Semi-Supervised Graph Regularized Deep NMF With Bi-Orthogonal Constraints for Data Representation
Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of h...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 31; no. 9; pp. 3245 - 3258 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2019.2939637 |
Cover
| Abstract | Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of high-dimensional data. However, the mapping between the low-dimensional representation, learned by semi-supervised NMF, and the original high-dimensional data contains complex hierarchical and structural information, which is hard to extract by using only single-layer clustering methods. Therefore, in this article, we propose a new deep learning method, called semi-supervised graph regularized deep NMF with bi-orthogonal constraints (SGDNMF). SGDNMF learns a representation from the hidden layers of a deep network for clustering, which contains varied and unknown attributes. Bi-orthogonal constraints on two factor matrices are introduced into our SGDNMF model, which can make the solution unique and improve clustering performance. This improves the effect of dimensionality reduction because it only requires a small fraction of data to be labeled. In addition, SGDNMF incorporates dual-hypergraph Laplacian regularization, which can reinforce high-order relationships in both data and feature spaces and fully retain the intrinsic geometric structure of the original data. This article presents the details of the SGDNMF algorithm, including the objective function and the iterative updating rules. Empirical experiments on four different data sets demonstrate state-of-the-art performance of SGDNMF in comparison with six other prominent algorithms. |
|---|---|
| AbstractList | Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of high-dimensional data. However, the mapping between the low-dimensional representation, learned by semi-supervised NMF, and the original high-dimensional data contains complex hierarchical and structural information, which is hard to extract by using only single-layer clustering methods. Therefore, in this article, we propose a new deep learning method, called semi-supervised graph regularized deep NMF with bi-orthogonal constraints (SGDNMF). SGDNMF learns a representation from the hidden layers of a deep network for clustering, which contains varied and unknown attributes. Bi-orthogonal constraints on two factor matrices are introduced into our SGDNMF model, which can make the solution unique and improve clustering performance. This improves the effect of dimensionality reduction because it only requires a small fraction of data to be labeled. In addition, SGDNMF incorporates dual-hypergraph Laplacian regularization, which can reinforce high-order relationships in both data and feature spaces and fully retain the intrinsic geometric structure of the original data. This article presents the details of the SGDNMF algorithm, including the objective function and the iterative updating rules. Empirical experiments on four different data sets demonstrate state-of-the-art performance of SGDNMF in comparison with six other prominent algorithms. Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of high-dimensional data. However, the mapping between the low-dimensional representation, learned by semi-supervised NMF, and the original high-dimensional data contains complex hierarchical and structural information, which is hard to extract by using only single-layer clustering methods. Therefore, in this article, we propose a new deep learning method, called semi-supervised graph regularized deep NMF with bi-orthogonal constraints (SGDNMF). SGDNMF learns a representation from the hidden layers of a deep network for clustering, which contains varied and unknown attributes. Bi-orthogonal constraints on two factor matrices are introduced into our SGDNMF model, which can make the solution unique and improve clustering performance. This improves the effect of dimensionality reduction because it only requires a small fraction of data to be labeled. In addition, SGDNMF incorporates dual-hypergraph Laplacian regularization, which can reinforce high-order relationships in both data and feature spaces and fully retain the intrinsic geometric structure of the original data. This article presents the details of the SGDNMF algorithm, including the objective function and the iterative updating rules. Empirical experiments on four different data sets demonstrate state-of-the-art performance of SGDNMF in comparison with six other prominent algorithms.Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also able to achieve effective learning when only a small fraction of data is labeled. NMF is particularly useful for dimensionality reduction of high-dimensional data. However, the mapping between the low-dimensional representation, learned by semi-supervised NMF, and the original high-dimensional data contains complex hierarchical and structural information, which is hard to extract by using only single-layer clustering methods. Therefore, in this article, we propose a new deep learning method, called semi-supervised graph regularized deep NMF with bi-orthogonal constraints (SGDNMF). SGDNMF learns a representation from the hidden layers of a deep network for clustering, which contains varied and unknown attributes. Bi-orthogonal constraints on two factor matrices are introduced into our SGDNMF model, which can make the solution unique and improve clustering performance. This improves the effect of dimensionality reduction because it only requires a small fraction of data to be labeled. In addition, SGDNMF incorporates dual-hypergraph Laplacian regularization, which can reinforce high-order relationships in both data and feature spaces and fully retain the intrinsic geometric structure of the original data. This article presents the details of the SGDNMF algorithm, including the objective function and the iterative updating rules. Empirical experiments on four different data sets demonstrate state-of-the-art performance of SGDNMF in comparison with six other prominent algorithms. |
| Author | Shang, Ronghua Yang, Shuyuan Meng, Yang Shang, Fanhua Jiao, Licheng Stolkin, Rustam |
| Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0003-0474-128X surname: Meng fullname: Meng, Yang email: xdyangmeng@163.com organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China – sequence: 2 givenname: Ronghua orcidid: 0000-0001-9124-696X surname: Shang fullname: Shang, Ronghua email: rhshang@mail.xidian.edu organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China – sequence: 3 givenname: Fanhua orcidid: 0000-0002-1040-352X surname: Shang fullname: Shang, Fanhua email: fhshang@xidian.edu.cn organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China – sequence: 4 givenname: Licheng orcidid: 0000-0003-3354-9617 surname: Jiao fullname: Jiao, Licheng email: lchjiao@mail.xidian.edu.cn organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China – sequence: 5 givenname: Shuyuan orcidid: 0000-0002-4796-5737 surname: Yang fullname: Yang, Shuyuan email: syyang@xidian.edu.cn organization: Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi'an, China – sequence: 6 givenname: Rustam orcidid: 0000-0002-0890-8836 surname: Stolkin fullname: Stolkin, Rustam email: r.stolkin@cs.bham.ac.uk organization: Extreme Robotics Lab, University of Birmingham, Birmingham, U.K |
| BookMark | eNp9kLtOwzAUhi1UJAr0BWCJxMKS4ksu9ggtBaTSSrQItshNTlpXaRxsBwmeHpcgBgbO4iP7-22f7xj1al0DQmcEDwnB4mo5m00XQ4qJGFLBRMLSA9SnJKEhZZz3fvv09QgNrN1iXwmOk0j0kVzAToWLtgHzriwUwZ2RzSZ4gnVbSaM-_c4YoAlmj5PgRblNcKPCuXEbvda1rIKRrq0zUtXOBqU2wVg66cONAQu1k07p-hQdlrKyMPhZT9Dz5HY5ug-n87uH0fU0zBnlLkwhTsDPkEsghFKcslIUkqc48gcFLstYyLzIozSJ8Ir7Ni58RcAFX9EiT9gJuuzubYx-a8G6bKdsDlUla9CtzSjDMWZJyrFHL_6gW90aP4-nIiZSjxHmKdpRudHWGiizxqidNB8ZwdlefPYtPtuLz37E-xD_E8pV52Gvqfo_et5FFQD8vsV57H_M2ReG_5NC |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1109_TCYB_2021_3080321 crossref_primary_10_1016_j_patcog_2022_109282 crossref_primary_10_1016_j_jocs_2021_101507 crossref_primary_10_1016_j_neunet_2025_107340 crossref_primary_10_1109_TNNLS_2021_3054635 crossref_primary_10_1007_s11063_020_10340_6 crossref_primary_10_1109_TNNLS_2022_3187165 crossref_primary_10_1109_TCYB_2021_3116964 crossref_primary_10_1016_j_is_2024_102379 crossref_primary_10_1109_TBME_2023_3309969 crossref_primary_10_1016_j_knosys_2021_106807 crossref_primary_10_1109_TNNLS_2020_3041360 crossref_primary_10_1145_3408313 crossref_primary_10_1109_TBDATA_2024_3407545 crossref_primary_10_1016_j_knosys_2023_110465 crossref_primary_10_1109_JAS_2022_105980 crossref_primary_10_1016_j_ipm_2023_103633 crossref_primary_10_1109_TASE_2023_3244184 crossref_primary_10_1109_TCYB_2021_3100067 crossref_primary_10_1016_j_neunet_2023_11_053 crossref_primary_10_1016_j_knosys_2023_110946 crossref_primary_10_1109_TCSS_2022_3181739 crossref_primary_10_1016_j_ins_2021_01_087 crossref_primary_10_1007_s00521_023_08548_3 crossref_primary_10_1016_j_knosys_2021_108040 crossref_primary_10_1109_TCSS_2022_3154030 crossref_primary_10_3390_rs12182882 crossref_primary_10_1109_ACCESS_2020_2980394 crossref_primary_10_1016_j_patcog_2022_109274 crossref_primary_10_1007_s11063_022_10882_x crossref_primary_10_1016_j_ins_2020_11_039 crossref_primary_10_1109_TNNLS_2022_3177433 crossref_primary_10_1007_s13042_024_02523_7 crossref_primary_10_1016_j_neucom_2020_09_069 crossref_primary_10_1016_j_neucom_2024_128572 crossref_primary_10_1109_LGRS_2024_3361500 crossref_primary_10_1016_j_inffus_2024_102813 crossref_primary_10_1109_TPAMI_2022_3225461 crossref_primary_10_1109_TSC_2023_3303191 crossref_primary_10_1117_1_JEI_31_5_053009 crossref_primary_10_1016_j_neucom_2022_02_038 crossref_primary_10_1109_TNNLS_2021_3083535 |
| Cites_doi | 10.1109/TPAMI.2015.2462360 10.1145/1150402.1150420 10.1109/ACCESS.2017.2712614 10.1145/1553374.1553388 10.1109/TPAMI.2016.2554555 10.1109/TNNLS.2017.2772264 10.1016/j.patcog.2016.10.029 10.1016/j.neucom.2015.01.103 10.1016/j.patcog.2016.01.035 10.1109/TNNLS.2016.2582746 10.1016/j.neucom.2015.07.068 10.1109/TNNLS.2017.2776248 10.1016/j.neucom.2018.02.044 10.1109/TCYB.2017.2657007 10.1109/TNNLS.2015.2461554 10.1038/44565 10.1109/TPAMI.2010.231 10.1162/neco_a_00995 10.1109/JSEN.2018.2888815 10.1016/j.engappai.2017.11.008 10.1016/j.patcog.2016.12.030 10.1016/j.sigpro.2016.05.017 10.1016/j.neucom.2014.12.124 10.1109/TPAMI.2011.217 10.1109/TKDE.2009.64 10.1145/1143844.1143847 10.1109/ICDM.2008.57 10.1109/ACCESS.2017.2675478 10.1016/j.knosys.2016.09.006 10.1109/TNNLS.2015.2479223 10.1109/TNNLS.2014.2306844 10.1109/TNNLS.2017.2691725 10.1109/TNNLS.2014.2376936 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TNNLS.2019.2939637 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 3258 |
| ExternalDocumentID | 10_1109_TNNLS_2019_2939637 8858038 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Program for Cheung Kong Scholars and Innovative Research Team in University grantid: IRT1170 – fundername: National Science Basic Research Plan in Shaanxi Province of China grantid: 2019JQ-657 – fundername: Royal Society Industry Fellowship funderid: 10.13039/501100000288 – fundername: National Natural Science Foundation of China grantid: 61773304; U1701267; 61976164; 61876220; 61876221 funderid: 10.13039/501100001809 – fundername: Key Laboratory Fund grantid: 61421010402 – fundername: Science Foundation of Xidian University grantid: 10251180018; 10251180019 funderid: 10.13039/501100005320 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c328t-7e56e201cae1122073f9da8704e56d0ff59acdc47640b8acd5dddd4e898b2dc63 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Wed Oct 01 13:36:11 EDT 2025 Sun Jun 29 14:36:40 EDT 2025 Thu Apr 24 23:11:10 EDT 2025 Wed Oct 01 00:44:49 EDT 2025 Wed Aug 27 02:32:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-7e56e201cae1122073f9da8704e56d0ff59acdc47640b8acd5dddd4e898b2dc63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4796-5737 0000-0003-0474-128X 0000-0003-3354-9617 0000-0001-9124-696X 0000-0002-1040-352X 0000-0002-0890-8836 |
| PQID | 2439703613 |
| PQPubID | 85436 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2439703613 ieee_primary_8858038 proquest_miscellaneous_2305036780 crossref_primary_10_1109_TNNLS_2019_2939637 crossref_citationtrail_10_1109_TNNLS_2019_2939637 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref31 ref30 ref33 ref11 ref10 zhu (ref20) 2003 ref2 ref1 ref39 ref38 ref19 ref18 cai (ref17) 2009; 9 belkin (ref16) 2006; 7 trigeorgis (ref24) 2014 cai (ref14) 2011; 33 zhou (ref32) 2007 ref23 ref26 ref25 lee (ref3) 2001 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref6 ref5 van der maaten (ref40) 2008; 9 |
| References_xml | – ident: ref33 doi: 10.1109/TPAMI.2015.2462360 – ident: ref35 doi: 10.1145/1150402.1150420 – ident: ref11 doi: 10.1109/ACCESS.2017.2712614 – ident: ref18 doi: 10.1145/1553374.1553388 – ident: ref25 doi: 10.1109/TPAMI.2016.2554555 – ident: ref27 doi: 10.1109/TNNLS.2017.2772264 – ident: ref5 doi: 10.1016/j.patcog.2016.10.029 – ident: ref23 doi: 10.1016/j.neucom.2015.01.103 – ident: ref37 doi: 10.1016/j.patcog.2016.01.035 – ident: ref29 doi: 10.1109/TNNLS.2016.2582746 – ident: ref38 doi: 10.1016/j.neucom.2015.07.068 – ident: ref31 doi: 10.1109/TNNLS.2017.2776248 – ident: ref36 doi: 10.1016/j.neucom.2018.02.044 – ident: ref1 doi: 10.1109/TCYB.2017.2657007 – ident: ref13 doi: 10.1109/TNNLS.2015.2461554 – ident: ref4 doi: 10.1038/44565 – start-page: 912 year: 2003 ident: ref20 article-title: Semi-supervised learning using Gaussian fields and harmonic functions publication-title: Proc 20th Int Conf Mach Learn (ICML) – volume: 33 start-page: 1548 year: 2011 ident: ref14 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2010.231 – start-page: 1692 year: 2014 ident: ref24 article-title: A deep semi-NMF model for learning hidden representations publication-title: Proc Int Conf Mach Learn – ident: ref26 doi: 10.1162/neco_a_00995 – ident: ref19 doi: 10.1109/JSEN.2018.2888815 – start-page: 1601 year: 2007 ident: ref32 article-title: Learning with hypergraphs: Clustering, classification, and embedding publication-title: Proc Adv Neural Inf Process Syst – volume: 7 start-page: 2399 year: 2006 ident: ref16 article-title: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples publication-title: J Mach Learn Res – volume: 9 start-page: 1010 year: 2009 ident: ref17 article-title: Locality preserving nonnegative matrix factorization publication-title: Proc IJCAI – ident: ref2 doi: 10.1016/j.engappai.2017.11.008 – ident: ref8 doi: 10.1016/j.patcog.2016.12.030 – volume: 9 start-page: 2579 year: 2008 ident: ref40 article-title: Visualizing data using t-SNE publication-title: J Mach Learn Res – ident: ref6 doi: 10.1016/j.sigpro.2016.05.017 – ident: ref22 doi: 10.1016/j.neucom.2014.12.124 – ident: ref21 doi: 10.1109/TPAMI.2011.217 – ident: ref7 doi: 10.1109/TKDE.2009.64 – ident: ref34 doi: 10.1145/1143844.1143847 – ident: ref15 doi: 10.1109/ICDM.2008.57 – start-page: 556 year: 2001 ident: ref3 article-title: Algorithms for non-negative matrix factorization publication-title: Proc Adv Neural Inf Process Syst – ident: ref10 doi: 10.1109/ACCESS.2017.2675478 – ident: ref39 doi: 10.1016/j.knosys.2016.09.006 – ident: ref30 doi: 10.1109/TNNLS.2015.2479223 – ident: ref9 doi: 10.1109/TNNLS.2014.2306844 – ident: ref12 doi: 10.1109/TNNLS.2017.2691725 – ident: ref28 doi: 10.1109/TNNLS.2014.2376936 |
| SSID | ssj0000605649 |
| Score | 2.5399444 |
| Snippet | Semi-supervised non-negative matrix factorization (NMF) exploits the strengths of NMF in effectively learning local information contained in data and is also... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3245 |
| SubjectTerms | Algorithms Bi-orthogonal constraints Clustering Data mining Deep learning deep non-negative matrix factorization (NMF) Dimensionality reduction dual-hypergraph Laplacian regularization Feature extraction Graphical representations Iterative methods Laplace equations Linear programming Machine learning Mapping Matrix decomposition Objective function Reduction Regularization semi-supervised learning |
| Title | Semi-Supervised Graph Regularized Deep NMF With Bi-Orthogonal Constraints for Data Representation |
| URI | https://ieeexplore.ieee.org/document/8858038 https://www.proquest.com/docview/2439703613 https://www.proquest.com/docview/2305036780 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) - NZ customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Lb9MwGLe2nbgwxkAUBjISN3DnOIntHBmjTIgWiW6it8iPL6zaSKs2ueyv57ObBPEQIicnsSMr3-tn-3sQ8srIysoMcsbzyrPMAzDrfMIscrRUymW5DVsD05m8uMo-LvLFHnkzxMIAQHQ-g3FoxrN8v3Jt2Co71TrXPNX7ZF9puYvVGvZTOOJyGdGuSKRgIlWLPkaGF6eXs9mneXDkKsZo35Dp1C92KBZW-UMbRxMzOSTTfnI7z5KbcdvYsbv7LW_j_87-AbnfYU36dsccR2QP6ofksK_jQDuxPiZmDt-XbN6ug97YgqcfQhZr-iWWqd8s7_DJOcCazqYT-nXZXNOzJfu8aa5X3wKMp6HmZ6w00WwpQmB6bhqDg9c_A5vqR-Rq8v7y3QXrSi8wlwrdMAW5BPxdzgACMoF6oCq8QdlGskrPqyovjPMuUzLjVmMz93hloAtthXcyfUwO6lUNTwjFW1QkghuXesRuuCKuVKEKmxS6csqJEUl6QpSuy0seJn1bxvUJL8pIvDIQr-yINyKvhzHrXVaOf_Y-DtQYenaEGJGTnt5lJ7jbUgSAhlY9SUfk5fAaRS6co5gaVi32SUMSHbTy_Onfv_yM3BNhWR5d0U7IQbNp4Tlil8a-iEz7Ay5c61k |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wAXBgy0wgAjcQN3iWM7yREYpUBbJNqJ3qLEfmEVkFZtctlfz7ObBPEhRE5OYkdW3tfP9vsAeJbrstASFQ9Uabm0iLwwNuQFcbSOYyNV4bYGpjM9vpDvl2p5AC_6WBhE9M5nOHRNf5Zv16ZxW2VnSaKSIEquwXUlpVT7aK1-RyUgZK493hWhFlxE8bKLkgnSs8VsNpk7V650SBaO2C7-xRL50ip_6GNvZEZHMO2mt_ct-Tps6mJorn7L3Pi_878Nt1q0yV7u2eMOHGB1F466Sg6sFexjyOf4fcXnzcZpjh1a9tblsWaffKH67eqKnpwjbthsOmKfV_Ule7XiH7f15fqLA_LMVf30tSbqHSMQzM7zOqfBm5-hTdU9uBi9Wbwe87b4AjeRSGoeo9JIv8vkSJBMkCYoU5uTdBNhtQ3KUqW5sUbGWgZFQk1l6ZKYpEkhrNHRfTis1hWeAKNbUiUiyE1kCb3RmriM0zgtwjQpTWzEAMKOEJlpM5O7SX_L_AolSDNPvMwRL2uJN4Dn_ZjNPi_HP3sfO2r0PVtCDOC0o3fWiu4uEw6ikV0PowE87V-T0LmTlLzCdUN9IpdGh-x88ODvX34CN8aL6SSbvJt9eAg3hVuke8e0Uzistw0-IiRTF489A_8Aphbupg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Graph+Regularized+Deep+NMF+With+Bi-Orthogonal+Constraints+for+Data+Representation&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Meng%2C+Yang&rft.au=Shang%2C+Ronghua&rft.au=Shang%2C+Fanhua&rft.au=Jiao%2C+Licheng&rft.date=2020-09-01&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=9&rft.spage=3245&rft.epage=3258&rft_id=info:doi/10.1109%2FTNNLS.2019.2939637&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TNNLS_2019_2939637 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |