Semi-Supervised Graph Regularized Deep NMF With Bi-Orthogonal Constraints for Data Representation

Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of h...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 31; no. 9; pp. 3245 - 3258
Main Authors Meng, Yang, Shang, Ronghua, Shang, Fanhua, Jiao, Licheng, Yang, Shuyuan, Stolkin, Rustam
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
2162-2388
DOI10.1109/TNNLS.2019.2939637

Cover

Abstract Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of high-dimensional data. However, the mapping between the low-dimensional representation, learned by semi-supervised NMF, and the original high-dimensional data contains complex hierarchical and structural information, which is hard to extract by using only single-layer clustering methods. Therefore, in this article, we propose a new deep learning method, called semi-supervised graph regularized deep NMF with bi-orthogonal constraints (SGDNMF). SGDNMF learns a representation from the hidden layers of a deep network for clustering, which contains varied and unknown attributes. Bi-orthogonal constraints on two factor matrices are introduced into our SGDNMF model, which can make the solution unique and improve clustering performance. This improves the effect of dimensionality reduction because it only requires a small fraction of data to be labeled. In addition, SGDNMF incorporates dual-hypergraph Laplacian regularization, which can reinforce high-order relationships in both data and feature spaces and fully retain the intrinsic geometric structure of the original data. This article presents the details of the SGDNMF algorithm, including the objective function and the iterative updating rules. Empirical experiments on four different data sets demonstrate state-of-the-art performance of SGDNMF in comparison with six other prominent algorithms.
AbstractList Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of high-dimensional data. However, the mapping between the low-dimensional representation, learned by semi-supervised NMF, and the original high-dimensional data contains complex hierarchical and structural information, which is hard to extract by using only single-layer clustering methods. Therefore, in this article, we propose a new deep learning method, called semi-supervised graph regularized deep NMF with bi-orthogonal constraints (SGDNMF). SGDNMF learns a representation from the hidden layers of a deep network for clustering, which contains varied and unknown attributes. Bi-orthogonal constraints on two factor matrices are introduced into our SGDNMF model, which can make the solution unique and improve clustering performance. This improves the effect of dimensionality reduction because it only requires a small fraction of data to be labeled. In addition, SGDNMF incorporates dual-hypergraph Laplacian regularization, which can reinforce high-order relationships in both data and feature spaces and fully retain the intrinsic geometric structure of the original data. This article presents the details of the SGDNMF algorithm, including the objective function and the iterative updating rules. Empirical experiments on four different data sets demonstrate state-of-the-art performance of SGDNMF in comparison with six other prominent algorithms.
Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of high-dimensional data. However, the mapping between the low-dimensional representation, learned by semi-supervised NMF, and the original high-dimensional data contains complex hierarchical and structural information, which is hard to extract by using only single-layer clustering methods. Therefore, in this article, we propose a new deep learning method, called semi-supervised graph regularized deep NMF with bi-orthogonal constraints (SGDNMF). SGDNMF learns a representation from the hidden layers of a deep network for clustering, which contains varied and unknown attributes. Bi-orthogonal constraints on two factor matrices are introduced into our SGDNMF model, which can make the solution unique and improve clustering performance. This improves the effect of dimensionality reduction because it only requires a small fraction of data to be labeled. In addition, SGDNMF incorporates dual-hypergraph Laplacian regularization, which can reinforce high-order relationships in both data and feature spaces and fully retain the intrinsic geometric structure of the original data. This article presents the details of the SGDNMF algorithm, including the objective function and the iterative updating rules. Empirical experiments on four different data sets demonstrate state-of-the-art performance of SGDNMF in comparison with six other prominent algorithms.Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of high-dimensional data. However, the mapping between the low-dimensional representation, learned by semi-supervised NMF, and the original high-dimensional data contains complex hierarchical and structural information, which is hard to extract by using only single-layer clustering methods. Therefore, in this article, we propose a new deep learning method, called semi-supervised graph regularized deep NMF with bi-orthogonal constraints (SGDNMF). SGDNMF learns a representation from the hidden layers of a deep network for clustering, which contains varied and unknown attributes. Bi-orthogonal constraints on two factor matrices are introduced into our SGDNMF model, which can make the solution unique and improve clustering performance. This improves the effect of dimensionality reduction because it only requires a small fraction of data to be labeled. In addition, SGDNMF incorporates dual-hypergraph Laplacian regularization, which can reinforce high-order relationships in both data and feature spaces and fully retain the intrinsic geometric structure of the original data. This article presents the details of the SGDNMF algorithm, including the objective function and the iterative updating rules. Empirical experiments on four different data sets demonstrate state-of-the-art performance of SGDNMF in comparison with six other prominent algorithms.
Author Shang, Ronghua
Yang, Shuyuan
Meng, Yang
Shang, Fanhua
Jiao, Licheng
Stolkin, Rustam
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0003-0474-128X
  surname: Meng
  fullname: Meng, Yang
  email: xdyangmeng@163.com
  organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China
– sequence: 2
  givenname: Ronghua
  orcidid: 0000-0001-9124-696X
  surname: Shang
  fullname: Shang, Ronghua
  email: rhshang@mail.xidian.edu
  organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China
– sequence: 3
  givenname: Fanhua
  orcidid: 0000-0002-1040-352X
  surname: Shang
  fullname: Shang, Fanhua
  email: fhshang@xidian.edu.cn
  organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China
– sequence: 4
  givenname: Licheng
  orcidid: 0000-0003-3354-9617
  surname: Jiao
  fullname: Jiao, Licheng
  email: lchjiao@mail.xidian.edu.cn
  organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China
– sequence: 5
  givenname: Shuyuan
  orcidid: 0000-0002-4796-5737
  surname: Yang
  fullname: Yang, Shuyuan
  email: syyang@xidian.edu.cn
  organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China
– sequence: 6
  givenname: Rustam
  orcidid: 0000-0002-0890-8836
  surname: Stolkin
  fullname: Stolkin, Rustam
  email: r.stolkin@cs.bham.ac.uk
  organization: Extreme Robotics Lab, University of Birmingham, Birmingham, U.K
BookMark eNp9kLtOwzAUhi1UJAr0BWCJxMKS4ksu9ggtBaTSSrQItshNTlpXaRxsBwmeHpcgBgbO4iP7-22f7xj1al0DQmcEDwnB4mo5m00XQ4qJGFLBRMLSA9SnJKEhZZz3fvv09QgNrN1iXwmOk0j0kVzAToWLtgHzriwUwZ2RzSZ4gnVbSaM-_c4YoAlmj5PgRblNcKPCuXEbvda1rIKRrq0zUtXOBqU2wVg66cONAQu1k07p-hQdlrKyMPhZT9Dz5HY5ug-n87uH0fU0zBnlLkwhTsDPkEsghFKcslIUkqc48gcFLstYyLzIozSJ8Ir7Ni58RcAFX9EiT9gJuuzubYx-a8G6bKdsDlUla9CtzSjDMWZJyrFHL_6gW90aP4-nIiZSjxHmKdpRudHWGiizxqidNB8ZwdlefPYtPtuLz37E-xD_E8pV52Gvqfo_et5FFQD8vsV57H_M2ReG_5NC
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCYB_2021_3080321
crossref_primary_10_1016_j_patcog_2022_109282
crossref_primary_10_1016_j_jocs_2021_101507
crossref_primary_10_1016_j_neunet_2025_107340
crossref_primary_10_1109_TNNLS_2021_3054635
crossref_primary_10_1007_s11063_020_10340_6
crossref_primary_10_1109_TNNLS_2022_3187165
crossref_primary_10_1109_TCYB_2021_3116964
crossref_primary_10_1016_j_is_2024_102379
crossref_primary_10_1109_TBME_2023_3309969
crossref_primary_10_1016_j_knosys_2021_106807
crossref_primary_10_1109_TNNLS_2020_3041360
crossref_primary_10_1145_3408313
crossref_primary_10_1109_TBDATA_2024_3407545
crossref_primary_10_1016_j_knosys_2023_110465
crossref_primary_10_1109_JAS_2022_105980
crossref_primary_10_1016_j_ipm_2023_103633
crossref_primary_10_1109_TASE_2023_3244184
crossref_primary_10_1109_TCYB_2021_3100067
crossref_primary_10_1016_j_neunet_2023_11_053
crossref_primary_10_1016_j_knosys_2023_110946
crossref_primary_10_1109_TCSS_2022_3181739
crossref_primary_10_1016_j_ins_2021_01_087
crossref_primary_10_1007_s00521_023_08548_3
crossref_primary_10_1016_j_knosys_2021_108040
crossref_primary_10_1109_TCSS_2022_3154030
crossref_primary_10_3390_rs12182882
crossref_primary_10_1109_ACCESS_2020_2980394
crossref_primary_10_1016_j_patcog_2022_109274
crossref_primary_10_1007_s11063_022_10882_x
crossref_primary_10_1016_j_ins_2020_11_039
crossref_primary_10_1109_TNNLS_2022_3177433
crossref_primary_10_1007_s13042_024_02523_7
crossref_primary_10_1016_j_neucom_2020_09_069
crossref_primary_10_1016_j_neucom_2024_128572
crossref_primary_10_1109_LGRS_2024_3361500
crossref_primary_10_1016_j_inffus_2024_102813
crossref_primary_10_1109_TPAMI_2022_3225461
crossref_primary_10_1109_TSC_2023_3303191
crossref_primary_10_1117_1_JEI_31_5_053009
crossref_primary_10_1016_j_neucom_2022_02_038
crossref_primary_10_1109_TNNLS_2021_3083535
Cites_doi 10.1109/TPAMI.2015.2462360
10.1145/1150402.1150420
10.1109/ACCESS.2017.2712614
10.1145/1553374.1553388
10.1109/TPAMI.2016.2554555
10.1109/TNNLS.2017.2772264
10.1016/j.patcog.2016.10.029
10.1016/j.neucom.2015.01.103
10.1016/j.patcog.2016.01.035
10.1109/TNNLS.2016.2582746
10.1016/j.neucom.2015.07.068
10.1109/TNNLS.2017.2776248
10.1016/j.neucom.2018.02.044
10.1109/TCYB.2017.2657007
10.1109/TNNLS.2015.2461554
10.1038/44565
10.1109/TPAMI.2010.231
10.1162/neco_a_00995
10.1109/JSEN.2018.2888815
10.1016/j.engappai.2017.11.008
10.1016/j.patcog.2016.12.030
10.1016/j.sigpro.2016.05.017
10.1016/j.neucom.2014.12.124
10.1109/TPAMI.2011.217
10.1109/TKDE.2009.64
10.1145/1143844.1143847
10.1109/ICDM.2008.57
10.1109/ACCESS.2017.2675478
10.1016/j.knosys.2016.09.006
10.1109/TNNLS.2015.2479223
10.1109/TNNLS.2014.2306844
10.1109/TNNLS.2017.2691725
10.1109/TNNLS.2014.2376936
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2939637
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 3258
ExternalDocumentID 10_1109_TNNLS_2019_2939637
8858038
Genre orig-research
GrantInformation_xml – fundername: Program for Cheung Kong Scholars and Innovative Research Team in University
  grantid: IRT1170
– fundername: National Science Basic Research Plan in Shaanxi Province of China
  grantid: 2019JQ-657
– fundername: Royal Society Industry Fellowship
  funderid: 10.13039/501100000288
– fundername: National Natural Science Foundation of China
  grantid: 61773304; U1701267; 61976164; 61876220; 61876221
  funderid: 10.13039/501100001809
– fundername: Key Laboratory Fund
  grantid: 61421010402
– fundername: Science Foundation of Xidian University
  grantid: 10251180018; 10251180019
  funderid: 10.13039/501100005320
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c328t-7e56e201cae1122073f9da8704e56d0ff59acdc47640b8acd5dddd4e898b2dc63
IEDL.DBID RIE
ISSN 2162-237X
2162-2388
IngestDate Wed Oct 01 13:36:11 EDT 2025
Sun Jun 29 14:36:40 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Wed Oct 01 00:44:49 EDT 2025
Wed Aug 27 02:32:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-7e56e201cae1122073f9da8704e56d0ff59acdc47640b8acd5dddd4e898b2dc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4796-5737
0000-0003-0474-128X
0000-0003-3354-9617
0000-0001-9124-696X
0000-0002-1040-352X
0000-0002-0890-8836
PQID 2439703613
PQPubID 85436
PageCount 14
ParticipantIDs proquest_journals_2439703613
ieee_primary_8858038
proquest_miscellaneous_2305036780
crossref_primary_10_1109_TNNLS_2019_2939637
crossref_citationtrail_10_1109_TNNLS_2019_2939637
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref31
ref30
ref33
ref11
ref10
zhu (ref20) 2003
ref2
ref1
ref39
ref38
ref19
ref18
cai (ref17) 2009; 9
belkin (ref16) 2006; 7
trigeorgis (ref24) 2014
cai (ref14) 2011; 33
zhou (ref32) 2007
ref23
ref26
ref25
lee (ref3) 2001
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref6
ref5
van der maaten (ref40) 2008; 9
References_xml – ident: ref33
  doi: 10.1109/TPAMI.2015.2462360
– ident: ref35
  doi: 10.1145/1150402.1150420
– ident: ref11
  doi: 10.1109/ACCESS.2017.2712614
– ident: ref18
  doi: 10.1145/1553374.1553388
– ident: ref25
  doi: 10.1109/TPAMI.2016.2554555
– ident: ref27
  doi: 10.1109/TNNLS.2017.2772264
– ident: ref5
  doi: 10.1016/j.patcog.2016.10.029
– ident: ref23
  doi: 10.1016/j.neucom.2015.01.103
– ident: ref37
  doi: 10.1016/j.patcog.2016.01.035
– ident: ref29
  doi: 10.1109/TNNLS.2016.2582746
– ident: ref38
  doi: 10.1016/j.neucom.2015.07.068
– ident: ref31
  doi: 10.1109/TNNLS.2017.2776248
– ident: ref36
  doi: 10.1016/j.neucom.2018.02.044
– ident: ref1
  doi: 10.1109/TCYB.2017.2657007
– ident: ref13
  doi: 10.1109/TNNLS.2015.2461554
– ident: ref4
  doi: 10.1038/44565
– start-page: 912
  year: 2003
  ident: ref20
  article-title: Semi-supervised learning using Gaussian fields and harmonic functions
  publication-title: Proc 20th Int Conf Mach Learn (ICML)
– volume: 33
  start-page: 1548
  year: 2011
  ident: ref14
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.231
– start-page: 1692
  year: 2014
  ident: ref24
  article-title: A deep semi-NMF model for learning hidden representations
  publication-title: Proc Int Conf Mach Learn
– ident: ref26
  doi: 10.1162/neco_a_00995
– ident: ref19
  doi: 10.1109/JSEN.2018.2888815
– start-page: 1601
  year: 2007
  ident: ref32
  article-title: Learning with hypergraphs: Clustering, classification, and embedding
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 7
  start-page: 2399
  year: 2006
  ident: ref16
  article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 1010
  year: 2009
  ident: ref17
  article-title: Locality preserving nonnegative matrix factorization
  publication-title: Proc IJCAI
– ident: ref2
  doi: 10.1016/j.engappai.2017.11.008
– ident: ref8
  doi: 10.1016/j.patcog.2016.12.030
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref40
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref6
  doi: 10.1016/j.sigpro.2016.05.017
– ident: ref22
  doi: 10.1016/j.neucom.2014.12.124
– ident: ref21
  doi: 10.1109/TPAMI.2011.217
– ident: ref7
  doi: 10.1109/TKDE.2009.64
– ident: ref34
  doi: 10.1145/1143844.1143847
– ident: ref15
  doi: 10.1109/ICDM.2008.57
– start-page: 556
  year: 2001
  ident: ref3
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref10
  doi: 10.1109/ACCESS.2017.2675478
– ident: ref39
  doi: 10.1016/j.knosys.2016.09.006
– ident: ref30
  doi: 10.1109/TNNLS.2015.2479223
– ident: ref9
  doi: 10.1109/TNNLS.2014.2306844
– ident: ref12
  doi: 10.1109/TNNLS.2017.2691725
– ident: ref28
  doi: 10.1109/TNNLS.2014.2376936
SSID ssj0000605649
Score 2.5399444
Snippet Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3245
SubjectTerms Algorithms
Bi-orthogonal constraints
Clustering
Data mining
Deep learning
deep non-negative matrix factorization (NMF)
Dimensionality reduction
dual-hypergraph Laplacian regularization
Feature extraction
Graphical representations
Iterative methods
Laplace equations
Linear programming
Machine learning
Mapping
Matrix decomposition
Objective function
Reduction
Regularization
semi-supervised learning
Title Semi-Supervised Graph Regularized Deep NMF With Bi-Orthogonal Constraints for Data Representation
URI https://ieeexplore.ieee.org/document/8858038
https://www.proquest.com/docview/2439703613
https://www.proquest.com/docview/2305036780
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL) - NZ
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Lb9MwGLe2nbgwxkAUBjISN3DnOIntHBmjTIgWiW6it8iPL6zaSKs2ueyv57ObBPEQIicnsSMr3-tn-3sQ8srIysoMcsbzyrPMAzDrfMIscrRUymW5DVsD05m8uMo-LvLFHnkzxMIAQHQ-g3FoxrN8v3Jt2Co71TrXPNX7ZF9puYvVGvZTOOJyGdGuSKRgIlWLPkaGF6eXs9mneXDkKsZo35Dp1C92KBZW-UMbRxMzOSTTfnI7z5KbcdvYsbv7LW_j_87-AbnfYU36dsccR2QP6ofksK_jQDuxPiZmDt-XbN6ug97YgqcfQhZr-iWWqd8s7_DJOcCazqYT-nXZXNOzJfu8aa5X3wKMp6HmZ6w00WwpQmB6bhqDg9c_A5vqR-Rq8v7y3QXrSi8wlwrdMAW5BPxdzgACMoF6oCq8QdlGskrPqyovjPMuUzLjVmMz93hloAtthXcyfUwO6lUNTwjFW1QkghuXesRuuCKuVKEKmxS6csqJEUl6QpSuy0seJn1bxvUJL8pIvDIQr-yINyKvhzHrXVaOf_Y-DtQYenaEGJGTnt5lJ7jbUgSAhlY9SUfk5fAaRS6co5gaVi32SUMSHbTy_Onfv_yM3BNhWR5d0U7IQbNp4Tlil8a-iEz7Ay5c61k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wAXBgy0wgAjcQN3iWM7yREYpUBbJNqJ3qLEfmEVkFZtctlfz7ObBPEhRE5OYkdW3tfP9vsAeJbrstASFQ9Uabm0iLwwNuQFcbSOYyNV4bYGpjM9vpDvl2p5AC_6WBhE9M5nOHRNf5Zv16ZxW2VnSaKSIEquwXUlpVT7aK1-RyUgZK493hWhFlxE8bKLkgnSs8VsNpk7V650SBaO2C7-xRL50ip_6GNvZEZHMO2mt_ct-Tps6mJorn7L3Pi_878Nt1q0yV7u2eMOHGB1F466Sg6sFexjyOf4fcXnzcZpjh1a9tblsWaffKH67eqKnpwjbthsOmKfV_Ule7XiH7f15fqLA_LMVf30tSbqHSMQzM7zOqfBm5-hTdU9uBi9Wbwe87b4AjeRSGoeo9JIv8vkSJBMkCYoU5uTdBNhtQ3KUqW5sUbGWgZFQk1l6ZKYpEkhrNHRfTis1hWeAKNbUiUiyE1kCb3RmriM0zgtwjQpTWzEAMKOEJlpM5O7SX_L_AolSDNPvMwRL2uJN4Dn_ZjNPi_HP3sfO2r0PVtCDOC0o3fWiu4uEw6ikV0PowE87V-T0LmTlLzCdUN9IpdGh-x88ODvX34CN8aL6SSbvJt9eAg3hVuke8e0Uzistw0-IiRTF489A_8Aphbupg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Graph+Regularized+Deep+NMF+With+Bi-Orthogonal+Constraints+for+Data+Representation&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Meng%2C+Yang&rft.au=Shang%2C+Ronghua&rft.au=Shang%2C+Fanhua&rft.au=Jiao%2C+Licheng&rft.date=2020-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=9&rft.spage=3245&rft.epage=3258&rft_id=info:doi/10.1109%2FTNNLS.2019.2939637&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2019_2939637
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon