One, Five, and Ten-Shot-Based Meta-Learning for Computationally Efficient Head Pose Estimation
Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like convolutional neural networks (CNN). However, CNN requires a large amount of data for training. This article presents a new framework for head pose estim...
        Saved in:
      
    
          | Published in | International journal of embedded and real-time communication systems Vol. 14; no. 1; pp. 1 - 24 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hershey
          IGI Global
    
        01.01.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1947-3176 1947-3184 1947-3184  | 
| DOI | 10.4018/IJERTCS.316877 | 
Cover
| Abstract | Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like convolutional neural networks (CNN). However, CNN requires a large amount of data for training. This article presents a new framework for head pose estimation using computationally efficient first-order model-agnostic meta-learning (FO-MAML)-based method and compares the performance with existing MAML-based approaches. Experiments using one-shot, five-shot, and ten-shot settings are done using MAML and FO-MAML. A mean average error (MAEavg) of 7.72, 6.30, and 5.32 has been achieved in predicting head pose using MAML for one-, five-, and ten-shot settings, respectively. Similarly, MAEavg of 8.33, 6.84, and 6.23 has been achieved in predicting head pose using FO-MAML for one-, five-, and ten-shot settings, respectively. The computational complexity of an outer-loop update in MAML is found to be O(n2) whereas for FO-MAML it is O(n). | 
    
|---|---|
| AbstractList | Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like convolutional neural networks (CNN). However, CNN requires a large amount of data for training. This article presents a new framework for head pose estimation using computationally efficient first-order model-agnostic meta-learning (FO-MAML)-based method and compares the performance with existing MAML-based approaches. Experiments using one-shot, five-shot, and ten-shot settings are done using MAML and FO-MAML. A mean average error (MAEavg) of 7.72, 6.30, and 5.32 has been achieved in predicting head pose using MAML for one-, five-, and ten-shot settings, respectively. Similarly, MAEavg of 8.33, 6.84, and 6.23 has been achieved in predicting head pose using FO-MAML for one-, five-, and ten-shot settings, respectively. The computational complexity of an outer-loop update in MAML is found to be O(n2) whereas for FO-MAML it is O(n). | 
    
| Author | Joshi, Manoj Heikkonen, Jukka Pant, Dibakar Raj Kanth, Rajeev  | 
    
| AuthorAffiliation | Savonia University of Applied Sciences, Finland University of Turku, Finland Institute of Engineering, Nepal  | 
    
| AuthorAffiliation_xml | – name: Institute of Engineering, Nepal – name: Savonia University of Applied Sciences, Finland – name: University of Turku, Finland  | 
    
| Author_xml | – sequence: 1 givenname: Manoj surname: Joshi fullname: Joshi, Manoj organization: Institute of Engineering, Nepal – sequence: 2 givenname: Dibakar surname: Pant middlename: Raj fullname: Pant, Dibakar Raj organization: Institute of Engineering, Nepal – sequence: 3 givenname: Jukka surname: Heikkonen fullname: Heikkonen, Jukka organization: University of Turku, Finland – sequence: 4 givenname: Rajeev surname: Kanth fullname: Kanth, Rajeev organization: Savonia University of Applied Sciences, Finland  | 
    
| BookMark | eNptkDFPAyEYhonRRK1dnUlcvfY46MGNemmtpqZG6yqhHChNCxWopv9e2jM6KAMwvO-T73tOwaF1VgFwjvIeyRHr394NH2f1Uw-jklF6AE5QRWiGESOHP39aHoNuCIs8nQGhJctPwMvUqks4Mh_pFraBM2WzpzcXs2sRVAPvVRTZRAlvjX2F2nlYu9V6E0U0zorlcguHWhtplI1wrEQDH1xQcBiiWe0jZ-BIi2VQ3e-3A55Hw1k9zibTm9v6apJJXLCYMVZV5RzhQmss55RVsmykYjlFiohcUDwo2YBqQnRTVFoiJilN-8zJQJN8XjW4A_otd2PXYvuZJuNrn2bwW45yvjPEzUL5KANvDaXGRdtYe_e-USHyhdv4tNM-URa0KDFLqV6bkt6F4JX-g_0W_4ut24J5Nb_EnV-e9PKkl-_08r3e_xmI4C8tzYx1 | 
    
| Cites_doi | 10.1109/CVPR.2014.241 10.1109/TPAMI.2009.122 10.48550/ARXIV.1409.4842 10.1007/978-3-030-63128-4_18 10.1016/j.patcog.2016.12.024 10.1016/j.patcog.2016.05.017 10.1109/CVPRW.2018.00281 10.1109/ICCV.2019.00946 10.1109/ICPR.2002.1047456 10.1109/5.726791 10.1109/CVPR.2019.00118 10.1007/978-3-642-27183-0_41 10.1109/LSP.2014.2364458 10.23919/FRUCT54823.2022.9770932 10.1109/CVPR.2013.446 10.1109/ITSC.2008.4732544 10.1109/CVPR.2016.90 10.1109/IVS.2004.1336434 10.1007/978-3-319-16811-1_6 10.48550/ARXIV.1812.02391 10.1109/TPAMI.2010.69 10.5244/C.13.52 10.1109/ACCESS.2020.3034828 10.48550/ARXIV.1703.01883 10.1109/TPAMI.2015.2477843 10.1109/CVPR.1997.609310 10.1016/j.patcog.2017.06.009 10.1109/CVPR.2011.5995458 10.1007/11957959 10.1109/RATFG.1999.799218 10.1109/LSP.2016.2603342 10.1109/CVPR.2019.00049  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY  | 
    
| DOI | 10.4018/IJERTCS.316877 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Computer Science Database  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1947-3184 | 
    
| EndPage | 24 | 
    
| ExternalDocumentID | 10.4018/ijertcs.316877 10_4018_IJERTCS_316877 Five_and_Ten_Shot_Based10_4018_IJERTCS_31687714  | 
    
| GroupedDBID | 0R~ 4.4 AAYVP ABEPT ABGRR ACOJC ADEKF ALMA_UNASSIGNED_HOLDINGS BYHXH CBWLS CDTDJ CIGCI CKMBR CNQXE COVLG EBS H13 HZ~ IGYUU JRD MV1 NEEBM O9- RIF AAYXX ABJCF ABPHS AFKRA ARAPS BENPR BGLVJ CCPQU CITATION CTSEY HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS PUEGO 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS ADTOC BAAKF EJD IAO ITC N95 UNPAY  | 
    
| ID | FETCH-LOGICAL-c328t-88996b132ff3cb789c6dce8071e4a0a7356857f44fd29fc18c77317b45f40b9d3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1947-3176 1947-3184  | 
    
| IngestDate | Tue Aug 19 22:09:33 EDT 2025 Mon Sep 15 04:50:42 EDT 2025 Wed Oct 01 04:28:07 EDT 2025 Sun Feb 05 07:35:30 EST 2023  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | http://creativecommons.org/licenses/by/3.0/deed.en_US cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c328t-88996b132ff3cb789c6dce8071e4a0a7356857f44fd29fc18c77317b45f40b9d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-6832-0874 0000-0003-1109-1211  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.igi-global.com/ViewTitle.aspx?TitleId=316877&isxn=9781668479612 | 
    
| PQID | 3166272638 | 
    
| PQPubID | 2045849 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | proquest_journals_3166272638 igi_journals_Five_and_Ten_Shot_Based10_4018_IJERTCS_31687714 crossref_primary_10_4018_IJERTCS_316877 unpaywall_primary_10_4018_ijertcs_316877  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-01-01 | 
    
| PublicationDateYYYYMMDD | 2023-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Hershey | 
    
| PublicationPlace_xml | – name: Hershey | 
    
| PublicationTitle | International journal of embedded and real-time communication systems | 
    
| PublicationYear | 2023 | 
    
| Publisher | IGI Global | 
    
| Publisher_xml | – name: IGI Global | 
    
| References | IJERTCS.316877-37 IJERTCS.316877-14 IJERTCS.316877-17 IJERTCS.316877-39 IJERTCS.316877-16 IJERTCS.316877-19 M.Joshi (IJERTCS.316877-15) 2021 IJERTCS.316877-31 IJERTCS.316877-30 G.Fanelli (IJERTCS.316877-8) 2011 IJERTCS.316877-11 IJERTCS.316877-33 IJERTCS.316877-10 IJERTCS.316877-32 IJERTCS.316877-13 IJERTCS.316877-35 IJERTCS.316877-12 IJERTCS.316877-34 B.Benfold (IJERTCS.316877-5) 2008 K.Zhang (IJERTCS.316877-38) 2016; 23 B.Ahn (IJERTCS.316877-0) 2015 IJERTCS.316877-4 IJERTCS.316877-3 IJERTCS.316877-1 Y.Lecun (IJERTCS.316877-18) 1998; 86 Y.Yan (IJERTCS.316877-36) 2016; 38 IJERTCS.316877-26 IJERTCS.316877-25 IJERTCS.316877-28 IJERTCS.316877-27 IJERTCS.316877-7 IJERTCS.316877-29 IJERTCS.316877-6 IJERTCS.316877-20 A.Asperti (IJERTCS.316877-2) 2020; 8 IJERTCS.316877-22 IJERTCS.316877-21 IJERTCS.316877-24 IJERTCS.316877-23 C.Finn (IJERTCS.316877-9) 2017; 70  | 
    
| References_xml | – ident: IJERTCS.316877-17 doi: 10.1109/CVPR.2014.241 – start-page: 101 year: 2011 ident: IJERTCS.316877-8 article-title: Real time head pose estimation from consumer depth cameras publication-title: Pattern Recognition – ident: IJERTCS.316877-10 doi: 10.1109/TPAMI.2009.122 – start-page: 1391 year: 2021 ident: IJERTCS.316877-15 article-title: Head Pose Estimation by Few Shot Learning Techniques. publication-title: Proceedings of 10th IOE Graduate Conference – ident: IJERTCS.316877-33 doi: 10.48550/ARXIV.1409.4842 – ident: IJERTCS.316877-16 doi: 10.1007/978-3-030-63128-4_18 – ident: IJERTCS.316877-20 doi: 10.1016/j.patcog.2016.12.024 – ident: IJERTCS.316877-13 doi: 10.1016/j.patcog.2016.05.017 – ident: IJERTCS.316877-27 doi: 10.1109/CVPRW.2018.00281 – ident: IJERTCS.316877-19 – ident: IJERTCS.316877-24 doi: 10.1109/ICCV.2019.00946 – ident: IJERTCS.316877-29 doi: 10.1109/ICPR.2002.1047456 – volume: 86 start-page: 2278 year: 1998 ident: IJERTCS.316877-18 article-title: Gradient-based learning applied to document recognition. publication-title: Proceedings of the IEEE doi: 10.1109/5.726791 – ident: IJERTCS.316877-37 doi: 10.1109/CVPR.2019.00118 – ident: IJERTCS.316877-34 doi: 10.1007/978-3-642-27183-0_41 – ident: IJERTCS.316877-4 doi: 10.1109/LSP.2014.2364458 – ident: IJERTCS.316877-14 doi: 10.23919/FRUCT54823.2022.9770932 – ident: IJERTCS.316877-31 doi: 10.1109/CVPR.2013.446 – ident: IJERTCS.316877-11 – ident: IJERTCS.316877-6 doi: 10.1109/ITSC.2008.4732544 – ident: IJERTCS.316877-12 doi: 10.1109/CVPR.2016.90 – ident: IJERTCS.316877-39 doi: 10.1109/IVS.2004.1336434 – start-page: 82 year: 2015 ident: IJERTCS.316877-0 article-title: Real-time head orientation from a monocular camera using deep neural network publication-title: Computer Vision – ACCV 2014 doi: 10.1007/978-3-319-16811-1_6 – ident: IJERTCS.316877-32 doi: 10.48550/ARXIV.1812.02391 – ident: IJERTCS.316877-3 doi: 10.1109/TPAMI.2010.69 – ident: IJERTCS.316877-28 doi: 10.5244/C.13.52 – volume: 70 start-page: 1126 year: 2017 ident: IJERTCS.316877-9 article-title: Model-agnostic meta-learning for fast adaptation of deep networks. publication-title: Proceedings of the 34th International Conference on Machine Learning – volume: 8 start-page: 199440 year: 2020 ident: IJERTCS.316877-2 article-title: Balancing reconstruction error and kullback-leibler divergence in variational autoencoders. publication-title: IEEE Access: Practical Innovations, Open Solutions doi: 10.1109/ACCESS.2020.3034828 – ident: IJERTCS.316877-35 doi: 10.48550/ARXIV.1703.01883 – volume: 38 start-page: 1070 issue: 6 year: 2016 ident: IJERTCS.316877-36 article-title: A multi-task learning framework for head pose estimation under target motion. publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2015.2477843 – ident: IJERTCS.316877-1 – ident: IJERTCS.316877-23 doi: 10.1109/CVPR.1997.609310 – ident: IJERTCS.316877-25 doi: 10.1016/j.patcog.2017.06.009 – ident: IJERTCS.316877-7 doi: 10.1109/CVPR.2011.5995458 – ident: IJERTCS.316877-22 doi: 10.1007/11957959 – ident: IJERTCS.316877-21 doi: 10.1109/RATFG.1999.799218 – year: 2008 ident: IJERTCS.316877-5 publication-title: Colour Invariant Head Pose Classification in Low Resolution Video – volume: 23 start-page: 1499 issue: 10 year: 2016 ident: IJERTCS.316877-38 article-title: Joint face detection and alignment using multitask cascaded convolutional networks. publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2016.2603342 – ident: IJERTCS.316877-26 doi: 10.1016/j.patcog.2017.06.009 – ident: IJERTCS.316877-30 doi: 10.1109/CVPR.2019.00049  | 
    
| SSID | ssj0000547680 | 
    
| Score | 2.2300873 | 
    
| Snippet | Many real-world applications rely on head pose estimation. The performance of head pose estimation has significantly improved with techniques like... | 
    
| SourceID | unpaywall proquest crossref igi  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Artificial neural networks Communication Computational efficiency Datasets Deep learning Efficiency Learning Methods Neural networks Pose estimation Sensors Surveillance  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3bbtQwEB212wfgAZWbutAiPyDBQ01zcWxHoqpoldVSiaVqt1KfsBzbKYtW2aWbCvXvGSdOLwLxAbGi48nMmYl9DsA7g1VTWM5oFleaMhkxqmOW0CoSeew096TXn7aY8PE5O77ILtZg0t-F8ccq-5zYJmq7MH5GvpfGXqo8wXA5WP6i3jXK_13tLTR0sFaw-63E2DpsJF4ZawAbh8Xk5PR26oIEBfl1e0syZ35AJ3in5Ihthtz7clycTo_OPnozJyEeVKr12eXsAQl9dF0v9c1vPZ_fq0ejTXgaiCT53O38M1hz9XN4ck9e8AV8_1a7XTLCfLZLdG3J1NX07MeioYdYuiz56hpNg77qJUHySjqLhzAenN-QotWXwLJExhgK5GSxcqTAnNBdd3wJ56NiejSmwU-BmjSRDZXYW_ES28-qSk0pZG64NU4iyXBMR1qkGZeZqBirbJJXJpZGCESoZFnFojK36SsY1IvabQHRjOUR5gJRZZxJnUqLRLFMBBI2m6SaD-F9j51adrIZCtsNj7IKKKsO5SF8QmhV-HJWyoOiEBOFmCiPiWox-ffDMRvCdr8nd2vcxcoQPtzu018vMvvprhqzCmu9_v9Kb-Cxd5rvpi_bMGiurt0O8pGmfBuC7A-TXdqg priority: 102 providerName: ProQuest  | 
    
| Title | One, Five, and Ten-Shot-Based Meta-Learning for Computationally Efficient Head Pose Estimation | 
    
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJERTCS.316877 https://www.proquest.com/docview/3166272638 https://www.igi-global.com/ViewTitle.aspx?TitleId=316877&isxn=9781668479612  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1947-3184 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000547680 issn: 1947-3184 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZYewAO_EYURuUDAg5zyQ_HdiQ4bFNKN4lSbS3aLliO47COKp2WVGP89TzHLmzAgQM3S0ks-_PLe99znO8h9EJD1OQFoyQJS0WoCChRIY1IGfA0NIpZ0mtPW4zZaEb3j5IjXw6o9scq55AWOjmM1lV_mpuLqUXOidS2zb3ina24xPnLef2tTYVCxsDRpsxWHO6yBIh5B3Vn48n2cftdmdrduLbUnG8L6iQcIb8Qb-an5rzR9cD1eS1EbcBorrHPm6vqTF1eqMXiSiAa3kWL9RTc-ZOvg1WTD_T339Qd_9Mc76E7nrDibWdh99ENUz1At6_IGD5Enz9WZgsPwW9uYVUVeGoqcniybMgOhMgCfzCNIl7H9QsGkoxdKQm_Dbm4xFmrYwHhD4_A5PBkWRucge9xv1U-QrNhNt0dEV-3geg4Eg0RkMOxHNLcsox1zkWqWaGNADJjqAoUjxMmEl5SWhZRWupQaM5hcXKalDTI0yJ-jDrVsjJPEFaUpgH4HF4mjAoViwIIaR5xIIZFFCvWQ6_WSyXPnDyHhLTGLqrc288OpruH0oHYQ28Bc-nf0FpaUCRgIgETaTGRLSZ_fzikPbS5NoFffcBFFvEIXFgPvf5pFn8MxFuX7-vpv9_6DN2y1e3djs8m6jTnK_McOFCT99GGGL7vo-5ONp4c9L2l_wCtGwPk | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwEB318lD6gLiKLQX8AIKHmubixI5EhWjJareXpWq3Up9qnNgpi1bZpZuq2p_j2xgnTi8C8dYPyCg6nsycmXjmALzNMWtyHTMa-YWiTHiMKp8FtPB44hsVW9Jrb1sM4t4J2z2NThfgdzsLY69VtjGxDtR6ktse-Wbo21XlAbrL5-kvalWj7N_VVkJDOWkFvVWvGHODHXtmfoUl3Gyr_xXP-10QdNPhTo86lQGah4GoqMCKI86wKCuKMM-4SPJY50Zg6jVMeYqHUSwiXjBW6CApcl_knGPSzVhUMC9LdIh2F2GZhSzB4m95Ox0cHl13eZAQIZ-vpzITZhuCPG42R2JZIzb7u-nRcOf4oxWP4vxOZlwcnY_ukN6Vy3Kq5ldqPL6V_7qP4KEjruRL42mPYcGUT2D11jrDp3D2rTQbpIvxc4OoUpOhKenxj0lFtzFVanJgKkXdPtdzgmSZNJISrh05npO03meBaZD00PXI4WRmSIoxqBmvfAYn94Lsc1gqJ6V5AUQxlngYe3gRxUyoUGgkplnAkSDqIFRxB9632Mlps6ZDYnljUZYOZdmg3IFPCK10X-pMWlAkYiIRE2kxkTUm_37YZx1Yb8_kxsaNb3bgw_U5_fUio5_mospnztba_y29gZXe8GBf7vcHey_hgVW5bzo_67BUXVyaV8iFquy1czgC3-_bx_8ARTkW-Q | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgewAOvBFbCvIBAYd6ycOxHakcSrWrbSVKRXdRuWA5fsDSVbZqsmrLr2cce6EFDhy4WUpi2Z8nM984zjcIPdcQNblhlBSpU4SKhBKV0oy4hJepVcyTXn_aYp-Np3TvqDiK5YCaeKxyBmlhkMPoXPXHmT2beOSCSG3X3DVvfMUlzl_MmvMuFUoZA0dbMl9xeI0VQMx7aG26f7D9qfuuTP1uXFdqLrYFDRKOkF-I17Nv9rTVzSD0eSVEXYfRXGGfN5b1ibo4U_P5pUA0uoPmqymE8yfHg2VbDfT339Qd_9Mc76LbkbDi7WBh99A1W99Hty7JGD5An9_XdhOPwG9uYlUbPLE1Ofy6aMlbCJEGv7OtIlHH9QsGkoxDKYm4DTm_wMNOxwLCHx6DyeGDRWPxEHxP-K3yIZqOhpOdMYl1G4jOM9ESATkcqyDNdS7XFRelZkZbAWTGUpUonhdMFNxR6kxWOp0KzTksTkULR5OqNPkj1KsXtX2MsKK0TMDncFcwKlQuDBDSKuNADE2WK9ZHL1dLJU-CPIeEtMYvqtzdG36Y7BzKAGIfbQHmMr6hjfSgSMBEAibSYyI7TP7-cEr7aGNlAr_6gIss4xm4sD569dMs_hhItK7Y1_q_3_oE3fTV7cOOzwbqtadL-xQ4UFs9i7b9A46QAWQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One%2C+Five%2C+and+Ten-Shot-Based+Meta-Learning+for+Computationally+Efficient+Head+Pose+Estimation&rft.jtitle=International+journal+of+embedded+and+real-time+communication+systems&rft.au=Joshi%2C+Manoj&rft.au=Pant%2C+Dibakar+Raj&rft.au=Heikkonen%2C+Jukka&rft.au=Kanth%2C+Rajeev&rft.date=2023-01-01&rft.issn=1947-3176&rft.eissn=1947-3184&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=24&rft_id=info:doi/10.4018%2FIJERTCS.316877&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJERTCS_316877 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-3176&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-3176&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-3176&client=summon |