CSE-IDS: Using cost-sensitive deep learning and ensemble algorithms to handle class imbalance in network-based intrusion detection systems
In recent times, Network-based Intrusion Detection Systems (NIDSs) have become very popular for detecting intrusions in computer networks. Existing NIDSs can easily identify those intrusions that have been frequently witnessed in the network (majority attacks), but they cannot identify new and infre...
Saved in:
| Published in | Computers & security Vol. 112; p. 102499 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Ltd
01.01.2022
Elsevier Sequoia S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-4048 1872-6208 |
| DOI | 10.1016/j.cose.2021.102499 |
Cover
| Abstract | In recent times, Network-based Intrusion Detection Systems (NIDSs) have become very popular for detecting intrusions in computer networks. Existing NIDSs can easily identify those intrusions that have been frequently witnessed in the network (majority attacks), but they cannot identify new and infrequent intrusions (minority attacks) accurately. Moreover, such systems solely focus on maximizing the overall Attack Detection Rate while overlooking the number of false alarms. To address these issues, this paper proposes CSE-IDS, a three-layer NIDS, based on Cost-Sensitive Deep Learning and Ensemble algorithms. Layer 1 of the proposed CSE-IDS uses Cost-Sensitive Deep Neural Network to separate normal traffic from suspicious network traffic. These suspicious samples are then sent to Layer 2, which uses the eXtreme Gradient Boosting algorithm to classify them into normal class, different majority attack classes, and a single class representing all minority attack classes. At last, Random Forest is used at Layer 3 to classify the minority attacks identified at Layer 2 into their respective classes. The performance of the proposed CSE-IDS was evaluated on the NSL-KDD, CIDDS-001, and CICIDS2017 datasets with respect to Accuracy, Recall, Precision, F1-score, ROC curve, AUC values, and computational times. The proposed system outperforms its counterparts by achieving a high Attack Detection Rate for both majority attacks and minority attacks present in the network. Further, it minimizes the number of false alarms by correctly segregating normal traffic from attack traffic. The obtained results confirm that the proposed CSE-IDS can be deployed in the real world for performing network-based intrusion detection. |
|---|---|
| AbstractList | In recent times, Network-based Intrusion Detection Systems (NIDSs) have become very popular for detecting intrusions in computer networks. Existing NIDSs can easily identify those intrusions that have been frequently witnessed in the network (majority attacks), but they cannot identify new and infrequent intrusions (minority attacks) accurately. Moreover, such systems solely focus on maximizing the overall Attack Detection Rate while overlooking the number of false alarms. To address these issues, this paper proposes CSE-IDS, a three-layer NIDS, based on Cost-Sensitive Deep Learning and Ensemble algorithms. Layer 1 of the proposed CSE-IDS uses Cost-Sensitive Deep Neural Network to separate normal traffic from suspicious network traffic. These suspicious samples are then sent to Layer 2, which uses the eXtreme Gradient Boosting algorithm to classify them into normal class, different majority attack classes, and a single class representing all minority attack classes. At last, Random Forest is used at Layer 3 to classify the minority attacks identified at Layer 2 into their respective classes. The performance of the proposed CSE-IDS was evaluated on the NSL-KDD, CIDDS-001, and CICIDS2017 datasets with respect to Accuracy, Recall, Precision, F1-score, ROC curve, AUC values, and computational times. The proposed system outperforms its counterparts by achieving a high Attack Detection Rate for both majority attacks and minority attacks present in the network. Further, it minimizes the number of false alarms by correctly segregating normal traffic from attack traffic. The obtained results confirm that the proposed CSE-IDS can be deployed in the real world for performing network-based intrusion detection. |
| ArticleNumber | 102499 |
| Author | Bedi, Punam Jindal, Vinita Gupta, Neha |
| Author_xml | – sequence: 1 givenname: Neha orcidid: 0000-0001-8299-4317 surname: Gupta fullname: Gupta, Neha email: neha.phd.2018@gmail.com organization: Department of Computer Science, University of Delhi, India – sequence: 2 givenname: Vinita orcidid: 0000-0002-0481-4840 surname: Jindal fullname: Jindal, Vinita email: vjindal@keshav.du.ac.in organization: Keshav Mahavidyalaya, University of Delhi, India – sequence: 3 givenname: Punam orcidid: 0000-0002-6007-7961 surname: Bedi fullname: Bedi, Punam email: pbedi@cs.du.ac.in organization: Department of Computer Science, University of Delhi, India |
| BookMark | eNp9kMtO3DAUhq2KSh0oL9CVpa4z-JLEnqobNFBAQmIBrC3HOQFPE3vq45mKV-CpcTSsWLCydf6Lfb5jchRiAEJ-cLbkjLdnm6WLCEvBBC8DUa9WX8iCayWqVjB9RBbFpKqa1fobOUbcMMZVq_WCvK7vL6ubi_tf9BF9eKKlJlcIAX32e6A9wJaOYFOYRRt6WiSYuhGoHZ9i8vl5QpojfS5aGbrRIlI_dXa0wQH1gQbI_2P6W3UWoS-DnHboYyjVGVyeb_iCGSb8Tr4OdkQ4fT9PyOOfy4f1dXV7d3WzPr-tnBQ6V6uBt7rWemgHK8TQ1LIbhIW6rxkDCVzaztaNlEqzsqVjnWJyaFoFoLrGWilPyM9D7zbFfzvAbDZxl0J50ohWcK0btVLFpQ8ulyJigsE4n-3835ysHw1nZiZvNmYmb2by5kC-RMWH6Db5yaaXz0O_DyEoq-89JIPOQ2HY-1Q4mT76z-JvrPeg0A |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124982 crossref_primary_10_1109_TII_2023_3326544 crossref_primary_10_3390_s22051847 crossref_primary_10_1109_ACCESS_2022_3201869 crossref_primary_10_1016_j_eswa_2022_119030 crossref_primary_10_1109_ACCESS_2024_3420080 crossref_primary_10_1007_s10586_023_04168_7 crossref_primary_10_1016_j_engappai_2023_107697 crossref_primary_10_1109_JIOT_2023_3324302 crossref_primary_10_1016_j_cose_2024_104154 crossref_primary_10_1038_s41598_025_88243_6 crossref_primary_10_1016_j_isatra_2024_03_018 crossref_primary_10_1080_23270012_2024_2377168 crossref_primary_10_7717_peerj_cs_1552 crossref_primary_10_1016_j_eswa_2023_120420 crossref_primary_10_1016_j_jksuci_2023_03_001 crossref_primary_10_1007_s11227_024_06263_x crossref_primary_10_3390_electronics13224560 crossref_primary_10_3934_mbe_2022536 crossref_primary_10_3390_app15063362 crossref_primary_10_1016_j_aej_2023_07_063 crossref_primary_10_1016_j_engappai_2023_107506 crossref_primary_10_1016_j_eswa_2023_121084 crossref_primary_10_3390_computers14010004 crossref_primary_10_3390_electronics12153300 crossref_primary_10_1007_s11042_024_19695_7 crossref_primary_10_1080_0952813X_2022_2104384 crossref_primary_10_1016_j_cose_2022_102940 crossref_primary_10_1109_TIFS_2023_3331240 crossref_primary_10_1016_j_inffus_2023_101804 crossref_primary_10_1016_j_asoc_2024_112603 crossref_primary_10_1016_j_asoc_2024_111517 crossref_primary_10_1016_j_eswa_2023_121366 crossref_primary_10_1186_s13677_023_00584_7 crossref_primary_10_3390_s23135829 crossref_primary_10_15803_ijnc_12_2_467 crossref_primary_10_1007_s12083_024_01650_w crossref_primary_10_1109_ACCESS_2023_3276863 crossref_primary_10_1109_ACCESS_2025_3538170 crossref_primary_10_3390_fi16120481 crossref_primary_10_32604_cmc_2022_031734 crossref_primary_10_1016_j_neucom_2024_128959 crossref_primary_10_1016_j_future_2023_01_027 crossref_primary_10_7717_peerj_cs_2745 crossref_primary_10_1016_j_asej_2024_102807 crossref_primary_10_1093_comjnl_bxae011 crossref_primary_10_3390_electronics12030643 crossref_primary_10_1016_j_neucom_2023_126544 crossref_primary_10_3390_sym16091151 crossref_primary_10_1109_JIOT_2023_3342638 crossref_primary_10_1016_j_comnet_2024_110423 crossref_primary_10_1155_2022_9851463 crossref_primary_10_1109_TNSM_2024_3383218 crossref_primary_10_1016_j_cose_2022_103054 crossref_primary_10_3390_bdcc6040137 crossref_primary_10_1016_j_jisa_2024_103736 crossref_primary_10_1002_cpe_7110 crossref_primary_10_1007_s42979_023_01926_7 crossref_primary_10_1016_j_jisa_2023_103516 crossref_primary_10_3390_sym14071461 crossref_primary_10_1016_j_cose_2022_102919 crossref_primary_10_1016_j_neucom_2024_128538 crossref_primary_10_1016_j_comcom_2023_03_005 crossref_primary_10_1631_FITEE_2200314 crossref_primary_10_1155_2023_4374385 |
| Cites_doi | 10.1016/j.cose.2020.102151 10.1016/j.neucom.2018.11.099 10.1109/ACCESS.2019.2933437 10.1109/ACCESS.2019.2895334 10.1109/ACCESS.2017.2762418 10.3390/fi12100167 10.1613/jair.953 10.1016/j.ecoinf.2020.101202 10.1186/s40537-020-00390-x 10.1109/ACCESS.2020.2987364 10.1007/s10489-020-01886-y 10.3390/pr9050834 10.1016/j.asoc.2017.03.016 10.1109/ACCESS.2019.2929487 10.1016/j.cose.2019.06.013 10.1504/IJKESDP.2011.039875 10.1186/s40537-018-0151-6 10.1016/j.cose.2021.102435 10.1016/j.cose.2021.102289 10.1023/A:1010933404324 10.1016/j.cose.2020.102158 10.3390/info9070149 10.3390/app11041674 10.1109/ACCESS.2019.2905041 10.1016/j.artmed.2020.101815 10.1016/j.comnet.2021.108076 10.1016/j.eswa.2016.12.035 10.1007/s13748-016-0094-0 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier Sequoia S.A. Jan 2022 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Sequoia S.A. Jan 2022 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 K7. L7M L~C L~D |
| DOI | 10.1016/j.cose.2021.102499 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Criminal Justice (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef ProQuest Criminal Justice (Alumni) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | ProQuest Criminal Justice (Alumni) |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-6208 |
| ExternalDocumentID | 10_1016_j_cose_2021_102499 S0167404821003230 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC BNPGV CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLX HLZ HVGLF HZ~ IHE J1W KOM LG8 LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SBM SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K TAE TN5 TWZ WH7 WUQ XJE XPP XSW YK3 ZMT ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD 7SC 8FD AGRNS JQ2 K7. L7M L~C L~D |
| ID | FETCH-LOGICAL-c328t-9f168488f6fa22f543bf2ae4d400e3e13aba4533780001c0b703f567ee7b5aa33 |
| IEDL.DBID | .~1 |
| ISSN | 0167-4048 |
| IngestDate | Mon Jul 14 08:15:28 EDT 2025 Wed Oct 01 06:31:29 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Sat May 03 15:56:04 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Boosting Cybersecurity Cost-sensitive algorithms Network-based intrusion detection system Bagging |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-9f168488f6fa22f543bf2ae4d400e3e13aba4533780001c0b703f567ee7b5aa33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0481-4840 0000-0002-6007-7961 0000-0001-8299-4317 |
| PQID | 2621885797 |
| PQPubID | 46289 |
| ParticipantIDs | proquest_journals_2621885797 crossref_citationtrail_10_1016_j_cose_2021_102499 crossref_primary_10_1016_j_cose_2021_102499 elsevier_sciencedirect_doi_10_1016_j_cose_2021_102499 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers & security |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Sequoia S.A |
| References | Bedi, Gupta, Jindal (bib0004) 2019; 171 Johnson, Khoshgoftaar (bib0021) 2019; 6 Bagui, Li (bib0002) 2021; 8 Leevy, Khoshgoftaar, Bauder, Seliya (bib0024) 2018; 5 Khan (bib0022) 2021; 9 Feng, Li, Shen, Zhou, Yang (bib0014) 2020; 8 Nguyen, Cooper, Kamei (bib0027) 2011; 3 Chiba, Abghour, Moussaid, Omri, Rida (bib0010) 2019; 86 Gupta, Jindal, Bedi (bib0018) 2021; 192 Chawla, Bowyer, Hall, Kegelmeyer (bib0008) 2002; 16 Liu, Gao, Hu (bib0026) 2021; 106 Tang, Mhamdi, McLernon, Zaidi, Ghogho (bib0035) 2016 Chuan-long, Zhu, Fei, He (bib0012) 2017; 5 Kukar, Kononenko (bib0023) 1998 Shin, J., Yoon, S., Kim, Y., Kim, T., Go, B., & Cha, Y. (2021, March). Effects of class imbalance on resampling and ensemble learning for improved prediction of cyanobacteria blooms. Zhang, Luo, García, Herrera (bib0043) 2017; 56 Rekha, Tyagi (bib0030) 2020 Vinayakumar, Alazab, Soman, Poornachandran, Al-Nemrat, Venkatraman (bib0038) 2019; 7 Iranmehr, Masnadi-Shirazi, Vasconcelos (bib0020) 2019; 343 Bartosz (bib0003) 2016; 5 Tavallaee, Bagheri, Lu, Ghorbani (bib0036) 2009 Oliveira, Praça, Maia, Sousa (bib0029) 2021; 11 Zefrehi, Altınçay (bib0041) 2020; 142 Sohi, Seifert, Ganji (bib0034) 2021; 102 Thapa, Liu, KC, Gokaraju, Roy (bib0037) 2020; 12 Li, Chen, Zhang, Wu (bib0025) 2020; 95 Bedi, Gupta, Jindal (bib0005) 2020; 51 Al, Dener (bib0001) 2021; 110 Yu, Li, Zhang, Wang (bib0040) 2019; 7 Dhaliwal, Nahid, Abbas (bib0013) 2018; 9 Wan, Wang, Ting (bib0039) 1999 1-38. doi:arXiv:2009.07352v1 Gupta, Bedi, Jindal (bib0017) 2019 61, 1-13. doi:https://doi.org/10.1016/j.ecoinf.2020.101202 Binbusayyis, Vaiyapuri (bib0006) 2019; 7 Haixiang, Yijing, Shang, Mingyun, Yuanyue, Bing (bib0019) 2017; 73 Breiman (bib0007) 2001; 45 Ring, Wunderlich, Grüdl, Landes, Hotho (bib0031) 2017 Chen, Guestrin (bib0009) 2016 Zhang, Chen, Jin, Wang, Guo (bib0042) 2019; 7 Fernández, García, Galar, Prati, Krawczyk, Herrera (bib0015) 2018 Sharafaldin, Lashkari, Ghorbani (bib0032) 2018 Chou, D., & Jiang, M. (2020, September 15). Data-driven network intrusion detection: a taxonomy of challenges and methods. Nnamoko, Korkontzelos (bib0028) 2020; 104 Gu, Lu (bib0016) 2021; 103 Vinayakumar (10.1016/j.cose.2021.102499_bib0038) 2019; 7 Fernández (10.1016/j.cose.2021.102499_bib0015) 2018 Gupta (10.1016/j.cose.2021.102499_bib0017) 2019 Bartosz (10.1016/j.cose.2021.102499_bib0003) 2016; 5 Zefrehi (10.1016/j.cose.2021.102499_bib0041) 2020; 142 Chuan-long (10.1016/j.cose.2021.102499_bib0012) 2017; 5 Johnson (10.1016/j.cose.2021.102499_bib0021) 2019; 6 Feng (10.1016/j.cose.2021.102499_bib0014) 2020; 8 Oliveira (10.1016/j.cose.2021.102499_bib0029) 2021; 11 Li (10.1016/j.cose.2021.102499_bib0025) 2020; 95 Sharafaldin (10.1016/j.cose.2021.102499_bib0032) 2018 Liu (10.1016/j.cose.2021.102499_bib0026) 2021; 106 Tang (10.1016/j.cose.2021.102499_bib0035) 2016 Yu (10.1016/j.cose.2021.102499_bib0040) 2019; 7 Bedi (10.1016/j.cose.2021.102499_bib0004) 2019; 171 Iranmehr (10.1016/j.cose.2021.102499_bib0020) 2019; 343 Thapa (10.1016/j.cose.2021.102499_bib0037) 2020; 12 Wan (10.1016/j.cose.2021.102499_bib0039) 1999 Rekha (10.1016/j.cose.2021.102499_bib0030) 2020 Ring (10.1016/j.cose.2021.102499_bib0031) 2017 Sohi (10.1016/j.cose.2021.102499_bib0034) 2021; 102 Bedi (10.1016/j.cose.2021.102499_bib0005) 2020; 51 Bagui (10.1016/j.cose.2021.102499_bib0002) 2021; 8 Binbusayyis (10.1016/j.cose.2021.102499_bib0006) 2019; 7 Kukar (10.1016/j.cose.2021.102499_bib0023) 1998 Zhang (10.1016/j.cose.2021.102499_bib0042) 2019; 7 Gu (10.1016/j.cose.2021.102499_bib0016) 2021; 103 Breiman (10.1016/j.cose.2021.102499_bib0007) 2001; 45 Chen (10.1016/j.cose.2021.102499_bib0009) 2016 Nnamoko (10.1016/j.cose.2021.102499_bib0028) 2020; 104 10.1016/j.cose.2021.102499_bib0011 10.1016/j.cose.2021.102499_bib0033 Gupta (10.1016/j.cose.2021.102499_bib0018) 2021; 192 Leevy (10.1016/j.cose.2021.102499_bib0024) 2018; 5 Al (10.1016/j.cose.2021.102499_bib0001) 2021; 110 Chawla (10.1016/j.cose.2021.102499_bib0008) 2002; 16 Nguyen (10.1016/j.cose.2021.102499_bib0027) 2011; 3 Khan (10.1016/j.cose.2021.102499_bib0022) 2021; 9 Dhaliwal (10.1016/j.cose.2021.102499_bib0013) 2018; 9 Haixiang (10.1016/j.cose.2021.102499_bib0019) 2017; 73 Zhang (10.1016/j.cose.2021.102499_bib0043) 2017; 56 Tavallaee (10.1016/j.cose.2021.102499_bib0036) 2009 Chiba (10.1016/j.cose.2021.102499_bib0010) 2019; 86 |
| References_xml | – start-page: 108 year: 2018 end-page: 116 ident: bib0032 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization publication-title: Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018) – volume: 5 start-page: 221 year: 2016 end-page: 232 ident: bib0003 article-title: Learning from imbalanced data: open challenges and future directions publication-title: Prog. Artif. Intell. – volume: 73 start-page: 220 year: 2017 end-page: 239 ident: bib0019 article-title: Learning from class-imbalanced data: review of methods and applications publication-title: Expert Syst. Appl. – volume: 3 start-page: 4 year: 2011 end-page: 21 ident: bib0027 article-title: Borderline over-sampling for imbalanced data classification publication-title: Int. J. Knowl. Eng.Soft Data Paradigms – start-page: 361 year: 2017 end-page: 369 ident: bib0031 article-title: Flow-based benchmark data sets for intrusion detection publication-title: Proceedings of the 16th European Conference on Cyber Warfare and Security (ECCWS) – start-page: 258 year: 2016 end-page: 263 ident: bib0035 article-title: Deep learning approach for network intrusion detection in software defined networking publication-title: International Conference on Wireless Networks and Mobile Communications (WINCOM) – volume: 142 start-page: 1 year: 2020 end-page: 15 ident: bib0041 article-title: Imbalance learning using heterogeneous ensembles publication-title: Expert Syst. Appl. – volume: 102 start-page: 1 year: 2021 end-page: 23 ident: bib0034 article-title: RNNIDS: Enhancing network intrusion detection systems through deep learning publication-title: Comput. Security – volume: 56 start-page: 357 year: 2017 end-page: 367 ident: bib0043 article-title: Cost-Sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers publication-title: Appl. Soft Comput. – volume: 11 start-page: 1674 year: 2021 ident: bib0029 article-title: Intelligent cyber attack detection and classification for network-based intrusion detection systems publication-title: Appl. Sci. – volume: 7 start-page: 118931 year: 2019 end-page: 118942 ident: bib0040 article-title: The OCS-SVM: an objective-cost-sensitive SVM with sample-based misclassification cost invariance publication-title: IEEE Access – volume: 7 start-page: 41525 year: 2019 end-page: 41550 ident: bib0038 article-title: Deep learning approach for intelligent intrusion detection system publication-title: IEEE Access – start-page: 949 year: 2019 end-page: 960 ident: bib0017 article-title: Effect of activation functions on the performance of deep learning algorithms for network intrusion detection systems publication-title: Proceedings of International Conference on Emerging Trends in Information Technology (ICETIT-2019), Part of Lecture Notes in Electrical Engineering (LNEE). 605 – volume: 110 year: 2021 ident: bib0001 article-title: STL-HDL: A new hybrid network intrusion detection system for imbalanced dataset on big data environment publication-title: Comput. Security – volume: 103 year: 2021 ident: bib0016 article-title: An effective intrusion detection approach using SVM with naïve Bayes feature embedding publication-title: Comput. Security – volume: 6 start-page: 1 year: 2019 end-page: 54 ident: bib0021 article-title: Survey on deep learning with class imbalance publication-title: J. Big Data – volume: 8 start-page: 69979 year: 2020 end-page: 69996 ident: bib0014 article-title: Using cost-sensitive learning and feature selection algorithms to improve the performance of imbalanced classification publication-title: IEEE Access – volume: 343 start-page: 50 year: 2019 end-page: 64 ident: bib0020 article-title: Cost-sensitive support vector machines publication-title: Neurocomputing – year: 2009 ident: bib0036 article-title: NSL-KDD Dataset – volume: 9 start-page: 149 year: 2018 ident: bib0013 article-title: Effective intrusion detection system using XGBoost publication-title: Information – start-page: 445 year: 1998 end-page: 449 ident: bib0023 article-title: Cost-sensitive learning with neural networks publication-title: 13th European Conference on Artificial Intelligence (ECAI 1998) – volume: 7 start-page: 37004 year: 2019 end-page: 37016 ident: bib0042 article-title: Network intrusion detection: based on deep hierarchical network and original flow data publication-title: IEEE Access – volume: 192 year: 2021 ident: bib0018 article-title: LIO-IDS:handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system publication-title: Comput. Netw. – volume: 171 start-page: 780 year: 2019 end-page: 789 ident: bib0004 article-title: Siam-IDS: Handling class imbalance problem in intrusion detection systems using siamese neural network publication-title: Third International Conference on Computing and Network Communications – volume: 95 start-page: 1 year: 2020 end-page: 15 ident: bib0025 article-title: Building auto-encoder intrusion detection system based on random forest feature selection publication-title: Comput. Security – volume: 106 year: 2021 ident: bib0026 article-title: A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM publication-title: Comput. Security – reference: Shin, J., Yoon, S., Kim, Y., Kim, T., Go, B., & Cha, Y. (2021, March). Effects of class imbalance on resampling and ensemble learning for improved prediction of cyanobacteria blooms. – volume: 86 start-page: 291 year: 2019 end-page: 317 ident: bib0010 article-title: Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms publication-title: Comput. Security – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: bib0008 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0007 article-title: Random forests publication-title: Mach. Learn. – reference: Chou, D., & Jiang, M. (2020, September 15). Data-driven network intrusion detection: a taxonomy of challenges and methods. – volume: 5 start-page: 1 year: 2018 end-page: 30 ident: bib0024 article-title: A survey on addressing high-class imbalance in big data publication-title: J. Big Data – volume: 104 start-page: 1 year: 2020 end-page: 12 ident: bib0028 article-title: Efficient treatment of outliers and class imbalance for diabetes prediction publication-title: Artif. Intell. Med. – start-page: 645 year: 2020 end-page: 658 ident: bib0030 article-title: Necessary Information to Know to Solve Class Imbalance Problem: From a User's Perspective publication-title: Proceedings of International Conference on Recent Innovations in Computing 2019 – volume: 12 start-page: 167 year: 2020 ident: bib0037 article-title: Comparison of machine learning and deep learning models for network intrusion detection systems publication-title: Future Internet – volume: 8 start-page: 1 year: 2021 end-page: 41 ident: bib0002 article-title: Resampling imbalanced data for network intrusion detection datasets publication-title: J. Big Data – volume: 7 start-page: 106495 year: 2019 end-page: 106513 ident: bib0006 article-title: Identifying and benchmarking key features for cyber intrusion detection: an ensemble approach publication-title: IEEE Access – start-page: 1 year: 1999 end-page: 4 ident: bib0039 article-title: Introducing cost-sensitive neural networks publication-title: Proceedings of the second international conference on information, communications and signal processing – volume: 5 start-page: 21954 year: 2017 end-page: 21961 ident: bib0012 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: IEEE Access – reference: , 1-38. doi:arXiv:2009.07352v1 – year: 2018 ident: bib0015 article-title: Learning from Imbalanced Data Sets – reference: 61, 1-13. doi:https://doi.org/10.1016/j.ecoinf.2020.101202 – volume: 9 start-page: 834 year: 2021 end-page: 847 ident: bib0022 article-title: HCRNNIDS: hybrid convolutional recurrent neural network-based network intrusion detection system publication-title: Processes – volume: 51 start-page: 1133 year: 2020 end-page: 1151 ident: bib0005 article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems publication-title: Appl. Intell. – start-page: 785 year: 2016 end-page: 794 ident: bib0009 article-title: XGBoost: a scalable tree boosting system publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – start-page: 785 year: 2016 ident: 10.1016/j.cose.2021.102499_bib0009 article-title: XGBoost: a scalable tree boosting system – volume: 102 start-page: 1 year: 2021 ident: 10.1016/j.cose.2021.102499_bib0034 article-title: RNNIDS: Enhancing network intrusion detection systems through deep learning publication-title: Comput. Security doi: 10.1016/j.cose.2020.102151 – start-page: 108 year: 2018 ident: 10.1016/j.cose.2021.102499_bib0032 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization – volume: 343 start-page: 50 year: 2019 ident: 10.1016/j.cose.2021.102499_bib0020 article-title: Cost-sensitive support vector machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.099 – year: 2009 ident: 10.1016/j.cose.2021.102499_bib0036 – start-page: 445 year: 1998 ident: 10.1016/j.cose.2021.102499_bib0023 article-title: Cost-sensitive learning with neural networks – start-page: 645 year: 2020 ident: 10.1016/j.cose.2021.102499_bib0030 article-title: Necessary Information to Know to Solve Class Imbalance Problem: From a User's Perspective – start-page: 1 year: 1999 ident: 10.1016/j.cose.2021.102499_bib0039 article-title: Introducing cost-sensitive neural networks – volume: 7 start-page: 118931 year: 2019 ident: 10.1016/j.cose.2021.102499_bib0040 article-title: The OCS-SVM: an objective-cost-sensitive SVM with sample-based misclassification cost invariance publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2933437 – volume: 7 start-page: 41525 year: 2019 ident: 10.1016/j.cose.2021.102499_bib0038 article-title: Deep learning approach for intelligent intrusion detection system publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2895334 – ident: 10.1016/j.cose.2021.102499_bib0011 – volume: 5 start-page: 21954 year: 2017 ident: 10.1016/j.cose.2021.102499_bib0012 article-title: A deep learning approach for intrusion detection using recurrent neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2762418 – volume: 12 start-page: 167 issue: 10 year: 2020 ident: 10.1016/j.cose.2021.102499_bib0037 article-title: Comparison of machine learning and deep learning models for network intrusion detection systems publication-title: Future Internet doi: 10.3390/fi12100167 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.cose.2021.102499_bib0008 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.953 – volume: 6 start-page: 1 issue: 27 year: 2019 ident: 10.1016/j.cose.2021.102499_bib0021 article-title: Survey on deep learning with class imbalance publication-title: J. Big Data – ident: 10.1016/j.cose.2021.102499_bib0033 doi: 10.1016/j.ecoinf.2020.101202 – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.cose.2021.102499_bib0002 article-title: Resampling imbalanced data for network intrusion detection datasets publication-title: J. Big Data doi: 10.1186/s40537-020-00390-x – volume: 8 start-page: 69979 year: 2020 ident: 10.1016/j.cose.2021.102499_bib0014 article-title: Using cost-sensitive learning and feature selection algorithms to improve the performance of imbalanced classification publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2987364 – volume: 51 start-page: 1133 year: 2020 ident: 10.1016/j.cose.2021.102499_bib0005 article-title: I-SiamIDS: an improved Siam-IDS for handling class imbalance in network-based intrusion detection systems publication-title: Appl. Intell. doi: 10.1007/s10489-020-01886-y – volume: 9 start-page: 834 issue: 5 year: 2021 ident: 10.1016/j.cose.2021.102499_bib0022 article-title: HCRNNIDS: hybrid convolutional recurrent neural network-based network intrusion detection system publication-title: Processes doi: 10.3390/pr9050834 – volume: 56 start-page: 357 year: 2017 ident: 10.1016/j.cose.2021.102499_bib0043 article-title: Cost-Sensitive back-propagation neural networks with binarization techniques in addressing multi-class problems and non-competent classifiers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.03.016 – volume: 7 start-page: 106495 year: 2019 ident: 10.1016/j.cose.2021.102499_bib0006 article-title: Identifying and benchmarking key features for cyber intrusion detection: an ensemble approach publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929487 – start-page: 361 year: 2017 ident: 10.1016/j.cose.2021.102499_bib0031 article-title: Flow-based benchmark data sets for intrusion detection – volume: 95 start-page: 1 issue: 101851 year: 2020 ident: 10.1016/j.cose.2021.102499_bib0025 article-title: Building auto-encoder intrusion detection system based on random forest feature selection publication-title: Comput. Security – volume: 86 start-page: 291 year: 2019 ident: 10.1016/j.cose.2021.102499_bib0010 article-title: Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms publication-title: Comput. Security doi: 10.1016/j.cose.2019.06.013 – volume: 3 start-page: 4 issue: 1 year: 2011 ident: 10.1016/j.cose.2021.102499_bib0027 article-title: Borderline over-sampling for imbalanced data classification publication-title: Int. J. Knowl. Eng.Soft Data Paradigms doi: 10.1504/IJKESDP.2011.039875 – volume: 5 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.cose.2021.102499_bib0024 article-title: A survey on addressing high-class imbalance in big data publication-title: J. Big Data doi: 10.1186/s40537-018-0151-6 – volume: 110 year: 2021 ident: 10.1016/j.cose.2021.102499_bib0001 article-title: STL-HDL: A new hybrid network intrusion detection system for imbalanced dataset on big data environment publication-title: Comput. Security doi: 10.1016/j.cose.2021.102435 – volume: 171 start-page: 780 year: 2019 ident: 10.1016/j.cose.2021.102499_bib0004 article-title: Siam-IDS: Handling class imbalance problem in intrusion detection systems using siamese neural network – volume: 106 year: 2021 ident: 10.1016/j.cose.2021.102499_bib0026 article-title: A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM publication-title: Comput. Security doi: 10.1016/j.cose.2021.102289 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.cose.2021.102499_bib0007 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 103 year: 2021 ident: 10.1016/j.cose.2021.102499_bib0016 article-title: An effective intrusion detection approach using SVM with naïve Bayes feature embedding publication-title: Comput. Security doi: 10.1016/j.cose.2020.102158 – volume: 9 start-page: 149 issue: 7 year: 2018 ident: 10.1016/j.cose.2021.102499_bib0013 article-title: Effective intrusion detection system using XGBoost publication-title: Information doi: 10.3390/info9070149 – volume: 11 start-page: 1674 issue: 4 year: 2021 ident: 10.1016/j.cose.2021.102499_bib0029 article-title: Intelligent cyber attack detection and classification for network-based intrusion detection systems publication-title: Appl. Sci. doi: 10.3390/app11041674 – volume: 7 start-page: 37004 year: 2019 ident: 10.1016/j.cose.2021.102499_bib0042 article-title: Network intrusion detection: based on deep hierarchical network and original flow data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2905041 – year: 2018 ident: 10.1016/j.cose.2021.102499_bib0015 – start-page: 949 year: 2019 ident: 10.1016/j.cose.2021.102499_bib0017 article-title: Effect of activation functions on the performance of deep learning algorithms for network intrusion detection systems – volume: 104 start-page: 1 year: 2020 ident: 10.1016/j.cose.2021.102499_bib0028 article-title: Efficient treatment of outliers and class imbalance for diabetes prediction publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101815 – volume: 142 start-page: 1 year: 2020 ident: 10.1016/j.cose.2021.102499_bib0041 article-title: Imbalance learning using heterogeneous ensembles publication-title: Expert Syst. Appl. – volume: 192 year: 2021 ident: 10.1016/j.cose.2021.102499_bib0018 article-title: LIO-IDS:handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.108076 – volume: 73 start-page: 220 year: 2017 ident: 10.1016/j.cose.2021.102499_bib0019 article-title: Learning from class-imbalanced data: review of methods and applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.12.035 – volume: 5 start-page: 221 issue: 4 year: 2016 ident: 10.1016/j.cose.2021.102499_bib0003 article-title: Learning from imbalanced data: open challenges and future directions publication-title: Prog. Artif. Intell. doi: 10.1007/s13748-016-0094-0 – start-page: 258 year: 2016 ident: 10.1016/j.cose.2021.102499_bib0035 article-title: Deep learning approach for network intrusion detection in software defined networking |
| SSID | ssj0017688 |
| Score | 2.5895264 |
| Snippet | In recent times, Network-based Intrusion Detection Systems (NIDSs) have become very popular for detecting intrusions in computer networks. Existing NIDSs can... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102499 |
| SubjectTerms | Alarms Algorithms Artificial neural networks Bagging Boosting Classification Communications traffic Computer networks Cost-sensitive algorithms Cybersecurity Deep learning False alarms Intrusion detection systems Machine learning Network-based intrusion detection system |
| Title | CSE-IDS: Using cost-sensitive deep learning and ensemble algorithms to handle class imbalance in network-based intrusion detection systems |
| URI | https://dx.doi.org/10.1016/j.cose.2021.102499 https://www.proquest.com/docview/2621885797 |
| Volume | 112 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: AKRWK dateStart: 19820101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T-QwELYQNDR3PO7EW1PQId8mcZwHHVpACwiaBYnOshMHctrNrtjU_AB-NTOOsxIIUdA6thN5xjOfnW9mGDuWprQJQl2eyzx3VzfcoLHkmdCiCjT6RMd2v71LRg_x9aN8XGHDPhaGaJXe9nc23Vlr3zLwqzmY1_Vg7Aj0qIB4aAkEImmKYI9TqmLw73VJ8wgRTmfL_N7Y2wfOdBwv4oTjGTEKKYNB7PK_fumcPplp53suN9gvDxrhrPuuTbZimy32uy_IAH5_brO34fiCX52PT8ExAQBf3PIFUdTJqEFp7Rx8mYgn0E0J-MhOzcSCnjzNXur2ebqAdgZd6gUoCFlDPTVEfyws1A00HWuck_MrsYFCNlCyOHXrOF0NdKmhF3_Yw-XF_XDEfbEFXogoa3lehUmGu7lKKh1FlYyFqSJt4xI3uRU2FNroGLFhmhEsLAKDpqKSSWptaqTWQvxlq82ssTsMwqhAUGkReVIUXW5MIHFgnqdBST_17C4L-1VWhc9ETgUxJqqnnP1XJBlFklGdZHbZyXLMvMvD8W1v2QtPfdAmhY7i23EHvaSV38sLFaEuZ5lM83Tvh9Pus_WIoibczc0BW0XZ2EPEMq05csp6xNbOrm5Gd-8j6PJo |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHNpLKaVVobSdQ2_I3cSO8-CGFtDyvCxI3Cw7cWiq3eyKzbk_oL-6M46zEqji0KtjO5Hn9dn5ZszYd2UrlyLU5YUqCn90wy06S55LI-vIYEz0bPfrm3Ryl1zcq_sNNh5yYYhWGXx_79O9tw4to7Cao2XTjKaeQI8KiJuWSCKSfsW2EiUy2oH9-L3mecSIp_N1gW_sHjJnepIXkcJxkyhiKmGQ-AKw_4xOz_y0Dz5n79jbgBrhuP-wHbbh2vdse7iRAYKB7rI_4-kpPz-ZHoGnAgC-uOMr4qiTV4PKuSWEeyIewLQV4CM3tzMHZvaweGy6n_MVdAvoay9ASdAamrkl_mPpoGmh7WnjnKJfhQ2Us4Gixak7T-pqoa8NvfrA7s5Ob8cTHm5b4KUUeceLOk5zNOc6rY0QtUqkrYVxSYVW7qSLpbEmQXCY5YQLy8iir6hVmjmXWWWMlB_ZZrto3ScGsSgRVTqEnpRGV1gbKRxYFFlU0V89t8fiYZV1GUqR040YMz1wzn5pkowmyeheMnvscD1m2RfieLG3GoSnn6iTxkjx4riDQdI6GPNKC1TmPFdZke3_57Tf2OvJ7fWVvjq_ufzM3ghKofDHOAdsE-XkviCw6exXr7h_AcNP8_0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSE-IDS%3A+Using+cost-sensitive+deep+learning+and+ensemble+algorithms+to+handle+class+imbalance+in+network-based+intrusion+detection+systems&rft.jtitle=Computers+%26+security&rft.au=Gupta%2C+Neha&rft.au=Jindal%2C+Vinita&rft.au=Bedi%2C+Punam&rft.date=2022-01-01&rft.issn=0167-4048&rft.volume=112&rft.spage=102499&rft_id=info:doi/10.1016%2Fj.cose.2021.102499&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cose_2021_102499 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon |