: 51
  start-page: 1133
  year: 2020
  end-page: 1151
  ident: bib0005
  article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems
  publication-title: Appl. Intell.
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib0009
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 785
  year: 2016
  ident: 10.1016/j.cose.2021.102499_bib0009
  article-title: XGBoost: a scalable tree boosting system
– volume: 102
  start-page: 1
  year: 2021
  ident: 10.1016/j.cose.2021.102499_bib0034
  article-title: RNNIDS: Enhancing network intrusion detection systems through deep learning
  publication-title: Comput. Security
  doi: 10.1016/j.cose.2020.102151
– start-page: 108
  year: 2018
  ident: 10.1016/j.cose.2021.102499_bib0032
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
– volume: 343
  start-page: 50
  year: 2019
  ident: 10.1016/j.cose.2021.102499_bib0020
  article-title: Cost-sensitive support vector machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.099
– year: 2009
  ident: 10.1016/j.cose.2021.102499_bib0036
– start-page: 445
  year: 1998
  ident: 10.1016/j.cose.2021.102499_bib0023
  article-title: Cost-sensitive learning with neural networks
– start-page: 645
  year: 2020
  ident: 10.1016/j.cose.2021.102499_bib0030
  article-title: Necessary Information to Know to Solve Class Imbalance Problem: From a User's Perspective
– start-page: 1
  year: 1999
  ident: 10.1016/j.cose.2021.102499_bib0039
  article-title: Introducing cost-sensitive neural networks
– volume: 7
  start-page: 118931
  year: 2019
  ident: 10.1016/j.cose.2021.102499_bib0040
  article-title: The OCS-SVM: an objective-cost-sensitive SVM with sample-based misclassification cost invariance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2933437
– volume: 7
  start-page: 41525
  year: 2019
  ident: 10.1016/j.cose.2021.102499_bib0038
  article-title: Deep learning approach for intelligent intrusion detection system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2895334
– ident: 10.1016/j.cose.2021.102499_bib0011
– volume: 5
  start-page: 21954
  year: 2017
  ident: 10.1016/j.cose.2021.102499_bib0012
  article-title: A deep learning approach for intrusion detection using recurrent neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2762418
– volume: 12
  start-page: 167
  issue: 10
  year: 2020
  ident: 10.1016/j.cose.2021.102499_bib0037
  article-title: Comparison of machine learning and deep learning models for network intrusion detection systems
  publication-title: Future Internet
  doi: 10.3390/fi12100167
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.cose.2021.102499_bib0008
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.953
– volume: 6
  start-page: 1
  issue: 27
  year: 2019
  ident: 10.1016/j.cose.2021.102499_bib0021
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
– ident: 10.1016/j.cose.2021.102499_bib0033
  doi: 10.1016/j.ecoinf.2020.101202
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.cose.2021.102499_bib0002
  article-title: Resampling imbalanced data for network intrusion detection datasets
  publication-title: J. Big Data
  doi: 10.1186/s40537-020-00390-x
– volume: 8
  start-page: 69979
  year: 2020
  ident: 10.1016/j.cose.2021.102499_bib0014
  article-title: Using cost-sensitive learning and feature selection algorithms to improve the performance of imbalanced classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2987364
– volume: 51
  start-page: 1133
  year: 2020
  ident: 10.1016/j.cose.2021.102499_bib0005
  article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01886-y
– volume: 9
  start-page: 834
  issue: 5
  year: 2021
  ident: 10.1016/j.cose.2021.102499_bib0022
  article-title: HCRNNIDS: hybrid convolutional recurrent neural network-based network intrusion detection system
  publication-title: Processes
  doi: 10.3390/pr9050834
– volume: 56
  start-page: 357
  year: 2017
  ident: 10.1016/j.cose.2021.102499_bib0043
  article-title: Cost-Sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.03.016
– volume: 7
  start-page: 106495
  year: 2019
  ident: 10.1016/j.cose.2021.102499_bib0006
  article-title: Identifying and benchmarking key features for cyber intrusion detection: an ensemble approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929487
– start-page: 361
  year: 2017
  ident: 10.1016/j.cose.2021.102499_bib0031
  article-title: Flow-based benchmark data sets for intrusion detection
– volume: 95
  start-page: 1
  issue: 101851
  year: 2020
  ident: 10.1016/j.cose.2021.102499_bib0025
  article-title: Building auto-encoder intrusion detection system based on random forest feature selection
  publication-title: Comput. Security
– volume: 86
  start-page: 291
  year: 2019
  ident: 10.1016/j.cose.2021.102499_bib0010
  article-title: Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms
  publication-title: Comput. Security
  doi: 10.1016/j.cose.2019.06.013
– volume: 3
  start-page: 4
  issue: 1
  year: 2011
  ident: 10.1016/j.cose.2021.102499_bib0027
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: Int. J. Knowl. Eng.Soft Data Paradigms
  doi: 10.1504/IJKESDP.2011.039875
– volume: 5
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cose.2021.102499_bib0024
  article-title: A survey on addressing high-class imbalance in big data
  publication-title: J. Big Data
  doi: 10.1186/s40537-018-0151-6
– volume: 110
  year: 2021
  ident: 10.1016/j.cose.2021.102499_bib0001
  article-title: STL-HDL: A new hybrid network intrusion detection system for imbalanced dataset on big data environment
  publication-title: Comput. Security
  doi: 10.1016/j.cose.2021.102435
– volume: 171
  start-page: 780
  year: 2019
  ident: 10.1016/j.cose.2021.102499_bib0004
  article-title: Siam-IDS: Handling class imbalance problem in intrusion detection systems using siamese neural network
– volume: 106
  year: 2021
  ident: 10.1016/j.cose.2021.102499_bib0026
  article-title: A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM
  publication-title: Comput. Security
  doi: 10.1016/j.cose.2021.102289
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.cose.2021.102499_bib0007
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 103
  year: 2021
  ident: 10.1016/j.cose.2021.102499_bib0016
  article-title: An effective intrusion detection approach using SVM with naïve Bayes feature embedding
  publication-title: Comput. Security
  doi: 10.1016/j.cose.2020.102158
– volume: 9
  start-page: 149
  issue: 7
  year: 2018
  ident: 10.1016/j.cose.2021.102499_bib0013
  article-title: Effective intrusion detection system using XGBoost
  publication-title: Information
  doi: 10.3390/info9070149
– volume: 11
  start-page: 1674
  issue: 4
  year: 2021
  ident: 10.1016/j.cose.2021.102499_bib0029
  article-title: Intelligent cyber attack detection and classification for network-based intrusion detection systems
  publication-title: Appl. Sci.
  doi: 10.3390/app11041674
– volume: 7
  start-page: 37004
  year: 2019
  ident: 10.1016/j.cose.2021.102499_bib0042
  article-title: Network intrusion detection: based on deep hierarchical network and original flow data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905041
– year: 2018
  ident: 10.1016/j.cose.2021.102499_bib0015
– start-page: 949
  year: 2019
  ident: 10.1016/j.cose.2021.102499_bib0017
  article-title: Effect of activation functions on the performance of deep learning algorithms for network intrusion detection systems
– volume: 104
  start-page: 1
  year: 2020
  ident: 10.1016/j.cose.2021.102499_bib0028
  article-title: Efficient treatment of outliers and class imbalance for diabetes prediction
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101815
– volume: 142
  start-page: 1
  year: 2020
  ident: 10.1016/j.cose.2021.102499_bib0041
  article-title: Imbalance learning using heterogeneous ensembles
  publication-title: Expert Syst. Appl.
– volume: 192
  year: 2021
  ident: 10.1016/j.cose.2021.102499_bib0018
  article-title: LIO-IDS:handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.108076
– volume: 73
  start-page: 220
  year: 2017
  ident: 10.1016/j.cose.2021.102499_bib0019
  article-title: Learning from class-imbalanced data: review of methods and applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.12.035
– volume: 5
  start-page: 221
  issue: 4
  year: 2016
  ident: 10.1016/j.cose.2021.102499_bib0003
  article-title: Learning from imbalanced data: open challenges and future directions
  publication-title: Prog. Artif. Intell.
  doi: 10.1007/s13748-016-0094-0
– start-page: 258
  year: 2016
  ident: 10.1016/j.cose.2021.102499_bib0035
  article-title: Deep learning approach for network intrusion detection in software defined networking
SSID ssj0017688
Score 2.5895264
Snippet In recent times, Network-based Intrusion Detection Systems (NIDSs) have become very popular for detecting intrusions in computer networks. Existing NIDSs can...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102499
SubjectTerms Alarms
Algorithms
Artificial neural networks
Bagging
Boosting
Classification
Communications traffic
Computer networks
Cost-sensitive algorithms
Cybersecurity
Deep learning
False alarms
Intrusion detection systems
Machine learning
Network-based intrusion detection system
Title CSE-IDS: Using cost-sensitive deep learning and ensemble algorithms to handle class imbalance in network-based intrusion detection systems
URI https://dx.doi.org/10.1016/j.cose.2021.102499
https://www.proquest.com/docview/2621885797
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T-QwELYQNDR3PO7EW1PQId8mcZwHHVpACwiaBYnOshMHctrNrtjU_AB-NTOOsxIIUdA6thN5xjOfnW9mGDuWprQJQl2eyzx3VzfcoLHkmdCiCjT6RMd2v71LRg_x9aN8XGHDPhaGaJXe9nc23Vlr3zLwqzmY1_Vg7Aj0qIB4aAkEImmKYI9TqmLw73VJ8wgRTmfL_N7Y2wfOdBwv4oTjGTEKKYNB7PK_fumcPplp53suN9gvDxrhrPuuTbZimy32uy_IAH5_brO34fiCX52PT8ExAQBf3PIFUdTJqEFp7Rx8mYgn0E0J-MhOzcSCnjzNXur2ebqAdgZd6gUoCFlDPTVEfyws1A00HWuck_MrsYFCNlCyOHXrOF0NdKmhF3_Yw-XF_XDEfbEFXogoa3lehUmGu7lKKh1FlYyFqSJt4xI3uRU2FNroGLFhmhEsLAKDpqKSSWptaqTWQvxlq82ssTsMwqhAUGkReVIUXW5MIHFgnqdBST_17C4L-1VWhc9ETgUxJqqnnP1XJBlFklGdZHbZyXLMvMvD8W1v2QtPfdAmhY7i23EHvaSV38sLFaEuZ5lM83Tvh9Pus_WIoibczc0BW0XZ2EPEMq05csp6xNbOrm5Gd-8j6PJo
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNpLKaVVobSdQ2_I3cSO8-CGFtDyvCxI3Cw7cWiq3eyKzbk_oL-6M46zEqji0KtjO5Hn9dn5ZszYd2UrlyLU5YUqCn90wy06S55LI-vIYEz0bPfrm3Ryl1zcq_sNNh5yYYhWGXx_79O9tw4to7Cao2XTjKaeQI8KiJuWSCKSfsW2EiUy2oH9-L3mecSIp_N1gW_sHjJnepIXkcJxkyhiKmGQ-AKw_4xOz_y0Dz5n79jbgBrhuP-wHbbh2vdse7iRAYKB7rI_4-kpPz-ZHoGnAgC-uOMr4qiTV4PKuSWEeyIewLQV4CM3tzMHZvaweGy6n_MVdAvoay9ASdAamrkl_mPpoGmh7WnjnKJfhQ2Us4Gixak7T-pqoa8NvfrA7s5Ob8cTHm5b4KUUeceLOk5zNOc6rY0QtUqkrYVxSYVW7qSLpbEmQXCY5YQLy8iir6hVmjmXWWWMlB_ZZrto3ScGsSgRVTqEnpRGV1gbKRxYFFlU0V89t8fiYZV1GUqR040YMz1wzn5pkowmyeheMnvscD1m2RfieLG3GoSnn6iTxkjx4riDQdI6GPNKC1TmPFdZke3_57Tf2OvJ7fWVvjq_ufzM3ghKofDHOAdsE-XkviCw6exXr7h_AcNP8_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSE-IDS%3A+Using+cost-sensitive+deep+learning+and+ensemble+algorithms+to+handle+class+imbalance+in+network-based+intrusion+detection+systems&rft.jtitle=Computers+%26+security&rft.au=Gupta%2C+Neha&rft.au=Jindal%2C+Vinita&rft.au=Bedi%2C+Punam&rft.date=2022-01-01&rft.issn=0167-4048&rft.volume=112&rft.spage=102499&rft_id=info:doi/10.1016%2Fj.cose.2021.102499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2021_102499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon