CSFCM: An improved fuzzy C-Means image segmentation algorithm using a cooperative approach

Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such as the choice of the number of clusters and the cluster’s center initialization. In this work, we propose new approaches to deal with these tw...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 166; p. 114063
Main Authors Abdellahoum, Hamza, Mokhtari, Nassim, Brahimi, Abderrahmane, Boukra, Abdelmadjid
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.03.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2020.114063

Cover

Abstract Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such as the choice of the number of clusters and the cluster’s center initialization. In this work, we propose new approaches to deal with these two drawbacks. We propose for the first problem two approaches. The first proposed approach exploits neural networks and the Xie and Beni index, while the second one exploits the histogram. Concerning the second problem, we propose a new metaheuristics cooperation approach using the Genetic Algorithm (GA), Biogeography Based Algorithm(BBO), and Firefly Algorithm (FA). This cooperation is managed by a multi-agent system allowing to determine automatically the fittest metaheuristics parameters. Finally, we propose to use a histogram-based version of FCM to reduce the execution time of the algorithm. Experimental results show that our proposed approach improves the performance of the basic FCM algorithm and outperforms other methods proposed in the literature. •Determination of the number of clusters in image segmentation.•Initialization of the clusters center (using a cooperative approach).•Ensuring good segmentation.
AbstractList Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such as the choice of the number of clusters and the cluster's center initialization. In this work, we propose new approaches to deal with these two drawbacks. We propose for the first problem two approaches. The first proposed approach exploits neural networks and the Xie and Beni index, while the second one exploits the histogram. Concerning the second problem, we propose a new metaheuristics cooperation approach using the Genetic Algorithm (GA), Biogeography Based Algorithm(BBO), and Firefly Algorithm (FA). This cooperation is managed by a multi-agent system allowing to determine automatically the fittest metaheuristics parameters. Finally, we propose to use a histogram-based version of FCM to reduce the execution time of the algorithm. Experimental results show that our proposed approach improves the performance of the basic FCM algorithm and outperforms other methods proposed in the literature.
Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such as the choice of the number of clusters and the cluster’s center initialization. In this work, we propose new approaches to deal with these two drawbacks. We propose for the first problem two approaches. The first proposed approach exploits neural networks and the Xie and Beni index, while the second one exploits the histogram. Concerning the second problem, we propose a new metaheuristics cooperation approach using the Genetic Algorithm (GA), Biogeography Based Algorithm(BBO), and Firefly Algorithm (FA). This cooperation is managed by a multi-agent system allowing to determine automatically the fittest metaheuristics parameters. Finally, we propose to use a histogram-based version of FCM to reduce the execution time of the algorithm. Experimental results show that our proposed approach improves the performance of the basic FCM algorithm and outperforms other methods proposed in the literature. •Determination of the number of clusters in image segmentation.•Initialization of the clusters center (using a cooperative approach).•Ensuring good segmentation.
ArticleNumber 114063
Author Mokhtari, Nassim
Boukra, Abdelmadjid
Brahimi, Abderrahmane
Abdellahoum, Hamza
Author_xml – sequence: 1
  givenname: Hamza
  surname: Abdellahoum
  fullname: Abdellahoum, Hamza
  email: habdellahoum@usthb.dz
– sequence: 2
  givenname: Nassim
  surname: Mokhtari
  fullname: Mokhtari, Nassim
  email: nassim.mokhta@gmail.com
– sequence: 3
  givenname: Abderrahmane
  surname: Brahimi
  fullname: Brahimi, Abderrahmane
  email: abdou.brahimi3@gmail.com
– sequence: 4
  givenname: Abdelmadjid
  surname: Boukra
  fullname: Boukra, Abdelmadjid
  email: aboukra@usthb.dz
BookMark eNp9kDtPwzAQgC1UJFrgDzBZYk7xK06CWKqIAhIVA7CwWI5zLa5au9hpEf31uAoTQ6eT7u67xzdCA-cdIHRFyZgSKm-WY4jfeswISwkqiOQnaEjLgmeyqPgADUmVF5mghThDoxiXhNCCkGKIPurXaT27xROH7XoT_A5aPN_u9z-4zmagXUxpvQAcYbEG1-nOeof1auGD7T7XeButW2CNjfcbCKm6A6w3aY42nxfodK5XES7_4jl6n96_1Y_Z88vDUz15zgxnZZdV7VxLqISQvBKEGZZO402uTWNKaBuqC8iN0JoaLjlpoGibnEsmG9lWtG04P0fX_dy09msLsVNLvw0urVRMlISQnAuWuljfZYKPMcBcbUJ6LfwoStTBoVqqg0N1cKh6hwkq_0HG9g66oO3qOHrXo5Be31kIKhoLzkBrA5hOtd4ew38Bg0yO6w
CitedBy_id crossref_primary_10_1016_j_apenergy_2021_118314
crossref_primary_10_3233_MGS_220317
crossref_primary_10_1007_s11831_021_09619_1
crossref_primary_10_2298_CSIS220321039Y
crossref_primary_10_4018_IJISMD_306644
crossref_primary_10_1007_s13042_024_02139_x
crossref_primary_10_3390_a15100380
crossref_primary_10_3390_s22228956
crossref_primary_10_13005_bpj_3056
crossref_primary_10_1007_s11042_023_16569_2
crossref_primary_10_52756_ijerr_2024_v44spl_005
crossref_primary_10_1007_s11042_023_14861_9
crossref_primary_10_1038_s41598_022_26142_w
crossref_primary_10_3390_electronics13020432
crossref_primary_10_1109_TSMC_2024_3388475
crossref_primary_10_3390_app13031281
crossref_primary_10_3390_su152015118
crossref_primary_10_1016_j_asoc_2021_108005
crossref_primary_10_1109_ACCESS_2021_3058986
crossref_primary_10_3390_e25071021
crossref_primary_10_1007_s11063_022_10876_9
crossref_primary_10_1016_j_ins_2021_07_053
crossref_primary_10_1080_09500340_2023_2174358
crossref_primary_10_1007_s11227_022_04769_w
crossref_primary_10_1016_j_asoc_2023_110268
crossref_primary_10_1016_j_asoc_2023_110947
Cites_doi 10.1016/j.ins.2007.06.028
10.1109/TIP.2010.2040763
10.1007/s11227-020-03171-8
10.1016/S0167-8655(98)00121-4
10.1080/01969727308546047
10.1016/j.asoc.2019.105503
10.1007/s13748-014-0044-7
10.1109/TSMCB.2004.831165
10.1166/jmihi.2019.2745
10.5815/ijisa.2012.12.09
10.1109/TEVC.2008.919004
10.1109/ACCESS.2019.2958456
10.1007/s00500-017-2916-9
10.1109/ICIP.2002.1039888
10.1109/91.413225
10.1109/42.996338
10.1016/j.compmedimag.2005.10.001
10.1016/S0019-9958(65)90241-X
10.1016/j.asoc.2020.106200
10.1109/TSMCB.2003.810951
10.1111/1467-9868.00293
10.1109/34.85677
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Mar 15, 2021
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Mar 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2020.114063
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2020_114063
S0957417420308253
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-9dfa6e944639402c20173b5acbc8edb1a7e5c4aa1c3630be7db53626b6d91db33
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 06:11:26 EDT 2025
Sat Oct 25 05:47:11 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Fri Feb 23 02:47:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biogeography based algorithm
Segmentation
Genetic algorithm
Firefly algorithm
Classification
Fuzzy c-means
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-9dfa6e944639402c20173b5acbc8edb1a7e5c4aa1c3630be7db53626b6d91db33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2480005342
PQPubID 2045477
ParticipantIDs proquest_journals_2480005342
crossref_primary_10_1016_j_eswa_2020_114063
crossref_citationtrail_10_1016_j_eswa_2020_114063
elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114063
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References MacQueen (b34) 1967
Pham, D. (2002). Fuzzy clustering with spatial constraints. In
Padmavathi, Eswaramurthy, Revathi (b40) 2018
Hong, Xiao, Zhu (b22) 2006; 29
Kumar, Fred, Kumar, Varghese (b29) 2018
Sepas-Moghaddam, Yazdani, Shahabi (b48) 2014; 3
Singh, Laishram, Roy (b51) 2019
Wang, Fang, Li, Wang (b53) 2017
Qiao, Yang (b45) 2020; 8
Gordon (b15) 1999
New York, USA (pp. II-65–II-68). 2002.
Balasubramani, Marcus (b3) 2013; 5
Yu, Cheng, Huang (b61) 2005; 34
Wang, Zhang, Xiao, Li (b54) 2017
Zhang, Jiang, Zhou, Xue, Chen (b63) 2017; 23
Aiguo, Yunjie (b2) 2019; 9
Chen, Fang (b9) 2008
Griffin, Holub, Perona (b16) 2006
Zhou, Yang, Zhang (b64) 2014
Chen, Zhang (b10) 2004; 34
Hong, Xiao, Zhu (b23) 2007; 30
Kumar, Reddy, Rao (b31) 2018; 7
Bezdek (b5) 1973; 3
Pant, Chinta, Tripathy (b42) 2019
MacArthur, Wilson (b33) 1967
Xiong, Tang, Chen, Hu, Chen (b57) 2020
Nayak, Vakula, Dash, Naik (b37) 2019
Gustafson, Kessel (b17) 1978
.
Jiang, Mastorakis, Yuan, Lagunas (b25) 2009
Haghdoost, Abadi, Abedini (b18) 2015; 31
Miao, Zhou, Huang (b35) 2020; 91
Xia, Lin, Li-Hua (b55) 2019
Kumar, Fred, Kumar, Varghese (b30) 2019
Beale (b4) 1969
(n.d.). BrainWeb: Simulated Brain Database. Retrieved from
Ouadfel, Meshoul (b38) 2012; 4
Pham, Prince (b44) 1999; 20
Hall, Kanade (b19) 2005
Xie, Beni (b56) 1991; 13
Holland (b21) 1975
Jing, Deng, Yu (b26) 2014
Xu, Houb, Liuc, Yong Caic, Chend, Liue (b58) 2020; 38
Ozkan, Turksen (b39) 2007; 177
Samina, Hammad, Humayun (b47) 2010
Pal, Bezdek (b41) 1995; 3
Yang, Zheng, Lin (b60) 2001; 13
Krinidis, Chatzis (b27) 2010; 19
Yang (b59) 2008
He, Belacel, Hamam, Bouslimani (b20) 2009
Hore, Ziou (b24) 2010
Liu, Yih, Lin, Liu (b32) 2009; 5
Chu, Zhu, Shi, Song (b11) 2010
Duda, Hart (b14) 1973
Zadeh (b62) 1965; 8
Simon (b50) 2008; 12
Ahmed, Yamany, Mohamed, Farag, Moriarty (b1) 2002; 21
Ren, Wang, Feng, Xu, Liu, Ding (b46) 2019; 81
Bezdek (b6) 1981
Milligan, Cooper (b36) 1985; 44
Tibshirani, Walther, Hastie (b52) 2001; 63
Daoudi, Boukra, Ahmed-Nacer (b13) 2011; 2
Kumar, Dwivedi, Jangam (b28) 2019
Calinski, Harabasz (b8) 1974; 3
Chuang, Tzeng, Chen, Wu, Chen (b12) 2006; 30
Sevaux (b49) 2004
Calinski (10.1016/j.eswa.2020.114063_b8) 1974; 3
Pham (10.1016/j.eswa.2020.114063_b44) 1999; 20
Duda (10.1016/j.eswa.2020.114063_b14) 1973
Chen (10.1016/j.eswa.2020.114063_b9) 2008
Qiao (10.1016/j.eswa.2020.114063_b45) 2020; 8
Tibshirani (10.1016/j.eswa.2020.114063_b52) 2001; 63
Hong (10.1016/j.eswa.2020.114063_b22) 2006; 29
Kumar (10.1016/j.eswa.2020.114063_b29) 2018
Wang (10.1016/j.eswa.2020.114063_b54) 2017
Xiong (10.1016/j.eswa.2020.114063_b57) 2020
Hore (10.1016/j.eswa.2020.114063_b24) 2010
10.1016/j.eswa.2020.114063_b43
Kumar (10.1016/j.eswa.2020.114063_b31) 2018; 7
Hall (10.1016/j.eswa.2020.114063_b19) 2005
Xia (10.1016/j.eswa.2020.114063_b55) 2019
Beale (10.1016/j.eswa.2020.114063_b4) 1969
Nayak (10.1016/j.eswa.2020.114063_b37) 2019
Singh (10.1016/j.eswa.2020.114063_b51) 2019
Ozkan (10.1016/j.eswa.2020.114063_b39) 2007; 177
Pant (10.1016/j.eswa.2020.114063_b42) 2019
10.1016/j.eswa.2020.114063_b7
Milligan (10.1016/j.eswa.2020.114063_b36) 1985; 44
Padmavathi (10.1016/j.eswa.2020.114063_b40) 2018
Kumar (10.1016/j.eswa.2020.114063_b30) 2019
Ouadfel (10.1016/j.eswa.2020.114063_b38) 2012; 4
Liu (10.1016/j.eswa.2020.114063_b32) 2009; 5
Gordon (10.1016/j.eswa.2020.114063_b15) 1999
Pal (10.1016/j.eswa.2020.114063_b41) 1995; 3
Sepas-Moghaddam (10.1016/j.eswa.2020.114063_b48) 2014; 3
Kumar (10.1016/j.eswa.2020.114063_b28) 2019
MacArthur (10.1016/j.eswa.2020.114063_b33) 1967
Ahmed (10.1016/j.eswa.2020.114063_b1) 2002; 21
Wang (10.1016/j.eswa.2020.114063_b53) 2017
Sevaux (10.1016/j.eswa.2020.114063_b49) 2004
Holland (10.1016/j.eswa.2020.114063_b21) 1975
Haghdoost (10.1016/j.eswa.2020.114063_b18) 2015; 31
Gustafson (10.1016/j.eswa.2020.114063_b17) 1978
Balasubramani (10.1016/j.eswa.2020.114063_b3) 2013; 5
Chen (10.1016/j.eswa.2020.114063_b10) 2004; 34
Simon (10.1016/j.eswa.2020.114063_b50) 2008; 12
Yang (10.1016/j.eswa.2020.114063_b59) 2008
Hong (10.1016/j.eswa.2020.114063_b23) 2007; 30
Jiang (10.1016/j.eswa.2020.114063_b25) 2009
Miao (10.1016/j.eswa.2020.114063_b35) 2020; 91
Zadeh (10.1016/j.eswa.2020.114063_b62) 1965; 8
Daoudi (10.1016/j.eswa.2020.114063_b13) 2011; 2
Bezdek (10.1016/j.eswa.2020.114063_b5) 1973; 3
Ren (10.1016/j.eswa.2020.114063_b46) 2019; 81
Samina (10.1016/j.eswa.2020.114063_b47) 2010
Bezdek (10.1016/j.eswa.2020.114063_b6) 1981
MacQueen (10.1016/j.eswa.2020.114063_b34) 1967
Yang (10.1016/j.eswa.2020.114063_b60) 2001; 13
He (10.1016/j.eswa.2020.114063_b20) 2009
Chuang (10.1016/j.eswa.2020.114063_b12) 2006; 30
Zhou (10.1016/j.eswa.2020.114063_b64) 2014
Krinidis (10.1016/j.eswa.2020.114063_b27) 2010; 19
Xu (10.1016/j.eswa.2020.114063_b58) 2020; 38
Zhang (10.1016/j.eswa.2020.114063_b63) 2017; 23
Xie (10.1016/j.eswa.2020.114063_b56) 1991; 13
Chu (10.1016/j.eswa.2020.114063_b11) 2010
Yu (10.1016/j.eswa.2020.114063_b61) 2005; 34
Griffin (10.1016/j.eswa.2020.114063_b16) 2006
Aiguo (10.1016/j.eswa.2020.114063_b2) 2019; 9
Jing (10.1016/j.eswa.2020.114063_b26) 2014
References_xml – volume: 34
  start-page: 1907
  year: 2004
  end-page: 1916
  ident: b10
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 3
  start-page: 370
  year: 1995
  end-page: 379
  ident: b41
  article-title: On cluster validity for the fuzzy c-mean model
  publication-title: IEEE Transactions on Fuzzy Systems
– year: 1975
  ident: b21
  article-title: Adaptation in natural and artificial systems
– volume: 38
  start-page: 3605
  year: 2020
  end-page: 3613
  ident: b58
  article-title: The image segmentation algorithm of colorimetric sensor array based on fuzzy c-means clustering
  publication-title: Journal of Intelligent & Fuzzy Systems
– start-page: 1
  year: 2014
  end-page: 8
  ident: b64
  article-title: An improved FCM medical image segmentation algorithm based on MMTD
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 3
  start-page: 58
  year: 1973
  end-page: 73
  ident: b5
  article-title: Cluster validity with fuzzy sets
  publication-title: Journal of Cybernetics
– start-page: 317
  year: 2009
  end-page: 321
  ident: b20
  article-title: Fuzzy clustering with improved artificial fish swarm algorithm
  publication-title: International joint conference on computational sciences and optimization
– year: 2006
  ident: b16
  article-title: Caltech
– start-page: 115
  year: 2014
  end-page: 126
  ident: b26
  article-title: Weighting exponent selection of fuzzy C-means via Jacobian matrix
  publication-title: KSEM: International conference on knowledge science, engineering and management, Vol. 8793
– volume: 8
  start-page: 2073
  year: 2020
  end-page: 2089
  ident: b45
  article-title: An improved dolphin swarm algorithm based on kernel fuzzy C-means in the application of solving the optimal problems of large-scale function
  publication-title: IEEE Access
– volume: 81
  year: 2019
  ident: b46
  article-title: Study on the improved fuzzy clustering algorithm and its application in brain image segmentation
  publication-title: Applied Soft Computing
– volume: 63
  start-page: 411
  year: 2001
  end-page: 423
  ident: b52
  article-title: Estimating the number of clusters in a data set using the gap statistic
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
– year: 2018
  ident: b40
  article-title: Fuzzy social spider optimization algorithm for fuzzy clustering analysis
  publication-title: 2018 international conference on current trends towards converging technologies (ICCTCT)
– start-page: 761
  year: 1978
  end-page: 766
  ident: b17
  article-title: Fuzzy clustering with a fuzzy covariance matrix
  publication-title: Decision and control including the 17th symposium on adaptive processes, 1978 IEEE conference, Vol. 17
– start-page: 269
  year: 2019
  end-page: 281
  ident: b37
  article-title: Kidney-inspired algorithm and fuzzy clustering for biomedical data analysis
  publication-title: Big data analytics for intelligent healthcare management
– start-page: 133
  year: 2009
  end-page: 138
  ident: b25
  article-title: Image segmentation with improved artificial fish swarm algorithm
  publication-title: Proceedings of the european computing conference, Vol. 28
– volume: 3
  start-page: 39
  year: 2014
  end-page: 49
  ident: b48
  article-title: A novel hybrid image segmentation method
  publication-title: Progress in Artificial Intelligence
– start-page: 315
  year: 2019
  end-page: 323
  ident: b42
  article-title: Comparative analysis of hybridized c-means and fuzzy firefly algorithms with application to image segmentation
  publication-title: Proceedings of the 2nd international conference on data engineering and communication technology, Vol. 828
– volume: 19
  start-page: 1328
  year: 2010
  end-page: 1337
  ident: b27
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Transactions on Image Processing
– year: 1981
  ident: b6
  article-title: Pattern recognition with fuzzy objective function algorithms
– volume: 44
  start-page: 23
  year: 1985
  end-page: 34
  ident: b36
  article-title: An examination of procedures for determining the number of groupe in a data set using sum of squares clustering
  publication-title: Biometrics
– year: 2004
  ident: b49
  article-title: Métaheuristiques, stratégies pour l’optimisation de la production de biens et de services, sous la direction du professeur Christian Tahon
– reference: Pham, D. (2002). Fuzzy clustering with spatial constraints. In
– start-page: 991
  year: 2005
  end-page: 995
  ident: b19
  article-title: Swarm based fuzzy clustering with partition validity
  publication-title: The 14th IEEE international conference on fuzzy systems
– start-page: 317
  year: 2018
  end-page: 331
  ident: b29
  article-title: Nonlinear tensor diffusion filter based marker-controlled watershed segmentation for CT/MR images
  publication-title: Proceedings of international conference on computational intelligence and data engineering, Vol. 9
– start-page: 281
  year: 1967
  end-page: 297
  ident: b34
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Fifth Berkeley symposium on mathematics. statistics and probability, Vol. 1
– year: 1999
  ident: b15
  article-title: Classification
– volume: 21
  start-page: 193
  year: 2002
  end-page: 199
  ident: b1
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Transition of Medical Imaging
– volume: 4
  start-page: 65
  year: 2012
  end-page: 74
  ident: b38
  article-title: Handling fuzzy image clustering with a modified ABC algorithm
  publication-title: International Journal of Intelligent Systems and Applications
– year: 2010
  ident: b24
  article-title: Image quality metrics: PSNR vs. SSIM
  publication-title: 2010 20th international conference on pattern recognition
– start-page: 251
  year: 2017
  end-page: 256
  ident: b54
  article-title: Kernel-based fuzzy c-means clustering based on fruit fly optimization algorithm
  publication-title: International conference on grey systems and intelligent services (GSIS)
– volume: 5
  start-page: 5033
  year: 2009
  end-page: 5040
  ident: b32
  article-title: Fuzzy C-means algorithm based on PSO and mahalanobis distance
  publication-title: International Journal of Innovative Computing
– volume: 23
  start-page: 2033
  year: 2017
  end-page: 2046
  ident: b63
  article-title: A hybrid biogeography-based optimization and fuzzy c-means algorithm for image segmentation
  publication-title: Soft Computing
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b50
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– reference: (n.d.). BrainWeb: Simulated Brain Database. Retrieved from
– start-page: 68
  year: 2019
  end-page: 79
  ident: b28
  article-title: Hybrid fuzzy C-means using bat optimization and maxi-min distance classifier
  publication-title: International conference on advances in computing and data sciences, Vol. 1046
– year: 2008
  ident: b59
  article-title: Nature-inspired metaheuristic algorithms
– reference: , New York, USA (pp. II-65–II-68). 2002.
– start-page: 1
  year: 2019
  end-page: 7
  ident: b55
  article-title: An improved PSO-fcm algorithm for image segmentation
  publication-title: IOP conf. ser.: Earth environ. sci.
– volume: 2
  start-page: 157
  year: 2011
  end-page: 168
  ident: b13
  article-title: A biogeography inspired approach for security audit trail analysis
  publication-title: Journal of Intelligent Computing
– volume: 177
  start-page: 5143
  year: 2007
  end-page: 5152
  ident: b39
  article-title: Upper and lower values for the level of fuzziness in fcm
  publication-title: Information Sciences
– year: 1967
  ident: b33
  article-title: The theory of biogeography
– year: 1969
  ident: b4
  article-title: Cluster analysis
– volume: 29
  start-page: 2186
  year: 2006
  end-page: 2193
  ident: b22
  article-title: Measure of medium truth scale and its application (I)
  publication-title: Chinese Journal of Computers
– start-page: 254
  year: 2010
  end-page: 257
  ident: b11
  article-title: Method of image segmentation based on fuzzy c-means clustering algorithm and artificial fish swarm algorithm
  publication-title: IEEE international conference on intelligent computing and integrated systems
– year: 1973
  ident: b14
  article-title: Pattern classification and scene analysis
– start-page: 1
  year: 2019
  end-page: 28
  ident: b30
  article-title: Firefly optimization based improved fuzzy clustering for CT/MR image segmentation
  publication-title: Nature inspired optimization techniques for image processing applications, Vol. 150
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: b62
  article-title: Fuzzy sets
  publication-title: Information and Control
– volume: 30
  start-page: 9
  year: 2006
  end-page: 15
  ident: b12
  article-title: Fuzzy C-means clustering with spatial information for image segmentation
  publication-title: Journal of Computerized Medical Imaging and Graphics
– volume: 13
  start-page: 309
  year: 2001
  end-page: 315
  ident: b60
  article-title: Fuzzy C-means clustering algorithm with a novel penalty term for image aegmentation
  publication-title: Opto-Electronics Review
– start-page: 181
  year: 2010
  end-page: 186
  ident: b47
  article-title: Image segmentation using fuzzy clustering : A survey
  publication-title: Proceedings - 2010 6th international conference on emerging technologies, ICET 2010
– volume: 34
  start-page: 634
  year: 2005
  end-page: 639
  ident: b61
  article-title: Analysis of the weighting exponent in the fcm
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: b8
  article-title: A dendrite method for cluster analysis
  publication-title: Communications in Statistics
– volume: 13
  start-page: 841
  year: 1991
  end-page: 847
  ident: b56
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: .
– volume: 20
  start-page: 57
  year: 1999
  end-page: 68
  ident: b44
  article-title: An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities
  publication-title: Pattern Recognition Letters
– volume: 31
  start-page: 245
  year: 2015
  end-page: 252
  ident: b18
  article-title: A new method of fuzzy clustering by using the combination of the firefly algorithm and the particle swarm optimization algorithm
  publication-title: WALIA Journal
– start-page: 69
  year: 2019
  end-page: 80
  ident: b51
  article-title: Comparative study of combination of swarm intelligence and fuzzy c means clustering for medical image segmentation
  publication-title: Smart computational strategies: Theoretical and practical aspects
– volume: 5
  start-page: 31
  year: 2013
  end-page: 36
  ident: b3
  article-title: Artificial bee colony algorithm to improve brain MR image segmentation
  publication-title: International Journal on Computer Science and Engineering
– year: 2017
  ident: b53
  article-title: Evaluate clustering performance and computational efficiency for PSO based fuzzy clustering methods in processing big imbalanced
  publication-title: 2017 IEEE international conference on communications (ICC)
– volume: 30
  start-page: 1551
  year: 2007
  end-page: 1558
  ident: b23
  article-title: Measure of medium truth scale and its application (II)
  publication-title: Chinese Journal of Computers
– year: 2020
  ident: b57
  article-title: Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM
  publication-title: The Journal of Supercomputing
– start-page: 1365
  year: 2008
  end-page: 1368
  ident: b9
  article-title: A hybridized clustering approach using particle swarm optimization for image segmentation
  publication-title: IEEE international conference on audio, language and image processing
– volume: 9
  start-page: 1464
  year: 2019
  end-page: 1468
  ident: b2
  article-title: Image segmentation based on a robust fuzzy C means algorithm
  publication-title: Journal of Medical Imaging and Health Informatics
– volume: 7
  start-page: 156
  year: 2018
  end-page: 160
  ident: b31
  article-title: Change detection in sarimages based on artificial bee colony optimization with fuzzy C - means clustering
  publication-title: International Journal of Recent Technology and Engineering (IJRTE)
– volume: 91
  year: 2020
  ident: b35
  article-title: Local segmentation of images using an improved fuzzy C-means clustering algorithm based on self-adaptive dictionary learning
  publication-title: Applied Soft Computing
– volume: 38
  start-page: 3605
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2020.114063_b58
  article-title: The image segmentation algorithm of colorimetric sensor array based on fuzzy c-means clustering
  publication-title: Journal of Intelligent & Fuzzy Systems
– year: 1999
  ident: 10.1016/j.eswa.2020.114063_b15
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.114063_b30
  article-title: Firefly optimization based improved fuzzy clustering for CT/MR image segmentation
– volume: 177
  start-page: 5143
  year: 2007
  ident: 10.1016/j.eswa.2020.114063_b39
  article-title: Upper and lower values for the level of fuzziness in fcm
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2007.06.028
– start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2020.114063_b64
  article-title: An improved FCM medical image segmentation algorithm based on MMTD
  publication-title: Computational and Mathematical Methods in Medicine
– start-page: 281
  year: 1967
  ident: 10.1016/j.eswa.2020.114063_b34
  article-title: Some methods for classification and analysis of multivariate observations
– start-page: 181
  year: 2010
  ident: 10.1016/j.eswa.2020.114063_b47
  article-title: Image segmentation using fuzzy clustering : A survey
– start-page: 761
  year: 1978
  ident: 10.1016/j.eswa.2020.114063_b17
  article-title: Fuzzy clustering with a fuzzy covariance matrix
– year: 1975
  ident: 10.1016/j.eswa.2020.114063_b21
– volume: 2
  start-page: 157
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2020.114063_b13
  article-title: A biogeography inspired approach for security audit trail analysis
  publication-title: Journal of Intelligent Computing
– volume: 29
  start-page: 2186
  issue: 12
  year: 2006
  ident: 10.1016/j.eswa.2020.114063_b22
  article-title: Measure of medium truth scale and its application (I)
  publication-title: Chinese Journal of Computers
– year: 2004
  ident: 10.1016/j.eswa.2020.114063_b49
– start-page: 269
  year: 2019
  ident: 10.1016/j.eswa.2020.114063_b37
  article-title: Kidney-inspired algorithm and fuzzy clustering for biomedical data analysis
– start-page: 133
  year: 2009
  ident: 10.1016/j.eswa.2020.114063_b25
  article-title: Image segmentation with improved artificial fish swarm algorithm
– year: 2010
  ident: 10.1016/j.eswa.2020.114063_b24
  article-title: Image quality metrics: PSNR vs. SSIM
– year: 1973
  ident: 10.1016/j.eswa.2020.114063_b14
– volume: 19
  start-page: 1328
  year: 2010
  ident: 10.1016/j.eswa.2020.114063_b27
  article-title: A robust fuzzy local information c-means clustering algorithm
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2010.2040763
– year: 2020
  ident: 10.1016/j.eswa.2020.114063_b57
  article-title: Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM
  publication-title: The Journal of Supercomputing
  doi: 10.1007/s11227-020-03171-8
– year: 1981
  ident: 10.1016/j.eswa.2020.114063_b6
– start-page: 317
  year: 2018
  ident: 10.1016/j.eswa.2020.114063_b29
  article-title: Nonlinear tensor diffusion filter based marker-controlled watershed segmentation for CT/MR images
– volume: 20
  start-page: 57
  year: 1999
  ident: 10.1016/j.eswa.2020.114063_b44
  article-title: An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(98)00121-4
– volume: 3
  start-page: 58
  issue: 3
  year: 1973
  ident: 10.1016/j.eswa.2020.114063_b5
  article-title: Cluster validity with fuzzy sets
  publication-title: Journal of Cybernetics
  doi: 10.1080/01969727308546047
– volume: 81
  year: 2019
  ident: 10.1016/j.eswa.2020.114063_b46
  article-title: Study on the improved fuzzy clustering algorithm and its application in brain image segmentation
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105503
– volume: 3
  start-page: 39
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2020.114063_b48
  article-title: A novel hybrid image segmentation method
  publication-title: Progress in Artificial Intelligence
  doi: 10.1007/s13748-014-0044-7
– ident: 10.1016/j.eswa.2020.114063_b7
– year: 2006
  ident: 10.1016/j.eswa.2020.114063_b16
– start-page: 68
  year: 2019
  ident: 10.1016/j.eswa.2020.114063_b28
  article-title: Hybrid fuzzy C-means using bat optimization and maxi-min distance classifier
– volume: 34
  start-page: 1907
  year: 2004
  ident: 10.1016/j.eswa.2020.114063_b10
  article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2004.831165
– volume: 9
  start-page: 1464
  issue: 7
  year: 2019
  ident: 10.1016/j.eswa.2020.114063_b2
  article-title: Image segmentation based on a robust fuzzy C means algorithm
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2019.2745
– volume: 4
  start-page: 65
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2020.114063_b38
  article-title: Handling fuzzy image clustering with a modified ABC algorithm
  publication-title: International Journal of Intelligent Systems and Applications
  doi: 10.5815/ijisa.2012.12.09
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2020.114063_b50
  article-title: Biogeography-based optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.919004
– volume: 8
  start-page: 2073
  year: 2020
  ident: 10.1016/j.eswa.2020.114063_b45
  article-title: An improved dolphin swarm algorithm based on kernel fuzzy C-means in the application of solving the optimal problems of large-scale function
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2958456
– year: 1969
  ident: 10.1016/j.eswa.2020.114063_b4
– volume: 23
  start-page: 2033
  issue: 6
  year: 2017
  ident: 10.1016/j.eswa.2020.114063_b63
  article-title: A hybrid biogeography-based optimization and fuzzy c-means algorithm for image segmentation
  publication-title: Soft Computing
  doi: 10.1007/s00500-017-2916-9
– ident: 10.1016/j.eswa.2020.114063_b43
  doi: 10.1109/ICIP.2002.1039888
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2020.114063_b55
  article-title: An improved PSO-fcm algorithm for image segmentation
– volume: 3
  start-page: 1
  year: 1974
  ident: 10.1016/j.eswa.2020.114063_b8
  article-title: A dendrite method for cluster analysis
  publication-title: Communications in Statistics
– volume: 3
  start-page: 370
  year: 1995
  ident: 10.1016/j.eswa.2020.114063_b41
  article-title: On cluster validity for the fuzzy c-mean model
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.413225
– year: 2017
  ident: 10.1016/j.eswa.2020.114063_b53
  article-title: Evaluate clustering performance and computational efficiency for PSO based fuzzy clustering methods in processing big imbalanced
– volume: 21
  start-page: 193
  issue: 3
  year: 2002
  ident: 10.1016/j.eswa.2020.114063_b1
  article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data
  publication-title: IEEE Transition of Medical Imaging
  doi: 10.1109/42.996338
– volume: 30
  start-page: 9
  year: 2006
  ident: 10.1016/j.eswa.2020.114063_b12
  article-title: Fuzzy C-means clustering with spatial information for image segmentation
  publication-title: Journal of Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2005.10.001
– start-page: 251
  year: 2017
  ident: 10.1016/j.eswa.2020.114063_b54
  article-title: Kernel-based fuzzy c-means clustering based on fruit fly optimization algorithm
– start-page: 1365
  year: 2008
  ident: 10.1016/j.eswa.2020.114063_b9
  article-title: A hybridized clustering approach using particle swarm optimization for image segmentation
– start-page: 991
  year: 2005
  ident: 10.1016/j.eswa.2020.114063_b19
  article-title: Swarm based fuzzy clustering with partition validity
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 10.1016/j.eswa.2020.114063_b62
  article-title: Fuzzy sets
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(65)90241-X
– start-page: 317
  year: 2009
  ident: 10.1016/j.eswa.2020.114063_b20
  article-title: Fuzzy clustering with improved artificial fish swarm algorithm
– year: 1967
  ident: 10.1016/j.eswa.2020.114063_b33
– year: 2008
  ident: 10.1016/j.eswa.2020.114063_b59
– start-page: 115
  year: 2014
  ident: 10.1016/j.eswa.2020.114063_b26
  article-title: Weighting exponent selection of fuzzy C-means via Jacobian matrix
– year: 2018
  ident: 10.1016/j.eswa.2020.114063_b40
  article-title: Fuzzy social spider optimization algorithm for fuzzy clustering analysis
– volume: 13
  start-page: 309
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2020.114063_b60
  article-title: Fuzzy C-means clustering algorithm with a novel penalty term for image aegmentation
  publication-title: Opto-Electronics Review
– volume: 91
  year: 2020
  ident: 10.1016/j.eswa.2020.114063_b35
  article-title: Local segmentation of images using an improved fuzzy C-means clustering algorithm based on self-adaptive dictionary learning
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2020.106200
– volume: 34
  start-page: 634
  year: 2005
  ident: 10.1016/j.eswa.2020.114063_b61
  article-title: Analysis of the weighting exponent in the fcm
  publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
  doi: 10.1109/TSMCB.2003.810951
– volume: 63
  start-page: 411
  year: 2001
  ident: 10.1016/j.eswa.2020.114063_b52
  article-title: Estimating the number of clusters in a data set using the gap statistic
  publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology
  doi: 10.1111/1467-9868.00293
– start-page: 254
  year: 2010
  ident: 10.1016/j.eswa.2020.114063_b11
  article-title: Method of image segmentation based on fuzzy c-means clustering algorithm and artificial fish swarm algorithm
– volume: 31
  start-page: 245
  issue: S3
  year: 2015
  ident: 10.1016/j.eswa.2020.114063_b18
  article-title: A new method of fuzzy clustering by using the combination of the firefly algorithm and the particle swarm optimization algorithm
  publication-title: WALIA Journal
– volume: 13
  start-page: 841
  issue: 8
  year: 1991
  ident: 10.1016/j.eswa.2020.114063_b56
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.85677
– volume: 5
  start-page: 31
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2020.114063_b3
  article-title: Artificial bee colony algorithm to improve brain MR image segmentation
  publication-title: International Journal on Computer Science and Engineering
– start-page: 315
  year: 2019
  ident: 10.1016/j.eswa.2020.114063_b42
  article-title: Comparative analysis of hybridized c-means and fuzzy firefly algorithms with application to image segmentation
– volume: 30
  start-page: 1551
  issue: 9
  year: 2007
  ident: 10.1016/j.eswa.2020.114063_b23
  article-title: Measure of medium truth scale and its application (II)
  publication-title: Chinese Journal of Computers
– volume: 5
  start-page: 5033
  issue: 12
  year: 2009
  ident: 10.1016/j.eswa.2020.114063_b32
  article-title: Fuzzy C-means algorithm based on PSO and mahalanobis distance
  publication-title: International Journal of Innovative Computing
– volume: 44
  start-page: 23
  year: 1985
  ident: 10.1016/j.eswa.2020.114063_b36
  article-title: An examination of procedures for determining the number of groupe in a data set using sum of squares clustering
  publication-title: Biometrics
– start-page: 69
  year: 2019
  ident: 10.1016/j.eswa.2020.114063_b51
  article-title: Comparative study of combination of swarm intelligence and fuzzy c means clustering for medical image segmentation
– volume: 7
  start-page: 156
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2020.114063_b31
  article-title: Change detection in sarimages based on artificial bee colony optimization with fuzzy C - means clustering
  publication-title: International Journal of Recent Technology and Engineering (IJRTE)
SSID ssj0017007
Score 2.4741855
Snippet Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114063
SubjectTerms Algorithms
Biogeography based algorithm
Classification
Cooperation
Firefly algorithm
Fuzzy c-means
Genetic algorithm
Genetic algorithms
Heuristic methods
Histograms
Image classification
Image segmentation
Multiagent systems
Neural networks
Segmentation
Title CSFCM: An improved fuzzy C-Means image segmentation algorithm using a cooperative approach
URI https://dx.doi.org/10.1016/j.eswa.2020.114063
https://www.proquest.com/docview/2480005342
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4Ix6l8sCGTNvYiVO2KqIqoHYplSoWy3acUtQmVR9CdOC340scJJBgYLXsKDrb390l332H0BXVXKmAByRhShNmHSCRDS8hktlgn6oEqj-BbdEPukP2MPJHFRSVtTBAq3TYX2B6jtZupO6sWZ9PJvWBDQ6sO7SpXS654oPiJ2McuhjcfHzRPEB-jhd6e5zAbFc4U3C8zPINtIe8XDK3EdDfnNMPmM59T2cf7bqgEbeL9zpAFZMeor2yIQN29_MIPUeDTtS7xe0UT_KPBSbGyXqzeccR6RnrlOywxQ-8NOOZqzlKsZyOs8Vk9TLDwIEfY4l1ls1NoQiOS83xYzTs3D1FXeKaJxBNvXBFWnEiA9Oy2R70Pve0dfScKl9qpUMTq6bkxtdMyqamAW0ow2PlgzSNCuJWM1aUnqCtNEvNKcKJhn-N3E8sutlsLpTKk7QVc6ZtspeY8Aw1S6sJ7ZTFocHFVJQUslcBlhZgaVFY-gxdf62ZF7oaf872y80Q306HsMD_57pquXPC3c2l8FiYlyAz7_yfj71AOx5QW4DW51fR1mqxNpc2NlmpWn74ami7ff_Y7X8C93Hh_g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwIZMWz_ihA1FVOXRLm2lisWyHacUlbSiRYgO_HbsxKkEEgyslh1FZ_u7u-S77wA4J5orFfAApVRpRK0DRLKGUySpDfaJSl31p2NbtINmj971WX8JxGUtjKNVeuwvMD1Haz9S9dasTobDascGB9Yd2tQul1xhZBmsUIa5y8AuPxc8D6c_xwvBPY7cdF85U5C8zPTdiQ_hXDO3FpDfvNMPnM6dT2MTrPuoEV4XL7YFlky2DTbKjgzQX9Ad8Bh3GnHrCl5ncJh_LTAJTN_m8w8Yo5axXskOWwCBUzN48UVHGZSjwfh1OHt6gY4EP4AS6vF4YgpJcFiKju-CXuOmGzeR756ANMHhDEVJKgMT2XTPNT_H2np6ThSTWunQJKouuWGaSlnXJCA1ZXiimNOmUUES1RNFyB6oZOPM7AOYavezkbPUwptN50KpsCRRwqm22V5qwgNQL60mtJcWdx0uRqLkkD0LZ2nhLC0KSx-Ai8WaSSGs8edsVm6G-HY8hEX-P9cdlzsn_OWcCkzDvAaZ4sN_PvYMrDa7rQfxcNu-PwJr2PFcHMePHYPK7PXNnNhAZaZO84P4BUsF45M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSFCM%3A+An+improved+fuzzy+C-Means+image+segmentation+algorithm+using+a+cooperative+approach&rft.jtitle=Expert+systems+with+applications&rft.au=Abdellahoum%2C+Hamza&rft.au=Mokhtari%2C+Nassim&rft.au=Brahimi%2C+Abderrahmane&rft.au=Boukra%2C+Abdelmadjid&rft.date=2021-03-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=166&rft_id=info:doi/10.1016%2Fj.eswa.2020.114063&rft.externalDocID=S0957417420308253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon