A digital twin-driven hybrid approach for the prediction of performance degradation in transmission unit of CNC machine tool

•DT model based meta-action, collected data from multi-sensors on transmission unit.•Monitoring and simulation of performance degradation on the wear of transmission.•Combining the data-driven and the model-based method by particle filter algorithm.•Integrating mechanism and real-time data, mutual m...

Full description

Saved in:
Bibliographic Details
Published inRobotics and computer-integrated manufacturing Vol. 73; p. 102230
Main Authors Yang, Xin, Ran, Yan, Zhang, Genbao, Wang, Hongwei, Mu, Zongyi, Zhi, Shengguang
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0736-5845
1879-2537
DOI10.1016/j.rcim.2021.102230

Cover

Abstract •DT model based meta-action, collected data from multi-sensors on transmission unit.•Monitoring and simulation of performance degradation on the wear of transmission.•Combining the data-driven and the model-based method by particle filter algorithm.•Integrating mechanism and real-time data, mutual modified to a High fidelity model. Precision performance prediction of transmission system is considered as a key technology to modern equipment health management. Given the importance of maintaining a transmission system's precision, this paper presents a hybrid approach framework driven by digital twin technology (DT), to predict performance degradation. Firstly, a DT model based on meta-action theory is established, and real-time monitoring and digital simulation, driven by DT data, is realized in order to analyze the precision of the transmission units in machine tools. Secondly, the wear of gear in transmission unit is studied through Achard wear theory, which considered the comprehensive influence of gear load and speed on surface wear of the gear pair tooth, based on the model driving method. The performance degradation of the transmission unit is obtained by using the RBF neural network algorithm based on the data-driven method to extrapolate the wear data to the field-measurable precision index value. In addition, the hybrid predictive approach of the performance degradation model through the particle filter algorithm is built, and the real-time data is used to update the current state estimation to improve the prediction accuracy. By combining the mechanism of the physical degradation processes with the real-time and historical data and turning them into a cooperative architecture, this prediction method uses the complementary advantages offered by the fusion of these methods to bridge the link between data-driven prediction and model-based prediction. Finally, the method has been successfully applied to the precision prediction of the transmission unit in CNCMT turntable, and it is compared with the single prediction method to verify the effectiveness and feasibility.
AbstractList Precision performance prediction of transmission system is considered as a key technology to modern equipment health management. Given the importance of maintaining a transmission system's precision, this paper presents a hybrid approach framework driven by digital twin technology (DT), to predict performance degradation. Firstly, a DT model based on meta-action theory is established, and real-time monitoring and digital simulation, driven by DT data, is realized in order to analyze the precision of the transmission units in machine tools. Secondly, the wear of gear in transmission unit is studied through Achard wear theory, which considered the comprehensive influence of gear load and speed on surface wear of the gear pair tooth, based on the model driving method. The performance degradation of the transmission unit is obtained by using the RBF neural network algorithm based on the data-driven method to extrapolate the wear data to the field-measurable precision index value. In addition, the hybrid predictive approach of the performance degradation model through the particle filter algorithm is built, and the real-time data is used to update the current state estimation to improve the prediction accuracy. By combining the mechanism of the physical degradation processes with the real-time and historical data and turning them into a cooperative architecture, this prediction method uses the complementary advantages offered by the fusion of these methods to bridge the link between data-driven prediction and model-based prediction. Finally, the method has been successfully applied to the precision prediction of the transmission unit in CNCMT turntable, and it is compared with the single prediction method to verify the effectiveness and feasibility.
•DT model based meta-action, collected data from multi-sensors on transmission unit.•Monitoring and simulation of performance degradation on the wear of transmission.•Combining the data-driven and the model-based method by particle filter algorithm.•Integrating mechanism and real-time data, mutual modified to a High fidelity model. Precision performance prediction of transmission system is considered as a key technology to modern equipment health management. Given the importance of maintaining a transmission system's precision, this paper presents a hybrid approach framework driven by digital twin technology (DT), to predict performance degradation. Firstly, a DT model based on meta-action theory is established, and real-time monitoring and digital simulation, driven by DT data, is realized in order to analyze the precision of the transmission units in machine tools. Secondly, the wear of gear in transmission unit is studied through Achard wear theory, which considered the comprehensive influence of gear load and speed on surface wear of the gear pair tooth, based on the model driving method. The performance degradation of the transmission unit is obtained by using the RBF neural network algorithm based on the data-driven method to extrapolate the wear data to the field-measurable precision index value. In addition, the hybrid predictive approach of the performance degradation model through the particle filter algorithm is built, and the real-time data is used to update the current state estimation to improve the prediction accuracy. By combining the mechanism of the physical degradation processes with the real-time and historical data and turning them into a cooperative architecture, this prediction method uses the complementary advantages offered by the fusion of these methods to bridge the link between data-driven prediction and model-based prediction. Finally, the method has been successfully applied to the precision prediction of the transmission unit in CNCMT turntable, and it is compared with the single prediction method to verify the effectiveness and feasibility.
ArticleNumber 102230
Author Zhang, Genbao
Yang, Xin
Zhi, Shengguang
Mu, Zongyi
Ran, Yan
Wang, Hongwei
Author_xml – sequence: 1
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Yan
  surname: Ran
  fullname: Ran, Yan
  email: ranyan@cqu.edu.cn
  organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Genbao
  surname: Zhang
  fullname: Zhang, Genbao
  organization: State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China
– sequence: 4
  givenname: Hongwei
  surname: Wang
  fullname: Wang, Hongwei
  organization: College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
– sequence: 5
  givenname: Zongyi
  surname: Mu
  fullname: Mu, Zongyi
  organization: College of Mechanical Engineering, Chongqing University, Chongqing 400044, China
– sequence: 6
  givenname: Shengguang
  surname: Zhi
  fullname: Zhi, Shengguang
  organization: Ammunition Packaging Products Factory, Xinhua Chemical Co., Ltd., Shanxi 030000, China
BookMark eNp9kMFu3CAURVGVSJ2k-YGskLr2FIONbamb0ahNK43STbpGGB6ZNxqDC0yqSP344ExXWWSF4N3z0D1X5MIHD4Tc1mxds1p-OayjwWnNGa_LA-eCfSCruu-GireiuyAr1glZtX3TfiRXKR0YY7xpxYr821CLj5j1kea_6Csb8Qk83T-PES3V8xyDNnvqQqR5D3SOYNFkDJ4GR2eIZTBpb4BaeIza6tcRepqj9mnClJb7yWNe8tv7LZ3KOvRAcwjHT-TS6WOCm__nNfn9_dvD9ke1-3X3c7vZVUbwPledGblmwrZy4F2p2wjrhn5wTTcCM0YOY9OB07YRQy96ZuUonauFGMZRQl_Ia_L5vLe0-XOClNUhnKIvXyouWSuYbNqmpPpzysSQUgSnTPGyFCpl8KhqphbX6qAW12pxrc6uC8rfoHPEScfn96GvZwhK9SeEqJJBKC4tRjBZ2YDv4S8bRJuJ
CitedBy_id crossref_primary_10_1016_j_ymssp_2024_112194
crossref_primary_10_1016_j_jmapro_2024_03_036
crossref_primary_10_1016_j_rcim_2025_102962
crossref_primary_10_1007_s00170_024_13788_1
crossref_primary_10_1016_j_rcim_2021_102281
crossref_primary_10_1007_s10845_024_02424_0
crossref_primary_10_1016_j_rcim_2022_102406
crossref_primary_10_1016_j_aei_2023_102310
crossref_primary_10_3390_machines10111093
crossref_primary_10_1016_j_aei_2024_102597
crossref_primary_10_1016_j_ress_2022_108879
crossref_primary_10_1016_j_rcim_2022_102368
crossref_primary_10_1016_j_rcim_2022_102489
crossref_primary_10_1016_j_rcim_2022_102402
crossref_primary_10_1007_s00170_024_13736_z
crossref_primary_10_1016_j_ress_2022_108874
crossref_primary_10_29109_gujsc_1170021
crossref_primary_10_1177_09544070241291128
crossref_primary_10_1080_00207543_2023_2246161
crossref_primary_10_3390_app13053291
crossref_primary_10_3390_s24082618
crossref_primary_10_1007_s00170_024_14550_3
crossref_primary_10_1016_j_procs_2024_01_145
crossref_primary_10_3390_math11081837
crossref_primary_10_3390_math12020330
crossref_primary_10_3390_machines11070733
crossref_primary_10_1007_s00170_022_09383_x
crossref_primary_10_1016_j_seta_2025_104197
crossref_primary_10_3390_electronics12153261
crossref_primary_10_1016_j_engfailanal_2023_107753
crossref_primary_10_1016_j_precisioneng_2024_06_011
crossref_primary_10_1186_s10033_024_01036_2
crossref_primary_10_1016_j_ijpe_2023_108846
crossref_primary_10_3390_s24155002
crossref_primary_10_1109_TSM_2023_3237917
crossref_primary_10_1007_s00170_022_09978_4
crossref_primary_10_1007_s00170_024_14200_8
crossref_primary_10_32604_cmes_2023_023154
crossref_primary_10_1016_j_measurement_2023_113352
crossref_primary_10_1016_j_jmsy_2023_05_023
crossref_primary_10_1016_j_autcon_2024_105648
crossref_primary_10_1016_j_jmsy_2025_02_019
crossref_primary_10_1016_j_ymssp_2023_110826
crossref_primary_10_1080_21693277_2024_2305358
crossref_primary_10_1109_JSEN_2023_3342025
crossref_primary_10_3390_app12199864
crossref_primary_10_1007_s10853_022_07792_7
crossref_primary_10_3390_jmmp8050214
crossref_primary_10_1016_j_rcim_2023_102545
crossref_primary_10_1016_j_rcim_2023_102543
crossref_primary_10_3390_app122412820
crossref_primary_10_1007_s00170_022_10667_5
crossref_primary_10_1007_s10270_025_01264_7
crossref_primary_10_1016_j_rcim_2022_102507
crossref_primary_10_1016_j_jmsy_2025_02_003
crossref_primary_10_1109_JSEN_2023_3269030
crossref_primary_10_1016_j_cie_2024_110744
crossref_primary_10_3390_pr10122725
crossref_primary_10_1177_09544062221091776
crossref_primary_10_1016_j_engappai_2024_109204
crossref_primary_10_1016_j_ymssp_2023_110599
crossref_primary_10_1007_s00170_022_09613_2
crossref_primary_10_1007_s41060_024_00686_8
crossref_primary_10_1016_j_scs_2024_105479
crossref_primary_10_1016_j_jmapro_2024_01_024
Cites_doi 10.1016/j.asoc.2012.08.031
10.1016/j.rcim.2010.10.005
10.1109/TR.2013.2241216
10.1016/j.ress.2008.12.004
10.1016/j.jmsy.2018.01.006
10.1016/j.rcim.2019.101924
10.1016/j.ymssp.2011.10.009
10.1016/j.rcim.2020.101958
10.1016/j.jmsy.2020.07.005
10.1016/j.cirp.2018.04.055
10.1016/j.ejor.2010.11.018
10.1115/1.4042342
10.1016/j.asoc.2016.03.013
10.1016/j.rcim.2019.101837
10.1016/j.cirp.2017.04.040
10.1080/00224065.2018.1436829
10.1007/s00170-017-0233-1
10.1109/TASE.2006.876609
10.1109/TR.2012.2194175
10.1016/j.asoc.2011.03.026
10.1016/j.actaastro.2011.03.018
10.1016/j.eswa.2012.02.199
10.1109/TR.2019.2907517
ContentType Journal Article
Copyright 2021
Copyright Elsevier BV Feb 2022
Copyright_xml – notice: 2021
– notice: Copyright Elsevier BV Feb 2022
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1016/j.rcim.2021.102230
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1879-2537
ExternalDocumentID 10_1016_j_rcim_2021_102230
S0736584521001125
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PZZ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-7cb2a03d5692710143df989f47be0cc69b47efad4398380d6b6ff1339bb6e8a03
IEDL.DBID .~1
ISSN 0736-5845
IngestDate Fri Jul 25 02:52:42 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Thu Oct 16 04:45:15 EDT 2025
Fri Feb 23 02:42:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data-driven
CNCMT
Digital twin
Simulation
Performance degradation
Wear
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-7cb2a03d5692710143df989f47be0cc69b47efad4398380d6b6ff1339bb6e8a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2605306454
PQPubID 2045404
ParticipantIDs proquest_journals_2605306454
crossref_citationtrail_10_1016_j_rcim_2021_102230
crossref_primary_10_1016_j_rcim_2021_102230
elsevier_sciencedirect_doi_10_1016_j_rcim_2021_102230
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Robotics and computer-integrated manufacturing
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sun, Zhang, Mo, Zhang (bib0025) 2020; 64
Zhang, Zhang, Fan, Tu (bib0029) 2012; 4
Orchard (bib0015) 2007
Yu, Song, Tang, Dai (bib0004) 2020; 58
Medjaher, Tobon-Mejia, Zerhouni (bib0010) 2012; 61
Zio, Di Maio (bib0016) 2012; 39
Yu, Zhang, Ran, Li, Jiang, Chen (bib0027) 2019; 69
Wu, Coatanea, Wang (bib0028) 2019; 141
Sun, Bao, Li, Zhang, Liu, Zhou (bib0003) 2020; 61
Gebraeel (bib0020) 2006; 3
Chehade, Song, Liu, Saxena, Zhang (bib0001) 2018; 50
Yu (bib0011) 2011; 11
Zhao, Tian, Zeng (bib0014) 2013; 62
Pan, Zhao, Li, Wang (bib0035) 2012; 44
Schleich, Anwer, Mathieu, Wartzack (bib0022) 2017; 66
Si, Wang, Hu, Zhou (bib0005) 2011; 213
Dong, Peng (bib0002) 2011; 27
Chen, Vachtsevanos, Orchard (bib0018) 2012; 28
Fei, Meng, Jiangfeng, Qinglin (bib0023) 2017; 23
Guo, Watson, Tavner, Xiang (bib0009) 2009; 94
Zhang, Kang, Pecht (bib0006) 2009
Zheng, Sivabalan (bib0024) 2020; 64
G. M, Digital twin: manufacturing excellence through virtual factory replication (2014).
Tao, Zhang, Liu, Nee (bib0032) 2018; 67
Tao, Cheng, Qi, Zhang, Zhang, Sui (bib0008) 2018; 94
Goebel, Eklund, Bonanni (bib0017) 2006
Ran (bib0030) 2016
Lu, Liu, Wang, Huang, Xu (bib0026) 2020; 61
Luo, Hu, Ye, Zhang, Wei (bib0019) 2020; 65
Cunbo, Jianhua, Hui, Xiaoyu, Shaoli, Gang (bib0021) 2017; 23
Guo, Fang, Deng, Zhang, Li (bib0034) 2014; 26
Li, Wang, Ismail (bib0012) 2013; 13
Liao, Köttig (bib0013) 2016; 44
Liang, Wang, Sun (bib0033) 2011; 69
Tao, Qi, Liu, Kusiak (bib0007) 2018; 48
Zhang (10.1016/j.rcim.2021.102230_bib0006) 2009
Chehade (10.1016/j.rcim.2021.102230_bib0001) 2018; 50
Lu (10.1016/j.rcim.2021.102230_bib0026) 2020; 61
Zhao (10.1016/j.rcim.2021.102230_bib0014) 2013; 62
Yu (10.1016/j.rcim.2021.102230_bib0027) 2019; 69
Zhang (10.1016/j.rcim.2021.102230_bib0029) 2012; 4
Dong (10.1016/j.rcim.2021.102230_bib0002) 2011; 27
Fei (10.1016/j.rcim.2021.102230_bib0023) 2017; 23
Ran (10.1016/j.rcim.2021.102230_bib0030) 2016
Guo (10.1016/j.rcim.2021.102230_bib0034) 2014; 26
Zio (10.1016/j.rcim.2021.102230_bib0016) 2012; 39
Tao (10.1016/j.rcim.2021.102230_bib0008) 2018; 94
Yu (10.1016/j.rcim.2021.102230_bib0011) 2011; 11
Goebel (10.1016/j.rcim.2021.102230_bib0017) 2006
Tao (10.1016/j.rcim.2021.102230_bib0032) 2018; 67
Medjaher (10.1016/j.rcim.2021.102230_bib0010) 2012; 61
Sun (10.1016/j.rcim.2021.102230_bib0003) 2020; 61
Li (10.1016/j.rcim.2021.102230_bib0012) 2013; 13
Tao (10.1016/j.rcim.2021.102230_bib0007) 2018; 48
Pan (10.1016/j.rcim.2021.102230_bib0035) 2012; 44
Liao (10.1016/j.rcim.2021.102230_bib0013) 2016; 44
Zheng (10.1016/j.rcim.2021.102230_bib0024) 2020; 64
Sun (10.1016/j.rcim.2021.102230_bib0025) 2020; 64
Liang (10.1016/j.rcim.2021.102230_bib0033) 2011; 69
Yu (10.1016/j.rcim.2021.102230_bib0004) 2020; 58
Wu (10.1016/j.rcim.2021.102230_bib0028) 2019; 141
Si (10.1016/j.rcim.2021.102230_bib0005) 2011; 213
Schleich (10.1016/j.rcim.2021.102230_bib0022) 2017; 66
Orchard (10.1016/j.rcim.2021.102230_bib0015) 2007
Luo (10.1016/j.rcim.2021.102230_bib0019) 2020; 65
Chen (10.1016/j.rcim.2021.102230_bib0018) 2012; 28
Cunbo (10.1016/j.rcim.2021.102230_bib0021) 2017; 23
10.1016/j.rcim.2021.102230_bib0031
Gebraeel (10.1016/j.rcim.2021.102230_bib0020) 2006; 3
Guo (10.1016/j.rcim.2021.102230_bib0009) 2009; 94
References_xml – volume: 213
  start-page: 1
  year: 2011
  end-page: 14
  ident: bib0005
  article-title: Remaining useful life estimation - a review on the statistical data driven approaches
  publication-title: Eur. J. Oper. Res.
– volume: 61
  start-page: 101837
  year: 2020
  ident: bib0026
  article-title: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues
  publication-title: Robot. Comp. Integr. Manuf.
– year: 2016
  ident: bib0030
  article-title: Research on Meta-Action Unit Modelling and Key QCs Predictive Control Technology of Electromechanical Products
– volume: 26
  start-page: 30
  year: 2014
  end-page: 33
  ident: bib0034
  article-title: Research on wearing life calculation of worm gear of elevating mechanism
  publication-title: J. Ordnance Eng. Coll.
– volume: 65
  year: 2020
  ident: bib0019
  article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin
  publication-title: Robot. Comp. Integr. Manuf.
– volume: 44
  start-page: 29
  year: 2012
  end-page: 33
  ident: bib0035
  article-title: The wear life prediction method of gear system
  publication-title: J. Harbin Inst. Technol.
– volume: 27
  start-page: 581
  year: 2011
  end-page: 590
  ident: bib0002
  article-title: Equipment PHM using non-stationary segmental hidden semi-Markov model
  publication-title: Robot. Comp.Integr. Manuf.
– volume: 69
  start-page: 373
  year: 2019
  end-page: 381
  ident: bib0027
  article-title: A reliability allocation method for mechanical product based on meta-action
  publication-title: IEEE T. Reliab.
– volume: 64
  start-page: 101958
  year: 2020
  ident: bib0024
  article-title: A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment
  publication-title: Robot. Comp. Integr. Manuf.
– volume: 48
  start-page: 157
  year: 2018
  end-page: 169
  ident: bib0007
  article-title: Data-driven smart manufacturing
  publication-title: J. Manuf. Syst.
– volume: 64
  start-page: 101924
  year: 2020
  ident: bib0025
  article-title: In-process tool condition forecasting based on a deep learning method
  publication-title: Robot. Comp. Integr. Manuf.
– volume: 58
  start-page: 293
  year: 2020
  end-page: 304
  ident: bib0004
  article-title: A digital twin approach based on nonparametric Bayesian network for complex system health monitoring
  publication-title: J. Manuf. Syst.
– volume: 61
  start-page: 292
  year: 2012
  end-page: 302
  ident: bib0010
  article-title: Remaining useful life estimation of critical components with application to bearings
  publication-title: IEEE T. Reliab.
– volume: 23
  start-page: 753
  year: 2017
  end-page: 768
  ident: bib0021
  article-title: Connotation, architecture and trends of product digital
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 13
  start-page: 283
  year: 2013
  end-page: 291
  ident: bib0012
  article-title: Enhanced fuzzy-filtered neural networks for material fatigue prognosis
  publication-title: Appl. Soft Comput.
– volume: 4
  start-page: 528
  year: 2012
  end-page: 533
  ident: bib0029
  article-title: Function decomposition and reliability analysis of CNC machine using function- motion-action
  publication-title: Mech. Sci. Technol. Aerospace Eng.
– volume: 11
  start-page: 4041
  year: 2011
  end-page: 4054
  ident: bib0011
  article-title: A hybrid feature selection scheme and self-organizing map model for machine health assessment
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib0023
  article-title: Digital twin workshop: a new paradigm for future workshop
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 67
  start-page: 169
  year: 2018
  end-page: 172
  ident: bib0032
  article-title: Digital twin driven prognostics and health management for complex equipment
  publication-title: CIRP Ann.-Manuf. Technol.
– volume: 61
  start-page: 839
  year: 2020
  ident: bib0003
  article-title: A digital twin-driven approach for the assembly-commissioning of high precision products
  publication-title: Robot. Comp.Integr. Manuf.
– volume: 39
  start-page: 10681
  year: 2012
  end-page: 10692
  ident: bib0016
  article-title: Fatigue crack growth estimation by relevance vector machine
  publication-title: Expert Syst. Appl.
– start-page: 1165
  year: 2009
  end-page: 1169
  ident: bib0006
  article-title: A hybrid prognostics and health management approach for condition-based maintenance
  publication-title: Int. Conf. Ind. Eng. Eng. Manage. IEEM
– year: 2007
  ident: bib0015
  article-title: A Particle Filtering-Based Framework for on-Line Fault Diagnosis and Failure Prognosis
– volume: 94
  start-page: 3563
  year: 2018
  end-page: 3576
  ident: bib0008
  article-title: Digital twin-driven product design, manufacturing and service with big data
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 4036
  year: 2006
  ident: bib0017
  article-title: Fusing competing prediction algorithms for prognostics
  publication-title: IEEE Aerospace Conference Proceedings NEW YORK: IEEE
– volume: 141
  start-page: 041402-1
  year: 2019
  end-page: 041402–11
  ident: bib0028
  article-title: Employing knowledge on causal relationship to assist multidisciplinary design optimization
  publication-title: J. Mech. Des.
– volume: 62
  start-page: 146
  year: 2013
  end-page: 159
  ident: bib0014
  article-title: Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method
  publication-title: IEEE Trans. Reliab.
– volume: 3
  start-page: 382
  year: 2006
  end-page: 393
  ident: bib0020
  article-title: Sensory-updated residual life distributions for components with exponential degradation patterns
  publication-title: IEEE Trans. Autom. Sci. Eng.
– reference: G. M, Digital twin: manufacturing excellence through virtual factory replication (2014).
– volume: 69
  start-page: 280
  year: 2011
  end-page: 288
  ident: bib0033
  article-title: Robust decentralized coordinated attitude control of spacecraft formation
  publication-title: Acta Astronaut
– volume: 28
  start-page: 597
  year: 2012
  end-page: 607
  ident: bib0018
  article-title: Machine remaining useful life prediction: an integrated adaptive neuro-fuzzy and high-order particle filtering approach
  publication-title: Mech. Syst. Signal Pr.
– volume: 94
  start-page: 1057
  year: 2009
  end-page: 1063
  ident: bib0009
  article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation
  publication-title: Reliab. Eng. Syst. Safe.
– volume: 66
  start-page: 141
  year: 2017
  end-page: 144
  ident: bib0022
  article-title: Shaping the digital twin for design and production engineering
  publication-title: CIRP Annals
– volume: 44
  start-page: 191
  year: 2016
  end-page: 199
  ident: bib0013
  article-title: A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction
  publication-title: Appl. Soft Comput.
– volume: 50
  start-page: 150
  year: 2018
  end-page: 165
  ident: bib0001
  article-title: A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes
  publication-title: J. Qual. Technol.
– volume: 13
  start-page: 283
  year: 2013
  ident: 10.1016/j.rcim.2021.102230_bib0012
  article-title: Enhanced fuzzy-filtered neural networks for material fatigue prognosis
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.08.031
– volume: 23
  start-page: 753
  year: 2017
  ident: 10.1016/j.rcim.2021.102230_bib0021
  article-title: Connotation, architecture and trends of product digital
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 23
  start-page: 1
  year: 2017
  ident: 10.1016/j.rcim.2021.102230_bib0023
  article-title: Digital twin workshop: a new paradigm for future workshop
  publication-title: Comput. Integr. Manuf. Syst.
– volume: 27
  start-page: 581
  year: 2011
  ident: 10.1016/j.rcim.2021.102230_bib0002
  article-title: Equipment PHM using non-stationary segmental hidden semi-Markov model
  publication-title: Robot. Comp.Integr. Manuf.
  doi: 10.1016/j.rcim.2010.10.005
– volume: 62
  start-page: 146
  year: 2013
  ident: 10.1016/j.rcim.2021.102230_bib0014
  article-title: Uncertainty quantification in gear remaining useful life prediction through an integrated prognostics method
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2013.2241216
– volume: 94
  start-page: 1057
  year: 2009
  ident: 10.1016/j.rcim.2021.102230_bib0009
  article-title: Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation
  publication-title: Reliab. Eng. Syst. Safe.
  doi: 10.1016/j.ress.2008.12.004
– volume: 48
  start-page: 157
  year: 2018
  ident: 10.1016/j.rcim.2021.102230_bib0007
  article-title: Data-driven smart manufacturing
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.01.006
– year: 2007
  ident: 10.1016/j.rcim.2021.102230_bib0015
– year: 2016
  ident: 10.1016/j.rcim.2021.102230_bib0030
– volume: 44
  start-page: 29
  year: 2012
  ident: 10.1016/j.rcim.2021.102230_bib0035
  article-title: The wear life prediction method of gear system
  publication-title: J. Harbin Inst. Technol.
– volume: 64
  start-page: 101924
  year: 2020
  ident: 10.1016/j.rcim.2021.102230_bib0025
  article-title: In-process tool condition forecasting based on a deep learning method
  publication-title: Robot. Comp. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101924
– volume: 28
  start-page: 597
  year: 2012
  ident: 10.1016/j.rcim.2021.102230_bib0018
  article-title: Machine remaining useful life prediction: an integrated adaptive neuro-fuzzy and high-order particle filtering approach
  publication-title: Mech. Syst. Signal Pr.
  doi: 10.1016/j.ymssp.2011.10.009
– volume: 64
  start-page: 101958
  year: 2020
  ident: 10.1016/j.rcim.2021.102230_bib0024
  article-title: A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment
  publication-title: Robot. Comp. Integr. Manuf.
  doi: 10.1016/j.rcim.2020.101958
– volume: 58
  start-page: 293
  year: 2020
  ident: 10.1016/j.rcim.2021.102230_bib0004
  article-title: A digital twin approach based on nonparametric Bayesian network for complex system health monitoring
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.07.005
– volume: 4
  start-page: 528
  issue: 31
  year: 2012
  ident: 10.1016/j.rcim.2021.102230_bib0029
  article-title: Function decomposition and reliability analysis of CNC machine using function- motion-action
  publication-title: Mech. Sci. Technol. Aerospace Eng.
– volume: 67
  start-page: 169
  year: 2018
  ident: 10.1016/j.rcim.2021.102230_bib0032
  article-title: Digital twin driven prognostics and health management for complex equipment
  publication-title: CIRP Ann.-Manuf. Technol.
  doi: 10.1016/j.cirp.2018.04.055
– ident: 10.1016/j.rcim.2021.102230_bib0031
– volume: 26
  start-page: 30
  year: 2014
  ident: 10.1016/j.rcim.2021.102230_bib0034
  article-title: Research on wearing life calculation of worm gear of elevating mechanism
  publication-title: J. Ordnance Eng. Coll.
– volume: 213
  start-page: 1
  year: 2011
  ident: 10.1016/j.rcim.2021.102230_bib0005
  article-title: Remaining useful life estimation - a review on the statistical data driven approaches
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2010.11.018
– volume: 141
  start-page: 041402-1
  issue: 4
  year: 2019
  ident: 10.1016/j.rcim.2021.102230_bib0028
  article-title: Employing knowledge on causal relationship to assist multidisciplinary design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4042342
– volume: 44
  start-page: 191
  year: 2016
  ident: 10.1016/j.rcim.2021.102230_bib0013
  article-title: A hybrid framework combining data-driven and model-based methods for system remaining useful life prediction
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.03.013
– volume: 61
  start-page: 101837
  year: 2020
  ident: 10.1016/j.rcim.2021.102230_bib0026
  article-title: Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues
  publication-title: Robot. Comp. Integr. Manuf.
  doi: 10.1016/j.rcim.2019.101837
– volume: 65
  year: 2020
  ident: 10.1016/j.rcim.2021.102230_bib0019
  article-title: A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin
  publication-title: Robot. Comp. Integr. Manuf.
– start-page: 4036
  year: 2006
  ident: 10.1016/j.rcim.2021.102230_bib0017
  article-title: Fusing competing prediction algorithms for prognostics
– volume: 66
  start-page: 141
  year: 2017
  ident: 10.1016/j.rcim.2021.102230_bib0022
  article-title: Shaping the digital twin for design and production engineering
  publication-title: CIRP Annals
  doi: 10.1016/j.cirp.2017.04.040
– volume: 50
  start-page: 150
  year: 2018
  ident: 10.1016/j.rcim.2021.102230_bib0001
  article-title: A data-level fusion approach for degradation modeling and prognostic analysis under multiple failure modes
  publication-title: J. Qual. Technol.
  doi: 10.1080/00224065.2018.1436829
– volume: 94
  start-page: 3563
  year: 2018
  ident: 10.1016/j.rcim.2021.102230_bib0008
  article-title: Digital twin-driven product design, manufacturing and service with big data
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0233-1
– volume: 3
  start-page: 382
  year: 2006
  ident: 10.1016/j.rcim.2021.102230_bib0020
  article-title: Sensory-updated residual life distributions for components with exponential degradation patterns
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2006.876609
– volume: 61
  start-page: 292
  year: 2012
  ident: 10.1016/j.rcim.2021.102230_bib0010
  article-title: Remaining useful life estimation of critical components with application to bearings
  publication-title: IEEE T. Reliab.
  doi: 10.1109/TR.2012.2194175
– volume: 11
  start-page: 4041
  year: 2011
  ident: 10.1016/j.rcim.2021.102230_bib0011
  article-title: A hybrid feature selection scheme and self-organizing map model for machine health assessment
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.03.026
– volume: 69
  start-page: 280
  year: 2011
  ident: 10.1016/j.rcim.2021.102230_bib0033
  article-title: Robust decentralized coordinated attitude control of spacecraft formation
  publication-title: Acta Astronaut
  doi: 10.1016/j.actaastro.2011.03.018
– volume: 39
  start-page: 10681
  year: 2012
  ident: 10.1016/j.rcim.2021.102230_bib0016
  article-title: Fatigue crack growth estimation by relevance vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.199
– start-page: 1165
  year: 2009
  ident: 10.1016/j.rcim.2021.102230_bib0006
  article-title: A hybrid prognostics and health management approach for condition-based maintenance
  publication-title: Int. Conf. Ind. Eng. Eng. Manage. IEEM
– volume: 69
  start-page: 373
  issue: 1
  year: 2019
  ident: 10.1016/j.rcim.2021.102230_bib0027
  article-title: A reliability allocation method for mechanical product based on meta-action
  publication-title: IEEE T. Reliab.
  doi: 10.1109/TR.2019.2907517
– volume: 61
  start-page: 839
  year: 2020
  ident: 10.1016/j.rcim.2021.102230_bib0003
  article-title: A digital twin-driven approach for the assembly-commissioning of high precision products
  publication-title: Robot. Comp.Integr. Manuf.
SSID ssj0002453
Score 2.6102562
Snippet •DT model based meta-action, collected data from multi-sensors on transmission unit.•Monitoring and simulation of performance degradation on the wear of...
Precision performance prediction of transmission system is considered as a key technology to modern equipment health management. Given the importance of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102230
SubjectTerms Algorithms
CNCMT
Data-driven
Digital simulation
Digital twin
Digital twins
Gear teeth
Machine tools
Neural networks
Performance degradation
Performance prediction
Real time
Simulation
State estimation
Tool wear
Turntables
Wear
Title A digital twin-driven hybrid approach for the prediction of performance degradation in transmission unit of CNC machine tool
URI https://dx.doi.org/10.1016/j.rcim.2021.102230
https://www.proquest.com/docview/2605306454
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2537
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002453
  issn: 0736-5845
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect [Accès UNIL ; CHUV ; HEP Vaud ; Sites BCUL]
  customDbUrl:
  eissn: 1879-2537
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002453
  issn: 0736-5845
  databaseCode: ACRLP
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Journal
  customDbUrl:
  eissn: 1879-2537
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002453
  issn: 0736-5845
  databaseCode: AIKHN
  dateStart: 19960301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2537
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002453
  issn: 0736-5845
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2537
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002453
  issn: 0736-5845
  databaseCode: AKRWK
  dateStart: 19840101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQXOiB8qqgPDQHbshs1nES-7iKQFtaVoiHxM2KY7sNotnVNgghof72ehKnPFRx6ClSNI6ifON5xPPNEHJQWsGN1JImMnEUOctUe09OhbA8Koa6iA2e6J5N0vE1P71JbhZI3nNhsKwy2P7OprfWOtwZhK85mFXV4NIrJ7pP738wrmFINOc8wykGR7-fyzwY7zpRemGK0oE409V4zcsK2ehsiB0MGFZC_9s5vTHTre85WSUrIWiEUfdea2TB1uvkYz-QAcL-XCcfXnQX3CBPIzDVdxwKAs1DVVMzR8sGPx6RpAV9M3HwUSv4KBBmczyzQZxg6mD2TCgAgw0lutlLUNXQoHvz6oH_2eDemwSUzyc5_GwLMy000-ndJrk-Ob7KxzQMW6BlzERDs1KzIopNkkqW4QDf2DgppOOZtlFZplLzzLrC-ABGxCIyqU6d8wmu1Dq1wq_8RBbraW23CHAPQ5QWkdNttim0S4xzXGpX-uQvYttk2H9lVYZO5DgQ4071JWe3CpFRiIzqkNkmh3_XzLo-HO9KJz146pU2Ke8o3l232yOtwl7-pTDjwzwt4Z__87E7ZJkha6It9t4li8383u75WKbR-62y7pOlUX7x7RyvX76OJ38AEaT0zg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcgAOpRQQpQ_m0FtlNus4iX2sVlRbaPfSVurNimMbgkp2tU1VISF-ez2J01KEeuCYaBxFmfE84u-bAdirnBRWGcUylXlGnGVmQiRnUjqRlGNTppZOdE9m-fRcfL7ILlZgMnBhCFYZfX_v0ztvHe-M4tccLep6dBqMk8JniD-U1_DsCTwNFwVVYB9_3-M8uOhbUQZpRuKROdODvJZVTXR0PqYWBpyg0P-OTn_56S74HK7DWswa8aB_sVew4poNeDlMZMC4QTfgxR_tBV_DrwO09VeaCoLtTd0wuyTXht9-EksLh27iGNJWDGkgLpZ0aEOKwrnHxT2jAC11lOiHL2HdYEvxLdgH_WjD6-ATSH4ym-CPDpnpsJ3PL9_A-eGns8mUxWkLrEq5bFlRGV4mqc1yxQua4Jtar6TyojAuqapcGVE4X9qQwchUJjY3ufehwlXG5E6GlW9htZk37h2gEKJI8jLxpis3pfGZ9V4o46tQ_SV8E8bDV9ZVbEVOEzEu9YA5-65JM5o0o3vNbML-3ZpF34jjUelsUJ5-YE46RIpH120PmtZxM19pKvmoUMvE-_987Ad4Nj07OdbHR7MvW_CcE4WiQ35vw2q7vHY7IbFpzW5nuLcVZfTO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+digital+twin-driven+hybrid+approach+for+the+prediction+of+performance+degradation+in+transmission+unit+of+CNC+machine+tool&rft.jtitle=Robotics+and+computer-integrated+manufacturing&rft.au=Yang%2C+Xin&rft.au=Ran%2C+Yan&rft.au=Zhang%2C+Genbao&rft.au=Wang%2C+Hongwei&rft.date=2022-02-01&rft.pub=Elsevier+Ltd&rft.issn=0736-5845&rft.eissn=1879-2537&rft.volume=73&rft_id=info:doi/10.1016%2Fj.rcim.2021.102230&rft.externalDocID=S0736584521001125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-5845&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-5845&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-5845&client=summon