CSFCM: An improved fuzzy C-Means image segmentation algorithm using a cooperative approach
Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such as the choice of the number of clusters and the cluster’s center initialization. In this work, we propose new approaches to deal with these tw...
Saved in:
| Published in | Expert systems with applications Vol. 166; p. 114063 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
15.03.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2020.114063 |
Cover
| Abstract | Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such as the choice of the number of clusters and the cluster’s center initialization. In this work, we propose new approaches to deal with these two drawbacks. We propose for the first problem two approaches. The first proposed approach exploits neural networks and the Xie and Beni index, while the second one exploits the histogram. Concerning the second problem, we propose a new metaheuristics cooperation approach using the Genetic Algorithm (GA), Biogeography Based Algorithm(BBO), and Firefly Algorithm (FA). This cooperation is managed by a multi-agent system allowing to determine automatically the fittest metaheuristics parameters. Finally, we propose to use a histogram-based version of FCM to reduce the execution time of the algorithm. Experimental results show that our proposed approach improves the performance of the basic FCM algorithm and outperforms other methods proposed in the literature.
•Determination of the number of clusters in image segmentation.•Initialization of the clusters center (using a cooperative approach).•Ensuring good segmentation. |
|---|---|
| AbstractList | Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such as the choice of the number of clusters and the cluster's center initialization. In this work, we propose new approaches to deal with these two drawbacks. We propose for the first problem two approaches. The first proposed approach exploits neural networks and the Xie and Beni index, while the second one exploits the histogram. Concerning the second problem, we propose a new metaheuristics cooperation approach using the Genetic Algorithm (GA), Biogeography Based Algorithm(BBO), and Firefly Algorithm (FA). This cooperation is managed by a multi-agent system allowing to determine automatically the fittest metaheuristics parameters. Finally, we propose to use a histogram-based version of FCM to reduce the execution time of the algorithm. Experimental results show that our proposed approach improves the performance of the basic FCM algorithm and outperforms other methods proposed in the literature. Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such as the choice of the number of clusters and the cluster’s center initialization. In this work, we propose new approaches to deal with these two drawbacks. We propose for the first problem two approaches. The first proposed approach exploits neural networks and the Xie and Beni index, while the second one exploits the histogram. Concerning the second problem, we propose a new metaheuristics cooperation approach using the Genetic Algorithm (GA), Biogeography Based Algorithm(BBO), and Firefly Algorithm (FA). This cooperation is managed by a multi-agent system allowing to determine automatically the fittest metaheuristics parameters. Finally, we propose to use a histogram-based version of FCM to reduce the execution time of the algorithm. Experimental results show that our proposed approach improves the performance of the basic FCM algorithm and outperforms other methods proposed in the literature. •Determination of the number of clusters in image segmentation.•Initialization of the clusters center (using a cooperative approach).•Ensuring good segmentation. |
| ArticleNumber | 114063 |
| Author | Mokhtari, Nassim Boukra, Abdelmadjid Brahimi, Abderrahmane Abdellahoum, Hamza |
| Author_xml | – sequence: 1 givenname: Hamza surname: Abdellahoum fullname: Abdellahoum, Hamza email: habdellahoum@usthb.dz – sequence: 2 givenname: Nassim surname: Mokhtari fullname: Mokhtari, Nassim email: nassim.mokhta@gmail.com – sequence: 3 givenname: Abderrahmane surname: Brahimi fullname: Brahimi, Abderrahmane email: abdou.brahimi3@gmail.com – sequence: 4 givenname: Abdelmadjid surname: Boukra fullname: Boukra, Abdelmadjid email: aboukra@usthb.dz |
| BookMark | eNp9kDtPwzAQgC1UJFrgDzBZYk7xK06CWKqIAhIVA7CwWI5zLa5au9hpEf31uAoTQ6eT7u67xzdCA-cdIHRFyZgSKm-WY4jfeswISwkqiOQnaEjLgmeyqPgADUmVF5mghThDoxiXhNCCkGKIPurXaT27xROH7XoT_A5aPN_u9z-4zmagXUxpvQAcYbEG1-nOeof1auGD7T7XeButW2CNjfcbCKm6A6w3aY42nxfodK5XES7_4jl6n96_1Y_Z88vDUz15zgxnZZdV7VxLqISQvBKEGZZO402uTWNKaBuqC8iN0JoaLjlpoGibnEsmG9lWtG04P0fX_dy09msLsVNLvw0urVRMlISQnAuWuljfZYKPMcBcbUJ6LfwoStTBoVqqg0N1cKh6hwkq_0HG9g66oO3qOHrXo5Be31kIKhoLzkBrA5hOtd4ew38Bg0yO6w |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2021_118314 crossref_primary_10_3233_MGS_220317 crossref_primary_10_1007_s11831_021_09619_1 crossref_primary_10_2298_CSIS220321039Y crossref_primary_10_4018_IJISMD_306644 crossref_primary_10_1007_s13042_024_02139_x crossref_primary_10_3390_a15100380 crossref_primary_10_3390_s22228956 crossref_primary_10_13005_bpj_3056 crossref_primary_10_1007_s11042_023_16569_2 crossref_primary_10_52756_ijerr_2024_v44spl_005 crossref_primary_10_1007_s11042_023_14861_9 crossref_primary_10_1038_s41598_022_26142_w crossref_primary_10_3390_electronics13020432 crossref_primary_10_1109_TSMC_2024_3388475 crossref_primary_10_3390_app13031281 crossref_primary_10_3390_su152015118 crossref_primary_10_1016_j_asoc_2021_108005 crossref_primary_10_1109_ACCESS_2021_3058986 crossref_primary_10_3390_e25071021 crossref_primary_10_1007_s11063_022_10876_9 crossref_primary_10_1016_j_ins_2021_07_053 crossref_primary_10_1080_09500340_2023_2174358 crossref_primary_10_1007_s11227_022_04769_w crossref_primary_10_1016_j_asoc_2023_110268 crossref_primary_10_1016_j_asoc_2023_110947 |
| Cites_doi | 10.1016/j.ins.2007.06.028 10.1109/TIP.2010.2040763 10.1007/s11227-020-03171-8 10.1016/S0167-8655(98)00121-4 10.1080/01969727308546047 10.1016/j.asoc.2019.105503 10.1007/s13748-014-0044-7 10.1109/TSMCB.2004.831165 10.1166/jmihi.2019.2745 10.5815/ijisa.2012.12.09 10.1109/TEVC.2008.919004 10.1109/ACCESS.2019.2958456 10.1007/s00500-017-2916-9 10.1109/ICIP.2002.1039888 10.1109/91.413225 10.1109/42.996338 10.1016/j.compmedimag.2005.10.001 10.1016/S0019-9958(65)90241-X 10.1016/j.asoc.2020.106200 10.1109/TSMCB.2003.810951 10.1111/1467-9868.00293 10.1109/34.85677 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright Elsevier BV Mar 15, 2021 |
| Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Mar 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2020.114063 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2020_114063 S0957417420308253 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-9dfa6e944639402c20173b5acbc8edb1a7e5c4aa1c3630be7db53626b6d91db33 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 06:11:26 EDT 2025 Sat Oct 25 05:47:11 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Fri Feb 23 02:47:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Biogeography based algorithm Segmentation Genetic algorithm Firefly algorithm Classification Fuzzy c-means |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-9dfa6e944639402c20173b5acbc8edb1a7e5c4aa1c3630be7db53626b6d91db33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2480005342 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2480005342 crossref_primary_10_1016_j_eswa_2020_114063 crossref_citationtrail_10_1016_j_eswa_2020_114063 elsevier_sciencedirect_doi_10_1016_j_eswa_2020_114063 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-15 |
| PublicationDateYYYYMMDD | 2021-03-15 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | MacQueen (b34) 1967 Pham, D. (2002). Fuzzy clustering with spatial constraints. In Padmavathi, Eswaramurthy, Revathi (b40) 2018 Hong, Xiao, Zhu (b22) 2006; 29 Kumar, Fred, Kumar, Varghese (b29) 2018 Sepas-Moghaddam, Yazdani, Shahabi (b48) 2014; 3 Singh, Laishram, Roy (b51) 2019 Wang, Fang, Li, Wang (b53) 2017 Qiao, Yang (b45) 2020; 8 Gordon (b15) 1999 New York, USA (pp. II-65–II-68). 2002. Balasubramani, Marcus (b3) 2013; 5 Yu, Cheng, Huang (b61) 2005; 34 Wang, Zhang, Xiao, Li (b54) 2017 Zhang, Jiang, Zhou, Xue, Chen (b63) 2017; 23 Aiguo, Yunjie (b2) 2019; 9 Chen, Fang (b9) 2008 Griffin, Holub, Perona (b16) 2006 Zhou, Yang, Zhang (b64) 2014 Chen, Zhang (b10) 2004; 34 Hong, Xiao, Zhu (b23) 2007; 30 Kumar, Reddy, Rao (b31) 2018; 7 Bezdek (b5) 1973; 3 Pant, Chinta, Tripathy (b42) 2019 MacArthur, Wilson (b33) 1967 Xiong, Tang, Chen, Hu, Chen (b57) 2020 Nayak, Vakula, Dash, Naik (b37) 2019 Gustafson, Kessel (b17) 1978 . Jiang, Mastorakis, Yuan, Lagunas (b25) 2009 Haghdoost, Abadi, Abedini (b18) 2015; 31 Miao, Zhou, Huang (b35) 2020; 91 Xia, Lin, Li-Hua (b55) 2019 Kumar, Fred, Kumar, Varghese (b30) 2019 Beale (b4) 1969 (n.d.). BrainWeb: Simulated Brain Database. Retrieved from Ouadfel, Meshoul (b38) 2012; 4 Pham, Prince (b44) 1999; 20 Hall, Kanade (b19) 2005 Xie, Beni (b56) 1991; 13 Holland (b21) 1975 Jing, Deng, Yu (b26) 2014 Xu, Houb, Liuc, Yong Caic, Chend, Liue (b58) 2020; 38 Ozkan, Turksen (b39) 2007; 177 Samina, Hammad, Humayun (b47) 2010 Pal, Bezdek (b41) 1995; 3 Yang, Zheng, Lin (b60) 2001; 13 Krinidis, Chatzis (b27) 2010; 19 Yang (b59) 2008 He, Belacel, Hamam, Bouslimani (b20) 2009 Hore, Ziou (b24) 2010 Liu, Yih, Lin, Liu (b32) 2009; 5 Chu, Zhu, Shi, Song (b11) 2010 Duda, Hart (b14) 1973 Zadeh (b62) 1965; 8 Simon (b50) 2008; 12 Ahmed, Yamany, Mohamed, Farag, Moriarty (b1) 2002; 21 Ren, Wang, Feng, Xu, Liu, Ding (b46) 2019; 81 Bezdek (b6) 1981 Milligan, Cooper (b36) 1985; 44 Tibshirani, Walther, Hastie (b52) 2001; 63 Daoudi, Boukra, Ahmed-Nacer (b13) 2011; 2 Kumar, Dwivedi, Jangam (b28) 2019 Calinski, Harabasz (b8) 1974; 3 Chuang, Tzeng, Chen, Wu, Chen (b12) 2006; 30 Sevaux (b49) 2004 Calinski (10.1016/j.eswa.2020.114063_b8) 1974; 3 Pham (10.1016/j.eswa.2020.114063_b44) 1999; 20 Duda (10.1016/j.eswa.2020.114063_b14) 1973 Chen (10.1016/j.eswa.2020.114063_b9) 2008 Qiao (10.1016/j.eswa.2020.114063_b45) 2020; 8 Tibshirani (10.1016/j.eswa.2020.114063_b52) 2001; 63 Hong (10.1016/j.eswa.2020.114063_b22) 2006; 29 Kumar (10.1016/j.eswa.2020.114063_b29) 2018 Wang (10.1016/j.eswa.2020.114063_b54) 2017 Xiong (10.1016/j.eswa.2020.114063_b57) 2020 Hore (10.1016/j.eswa.2020.114063_b24) 2010 10.1016/j.eswa.2020.114063_b43 Kumar (10.1016/j.eswa.2020.114063_b31) 2018; 7 Hall (10.1016/j.eswa.2020.114063_b19) 2005 Xia (10.1016/j.eswa.2020.114063_b55) 2019 Beale (10.1016/j.eswa.2020.114063_b4) 1969 Nayak (10.1016/j.eswa.2020.114063_b37) 2019 Singh (10.1016/j.eswa.2020.114063_b51) 2019 Ozkan (10.1016/j.eswa.2020.114063_b39) 2007; 177 Pant (10.1016/j.eswa.2020.114063_b42) 2019 10.1016/j.eswa.2020.114063_b7 Milligan (10.1016/j.eswa.2020.114063_b36) 1985; 44 Padmavathi (10.1016/j.eswa.2020.114063_b40) 2018 Kumar (10.1016/j.eswa.2020.114063_b30) 2019 Ouadfel (10.1016/j.eswa.2020.114063_b38) 2012; 4 Liu (10.1016/j.eswa.2020.114063_b32) 2009; 5 Gordon (10.1016/j.eswa.2020.114063_b15) 1999 Pal (10.1016/j.eswa.2020.114063_b41) 1995; 3 Sepas-Moghaddam (10.1016/j.eswa.2020.114063_b48) 2014; 3 Kumar (10.1016/j.eswa.2020.114063_b28) 2019 MacArthur (10.1016/j.eswa.2020.114063_b33) 1967 Ahmed (10.1016/j.eswa.2020.114063_b1) 2002; 21 Wang (10.1016/j.eswa.2020.114063_b53) 2017 Sevaux (10.1016/j.eswa.2020.114063_b49) 2004 Holland (10.1016/j.eswa.2020.114063_b21) 1975 Haghdoost (10.1016/j.eswa.2020.114063_b18) 2015; 31 Gustafson (10.1016/j.eswa.2020.114063_b17) 1978 Balasubramani (10.1016/j.eswa.2020.114063_b3) 2013; 5 Chen (10.1016/j.eswa.2020.114063_b10) 2004; 34 Simon (10.1016/j.eswa.2020.114063_b50) 2008; 12 Yang (10.1016/j.eswa.2020.114063_b59) 2008 Hong (10.1016/j.eswa.2020.114063_b23) 2007; 30 Jiang (10.1016/j.eswa.2020.114063_b25) 2009 Miao (10.1016/j.eswa.2020.114063_b35) 2020; 91 Zadeh (10.1016/j.eswa.2020.114063_b62) 1965; 8 Daoudi (10.1016/j.eswa.2020.114063_b13) 2011; 2 Bezdek (10.1016/j.eswa.2020.114063_b5) 1973; 3 Ren (10.1016/j.eswa.2020.114063_b46) 2019; 81 Samina (10.1016/j.eswa.2020.114063_b47) 2010 Bezdek (10.1016/j.eswa.2020.114063_b6) 1981 MacQueen (10.1016/j.eswa.2020.114063_b34) 1967 Yang (10.1016/j.eswa.2020.114063_b60) 2001; 13 He (10.1016/j.eswa.2020.114063_b20) 2009 Chuang (10.1016/j.eswa.2020.114063_b12) 2006; 30 Zhou (10.1016/j.eswa.2020.114063_b64) 2014 Krinidis (10.1016/j.eswa.2020.114063_b27) 2010; 19 Xu (10.1016/j.eswa.2020.114063_b58) 2020; 38 Zhang (10.1016/j.eswa.2020.114063_b63) 2017; 23 Xie (10.1016/j.eswa.2020.114063_b56) 1991; 13 Chu (10.1016/j.eswa.2020.114063_b11) 2010 Yu (10.1016/j.eswa.2020.114063_b61) 2005; 34 Griffin (10.1016/j.eswa.2020.114063_b16) 2006 Aiguo (10.1016/j.eswa.2020.114063_b2) 2019; 9 Jing (10.1016/j.eswa.2020.114063_b26) 2014 |
| References_xml | – volume: 34 start-page: 1907 year: 2004 end-page: 1916 ident: b10 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – volume: 3 start-page: 370 year: 1995 end-page: 379 ident: b41 article-title: On cluster validity for the fuzzy c-mean model publication-title: IEEE Transactions on Fuzzy Systems – year: 1975 ident: b21 article-title: Adaptation in natural and artificial systems – volume: 38 start-page: 3605 year: 2020 end-page: 3613 ident: b58 article-title: The image segmentation algorithm of colorimetric sensor array based on fuzzy c-means clustering publication-title: Journal of Intelligent & Fuzzy Systems – start-page: 1 year: 2014 end-page: 8 ident: b64 article-title: An improved FCM medical image segmentation algorithm based on MMTD publication-title: Computational and Mathematical Methods in Medicine – volume: 3 start-page: 58 year: 1973 end-page: 73 ident: b5 article-title: Cluster validity with fuzzy sets publication-title: Journal of Cybernetics – start-page: 317 year: 2009 end-page: 321 ident: b20 article-title: Fuzzy clustering with improved artificial fish swarm algorithm publication-title: International joint conference on computational sciences and optimization – year: 2006 ident: b16 article-title: Caltech – start-page: 115 year: 2014 end-page: 126 ident: b26 article-title: Weighting exponent selection of fuzzy C-means via Jacobian matrix publication-title: KSEM: International conference on knowledge science, engineering and management, Vol. 8793 – volume: 8 start-page: 2073 year: 2020 end-page: 2089 ident: b45 article-title: An improved dolphin swarm algorithm based on kernel fuzzy C-means in the application of solving the optimal problems of large-scale function publication-title: IEEE Access – volume: 81 year: 2019 ident: b46 article-title: Study on the improved fuzzy clustering algorithm and its application in brain image segmentation publication-title: Applied Soft Computing – volume: 63 start-page: 411 year: 2001 end-page: 423 ident: b52 article-title: Estimating the number of clusters in a data set using the gap statistic publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology – year: 2018 ident: b40 article-title: Fuzzy social spider optimization algorithm for fuzzy clustering analysis publication-title: 2018 international conference on current trends towards converging technologies (ICCTCT) – start-page: 761 year: 1978 end-page: 766 ident: b17 article-title: Fuzzy clustering with a fuzzy covariance matrix publication-title: Decision and control including the 17th symposium on adaptive processes, 1978 IEEE conference, Vol. 17 – start-page: 269 year: 2019 end-page: 281 ident: b37 article-title: Kidney-inspired algorithm and fuzzy clustering for biomedical data analysis publication-title: Big data analytics for intelligent healthcare management – start-page: 133 year: 2009 end-page: 138 ident: b25 article-title: Image segmentation with improved artificial fish swarm algorithm publication-title: Proceedings of the european computing conference, Vol. 28 – volume: 3 start-page: 39 year: 2014 end-page: 49 ident: b48 article-title: A novel hybrid image segmentation method publication-title: Progress in Artificial Intelligence – start-page: 315 year: 2019 end-page: 323 ident: b42 article-title: Comparative analysis of hybridized c-means and fuzzy firefly algorithms with application to image segmentation publication-title: Proceedings of the 2nd international conference on data engineering and communication technology, Vol. 828 – volume: 19 start-page: 1328 year: 2010 end-page: 1337 ident: b27 article-title: A robust fuzzy local information c-means clustering algorithm publication-title: IEEE Transactions on Image Processing – year: 1981 ident: b6 article-title: Pattern recognition with fuzzy objective function algorithms – volume: 44 start-page: 23 year: 1985 end-page: 34 ident: b36 article-title: An examination of procedures for determining the number of groupe in a data set using sum of squares clustering publication-title: Biometrics – year: 2004 ident: b49 article-title: Métaheuristiques, stratégies pour l’optimisation de la production de biens et de services, sous la direction du professeur Christian Tahon – reference: Pham, D. (2002). Fuzzy clustering with spatial constraints. In – start-page: 991 year: 2005 end-page: 995 ident: b19 article-title: Swarm based fuzzy clustering with partition validity publication-title: The 14th IEEE international conference on fuzzy systems – start-page: 317 year: 2018 end-page: 331 ident: b29 article-title: Nonlinear tensor diffusion filter based marker-controlled watershed segmentation for CT/MR images publication-title: Proceedings of international conference on computational intelligence and data engineering, Vol. 9 – start-page: 281 year: 1967 end-page: 297 ident: b34 article-title: Some methods for classification and analysis of multivariate observations publication-title: Fifth Berkeley symposium on mathematics. statistics and probability, Vol. 1 – year: 1999 ident: b15 article-title: Classification – volume: 21 start-page: 193 year: 2002 end-page: 199 ident: b1 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Transition of Medical Imaging – volume: 4 start-page: 65 year: 2012 end-page: 74 ident: b38 article-title: Handling fuzzy image clustering with a modified ABC algorithm publication-title: International Journal of Intelligent Systems and Applications – year: 2010 ident: b24 article-title: Image quality metrics: PSNR vs. SSIM publication-title: 2010 20th international conference on pattern recognition – start-page: 251 year: 2017 end-page: 256 ident: b54 article-title: Kernel-based fuzzy c-means clustering based on fruit fly optimization algorithm publication-title: International conference on grey systems and intelligent services (GSIS) – volume: 5 start-page: 5033 year: 2009 end-page: 5040 ident: b32 article-title: Fuzzy C-means algorithm based on PSO and mahalanobis distance publication-title: International Journal of Innovative Computing – volume: 23 start-page: 2033 year: 2017 end-page: 2046 ident: b63 article-title: A hybrid biogeography-based optimization and fuzzy c-means algorithm for image segmentation publication-title: Soft Computing – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b50 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation – reference: (n.d.). BrainWeb: Simulated Brain Database. Retrieved from – start-page: 68 year: 2019 end-page: 79 ident: b28 article-title: Hybrid fuzzy C-means using bat optimization and maxi-min distance classifier publication-title: International conference on advances in computing and data sciences, Vol. 1046 – year: 2008 ident: b59 article-title: Nature-inspired metaheuristic algorithms – reference: , New York, USA (pp. II-65–II-68). 2002. – start-page: 1 year: 2019 end-page: 7 ident: b55 article-title: An improved PSO-fcm algorithm for image segmentation publication-title: IOP conf. ser.: Earth environ. sci. – volume: 2 start-page: 157 year: 2011 end-page: 168 ident: b13 article-title: A biogeography inspired approach for security audit trail analysis publication-title: Journal of Intelligent Computing – volume: 177 start-page: 5143 year: 2007 end-page: 5152 ident: b39 article-title: Upper and lower values for the level of fuzziness in fcm publication-title: Information Sciences – year: 1967 ident: b33 article-title: The theory of biogeography – year: 1969 ident: b4 article-title: Cluster analysis – volume: 29 start-page: 2186 year: 2006 end-page: 2193 ident: b22 article-title: Measure of medium truth scale and its application (I) publication-title: Chinese Journal of Computers – start-page: 254 year: 2010 end-page: 257 ident: b11 article-title: Method of image segmentation based on fuzzy c-means clustering algorithm and artificial fish swarm algorithm publication-title: IEEE international conference on intelligent computing and integrated systems – year: 1973 ident: b14 article-title: Pattern classification and scene analysis – start-page: 1 year: 2019 end-page: 28 ident: b30 article-title: Firefly optimization based improved fuzzy clustering for CT/MR image segmentation publication-title: Nature inspired optimization techniques for image processing applications, Vol. 150 – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: b62 article-title: Fuzzy sets publication-title: Information and Control – volume: 30 start-page: 9 year: 2006 end-page: 15 ident: b12 article-title: Fuzzy C-means clustering with spatial information for image segmentation publication-title: Journal of Computerized Medical Imaging and Graphics – volume: 13 start-page: 309 year: 2001 end-page: 315 ident: b60 article-title: Fuzzy C-means clustering algorithm with a novel penalty term for image aegmentation publication-title: Opto-Electronics Review – start-page: 181 year: 2010 end-page: 186 ident: b47 article-title: Image segmentation using fuzzy clustering : A survey publication-title: Proceedings - 2010 6th international conference on emerging technologies, ICET 2010 – volume: 34 start-page: 634 year: 2005 end-page: 639 ident: b61 article-title: Analysis of the weighting exponent in the fcm publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: b8 article-title: A dendrite method for cluster analysis publication-title: Communications in Statistics – volume: 13 start-page: 841 year: 1991 end-page: 847 ident: b56 article-title: A validity measure for fuzzy clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: . – volume: 20 start-page: 57 year: 1999 end-page: 68 ident: b44 article-title: An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities publication-title: Pattern Recognition Letters – volume: 31 start-page: 245 year: 2015 end-page: 252 ident: b18 article-title: A new method of fuzzy clustering by using the combination of the firefly algorithm and the particle swarm optimization algorithm publication-title: WALIA Journal – start-page: 69 year: 2019 end-page: 80 ident: b51 article-title: Comparative study of combination of swarm intelligence and fuzzy c means clustering for medical image segmentation publication-title: Smart computational strategies: Theoretical and practical aspects – volume: 5 start-page: 31 year: 2013 end-page: 36 ident: b3 article-title: Artificial bee colony algorithm to improve brain MR image segmentation publication-title: International Journal on Computer Science and Engineering – year: 2017 ident: b53 article-title: Evaluate clustering performance and computational efficiency for PSO based fuzzy clustering methods in processing big imbalanced publication-title: 2017 IEEE international conference on communications (ICC) – volume: 30 start-page: 1551 year: 2007 end-page: 1558 ident: b23 article-title: Measure of medium truth scale and its application (II) publication-title: Chinese Journal of Computers – year: 2020 ident: b57 article-title: Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM publication-title: The Journal of Supercomputing – start-page: 1365 year: 2008 end-page: 1368 ident: b9 article-title: A hybridized clustering approach using particle swarm optimization for image segmentation publication-title: IEEE international conference on audio, language and image processing – volume: 9 start-page: 1464 year: 2019 end-page: 1468 ident: b2 article-title: Image segmentation based on a robust fuzzy C means algorithm publication-title: Journal of Medical Imaging and Health Informatics – volume: 7 start-page: 156 year: 2018 end-page: 160 ident: b31 article-title: Change detection in sarimages based on artificial bee colony optimization with fuzzy C - means clustering publication-title: International Journal of Recent Technology and Engineering (IJRTE) – volume: 91 year: 2020 ident: b35 article-title: Local segmentation of images using an improved fuzzy C-means clustering algorithm based on self-adaptive dictionary learning publication-title: Applied Soft Computing – volume: 38 start-page: 3605 issue: 4 year: 2020 ident: 10.1016/j.eswa.2020.114063_b58 article-title: The image segmentation algorithm of colorimetric sensor array based on fuzzy c-means clustering publication-title: Journal of Intelligent & Fuzzy Systems – year: 1999 ident: 10.1016/j.eswa.2020.114063_b15 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.114063_b30 article-title: Firefly optimization based improved fuzzy clustering for CT/MR image segmentation – volume: 177 start-page: 5143 year: 2007 ident: 10.1016/j.eswa.2020.114063_b39 article-title: Upper and lower values for the level of fuzziness in fcm publication-title: Information Sciences doi: 10.1016/j.ins.2007.06.028 – start-page: 1 year: 2014 ident: 10.1016/j.eswa.2020.114063_b64 article-title: An improved FCM medical image segmentation algorithm based on MMTD publication-title: Computational and Mathematical Methods in Medicine – start-page: 281 year: 1967 ident: 10.1016/j.eswa.2020.114063_b34 article-title: Some methods for classification and analysis of multivariate observations – start-page: 181 year: 2010 ident: 10.1016/j.eswa.2020.114063_b47 article-title: Image segmentation using fuzzy clustering : A survey – start-page: 761 year: 1978 ident: 10.1016/j.eswa.2020.114063_b17 article-title: Fuzzy clustering with a fuzzy covariance matrix – year: 1975 ident: 10.1016/j.eswa.2020.114063_b21 – volume: 2 start-page: 157 issue: 4 year: 2011 ident: 10.1016/j.eswa.2020.114063_b13 article-title: A biogeography inspired approach for security audit trail analysis publication-title: Journal of Intelligent Computing – volume: 29 start-page: 2186 issue: 12 year: 2006 ident: 10.1016/j.eswa.2020.114063_b22 article-title: Measure of medium truth scale and its application (I) publication-title: Chinese Journal of Computers – year: 2004 ident: 10.1016/j.eswa.2020.114063_b49 – start-page: 269 year: 2019 ident: 10.1016/j.eswa.2020.114063_b37 article-title: Kidney-inspired algorithm and fuzzy clustering for biomedical data analysis – start-page: 133 year: 2009 ident: 10.1016/j.eswa.2020.114063_b25 article-title: Image segmentation with improved artificial fish swarm algorithm – year: 2010 ident: 10.1016/j.eswa.2020.114063_b24 article-title: Image quality metrics: PSNR vs. SSIM – year: 1973 ident: 10.1016/j.eswa.2020.114063_b14 – volume: 19 start-page: 1328 year: 2010 ident: 10.1016/j.eswa.2020.114063_b27 article-title: A robust fuzzy local information c-means clustering algorithm publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2010.2040763 – year: 2020 ident: 10.1016/j.eswa.2020.114063_b57 article-title: Color disease spot image segmentation algorithm based on chaotic particle swarm optimization and FCM publication-title: The Journal of Supercomputing doi: 10.1007/s11227-020-03171-8 – year: 1981 ident: 10.1016/j.eswa.2020.114063_b6 – start-page: 317 year: 2018 ident: 10.1016/j.eswa.2020.114063_b29 article-title: Nonlinear tensor diffusion filter based marker-controlled watershed segmentation for CT/MR images – volume: 20 start-page: 57 year: 1999 ident: 10.1016/j.eswa.2020.114063_b44 article-title: An adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities publication-title: Pattern Recognition Letters doi: 10.1016/S0167-8655(98)00121-4 – volume: 3 start-page: 58 issue: 3 year: 1973 ident: 10.1016/j.eswa.2020.114063_b5 article-title: Cluster validity with fuzzy sets publication-title: Journal of Cybernetics doi: 10.1080/01969727308546047 – volume: 81 year: 2019 ident: 10.1016/j.eswa.2020.114063_b46 article-title: Study on the improved fuzzy clustering algorithm and its application in brain image segmentation publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105503 – volume: 3 start-page: 39 issue: 1 year: 2014 ident: 10.1016/j.eswa.2020.114063_b48 article-title: A novel hybrid image segmentation method publication-title: Progress in Artificial Intelligence doi: 10.1007/s13748-014-0044-7 – ident: 10.1016/j.eswa.2020.114063_b7 – year: 2006 ident: 10.1016/j.eswa.2020.114063_b16 – start-page: 68 year: 2019 ident: 10.1016/j.eswa.2020.114063_b28 article-title: Hybrid fuzzy C-means using bat optimization and maxi-min distance classifier – volume: 34 start-page: 1907 year: 2004 ident: 10.1016/j.eswa.2020.114063_b10 article-title: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2004.831165 – volume: 9 start-page: 1464 issue: 7 year: 2019 ident: 10.1016/j.eswa.2020.114063_b2 article-title: Image segmentation based on a robust fuzzy C means algorithm publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2019.2745 – volume: 4 start-page: 65 issue: 12 year: 2012 ident: 10.1016/j.eswa.2020.114063_b38 article-title: Handling fuzzy image clustering with a modified ABC algorithm publication-title: International Journal of Intelligent Systems and Applications doi: 10.5815/ijisa.2012.12.09 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.eswa.2020.114063_b50 article-title: Biogeography-based optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.919004 – volume: 8 start-page: 2073 year: 2020 ident: 10.1016/j.eswa.2020.114063_b45 article-title: An improved dolphin swarm algorithm based on kernel fuzzy C-means in the application of solving the optimal problems of large-scale function publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2958456 – year: 1969 ident: 10.1016/j.eswa.2020.114063_b4 – volume: 23 start-page: 2033 issue: 6 year: 2017 ident: 10.1016/j.eswa.2020.114063_b63 article-title: A hybrid biogeography-based optimization and fuzzy c-means algorithm for image segmentation publication-title: Soft Computing doi: 10.1007/s00500-017-2916-9 – ident: 10.1016/j.eswa.2020.114063_b43 doi: 10.1109/ICIP.2002.1039888 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2020.114063_b55 article-title: An improved PSO-fcm algorithm for image segmentation – volume: 3 start-page: 1 year: 1974 ident: 10.1016/j.eswa.2020.114063_b8 article-title: A dendrite method for cluster analysis publication-title: Communications in Statistics – volume: 3 start-page: 370 year: 1995 ident: 10.1016/j.eswa.2020.114063_b41 article-title: On cluster validity for the fuzzy c-mean model publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.413225 – year: 2017 ident: 10.1016/j.eswa.2020.114063_b53 article-title: Evaluate clustering performance and computational efficiency for PSO based fuzzy clustering methods in processing big imbalanced – volume: 21 start-page: 193 issue: 3 year: 2002 ident: 10.1016/j.eswa.2020.114063_b1 article-title: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data publication-title: IEEE Transition of Medical Imaging doi: 10.1109/42.996338 – volume: 30 start-page: 9 year: 2006 ident: 10.1016/j.eswa.2020.114063_b12 article-title: Fuzzy C-means clustering with spatial information for image segmentation publication-title: Journal of Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2005.10.001 – start-page: 251 year: 2017 ident: 10.1016/j.eswa.2020.114063_b54 article-title: Kernel-based fuzzy c-means clustering based on fruit fly optimization algorithm – start-page: 1365 year: 2008 ident: 10.1016/j.eswa.2020.114063_b9 article-title: A hybridized clustering approach using particle swarm optimization for image segmentation – start-page: 991 year: 2005 ident: 10.1016/j.eswa.2020.114063_b19 article-title: Swarm based fuzzy clustering with partition validity – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 10.1016/j.eswa.2020.114063_b62 article-title: Fuzzy sets publication-title: Information and Control doi: 10.1016/S0019-9958(65)90241-X – start-page: 317 year: 2009 ident: 10.1016/j.eswa.2020.114063_b20 article-title: Fuzzy clustering with improved artificial fish swarm algorithm – year: 1967 ident: 10.1016/j.eswa.2020.114063_b33 – year: 2008 ident: 10.1016/j.eswa.2020.114063_b59 – start-page: 115 year: 2014 ident: 10.1016/j.eswa.2020.114063_b26 article-title: Weighting exponent selection of fuzzy C-means via Jacobian matrix – year: 2018 ident: 10.1016/j.eswa.2020.114063_b40 article-title: Fuzzy social spider optimization algorithm for fuzzy clustering analysis – volume: 13 start-page: 309 issue: 4 year: 2001 ident: 10.1016/j.eswa.2020.114063_b60 article-title: Fuzzy C-means clustering algorithm with a novel penalty term for image aegmentation publication-title: Opto-Electronics Review – volume: 91 year: 2020 ident: 10.1016/j.eswa.2020.114063_b35 article-title: Local segmentation of images using an improved fuzzy C-means clustering algorithm based on self-adaptive dictionary learning publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2020.106200 – volume: 34 start-page: 634 year: 2005 ident: 10.1016/j.eswa.2020.114063_b61 article-title: Analysis of the weighting exponent in the fcm publication-title: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics) doi: 10.1109/TSMCB.2003.810951 – volume: 63 start-page: 411 year: 2001 ident: 10.1016/j.eswa.2020.114063_b52 article-title: Estimating the number of clusters in a data set using the gap statistic publication-title: Journal of the Royal Statistical Society. Series B. Statistical Methodology doi: 10.1111/1467-9868.00293 – start-page: 254 year: 2010 ident: 10.1016/j.eswa.2020.114063_b11 article-title: Method of image segmentation based on fuzzy c-means clustering algorithm and artificial fish swarm algorithm – volume: 31 start-page: 245 issue: S3 year: 2015 ident: 10.1016/j.eswa.2020.114063_b18 article-title: A new method of fuzzy clustering by using the combination of the firefly algorithm and the particle swarm optimization algorithm publication-title: WALIA Journal – volume: 13 start-page: 841 issue: 8 year: 1991 ident: 10.1016/j.eswa.2020.114063_b56 article-title: A validity measure for fuzzy clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.85677 – volume: 5 start-page: 31 issue: 1 year: 2013 ident: 10.1016/j.eswa.2020.114063_b3 article-title: Artificial bee colony algorithm to improve brain MR image segmentation publication-title: International Journal on Computer Science and Engineering – start-page: 315 year: 2019 ident: 10.1016/j.eswa.2020.114063_b42 article-title: Comparative analysis of hybridized c-means and fuzzy firefly algorithms with application to image segmentation – volume: 30 start-page: 1551 issue: 9 year: 2007 ident: 10.1016/j.eswa.2020.114063_b23 article-title: Measure of medium truth scale and its application (II) publication-title: Chinese Journal of Computers – volume: 5 start-page: 5033 issue: 12 year: 2009 ident: 10.1016/j.eswa.2020.114063_b32 article-title: Fuzzy C-means algorithm based on PSO and mahalanobis distance publication-title: International Journal of Innovative Computing – volume: 44 start-page: 23 year: 1985 ident: 10.1016/j.eswa.2020.114063_b36 article-title: An examination of procedures for determining the number of groupe in a data set using sum of squares clustering publication-title: Biometrics – start-page: 69 year: 2019 ident: 10.1016/j.eswa.2020.114063_b51 article-title: Comparative study of combination of swarm intelligence and fuzzy c means clustering for medical image segmentation – volume: 7 start-page: 156 issue: 4 year: 2018 ident: 10.1016/j.eswa.2020.114063_b31 article-title: Change detection in sarimages based on artificial bee colony optimization with fuzzy C - means clustering publication-title: International Journal of Recent Technology and Engineering (IJRTE) |
| SSID | ssj0017007 |
| Score | 2.4741855 |
| Snippet | Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114063 |
| SubjectTerms | Algorithms Biogeography based algorithm Classification Cooperation Firefly algorithm Fuzzy c-means Genetic algorithm Genetic algorithms Heuristic methods Histograms Image classification Image segmentation Multiagent systems Neural networks Segmentation |
| Title | CSFCM: An improved fuzzy C-Means image segmentation algorithm using a cooperative approach |
| URI | https://dx.doi.org/10.1016/j.eswa.2020.114063 https://www.proquest.com/docview/2480005342 |
| Volume | 166 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4Ix6l8sCGTNvYiVO2KqIqoHYplSoWy3acUtQmVR9CdOC340scJJBgYLXsKDrb390l332H0BXVXKmAByRhShNmHSCRDS8hktlgn6oEqj-BbdEPukP2MPJHFRSVtTBAq3TYX2B6jtZupO6sWZ9PJvWBDQ6sO7SpXS654oPiJ2McuhjcfHzRPEB-jhd6e5zAbFc4U3C8zPINtIe8XDK3EdDfnNMPmM59T2cf7bqgEbeL9zpAFZMeor2yIQN29_MIPUeDTtS7xe0UT_KPBSbGyXqzeccR6RnrlOywxQ-8NOOZqzlKsZyOs8Vk9TLDwIEfY4l1ls1NoQiOS83xYzTs3D1FXeKaJxBNvXBFWnEiA9Oy2R70Pve0dfScKl9qpUMTq6bkxtdMyqamAW0ow2PlgzSNCuJWM1aUnqCtNEvNKcKJhn-N3E8sutlsLpTKk7QVc6ZtspeY8Aw1S6sJ7ZTFocHFVJQUslcBlhZgaVFY-gxdf62ZF7oaf872y80Q306HsMD_57pquXPC3c2l8FiYlyAz7_yfj71AOx5QW4DW51fR1mqxNpc2NlmpWn74ami7ff_Y7X8C93Hh_g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwIZMWz_ihA1FVOXRLm2lisWyHacUlbSiRYgO_HbsxKkEEgyslh1FZ_u7u-S77wA4J5orFfAApVRpRK0DRLKGUySpDfaJSl31p2NbtINmj971WX8JxGUtjKNVeuwvMD1Haz9S9dasTobDascGB9Yd2tQul1xhZBmsUIa5y8AuPxc8D6c_xwvBPY7cdF85U5C8zPTdiQ_hXDO3FpDfvNMPnM6dT2MTrPuoEV4XL7YFlky2DTbKjgzQX9Ad8Bh3GnHrCl5ncJh_LTAJTN_m8w8Yo5axXskOWwCBUzN48UVHGZSjwfh1OHt6gY4EP4AS6vF4YgpJcFiKju-CXuOmGzeR756ANMHhDEVJKgMT2XTPNT_H2np6ThSTWunQJKouuWGaSlnXJCA1ZXiimNOmUUES1RNFyB6oZOPM7AOYavezkbPUwptN50KpsCRRwqm22V5qwgNQL60mtJcWdx0uRqLkkD0LZ2nhLC0KSx-Ai8WaSSGs8edsVm6G-HY8hEX-P9cdlzsn_OWcCkzDvAaZ4sN_PvYMrDa7rQfxcNu-PwJr2PFcHMePHYPK7PXNnNhAZaZO84P4BUsF45M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CSFCM%3A+An+improved+fuzzy+C-Means+image+segmentation+algorithm+using+a+cooperative+approach&rft.jtitle=Expert+systems+with+applications&rft.au=Abdellahoum%2C+Hamza&rft.au=Mokhtari%2C+Nassim&rft.au=Brahimi%2C+Abderrahmane&rft.au=Boukra%2C+Abdelmadjid&rft.date=2021-03-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=166&rft_id=info:doi/10.1016%2Fj.eswa.2020.114063&rft.externalDocID=S0957417420308253 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |