A digital twin-driven hybrid approach for the prediction of performance degradation in transmission unit of CNC machine tool
•DT model based meta-action, collected data from multi-sensors on transmission unit.•Monitoring and simulation of performance degradation on the wear of transmission.•Combining the data-driven and the model-based method by particle filter algorithm.•Integrating mechanism and real-time data, mutual m...
Saved in:
| Published in | Robotics and computer-integrated manufacturing Vol. 73; p. 102230 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.02.2022
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0736-5845 1879-2537 |
| DOI | 10.1016/j.rcim.2021.102230 |
Cover
| Abstract | •DT model based meta-action, collected data from multi-sensors on transmission unit.•Monitoring and simulation of performance degradation on the wear of transmission.•Combining the data-driven and the model-based method by particle filter algorithm.•Integrating mechanism and real-time data, mutual modified to a High fidelity model.
Precision performance prediction of transmission system is considered as a key technology to modern equipment health management. Given the importance of maintaining a transmission system's precision, this paper presents a hybrid approach framework driven by digital twin technology (DT), to predict performance degradation. Firstly, a DT model based on meta-action theory is established, and real-time monitoring and digital simulation, driven by DT data, is realized in order to analyze the precision of the transmission units in machine tools. Secondly, the wear of gear in transmission unit is studied through Achard wear theory, which considered the comprehensive influence of gear load and speed on surface wear of the gear pair tooth, based on the model driving method. The performance degradation of the transmission unit is obtained by using the RBF neural network algorithm based on the data-driven method to extrapolate the wear data to the field-measurable precision index value. In addition, the hybrid predictive approach of the performance degradation model through the particle filter algorithm is built, and the real-time data is used to update the current state estimation to improve the prediction accuracy. By combining the mechanism of the physical degradation processes with the real-time and historical data and turning them into a cooperative architecture, this prediction method uses the complementary advantages offered by the fusion of these methods to bridge the link between data-driven prediction and model-based prediction. Finally, the method has been successfully applied to the precision prediction of the transmission unit in CNCMT turntable, and it is compared with the single prediction method to verify the effectiveness and feasibility. |
|---|---|
| AbstractList | Precision performance prediction of transmission system is considered as a key technology to modern equipment health management. Given the importance of maintaining a transmission system's precision, this paper presents a hybrid approach framework driven by digital twin technology (DT), to predict performance degradation. Firstly, a DT model based on meta-action theory is established, and real-time monitoring and digital simulation, driven by DT data, is realized in order to analyze the precision of the transmission units in machine tools. Secondly, the wear of gear in transmission unit is studied through Achard wear theory, which considered the comprehensive influence of gear load and speed on surface wear of the gear pair tooth, based on the model driving method. The performance degradation of the transmission unit is obtained by using the RBF neural network algorithm based on the data-driven method to extrapolate the wear data to the field-measurable precision index value. In addition, the hybrid predictive approach of the performance degradation model through the particle filter algorithm is built, and the real-time data is used to update the current state estimation to improve the prediction accuracy. By combining the mechanism of the physical degradation processes with the real-time and historical data and turning them into a cooperative architecture, this prediction method uses the complementary advantages offered by the fusion of these methods to bridge the link between data-driven prediction and model-based prediction. Finally, the method has been successfully applied to the precision prediction of the transmission unit in CNCMT turntable, and it is compared with the single prediction method to verify the effectiveness and feasibility. •DT model based meta-action, collected data from multi-sensors on transmission unit.•Monitoring and simulation of performance degradation on the wear of transmission.•Combining the data-driven and the model-based method by particle filter algorithm.•Integrating mechanism and real-time data, mutual modified to a High fidelity model. Precision performance prediction of transmission system is considered as a key technology to modern equipment health management. Given the importance of maintaining a transmission system's precision, this paper presents a hybrid approach framework driven by digital twin technology (DT), to predict performance degradation. Firstly, a DT model based on meta-action theory is established, and real-time monitoring and digital simulation, driven by DT data, is realized in order to analyze the precision of the transmission units in machine tools. Secondly, the wear of gear in transmission unit is studied through Achard wear theory, which considered the comprehensive influence of gear load and speed on surface wear of the gear pair tooth, based on the model driving method. The performance degradation of the transmission unit is obtained by using the RBF neural network algorithm based on the data-driven method to extrapolate the wear data to the field-measurable precision index value. In addition, the hybrid predictive approach of the performance degradation model through the particle filter algorithm is built, and the real-time data is used to update the current state estimation to improve the prediction accuracy. By combining the mechanism of the physical degradation processes with the real-time and historical data and turning them into a cooperative architecture, this prediction method uses the complementary advantages offered by the fusion of these methods to bridge the link between data-driven prediction and model-based prediction. Finally, the method has been successfully applied to the precision prediction of the transmission unit in CNCMT turntable, and it is compared with the single prediction method to verify the effectiveness and feasibility. |
| ArticleNumber | 102230 |
| Author | Zhang, Genbao Yang, Xin Zhi, Shengguang Mu, Zongyi Ran, Yan Wang, Hongwei |
| Author_xml | – sequence: 1 givenname: Xin surname: Yang fullname: Yang, Xin organization: College of Mechanical Engineering, Chongqing University, Chongqing 400044, China – sequence: 2 givenname: Yan surname: Ran fullname: Ran, Yan email: ranyan@cqu.edu.cn organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China – sequence: 3 givenname: Genbao surname: Zhang fullname: Zhang, Genbao organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China – sequence: 4 givenname: Hongwei surname: Wang fullname: Wang, Hongwei organization: College of Mechanical Engineering, Chongqing University, Chongqing 400044, China – sequence: 5 givenname: Zongyi surname: Mu fullname: Mu, Zongyi organization: College of Mechanical Engineering, Chongqing University, Chongqing 400044, China – sequence: 6 givenname: Shengguang surname: Zhi fullname: Zhi, Shengguang organization: Ammunition Packaging Products Factory, Xinhua Chemical Co., Ltd., Shanxi 030000, China |
| BookMark | eNp9kMFu3CAURVGVSJ2k-YGskLr2FIONbamb0ahNK43STbpGGB6ZNxqDC0yqSP344ExXWWSF4N3z0D1X5MIHD4Tc1mxds1p-OayjwWnNGa_LA-eCfSCruu-GireiuyAr1glZtX3TfiRXKR0YY7xpxYr821CLj5j1kea_6Csb8Qk83T-PES3V8xyDNnvqQqR5D3SOYNFkDJ4GR2eIZTBpb4BaeIza6tcRepqj9mnClJb7yWNe8tv7LZ3KOvRAcwjHT-TS6WOCm__nNfn9_dvD9ke1-3X3c7vZVUbwPledGblmwrZy4F2p2wjrhn5wTTcCM0YOY9OB07YRQy96ZuUonauFGMZRQl_Ia_L5vLe0-XOClNUhnKIvXyouWSuYbNqmpPpzysSQUgSnTPGyFCpl8KhqphbX6qAW12pxrc6uC8rfoHPEScfn96GvZwhK9SeEqJJBKC4tRjBZ2YDv4S8bRJuJ |
| CitedBy_id | crossref_primary_10_1016_j_ymssp_2024_112194 crossref_primary_10_1016_j_jmapro_2024_03_036 crossref_primary_10_1016_j_rcim_2025_102962 crossref_primary_10_1007_s00170_024_13788_1 crossref_primary_10_1016_j_rcim_2021_102281 crossref_primary_10_1007_s10845_024_02424_0 crossref_primary_10_1016_j_rcim_2022_102406 crossref_primary_10_1016_j_aei_2023_102310 crossref_primary_10_3390_machines10111093 crossref_primary_10_1016_j_aei_2024_102597 crossref_primary_10_1016_j_ress_2022_108879 crossref_primary_10_1016_j_rcim_2022_102368 crossref_primary_10_1016_j_rcim_2022_102489 crossref_primary_10_1016_j_rcim_2022_102402 crossref_primary_10_1007_s00170_024_13736_z crossref_primary_10_1016_j_ress_2022_108874 crossref_primary_10_29109_gujsc_1170021 crossref_primary_10_1177_09544070241291128 crossref_primary_10_1080_00207543_2023_2246161 crossref_primary_10_3390_app13053291 crossref_primary_10_3390_s24082618 crossref_primary_10_1007_s00170_024_14550_3 crossref_primary_10_1016_j_procs_2024_01_145 crossref_primary_10_3390_math11081837 crossref_primary_10_3390_math12020330 crossref_primary_10_3390_machines11070733 crossref_primary_10_1007_s00170_022_09383_x crossref_primary_10_1016_j_seta_2025_104197 crossref_primary_10_3390_electronics12153261 crossref_primary_10_1016_j_engfailanal_2023_107753 crossref_primary_10_1016_j_precisioneng_2024_06_011 crossref_primary_10_1186_s10033_024_01036_2 crossref_primary_10_1016_j_ijpe_2023_108846 crossref_primary_10_3390_s24155002 crossref_primary_10_1109_TSM_2023_3237917 crossref_primary_10_1007_s00170_022_09978_4 crossref_primary_10_1007_s00170_024_14200_8 crossref_primary_10_32604_cmes_2023_023154 crossref_primary_10_1016_j_measurement_2023_113352 crossref_primary_10_1016_j_jmsy_2023_05_023 crossref_primary_10_1016_j_autcon_2024_105648 crossref_primary_10_1016_j_jmsy_2025_02_019 crossref_primary_10_1016_j_ymssp_2023_110826 crossref_primary_10_1080_21693277_2024_2305358 crossref_primary_10_1109_JSEN_2023_3342025 crossref_primary_10_3390_app12199864 crossref_primary_10_1007_s10853_022_07792_7 crossref_primary_10_3390_jmmp8050214 crossref_primary_10_1016_j_rcim_2023_102545 crossref_primary_10_1016_j_rcim_2023_102543 crossref_primary_10_3390_app122412820 crossref_primary_10_1007_s00170_022_10667_5 crossref_primary_10_1007_s10270_025_01264_7 crossref_primary_10_1016_j_rcim_2022_102507 crossref_primary_10_1016_j_jmsy_2025_02_003 crossref_primary_10_1109_JSEN_2023_3269030 crossref_primary_10_1016_j_cie_2024_110744 crossref_primary_10_3390_pr10122725 crossref_primary_10_1177_09544062221091776 crossref_primary_10_1016_j_engappai_2024_109204 crossref_primary_10_1016_j_ymssp_2023_110599 crossref_primary_10_1007_s00170_022_09613_2 crossref_primary_10_1007_s41060_024_00686_8 crossref_primary_10_1016_j_scs_2024_105479 crossref_primary_10_1016_j_jmapro_2024_01_024 |
| Cites_doi | 10.1016/j.asoc.2012.08.031 10.1016/j.rcim.2010.10.005 10.1109/TR.2013.2241216 10.1016/j.ress.2008.12.004 10.1016/j.jmsy.2018.01.006 10.1016/j.rcim.2019.101924 10.1016/j.ymssp.2011.10.009 10.1016/j.rcim.2020.101958 10.1016/j.jmsy.2020.07.005 10.1016/j.cirp.2018.04.055 10.1016/j.ejor.2010.11.018 10.1115/1.4042342 10.1016/j.asoc.2016.03.013 10.1016/j.rcim.2019.101837 10.1016/j.cirp.2017.04.040 10.1080/00224065.2018.1436829 10.1007/s00170-017-0233-1 10.1109/TASE.2006.876609 10.1109/TR.2012.2194175 10.1016/j.asoc.2011.03.026 10.1016/j.actaastro.2011.03.018 10.1016/j.eswa.2012.02.199 10.1109/TR.2019.2907517 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier BV Feb 2022 |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier BV Feb 2022 |
| DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1016/j.rcim.2021.102230 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1879-2537 |
| ExternalDocumentID | 10_1016_j_rcim_2021_102230 S0736584521001125 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PZZ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7SP 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-7cb2a03d5692710143df989f47be0cc69b47efad4398380d6b6ff1339bb6e8a03 |
| IEDL.DBID | .~1 |
| ISSN | 0736-5845 |
| IngestDate | Fri Jul 25 02:52:42 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Thu Oct 16 04:45:15 EDT 2025 Fri Feb 23 02:42:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data-driven CNCMT Digital twin Simulation Performance degradation Wear |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-7cb2a03d5692710143df989f47be0cc69b47efad4398380d6b6ff1339bb6e8a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2605306454 |
| PQPubID | 2045404 |
| ParticipantIDs | proquest_journals_2605306454 crossref_citationtrail_10_1016_j_rcim_2021_102230 crossref_primary_10_1016_j_rcim_2021_102230 elsevier_sciencedirect_doi_10_1016_j_rcim_2021_102230 |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Robotics and computer-integrated manufacturing |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Sun, Zhang, Mo, Zhang (bib0025) 2020; 64 Zhang, Zhang, Fan, Tu (bib0029) 2012; 4 Orchard (bib0015) 2007 Yu, Song, Tang, Dai (bib0004) 2020; 58 Medjaher, Tobon-Mejia, Zerhouni (bib0010) 2012; 61 Zio, Di Maio (bib0016) 2012; 39 Yu, Zhang, Ran, Li, Jiang, Chen (bib0027) 2019; 69 Wu, Coatanea, Wang (bib0028) 2019; 141 Sun, Bao, Li, Zhang, Liu, Zhou (bib0003) 2020; 61 Gebraeel (bib0020) 2006; 3 Chehade, Song, Liu, Saxena, Zhang (bib0001) 2018; 50 Yu (bib0011) 2011; 11 Zhao, Tian, Zeng (bib0014) 2013; 62 Pan, Zhao, Li, Wang (bib0035) 2012; 44 Schleich, Anwer, Mathieu, Wartzack (bib0022) 2017; 66 Si, Wang, Hu, Zhou (bib0005) 2011; 213 Dong, Peng (bib0002) 2011; 27 Chen, Vachtsevanos, Orchard (bib0018) 2012; 28 Fei, Meng, Jiangfeng, Qinglin (bib0023) 2017; 23 Guo, Watson, Tavner, Xiang (bib0009) 2009; 94 Zhang, Kang, Pecht (bib0006) 2009 Zheng, Sivabalan (bib0024) 2020; 64 G. M, Digital twin: manufacturing excellence through virtual factory replication (2014). Tao, Zhang, Liu, Nee (bib0032) 2018; 67 Tao, Cheng, Qi, Zhang, Zhang, Sui (bib0008) 2018; 94 Goebel, Eklund, Bonanni (bib0017) 2006 Ran (bib0030) 2016 Lu, Liu, Wang, Huang, Xu (bib0026) 2020; 61 Luo, Hu, Ye, Zhang, Wei (bib0019) 2020; 65 Cunbo, Jianhua, Hui, Xiaoyu, Shaoli, Gang (bib0021) 2017; 23 Guo, Fang, Deng, Zhang, Li (bib0034) 2014; 26 Li, Wang, Ismail (bib0012) 2013; 13 Liao, Köttig (bib0013) 2016; 44 Liang, Wang, Sun (bib0033) 2011; 69 Tao, Qi, Liu, Kusiak (bib0007) 2018; 48 Zhang (10.1016/j.rcim.2021.102230_bib0006) 2009 Chehade (10.1016/j.rcim.2021.102230_bib0001) 2018; 50 Lu (10.1016/j.rcim.2021.102230_bib0026) 2020; 61 Zhao (10.1016/j.rcim.2021.102230_bib0014) 2013; 62 Yu (10.1016/j.rcim.2021.102230_bib0027) 2019; 69 Zhang (10.1016/j.rcim.2021.102230_bib0029) 2012; 4 Dong (10.1016/j.rcim.2021.102230_bib0002) 2011; 27 Fei (10.1016/j.rcim.2021.102230_bib0023) 2017; 23 Ran (10.1016/j.rcim.2021.102230_bib0030) 2016 Guo (10.1016/j.rcim.2021.102230_bib0034) 2014; 26 Zio (10.1016/j.rcim.2021.102230_bib0016) 2012; 39 Tao (10.1016/j.rcim.2021.102230_bib0008) 2018; 94 Yu (10.1016/j.rcim.2021.102230_bib0011) 2011; 11 Goebel (10.1016/j.rcim.2021.102230_bib0017) 2006 Tao (10.1016/j.rcim.2021.102230_bib0032) 2018; 67 Medjaher (10.1016/j.rcim.2021.102230_bib0010) 2012; 61 Sun (10.1016/j.rcim.2021.102230_bib0003) 2020; 61 Li (10.1016/j.rcim.2021.102230_bib0012) 2013; 13 Tao (10.1016/j.rcim.2021.102230_bib0007) 2018; 48 Pan (10.1016/j.rcim.2021.102230_bib0035) 2012; 44 Liao (10.1016/j.rcim.2021.102230_bib0013) 2016; 44 Zheng (10.1016/j.rcim.2021.102230_bib0024) 2020; 64 Sun (10.1016/j.rcim.2021.102230_bib0025) 2020; 64 Liang (10.1016/j.rcim.2021.102230_bib0033) 2011; 69 Yu (10.1016/j.rcim.2021.102230_bib0004) 2020; 58 Wu (10.1016/j.rcim.2021.102230_bib0028) 2019; 141 Si (10.1016/j.rcim.2021.102230_bib0005) 2011; 213 Schleich (10.1016/j.rcim.2021.102230_bib0022) 2017; 66 Orchard (10.1016/j.rcim.2021.102230_bib0015) 2007 Luo (10.1016/j.rcim.2021.102230_bib0019) 2020; 65 Chen (10.1016/j.rcim.2021.102230_bib0018) 2012; 28 Cunbo (10.1016/j.rcim.2021.102230_bib0021) 2017; 23 10.1016/j.rcim.2021.102230_bib0031 Gebraeel (10.1016/j.rcim.2021.102230_bib0020) 2006; 3 Guo (10.1016/j.rcim.2021.102230_bib0009) 2009; 94 |
| References_xml | – volume: 213 start-page: 1 year: 2011 end-page: 14 ident: bib0005 article-title: Remaining useful life estimation - a review on the statistical data driven approaches publication-title: Eur. J. Oper. Res. – volume: 61 start-page: 101837 year: 2020 ident: bib0026 article-title: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues publication-title: Robot. Comp. Integr. Manuf. – year: 2016 ident: bib0030 article-title: Research on Meta-Action Unit Modelling and Key QCs Predictive Control Technology of Electromechanical Products – volume: 26 start-page: 30 year: 2014 end-page: 33 ident: bib0034 article-title: Research on wearing life calculation of worm gear of elevating mechanism publication-title: J. Ordnance Eng. Coll. – volume: 65 year: 2020 ident: bib0019 article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin publication-title: Robot. Comp. Integr. Manuf. – volume: 44 start-page: 29 year: 2012 end-page: 33 ident: bib0035 article-title: The wear life prediction method of gear system publication-title: J. Harbin Inst. Technol. – volume: 27 start-page: 581 year: 2011 end-page: 590 ident: bib0002 article-title: Equipment PHM using non-stationary segmental hidden semi-Markov model publication-title: Robot. Comp.Integr. Manuf. – volume: 69 start-page: 373 year: 2019 end-page: 381 ident: bib0027 article-title: A reliability allocation method for mechanical product based on meta-action publication-title: IEEE T. Reliab. – volume: 64 start-page: 101958 year: 2020 ident: bib0024 article-title: A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment publication-title: Robot. Comp. Integr. Manuf. – volume: 48 start-page: 157 year: 2018 end-page: 169 ident: bib0007 article-title: Data-driven smart manufacturing publication-title: J. Manuf. Syst. – volume: 64 start-page: 101924 year: 2020 ident: bib0025 article-title: In-process tool condition forecasting based on a deep learning method publication-title: Robot. Comp. Integr. Manuf. – volume: 58 start-page: 293 year: 2020 end-page: 304 ident: bib0004 article-title: A digital twin approach based on nonparametric Bayesian network for complex system health monitoring publication-title: J. Manuf. Syst. – volume: 61 start-page: 292 year: 2012 end-page: 302 ident: bib0010 article-title: Remaining useful life estimation of critical components with application to bearings publication-title: IEEE T. Reliab. – volume: 23 start-page: 753 year: 2017 end-page: 768 ident: bib0021 article-title: Connotation, architecture and trends of product digital publication-title: Comput. Integr. Manuf. Syst. – volume: 13 start-page: 283 year: 2013 end-page: 291 ident: bib0012 article-title: Enhanced fuzzy-filtered neural networks for material fatigue prognosis publication-title: Appl. Soft Comput. – volume: 4 start-page: 528 year: 2012 end-page: 533 ident: bib0029 article-title: Function decomposition and reliability analysis of CNC machine using function- motion-action publication-title: Mech. Sci. Technol. Aerospace Eng. – volume: 11 start-page: 4041 year: 2011 end-page: 4054 ident: bib0011 article-title: A hybrid feature selection scheme and self-organizing map model for machine health assessment publication-title: Appl. Soft Comput. – volume: 23 start-page: 1 year: 2017 end-page: 9 ident: bib0023 article-title: Digital twin workshop: a new paradigm for future workshop publication-title: Comput. Integr. Manuf. Syst. – volume: 67 start-page: 169 year: 2018 end-page: 172 ident: bib0032 article-title: Digital twin driven prognostics and health management for complex equipment publication-title: CIRP Ann.-Manuf. Technol. – volume: 61 start-page: 839 year: 2020 ident: bib0003 article-title: A digital twin-driven approach for the assembly-commissioning of high precision products publication-title: Robot. Comp.Integr. Manuf. – volume: 39 start-page: 10681 year: 2012 end-page: 10692 ident: bib0016 article-title: Fatigue crack growth estimation by relevance vector machine publication-title: Expert Syst. Appl. – start-page: 1165 year: 2009 end-page: 1169 ident: bib0006 article-title: A hybrid prognostics and health management approach for condition-based maintenance publication-title: Int. Conf. Ind. Eng. Eng. Manage. IEEM – year: 2007 ident: bib0015 article-title: A Particle Filtering-Based Framework for on-Line Fault Diagnosis and Failure Prognosis – volume: 94 start-page: 3563 year: 2018 end-page: 3576 ident: bib0008 article-title: Digital twin-driven product design, manufacturing and service with big data publication-title: Int. J. Adv. Manuf. Technol. – start-page: 4036 year: 2006 ident: bib0017 article-title: Fusing competing prediction algorithms for prognostics publication-title: IEEE Aerospace Conference Proceedings NEW YORK: IEEE – volume: 141 start-page: 041402-1 year: 2019 end-page: 041402–11 ident: bib0028 article-title: Employing knowledge on causal relationship to assist multidisciplinary design optimization publication-title: J. Mech. Des. – volume: 62 start-page: 146 year: 2013 end-page: 159 ident: bib0014 article-title: Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method publication-title: IEEE Trans. Reliab. – volume: 3 start-page: 382 year: 2006 end-page: 393 ident: bib0020 article-title: Sensory-updated residual life distributions for components with exponential degradation patterns publication-title: IEEE Trans. Autom. Sci. Eng. – reference: G. M, Digital twin: manufacturing excellence through virtual factory replication (2014). – volume: 69 start-page: 280 year: 2011 end-page: 288 ident: bib0033 article-title: Robust decentralized coordinated attitude control of spacecraft formation publication-title: Acta Astronaut – volume: 28 start-page: 597 year: 2012 end-page: 607 ident: bib0018 article-title: Machine remaining useful life prediction: an integrated adaptive neuro-fuzzy and high-order particle filtering approach publication-title: Mech. Syst. Signal Pr. – volume: 94 start-page: 1057 year: 2009 end-page: 1063 ident: bib0009 article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation publication-title: Reliab. Eng. Syst. Safe. – volume: 66 start-page: 141 year: 2017 end-page: 144 ident: bib0022 article-title: Shaping the digital twin for design and production engineering publication-title: CIRP Annals – volume: 44 start-page: 191 year: 2016 end-page: 199 ident: bib0013 article-title: A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction publication-title: Appl. Soft Comput. – volume: 50 start-page: 150 year: 2018 end-page: 165 ident: bib0001 article-title: A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes publication-title: J. Qual. Technol. – volume: 13 start-page: 283 year: 2013 ident: 10.1016/j.rcim.2021.102230_bib0012 article-title: Enhanced fuzzy-filtered neural networks for material fatigue prognosis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.08.031 – volume: 23 start-page: 753 year: 2017 ident: 10.1016/j.rcim.2021.102230_bib0021 article-title: Connotation, architecture and trends of product digital publication-title: Comput. Integr. Manuf. Syst. – volume: 23 start-page: 1 year: 2017 ident: 10.1016/j.rcim.2021.102230_bib0023 article-title: Digital twin workshop: a new paradigm for future workshop publication-title: Comput. Integr. Manuf. Syst. – volume: 27 start-page: 581 year: 2011 ident: 10.1016/j.rcim.2021.102230_bib0002 article-title: Equipment PHM using non-stationary segmental hidden semi-Markov model publication-title: Robot. Comp.Integr. Manuf. doi: 10.1016/j.rcim.2010.10.005 – volume: 62 start-page: 146 year: 2013 ident: 10.1016/j.rcim.2021.102230_bib0014 article-title: Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2013.2241216 – volume: 94 start-page: 1057 year: 2009 ident: 10.1016/j.rcim.2021.102230_bib0009 article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation publication-title: Reliab. Eng. Syst. Safe. doi: 10.1016/j.ress.2008.12.004 – volume: 48 start-page: 157 year: 2018 ident: 10.1016/j.rcim.2021.102230_bib0007 article-title: Data-driven smart manufacturing publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2018.01.006 – year: 2007 ident: 10.1016/j.rcim.2021.102230_bib0015 – year: 2016 ident: 10.1016/j.rcim.2021.102230_bib0030 – volume: 44 start-page: 29 year: 2012 ident: 10.1016/j.rcim.2021.102230_bib0035 article-title: The wear life prediction method of gear system publication-title: J. Harbin Inst. Technol. – volume: 64 start-page: 101924 year: 2020 ident: 10.1016/j.rcim.2021.102230_bib0025 article-title: In-process tool condition forecasting based on a deep learning method publication-title: Robot. Comp. Integr. Manuf. doi: 10.1016/j.rcim.2019.101924 – volume: 28 start-page: 597 year: 2012 ident: 10.1016/j.rcim.2021.102230_bib0018 article-title: Machine remaining useful life prediction: an integrated adaptive neuro-fuzzy and high-order particle filtering approach publication-title: Mech. Syst. Signal Pr. doi: 10.1016/j.ymssp.2011.10.009 – volume: 64 start-page: 101958 year: 2020 ident: 10.1016/j.rcim.2021.102230_bib0024 article-title: A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment publication-title: Robot. Comp. Integr. Manuf. doi: 10.1016/j.rcim.2020.101958 – volume: 58 start-page: 293 year: 2020 ident: 10.1016/j.rcim.2021.102230_bib0004 article-title: A digital twin approach based on nonparametric Bayesian network for complex system health monitoring publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.07.005 – volume: 4 start-page: 528 issue: 31 year: 2012 ident: 10.1016/j.rcim.2021.102230_bib0029 article-title: Function decomposition and reliability analysis of CNC machine using function- motion-action publication-title: Mech. Sci. Technol. Aerospace Eng. – volume: 67 start-page: 169 year: 2018 ident: 10.1016/j.rcim.2021.102230_bib0032 article-title: Digital twin driven prognostics and health management for complex equipment publication-title: CIRP Ann.-Manuf. Technol. doi: 10.1016/j.cirp.2018.04.055 – ident: 10.1016/j.rcim.2021.102230_bib0031 – volume: 26 start-page: 30 year: 2014 ident: 10.1016/j.rcim.2021.102230_bib0034 article-title: Research on wearing life calculation of worm gear of elevating mechanism publication-title: J. Ordnance Eng. Coll. – volume: 213 start-page: 1 year: 2011 ident: 10.1016/j.rcim.2021.102230_bib0005 article-title: Remaining useful life estimation - a review on the statistical data driven approaches publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2010.11.018 – volume: 141 start-page: 041402-1 issue: 4 year: 2019 ident: 10.1016/j.rcim.2021.102230_bib0028 article-title: Employing knowledge on causal relationship to assist multidisciplinary design optimization publication-title: J. Mech. Des. doi: 10.1115/1.4042342 – volume: 44 start-page: 191 year: 2016 ident: 10.1016/j.rcim.2021.102230_bib0013 article-title: A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.03.013 – volume: 61 start-page: 101837 year: 2020 ident: 10.1016/j.rcim.2021.102230_bib0026 article-title: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues publication-title: Robot. Comp. Integr. Manuf. doi: 10.1016/j.rcim.2019.101837 – volume: 65 year: 2020 ident: 10.1016/j.rcim.2021.102230_bib0019 article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin publication-title: Robot. Comp. Integr. Manuf. – start-page: 4036 year: 2006 ident: 10.1016/j.rcim.2021.102230_bib0017 article-title: Fusing competing prediction algorithms for prognostics – volume: 66 start-page: 141 year: 2017 ident: 10.1016/j.rcim.2021.102230_bib0022 article-title: Shaping the digital twin for design and production engineering publication-title: CIRP Annals doi: 10.1016/j.cirp.2017.04.040 – volume: 50 start-page: 150 year: 2018 ident: 10.1016/j.rcim.2021.102230_bib0001 article-title: A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes publication-title: J. Qual. Technol. doi: 10.1080/00224065.2018.1436829 – volume: 94 start-page: 3563 year: 2018 ident: 10.1016/j.rcim.2021.102230_bib0008 article-title: Digital twin-driven product design, manufacturing and service with big data publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0233-1 – volume: 3 start-page: 382 year: 2006 ident: 10.1016/j.rcim.2021.102230_bib0020 article-title: Sensory-updated residual life distributions for components with exponential degradation patterns publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2006.876609 – volume: 61 start-page: 292 year: 2012 ident: 10.1016/j.rcim.2021.102230_bib0010 article-title: Remaining useful life estimation of critical components with application to bearings publication-title: IEEE T. Reliab. doi: 10.1109/TR.2012.2194175 – volume: 11 start-page: 4041 year: 2011 ident: 10.1016/j.rcim.2021.102230_bib0011 article-title: A hybrid feature selection scheme and self-organizing map model for machine health assessment publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.03.026 – volume: 69 start-page: 280 year: 2011 ident: 10.1016/j.rcim.2021.102230_bib0033 article-title: Robust decentralized coordinated attitude control of spacecraft formation publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2011.03.018 – volume: 39 start-page: 10681 year: 2012 ident: 10.1016/j.rcim.2021.102230_bib0016 article-title: Fatigue crack growth estimation by relevance vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.199 – start-page: 1165 year: 2009 ident: 10.1016/j.rcim.2021.102230_bib0006 article-title: A hybrid prognostics and health management approach for condition-based maintenance publication-title: Int. Conf. Ind. Eng. Eng. Manage. IEEM – volume: 69 start-page: 373 issue: 1 year: 2019 ident: 10.1016/j.rcim.2021.102230_bib0027 article-title: A reliability allocation method for mechanical product based on meta-action publication-title: IEEE T. Reliab. doi: 10.1109/TR.2019.2907517 – volume: 61 start-page: 839 year: 2020 ident: 10.1016/j.rcim.2021.102230_bib0003 article-title: A digital twin-driven approach for the assembly-commissioning of high precision products publication-title: Robot. Comp.Integr. Manuf. |
| SSID | ssj0002453 |
| Score | 2.6102562 |
| Snippet | •DT model based meta-action, collected data from multi-sensors on transmission unit.•Monitoring and simulation of performance degradation on the wear of... Precision performance prediction of transmission system is considered as a key technology to modern equipment health management. Given the importance of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102230 |
| SubjectTerms | Algorithms CNCMT Data-driven Digital simulation Digital twin Digital twins Gear teeth Machine tools Neural networks Performance degradation Performance prediction Real time Simulation State estimation Tool wear Turntables Wear |
| Title | A digital twin-driven hybrid approach for the prediction of performance degradation in transmission unit of CNC machine tool |
| URI | https://dx.doi.org/10.1016/j.rcim.2021.102230 https://www.proquest.com/docview/2605306454 |
| Volume | 73 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2537 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002453 issn: 0736-5845 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL] customDbUrl: eissn: 1879-2537 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002453 issn: 0736-5845 databaseCode: ACRLP dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Journal customDbUrl: eissn: 1879-2537 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002453 issn: 0736-5845 databaseCode: AIKHN dateStart: 19960301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2537 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002453 issn: 0736-5845 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2537 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002453 issn: 0736-5845 databaseCode: AKRWK dateStart: 19840101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOiB8qqgPDQHbshs1nES-7iKQFtaVoiHxM2KY7sNotnVNgghof72ehKnPFRx6ClSNI6ifON5xPPNEHJQWsGN1JImMnEUOctUe09OhbA8Koa6iA2e6J5N0vE1P71JbhZI3nNhsKwy2P7OprfWOtwZhK85mFXV4NIrJ7pP738wrmFINOc8wykGR7-fyzwY7zpRemGK0oE409V4zcsK2ehsiB0MGFZC_9s5vTHTre85WSUrIWiEUfdea2TB1uvkYz-QAcL-XCcfXnQX3CBPIzDVdxwKAs1DVVMzR8sGPx6RpAV9M3HwUSv4KBBmczyzQZxg6mD2TCgAgw0lutlLUNXQoHvz6oH_2eDemwSUzyc5_GwLMy000-ndJrk-Ob7KxzQMW6BlzERDs1KzIopNkkqW4QDf2DgppOOZtlFZplLzzLrC-ABGxCIyqU6d8wmu1Dq1wq_8RBbraW23CHAPQ5QWkdNttim0S4xzXGpX-uQvYttk2H9lVYZO5DgQ4071JWe3CpFRiIzqkNkmh3_XzLo-HO9KJz146pU2Ke8o3l232yOtwl7-pTDjwzwt4Z__87E7ZJkha6It9t4li8383u75WKbR-62y7pOlUX7x7RyvX76OJ38AEaT0zg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOpRQQpQ_m0FtlNus4iX2sVlRbaPfSVurNimMbgkp2tU1VISF-ez2J01KEeuCYaBxFmfE84u-bAdirnBRWGcUylXlGnGVmQiRnUjqRlGNTppZOdE9m-fRcfL7ILlZgMnBhCFYZfX_v0ztvHe-M4tccLep6dBqMk8JniD-U1_DsCTwNFwVVYB9_3-M8uOhbUQZpRuKROdODvJZVTXR0PqYWBpyg0P-OTn_56S74HK7DWswa8aB_sVew4poNeDlMZMC4QTfgxR_tBV_DrwO09VeaCoLtTd0wuyTXht9-EksLh27iGNJWDGkgLpZ0aEOKwrnHxT2jAC11lOiHL2HdYEvxLdgH_WjD6-ATSH4ym-CPDpnpsJ3PL9_A-eGns8mUxWkLrEq5bFlRGV4mqc1yxQua4Jtar6TyojAuqapcGVE4X9qQwchUJjY3ufehwlXG5E6GlW9htZk37h2gEKJI8jLxpis3pfGZ9V4o46tQ_SV8E8bDV9ZVbEVOEzEu9YA5-65JM5o0o3vNbML-3ZpF34jjUelsUJ5-YE46RIpH120PmtZxM19pKvmoUMvE-_987Ad4Nj07OdbHR7MvW_CcE4WiQ35vw2q7vHY7IbFpzW5nuLcVZfTO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+digital+twin-driven+hybrid+approach+for+the+prediction+of+performance+degradation+in+transmission+unit+of+CNC+machine+tool&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Yang%2C+Xin&rft.au=Ran%2C+Yan&rft.au=Zhang%2C+Genbao&rft.au=Wang%2C+Hongwei&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=73&rft_id=info:doi/10.1016%2Fj.rcim.2021.102230&rft.externalDocID=S0736584521001125 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon |