One, Five, and Ten-Shot-Based Meta-Learning for Computationally Efficient Head Pose Estimation

Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like convolutional neural networks (CNN). However, CNN requires a large amount of data for training. This article presents a new framework for head pose estim...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of embedded and real-time communication systems Vol. 14; no. 1; pp. 1 - 24
Main Authors Joshi, Manoj, Pant, Dibakar Raj, Heikkonen, Jukka, Kanth, Rajeev
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.01.2023
Subjects
Online AccessGet full text
ISSN1947-3176
1947-3184
1947-3184
DOI10.4018/IJERTCS.316877

Cover

Abstract Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like convolutional neural networks (CNN). However, CNN requires a large amount of data for training. This article presents a new framework for head pose estimation using computationally efficient first-order model-agnostic meta-learning (FO-MAML)-based method and compares the performance with existing MAML-based approaches. Experiments using one-shot, five-shot, and ten-shot settings are done using MAML and FO-MAML. A mean average error (MAEavg) of 7.72, 6.30, and 5.32 has been achieved in predicting head pose using MAML for one-, five-, and ten-shot settings, respectively. Similarly, MAEavg of 8.33, 6.84, and 6.23 has been achieved in predicting head pose using FO-MAML for one-, five-, and ten-shot settings, respectively. The computational complexity of an outer-loop update in MAML is found to be O(n2) whereas for FO-MAML it is O(n).
AbstractList Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like convolutional neural networks (CNN). However, CNN requires a large amount of data for training. This article presents a new framework for head pose estimation using computationally efficient first-order model-agnostic meta-learning (FO-MAML)-based method and compares the performance with existing MAML-based approaches. Experiments using one-shot, five-shot, and ten-shot settings are done using MAML and FO-MAML. A mean average error (MAEavg) of 7.72, 6.30, and 5.32 has been achieved in predicting head pose using MAML for one-, five-, and ten-shot settings, respectively. Similarly, MAEavg of 8.33, 6.84, and 6.23 has been achieved in predicting head pose using FO-MAML for one-, five-, and ten-shot settings, respectively. The computational complexity of an outer-loop update in MAML is found to be O(n2) whereas for FO-MAML it is O(n).
Author Joshi, Manoj
Heikkonen, Jukka
Pant, Dibakar Raj
Kanth, Rajeev
AuthorAffiliation Savonia University of Applied Sciences, Finland
University of Turku, Finland
Institute of Engineering, Nepal
AuthorAffiliation_xml – name: Institute of Engineering, Nepal
– name: Savonia University of Applied Sciences, Finland
– name: University of Turku, Finland
Author_xml – sequence: 1
  givenname: Manoj
  surname: Joshi
  fullname: Joshi, Manoj
  organization: Institute of Engineering, Nepal
– sequence: 2
  givenname: Dibakar
  surname: Pant
  middlename: Raj
  fullname: Pant, Dibakar Raj
  organization: Institute of Engineering, Nepal
– sequence: 3
  givenname: Jukka
  surname: Heikkonen
  fullname: Heikkonen, Jukka
  organization: University of Turku, Finland
– sequence: 4
  givenname: Rajeev
  surname: Kanth
  fullname: Kanth, Rajeev
  organization: Savonia University of Applied Sciences, Finland
BookMark eNptkDFPAyEYhonRRK1dnUlcvfY46MGNemmtpqZG6yqhHChNCxWopv9e2jM6KAMwvO-T73tOwaF1VgFwjvIeyRHr394NH2f1Uw-jklF6AE5QRWiGESOHP39aHoNuCIs8nQGhJctPwMvUqks4Mh_pFraBM2WzpzcXs2sRVAPvVRTZRAlvjX2F2nlYu9V6E0U0zorlcguHWhtplI1wrEQDH1xQcBiiWe0jZ-BIi2VQ3e-3A55Hw1k9zibTm9v6apJJXLCYMVZV5RzhQmss55RVsmykYjlFiohcUDwo2YBqQnRTVFoiJilN-8zJQJN8XjW4A_otd2PXYvuZJuNrn2bwW45yvjPEzUL5KANvDaXGRdtYe_e-USHyhdv4tNM-URa0KDFLqV6bkt6F4JX-g_0W_4ut24J5Nb_EnV-e9PKkl-_08r3e_xmI4C8tzYx1
Cites_doi 10.1109/CVPR.2014.241
10.1109/TPAMI.2009.122
10.48550/ARXIV.1409.4842
10.1007/978-3-030-63128-4_18
10.1016/j.patcog.2016.12.024
10.1016/j.patcog.2016.05.017
10.1109/CVPRW.2018.00281
10.1109/ICCV.2019.00946
10.1109/ICPR.2002.1047456
10.1109/5.726791
10.1109/CVPR.2019.00118
10.1007/978-3-642-27183-0_41
10.1109/LSP.2014.2364458
10.23919/FRUCT54823.2022.9770932
10.1109/CVPR.2013.446
10.1109/ITSC.2008.4732544
10.1109/CVPR.2016.90
10.1109/IVS.2004.1336434
10.1007/978-3-319-16811-1_6
10.48550/ARXIV.1812.02391
10.1109/TPAMI.2010.69
10.5244/C.13.52
10.1109/ACCESS.2020.3034828
10.48550/ARXIV.1703.01883
10.1109/TPAMI.2015.2477843
10.1109/CVPR.1997.609310
10.1016/j.patcog.2017.06.009
10.1109/CVPR.2011.5995458
10.1007/11957959
10.1109/RATFG.1999.799218
10.1109/LSP.2016.2603342
10.1109/CVPR.2019.00049
ContentType Journal Article
Copyright 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.4018/IJERTCS.316877
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1947-3184
EndPage 24
ExternalDocumentID 10.4018/ijertcs.316877
10_4018_IJERTCS_316877
Five_and_Ten_Shot_Based10_4018_IJERTCS_31687714
GroupedDBID 0R~
4.4
AAYVP
ABEPT
ABGRR
ACOJC
ADEKF
ALMA_UNASSIGNED_HOLDINGS
BYHXH
CBWLS
CDTDJ
CIGCI
CKMBR
CNQXE
COVLG
EBS
H13
HZ~
IGYUU
JRD
MV1
NEEBM
O9-
RIF
AAYXX
ABJCF
ABPHS
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
CTSEY
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
PUEGO
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
BAAKF
EJD
IAO
ITC
N95
UNPAY
ID FETCH-LOGICAL-c328t-88996b132ff3cb789c6dce8071e4a0a7356857f44fd29fc18c77317b45f40b9d3
IEDL.DBID UNPAY
ISSN 1947-3176
1947-3184
IngestDate Tue Aug 19 22:09:33 EDT 2025
Mon Sep 15 04:50:42 EDT 2025
Wed Oct 01 04:28:07 EDT 2025
Sun Feb 05 07:35:30 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://creativecommons.org/licenses/by/3.0/deed.en_US
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-88996b132ff3cb789c6dce8071e4a0a7356857f44fd29fc18c77317b45f40b9d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6832-0874
0000-0003-1109-1211
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.igi-global.com/ViewTitle.aspx?TitleId=316877&isxn=9781668479612
PQID 3166272638
PQPubID 2045849
PageCount 24
ParticipantIDs proquest_journals_3166272638
igi_journals_Five_and_Ten_Shot_Based10_4018_IJERTCS_31687714
crossref_primary_10_4018_IJERTCS_316877
unpaywall_primary_10_4018_ijertcs_316877
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of embedded and real-time communication systems
PublicationYear 2023
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJERTCS.316877-37
IJERTCS.316877-14
IJERTCS.316877-17
IJERTCS.316877-39
IJERTCS.316877-16
IJERTCS.316877-19
M.Joshi (IJERTCS.316877-15) 2021
IJERTCS.316877-31
IJERTCS.316877-30
G.Fanelli (IJERTCS.316877-8) 2011
IJERTCS.316877-11
IJERTCS.316877-33
IJERTCS.316877-10
IJERTCS.316877-32
IJERTCS.316877-13
IJERTCS.316877-35
IJERTCS.316877-12
IJERTCS.316877-34
B.Benfold (IJERTCS.316877-5) 2008
K.Zhang (IJERTCS.316877-38) 2016; 23
B.Ahn (IJERTCS.316877-0) 2015
IJERTCS.316877-4
IJERTCS.316877-3
IJERTCS.316877-1
Y.Lecun (IJERTCS.316877-18) 1998; 86
Y.Yan (IJERTCS.316877-36) 2016; 38
IJERTCS.316877-26
IJERTCS.316877-25
IJERTCS.316877-28
IJERTCS.316877-27
IJERTCS.316877-7
IJERTCS.316877-29
IJERTCS.316877-6
IJERTCS.316877-20
A.Asperti (IJERTCS.316877-2) 2020; 8
IJERTCS.316877-22
IJERTCS.316877-21
IJERTCS.316877-24
IJERTCS.316877-23
C.Finn (IJERTCS.316877-9) 2017; 70
References_xml – ident: IJERTCS.316877-17
  doi: 10.1109/CVPR.2014.241
– start-page: 101
  year: 2011
  ident: IJERTCS.316877-8
  article-title: Real time head pose estimation from consumer depth cameras
  publication-title: Pattern Recognition
– ident: IJERTCS.316877-10
  doi: 10.1109/TPAMI.2009.122
– start-page: 1391
  year: 2021
  ident: IJERTCS.316877-15
  article-title: Head Pose Estimation by Few Shot Learning Techniques.
  publication-title: Proceedings of 10th IOE Graduate Conference
– ident: IJERTCS.316877-33
  doi: 10.48550/ARXIV.1409.4842
– ident: IJERTCS.316877-16
  doi: 10.1007/978-3-030-63128-4_18
– ident: IJERTCS.316877-20
  doi: 10.1016/j.patcog.2016.12.024
– ident: IJERTCS.316877-13
  doi: 10.1016/j.patcog.2016.05.017
– ident: IJERTCS.316877-27
  doi: 10.1109/CVPRW.2018.00281
– ident: IJERTCS.316877-19
– ident: IJERTCS.316877-24
  doi: 10.1109/ICCV.2019.00946
– ident: IJERTCS.316877-29
  doi: 10.1109/ICPR.2002.1047456
– volume: 86
  start-page: 2278
  year: 1998
  ident: IJERTCS.316877-18
  article-title: Gradient-based learning applied to document recognition.
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.726791
– ident: IJERTCS.316877-37
  doi: 10.1109/CVPR.2019.00118
– ident: IJERTCS.316877-34
  doi: 10.1007/978-3-642-27183-0_41
– ident: IJERTCS.316877-4
  doi: 10.1109/LSP.2014.2364458
– ident: IJERTCS.316877-14
  doi: 10.23919/FRUCT54823.2022.9770932
– ident: IJERTCS.316877-31
  doi: 10.1109/CVPR.2013.446
– ident: IJERTCS.316877-11
– ident: IJERTCS.316877-6
  doi: 10.1109/ITSC.2008.4732544
– ident: IJERTCS.316877-12
  doi: 10.1109/CVPR.2016.90
– ident: IJERTCS.316877-39
  doi: 10.1109/IVS.2004.1336434
– start-page: 82
  year: 2015
  ident: IJERTCS.316877-0
  article-title: Real-time head orientation from a monocular camera using deep neural network
  publication-title: Computer Vision – ACCV 2014
  doi: 10.1007/978-3-319-16811-1_6
– ident: IJERTCS.316877-32
  doi: 10.48550/ARXIV.1812.02391
– ident: IJERTCS.316877-3
  doi: 10.1109/TPAMI.2010.69
– ident: IJERTCS.316877-28
  doi: 10.5244/C.13.52
– volume: 70
  start-page: 1126
  year: 2017
  ident: IJERTCS.316877-9
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks.
  publication-title: Proceedings of the 34th International Conference on Machine Learning
– volume: 8
  start-page: 199440
  year: 2020
  ident: IJERTCS.316877-2
  article-title: Balancing reconstruction error and kullback-leibler divergence in variational autoencoders.
  publication-title: IEEE Access: Practical Innovations, Open Solutions
  doi: 10.1109/ACCESS.2020.3034828
– ident: IJERTCS.316877-35
  doi: 10.48550/ARXIV.1703.01883
– volume: 38
  start-page: 1070
  issue: 6
  year: 2016
  ident: IJERTCS.316877-36
  article-title: A multi-task learning framework for head pose estimation under target motion.
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2015.2477843
– ident: IJERTCS.316877-1
– ident: IJERTCS.316877-23
  doi: 10.1109/CVPR.1997.609310
– ident: IJERTCS.316877-25
  doi: 10.1016/j.patcog.2017.06.009
– ident: IJERTCS.316877-7
  doi: 10.1109/CVPR.2011.5995458
– ident: IJERTCS.316877-22
  doi: 10.1007/11957959
– ident: IJERTCS.316877-21
  doi: 10.1109/RATFG.1999.799218
– year: 2008
  ident: IJERTCS.316877-5
  publication-title: Colour Invariant Head Pose Classification in Low Resolution Video
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: IJERTCS.316877-38
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks.
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2016.2603342
– ident: IJERTCS.316877-26
  doi: 10.1016/j.patcog.2017.06.009
– ident: IJERTCS.316877-30
  doi: 10.1109/CVPR.2019.00049
SSID ssj0000547680
Score 2.2300873
Snippet Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like...
SourceID unpaywall
proquest
crossref
igi
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Communication
Computational efficiency
Datasets
Deep learning
Efficiency
Learning
Methods
Neural networks
Pose estimation
Sensors
Surveillance
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwEB212wfgAZWbutAiPyDBQ01zcWxHoqpoldVSiaVqt1KfsBzbKYtW2aWbCvXvGSdOLwLxAbGi48nMmYl9DsA7g1VTWM5oFleaMhkxqmOW0CoSeew096TXn7aY8PE5O77ILtZg0t-F8ccq-5zYJmq7MH5GvpfGXqo8wXA5WP6i3jXK_13tLTR0sFaw-63E2DpsJF4ZawAbh8Xk5PR26oIEBfl1e0syZ35AJ3in5Ihthtz7clycTo_OPnozJyEeVKr12eXsAQl9dF0v9c1vPZ_fq0ejTXgaiCT53O38M1hz9XN4ck9e8AV8_1a7XTLCfLZLdG3J1NX07MeioYdYuiz56hpNg77qJUHySjqLhzAenN-QotWXwLJExhgK5GSxcqTAnNBdd3wJ56NiejSmwU-BmjSRDZXYW_ES28-qSk0pZG64NU4iyXBMR1qkGZeZqBirbJJXJpZGCESoZFnFojK36SsY1IvabQHRjOUR5gJRZZxJnUqLRLFMBBI2m6SaD-F9j51adrIZCtsNj7IKKKsO5SF8QmhV-HJWyoOiEBOFmCiPiWox-ffDMRvCdr8nd2vcxcoQPtzu018vMvvprhqzCmu9_v9Kb-Cxd5rvpi_bMGiurt0O8pGmfBuC7A-TXdqg
  priority: 102
  providerName: ProQuest
Title One, Five, and Ten-Shot-Based Meta-Learning for Computationally Efficient Head Pose Estimation
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJERTCS.316877
https://www.proquest.com/docview/3166272638
https://www.igi-global.com/ViewTitle.aspx?TitleId=316877&isxn=9781668479612
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1947-3184
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000547680
  issn: 1947-3184
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZYewAO_EYURuUDAg5zyQ_HdiQ4bFNKN4lSbS3aLliO47COKp2WVGP89TzHLmzAgQM3S0ks-_PLe99znO8h9EJD1OQFoyQJS0WoCChRIY1IGfA0NIpZ0mtPW4zZaEb3j5IjXw6o9scq55AWOjmM1lV_mpuLqUXOidS2zb3ina24xPnLef2tTYVCxsDRpsxWHO6yBIh5B3Vn48n2cftdmdrduLbUnG8L6iQcIb8Qb-an5rzR9cD1eS1EbcBorrHPm6vqTF1eqMXiSiAa3kWL9RTc-ZOvg1WTD_T339Qd_9Mc76E7nrDibWdh99ENUz1At6_IGD5Enz9WZgsPwW9uYVUVeGoqcniybMgOhMgCfzCNIl7H9QsGkoxdKQm_Dbm4xFmrYwHhD4_A5PBkWRucge9xv1U-QrNhNt0dEV-3geg4Eg0RkMOxHNLcsox1zkWqWaGNADJjqAoUjxMmEl5SWhZRWupQaM5hcXKalDTI0yJ-jDrVsjJPEFaUpgH4HF4mjAoViwIIaR5xIIZFFCvWQ6_WSyXPnDyHhLTGLqrc288OpruH0oHYQ28Bc-nf0FpaUCRgIgETaTGRLSZ_fzikPbS5NoFffcBFFvEIXFgPvf5pFn8MxFuX7-vpv9_6DN2y1e3djs8m6jTnK_McOFCT99GGGL7vo-5ONp4c9L2l_wCtGwPk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB318lD6gLiKLQX8AIKHmubixI5EhWjJareXpWq3Up9qnNgpi1bZpZuq2p_j2xgnTi8C8dYPyCg6nsycmXjmALzNMWtyHTMa-YWiTHiMKp8FtPB44hsVW9Jrb1sM4t4J2z2NThfgdzsLY69VtjGxDtR6ktse-Wbo21XlAbrL5-kvalWj7N_VVkJDOWkFvVWvGHODHXtmfoUl3Gyr_xXP-10QdNPhTo86lQGah4GoqMCKI86wKCuKMM-4SPJY50Zg6jVMeYqHUSwiXjBW6CApcl_knGPSzVhUMC9LdIh2F2GZhSzB4m95Ox0cHl13eZAQIZ-vpzITZhuCPG42R2JZIzb7u-nRcOf4oxWP4vxOZlwcnY_ukN6Vy3Kq5ldqPL6V_7qP4KEjruRL42mPYcGUT2D11jrDp3D2rTQbpIvxc4OoUpOhKenxj0lFtzFVanJgKkXdPtdzgmSZNJISrh05npO03meBaZD00PXI4WRmSIoxqBmvfAYn94Lsc1gqJ6V5AUQxlngYe3gRxUyoUGgkplnAkSDqIFRxB9632Mlps6ZDYnljUZYOZdmg3IFPCK10X-pMWlAkYiIRE2kxkTUm_37YZx1Yb8_kxsaNb3bgw_U5_fUio5_mospnztba_y29gZXe8GBf7vcHey_hgVW5bzo_67BUXVyaV8iFquy1czgC3-_bx_8ARTkW-Q
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgewAOvBFbCvIBAYd6ycOxHakcSrWrbSVKRXdRuWA5fsDSVbZqsmrLr2cce6EFDhy4WUpi2Z8nM984zjcIPdcQNblhlBSpU4SKhBKV0oy4hJepVcyTXn_aYp-Np3TvqDiK5YCaeKxyBmlhkMPoXPXHmT2beOSCSG3X3DVvfMUlzl_MmvMuFUoZA0dbMl9xeI0VQMx7aG26f7D9qfuuTP1uXFdqLrYFDRKOkF-I17Nv9rTVzSD0eSVEXYfRXGGfN5b1ibo4U_P5pUA0uoPmqymE8yfHg2VbDfT339Qd_9Mc76LbkbDi7WBh99A1W99Hty7JGD5An9_XdhOPwG9uYlUbPLE1Ofy6aMlbCJEGv7OtIlHH9QsGkoxDKYm4DTm_wMNOxwLCHx6DyeGDRWPxEHxP-K3yIZqOhpOdMYl1G4jOM9ESATkcqyDNdS7XFRelZkZbAWTGUpUonhdMFNxR6kxWOp0KzTksTkULR5OqNPkj1KsXtX2MsKK0TMDncFcwKlQuDBDSKuNADE2WK9ZHL1dLJU-CPIeEtMYvqtzdG36Y7BzKAGIfbQHmMr6hjfSgSMBEAibSYyI7TP7-cEr7aGNlAr_6gIss4xm4sD569dMs_hhItK7Y1_q_3_oE3fTV7cOOzwbqtadL-xQ4UFs9i7b9A46QAWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%2C+Five%2C+and+Ten-Shot-Based+Meta-Learning+for+Computationally+Efficient+Head+Pose+Estimation&rft.jtitle=International+journal+of+embedded+and+real-time+communication+systems&rft.au=Joshi%2C+Manoj&rft.au=Pant%2C+Dibakar+Raj&rft.au=Heikkonen%2C+Jukka&rft.au=Kanth%2C+Rajeev&rft.date=2023-01-01&rft.issn=1947-3176&rft.eissn=1947-3184&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.4018%2FIJERTCS.316877&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJERTCS_316877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-3176&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-3176&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-3176&client=summon