Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of work on random features has grown rapidly, and hen...
Saved in:
| Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 44; no. 10; pp. 7128 - 7148 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0162-8828 1939-3539 2160-9292 1939-3539 |
| DOI | 10.1109/TPAMI.2021.3097011 |
Cover
| Abstract | The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of work on random features has grown rapidly, and hence it is desirable to have a comprehensive overview on this topic explaining the connections among various algorithms and theoretical results. In this survey, we systematically review the work on random features from the past ten years. First, the motivations, characteristics and contributions of representative random features based algorithms are summarized according to their sampling schemes, learning procedures, variance reduction properties and how they exploit training data. Second, we review theoretical results that center around the following key question: how many random features are needed to ensure a high approximation quality or no loss in the empirical/expected risks of the learned estimator. Third, we provide a comprehensive evaluation of popular random features based algorithms on several large-scale benchmark datasets and discuss their approximation quality and prediction performance for classification. Last, we discuss the relationship between random features and modern over-parameterized deep neural networks (DNNs), including the use of high dimensional random features in the analysis of DNNs as well as the gaps between current theoretical and empirical results. This survey may serve as a gentle introduction to this topic, and as a users' guide for practitioners interested in applying the representative algorithms and understanding theoretical results under various technical assumptions. We hope that this survey will facilitate discussion on the open problems in this topic, and more importantly, shed light on future research directions. Due to the page limit, we suggest the readers refer to the full version of this survey https://arxiv.org/abs/2004.11154 . |
|---|---|
| AbstractList | The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of work on random features has grown rapidly, and hence it is desirable to have a comprehensive overview on this topic explaining the connections among various algorithms and theoretical results. In this survey, we systematically review the work on random features from the past ten years. First, the motivations, characteristics and contributions of representative random features based algorithms are summarized according to their sampling schemes, learning procedures, variance reduction properties and how they exploit training data. Second, we review theoretical results that center around the following key question: how many random features are needed to ensure a high approximation quality or no loss in the empirical/expected risks of the learned estimator. Third, we provide a comprehensive evaluation of popular random features based algorithms on several large-scale benchmark datasets and discuss their approximation quality and prediction performance for classification. Last, we discuss the relationship between random features and modern over-parameterized deep neural networks (DNNs), including the use of high dimensional random features in the analysis of DNNs as well as the gaps between current theoretical and empirical results. This survey may serve as a gentle introduction to this topic, and as a users' guide for practitioners interested in applying the representative algorithms and understanding theoretical results under various technical assumptions. We hope that this survey will facilitate discussion on the open problems in this topic, and more importantly, shed light on future research directions. Due to the page limit, we suggest the readers refer to the full version of this survey https://arxiv.org/abs/2004.11154 . The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of work on random features has grown rapidly, and hence it is desirable to have a comprehensive overview on this topic explaining the connections among various algorithms and theoretical results. In this survey, we systematically review the work on random features from the past ten years. First, the motivations, characteristics and contributions of representative random features based algorithms are summarized according to their sampling schemes, learning procedures, variance reduction properties and how they exploit training data. Second, we review theoretical results that center around the following key question: how many random features are needed to ensure a high approximation quality or no loss in the empirical/expected risks of the learned estimator. Third, we provide a comprehensive evaluation of popular random features based algorithms on several large-scale benchmark datasets and discuss their approximation quality and prediction performance for classification. Last, we discuss the relationship between random features and modern over-parameterized deep neural networks (DNNs), including the use of high dimensional random features in the analysis of DNNs as well as the gaps between current theoretical and empirical results. This survey may serve as a gentle introduction to this topic, and as a users' guide for practitioners interested in applying the representative algorithms and understanding theoretical results under various technical assumptions. We hope that this survey will facilitate discussion on the open problems in this topic, and more importantly, shed light on future research directions. Due to the page limit, we suggest the readers refer to the full version of this survey https://arxiv.org/abs/2004.11154.The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works have been recognized by the NeurIPS Test-of-Time award in 2017 and the ICML Best Paper Finalist in 2019. The body of work on random features has grown rapidly, and hence it is desirable to have a comprehensive overview on this topic explaining the connections among various algorithms and theoretical results. In this survey, we systematically review the work on random features from the past ten years. First, the motivations, characteristics and contributions of representative random features based algorithms are summarized according to their sampling schemes, learning procedures, variance reduction properties and how they exploit training data. Second, we review theoretical results that center around the following key question: how many random features are needed to ensure a high approximation quality or no loss in the empirical/expected risks of the learned estimator. Third, we provide a comprehensive evaluation of popular random features based algorithms on several large-scale benchmark datasets and discuss their approximation quality and prediction performance for classification. Last, we discuss the relationship between random features and modern over-parameterized deep neural networks (DNNs), including the use of high dimensional random features in the analysis of DNNs as well as the gaps between current theoretical and empirical results. This survey may serve as a gentle introduction to this topic, and as a users' guide for practitioners interested in applying the representative algorithms and understanding theoretical results under various technical assumptions. We hope that this survey will facilitate discussion on the open problems in this topic, and more importantly, shed light on future research directions. Due to the page limit, we suggest the readers refer to the full version of this survey https://arxiv.org/abs/2004.11154. |
| Author | Liu, Fanghui Chen, Yudong Huang, Xiaolin Suykens, Johan A. K. |
| Author_xml | – sequence: 1 givenname: Fanghui orcidid: 0000-0003-4133-7921 surname: Liu fullname: Liu, Fanghui email: fanghui.liu@esat.kuleuven.be organization: Department of Electrical Engineering (ESAT-STADIUS), KU Leuven, Leuven, Belgium – sequence: 2 givenname: Xiaolin orcidid: 0000-0003-4285-6520 surname: Huang fullname: Huang, Xiaolin email: xiaolinhuang@sjtu.edu.cn organization: Institute of Image Processing and Pattern Recognition, and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Yudong orcidid: 0000-0002-6416-5635 surname: Chen fullname: Chen, Yudong email: yudong.chen@cornell.edu organization: School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA – sequence: 4 givenname: Johan A. K. orcidid: 0000-0002-8846-6352 surname: Suykens fullname: Suykens, Johan A. K. email: johan.suykens@esat.kuleuven.be organization: Department of Electrical Engineering (ESAT-STADIUS), KU Leuven, Leuven, Belgium |
| BookMark | eNp9kEFP3DAQha2KqizQP9BeLPXCgWxnbMexewsIWlSqonZ7tkIyLkFZe7GTqvvvCSzqgUNPc3nf05vvgO2FGIixdwhLRLAfV9f1t8ulAIFLCbYCxFdsIVBDYYUVe2wBqEVhjDD77CDnOwBUJcg3bF8qiSBMuWCrH03o4ppfUDNOiTL3MfGvlAINvN5sUvzbr5uxj-ETr_nPKf2hLY-B18PvmPrxdp1P-OqWYtqe8LmIn9I2hu6IvfbNkOnt8z1kvy7OV2dfiqvvny_P6quilcKMRdXaG1Fqc2NMpytZyfkHDR687Kz2BrRqQBky0prWi054YT121CCZVhhS8pAd73rnnfcT5dGt-9zSMDSB4pSdKMtSSwtKztEPL6J3cUphXudEhcpYRAVzyuxSbYo5J_Ku7cen98fU9INDcI_m3ZN592jePZufUfEC3aRZXdr-H3q_g3oi-gdYZUuUWj4A4x6NOw |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2024_111125 crossref_primary_10_1093_imaiai_iaad052 crossref_primary_10_1109_TPAMI_2023_3272925 crossref_primary_10_1080_00949655_2023_2182304 crossref_primary_10_1016_j_neucom_2024_128060 crossref_primary_10_1007_s10208_022_09550_2 crossref_primary_10_1109_TNNLS_2023_3326464 crossref_primary_10_1016_j_jfca_2023_105500 crossref_primary_10_1109_TKDE_2023_3266648 crossref_primary_10_1137_23M1620478 crossref_primary_10_1007_s10994_024_06626_8 crossref_primary_10_1016_j_cam_2023_115471 crossref_primary_10_1109_TPAMI_2023_3257351 crossref_primary_10_1016_j_procs_2022_11_029 crossref_primary_10_1111_jofi_13298 crossref_primary_10_1109_JPHOT_2022_3163714 crossref_primary_10_1063_5_0108967 crossref_primary_10_21105_joss_06372 crossref_primary_10_1137_22M147339X crossref_primary_10_1109_TNNLS_2023_3348833 crossref_primary_10_1016_j_neucom_2024_128288 crossref_primary_10_1016_j_neucom_2024_128640 crossref_primary_10_1007_s10489_021_02618_6 crossref_primary_10_1016_j_neucom_2024_128100 crossref_primary_10_1109_TNNLS_2023_3296895 crossref_primary_10_1016_j_physd_2024_134097 crossref_primary_10_1016_j_aml_2023_108734 crossref_primary_10_1016_j_ins_2024_120649 crossref_primary_10_1007_s10489_023_04606_4 crossref_primary_10_1109_TNSM_2023_3246798 crossref_primary_10_3390_e25101404 crossref_primary_10_1007_s11222_025_10587_w crossref_primary_10_1109_TKDE_2024_3510296 crossref_primary_10_1017_S0956792524000706 crossref_primary_10_1109_TCSI_2024_3476150 crossref_primary_10_1109_TNNLS_2023_3302802 crossref_primary_10_1109_TNNLS_2022_3213777 crossref_primary_10_1109_TPAMI_2021_3120183 crossref_primary_10_1016_j_sysarc_2024_103134 crossref_primary_10_1038_s42256_024_00943_2 crossref_primary_10_1002_env_2780 crossref_primary_10_1287_mnsc_2022_00204 crossref_primary_10_1371_journal_pcbi_1010484 crossref_primary_10_1007_s10489_024_06065_x crossref_primary_10_1007_s10915_024_02463_y crossref_primary_10_1109_ACCESS_2024_3434595 crossref_primary_10_1615_Int_J_UncertaintyQuantification_2024049519 crossref_primary_10_3390_su142315601 |
| Cites_doi | 10.1109/TPAMI.2017.2785313 10.7551/mitpress/4175.001.0001 10.1017/CBO9780511618796 10.1090/S0002-9904-1934-05843-9 10.1007/978-3-642-22147-7 10.1142/5089 10.1109/TIT.2022.3217698 10.1007/3-540-36169-3_4 10.1109/TNNLS.2019.2934729 10.1073/pnas.1903070116 10.1609/aaai.v34i04.5920 10.1162/0899766054323008 10.2139/ssrn.3714013 10.1007/978-0-387-76371-2 10.1142/0271 10.1007/978-981-10-0530-5 10.1609/aaai.v31i1.10825 10.24963/ijcai.2017/207 10.1090/s0002-9947-1950-0051437-7 10.1109/CVPR.2009.5206848 10.1145/2487575.2487591 10.1088/1742-5468/ac3a74 10.2307/j.ctv36zrf8.5 10.1017/CBO9780511617539 10.1109/ICASSP40776.2020.9053272 10.1017/9781108627771 10.1103/physrevresearch.4.013201 10.1002/cpa.22008 10.1145/3446776 10.1007/s10208-006-0196-8 10.1007/s00365-006-0659-y 10.1109/ICASSP.2016.7472872 10.1109/TPAMI.2021.3120183 10.1016/j.acha.2021.12.003 10.1007/978-1-4757-2440-0 10.1145/3097983.3098081 10.1214/17-AAP1328 10.1215/S0012-7094-42-00908-6 10.1214/20-aos1990 10.1090/gsm/132 10.1137/20M1336072 10.1109/ALLERTON.2008.4797607 10.1609/aaai.v32i1.11697 10.1109/5.726791 10.1016/j.jco.2015.02.003 10.1016/j.neucom.2005.12.126 10.1088/1742-5468/ac3ae6 10.1007/s13398-014-0173-7.2 10.1214/009053605000000282 10.1016/j.acha.2017.11.005 10.1016/j.jeconom.2007.12.004 10.1137/1.9781611970081 10.7551/mitpress/7496.003.0015 10.1214/21-aos2133 10.1103/revmodphys.91.045002 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TPAMI.2021.3097011 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 7148 |
| ExternalDocumentID | 10_1109_TPAMI_2021_3097011 9495136 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: AI Research Program – fundername: EU H2020 ICT-48 Network TAILOR – fundername: National Science Foundation grantid: CCF-1657420; CCF-1704828 funderid: 10.13039/501100008982 – fundername: Flemish Government grantid: GOA4917N – fundername: SJTU Global Strategic Partnership Fund – fundername: Shanghai Municipal Science and Technology Major Project grantid: 2021SHZDZX0102 – fundername: Stability analysis and performance improvement – fundername: Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization – fundername: European Research Council funderid: 10.13039/501100000781 – fundername: European Union's Horizon 2020 research and innovation program/ERC Advanced Grant E-DUALITY grantid: 787960 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 UHB ~02 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c328t-7c9b2568b88d6737397060f0f3d96f8064a048e8398cf2d2f29f1dea1e8c28e43 |
| IEDL.DBID | RIE |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Sat Sep 27 23:31:27 EDT 2025 Mon Jun 30 05:29:12 EDT 2025 Wed Oct 01 03:57:35 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Wed Aug 27 02:18:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-7c9b2568b88d6737397060f0f3d96f8064a048e8398cf2d2f29f1dea1e8c28e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6416-5635 0000-0002-8846-6352 0000-0003-4133-7921 0000-0003-4285-6520 |
| PMID | 34310285 |
| PQID | 2714891140 |
| PQPubID | 85458 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_2555639043 proquest_journals_2714891140 crossref_citationtrail_10_1109_TPAMI_2021_3097011 crossref_primary_10_1109_TPAMI_2021_3097011 ieee_primary_9495136 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref58 ref53 Liang (ref137) Choromanski (ref61) Yamasaki (ref104) Lee (ref45) Feng (ref62) Arora (ref19) Li (ref76) Bojarski (ref85) Sun (ref167) 2018 ref48 Frankle (ref168) Jacot (ref155) Li (ref92) Yang (ref65) Sutherland (ref29) Thrampoulidis (ref161) Lyu (ref66) Sun (ref10) ref8 d’Ascoli (ref150) 2020 ref3 Rahimi (ref71) ref6 ref5 Xie (ref91) ref100 ref40 Arora (ref12) Arora (ref132) Li (ref89) Adlam (ref152) Avron (ref24) 2016; 17 ref35 Yang (ref80) ref37 Wang (ref101) 2019 ref36 Yuan (ref96) ref31 Bietti (ref49) ref33 Liu (ref138) Zandieh (ref13) 2021 Woodruff (ref56) Wu (ref173) Javanmard (ref164) Sriperumbudur (ref114) 2017 ref156 Steinwart (ref34) 2008 ref154 Avron (ref112) ref151 Blanchard (ref116) Fan (ref128) 2008; 9 Bach (ref87) 2017; 18 ref20 Smola Zoltan (ref38) ref159 Meanti (ref171) Zambon (ref15) ref157 Choromanski (ref94) Ullah (ref115) Ji (ref22) ref28 ref27 Agrawal (ref75) Alaoui (ref105) Meister (ref54) ref165 ref163 Bullins (ref78) ref160 Hendrycks (ref43) 2016 Du (ref14) ref129 Kobak (ref174) 2020; 21 ref124 Liao (ref147) Bietti (ref47) ref98 Hu (ref170) 2016 Refinetti (ref51) 2021 Lopez-Paz (ref9) Shen (ref81) Choromanski (ref93) ref16 Carratino (ref126) Jacot (ref11) Zhang (ref83) Yang (ref90) Bach (ref103) Lin (ref158) 2020 Munkhoeva (ref26) ref133 ref134 ref95 ref130 Sutherland (ref111) Liu (ref59) Belhadji (ref99) ref139 Dai (ref84) ref86 ref135 ref136 Liao (ref148) Ghorbani (ref50) Cho (ref41) Yu (ref77) 2015 Chen (ref172) 2020 (ref32) 2002; 39 Montanari (ref162) 2019 Daniely (ref44) ref145 ref143 Rahimi (ref7) Rudi (ref109) Krizhevsky (ref131) 2009 ref140 ref141 Avron (ref88) Sriperumbudur (ref107) Allen-Zhu (ref144) Liu (ref4) 2021; 22 Erdélyi (ref70) Evans (ref97) 1993 Malach (ref169) 2020 Wilson (ref79) ref74 ref102 Ghashami (ref113) Dhifallah (ref153) 2020 ref2 ref1 Lin (ref122) 2017; 18 Kar (ref52) Chizat (ref21) Sinha (ref73) Choromanski (ref64) Avron (ref55) Pennington (ref146) Li (ref30) Müller (ref39) 2006 ref72 ref110 Peng (ref17) ref119 ref67 ref117 ref69 ref118 Ba (ref149) ref63 Williams (ref42) Wang (ref127) 2019 Oliva (ref82) Cao (ref18) Dao (ref25) Yu (ref23) Le (ref60) Yehudai (ref166) Rudi (ref68) Li (ref125) 2021; 22 Pennington (ref57) Honorio (ref108) 2017 Chizat (ref46) ref123 ref120 ref121 Belkin (ref142) Calandriello (ref106) |
| References_xml | – start-page: 12873 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref47 article-title: On the inductive bias of neural tangent kernels – volume-title: Practical Numerical Integration year: 1993 ident: ref97 – ident: ref3 doi: 10.1109/TPAMI.2017.2785313 – start-page: 2502 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref61 article-title: Recycling randomness with structure for sublinear time kernel expansions – start-page: 5672 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref68 article-title: On fast leverage score sampling and optimal learning – start-page: 226 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref116 article-title: Optimal learning rates for kernel conjugate gradient regression – start-page: 10835 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref18 article-title: Generalization bounds of stochastic gradient descent for wide and deep neural networks – ident: ref1 doi: 10.7551/mitpress/4175.001.0001 – start-page: 1177 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref7 article-title: Random features for large-scale kernel machines – ident: ref33 doi: 10.1017/CBO9780511618796 – ident: ref35 doi: 10.1090/S0002-9904-1934-05843-9 – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref50 article-title: When do neural networks outperform kernel methods? – ident: ref123 doi: 10.1007/978-3-642-22147-7 – start-page: 6107 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref25 article-title: Gaussian quadrature for kernel features – start-page: 1846 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref57 article-title: Spherical random features for polynomial kernels – start-page: 3041 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref84 article-title: Scalable kernel methods via doubly stochastic gradients – start-page: 4631 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref155 article-title: Implicit regularization of random feature models – ident: ref2 doi: 10.1142/5089 – ident: ref154 doi: 10.1109/TIT.2022.3217698 – ident: ref119 doi: 10.1007/3-540-36169-3_4 – year: 2021 ident: ref51 article-title: Classifying high-dimensional gaussian mixtures: Where kernel methods fail and neural networks succeed – volume: 9 start-page: 1871 year: 2008 ident: ref128 article-title: LIBLINEAR: A library for large linear classification publication-title: J. Mach. Learn. Res. – start-page: 7311 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref115 article-title: Streaming kernel PCA with $\tilde{O}(\sqrt{n})$O˜(n) random features – start-page: 1098 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref80 article-title: À la carte–learning fast kernels – year: 2020 ident: ref169 article-title: Proving the lottery ticket hypothesis: Pruning is all you need – ident: ref58 doi: 10.1109/TNNLS.2019.2934729 – volume-title: Spherical Harmonics year: 2006 ident: ref39 – ident: ref140 doi: 10.1073/pnas.1903070116 – ident: ref69 doi: 10.1609/aaai.v34i04.5920 – ident: ref102 doi: 10.1162/0899766054323008 – ident: ref163 doi: 10.2139/ssrn.3714013 – start-page: 1144 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref107 article-title: Optimal rates for random Fourier features – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref104 article-title: Fast quantum algorithm for learning with optimized random features – start-page: 1421 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref106 article-title: Distributed adaptive sampling for kernel matrix approximation – ident: ref36 doi: 10.1007/978-0-387-76371-2 – ident: ref159 doi: 10.1142/0271 – start-page: 219 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref64 article-title: The unreasonable effectiveness of structured random orthogonal embeddings – start-page: 1067 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref79 article-title: Gaussian process kernels for pattern discovery and extrapolation – start-page: 2256 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref66 article-title: Spherical structured feature maps for kernel approximation – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representation ident: ref168 article-title: The lottery ticket hypothesis: Finding sparse, trainable neural networks – start-page: 1359 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref9 article-title: Randomized nonlinear component analysis – start-page: 6369 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref89 article-title: Quantization algorithms for random fourier features – year: 2017 ident: ref108 article-title: The error probability of random Fourier features is dimensionality independent – start-page: 9475 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref54 article-title: Tight dimensionality reduction for sketching low degree polynomial kernels – ident: ref6 doi: 10.1007/978-981-10-0530-5 – start-page: 1365 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref113 article-title: Streaming kernel principal component analysis – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representation ident: ref45 article-title: Deep neural networks as Gaussian processes – volume-title: Support Vector Machines year: 2008 ident: ref34 – ident: ref67 doi: 10.1609/aaai.v31i1.10825 – ident: ref72 doi: 10.24963/ijcai.2017/207 – start-page: 485 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref65 article-title: Quasi-Monte Carlo feature maps for shift-invariant kernels – start-page: 775 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref105 article-title: Fast randomized kernel ridge regression with statistical guarantees – start-page: 3215 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref109 article-title: Generalization properties of learning with random features – start-page: 342 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref41 article-title: Kernel methods for deep learning – start-page: 2034 volume-title: Proc. Conf. Learn. Theory ident: ref164 article-title: Precise tradeoffs in adversarial training for linear regression – ident: ref5 doi: 10.1090/s0002-9947-1950-0051437-7 – volume: 18 start-page: 714 issue: 1 year: 2017 ident: ref87 article-title: On the equivalence between kernel quadrature rules and random feature expansions publication-title: J. Mach. Learn. Res. – ident: ref134 doi: 10.1109/CVPR.2009.5206848 – ident: ref53 doi: 10.1145/2487575.2487591 – ident: ref141 doi: 10.1088/1742-5468/ac3a74 – start-page: 322 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref19 article-title: Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks – year: 2015 ident: ref77 article-title: Compact nonlinear maps and circulant extensions – year: 2009 ident: ref131 article-title: Learning multiple layers of features from tiny images – start-page: 10324 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref56 article-title: Near input sparsity time kernel embeddings via adaptive sampling – ident: ref16 doi: 10.2307/j.ctv36zrf8.5 – year: 2020 ident: ref158 article-title: What causes the test error? Going beyond bias-variance via anova – start-page: 583 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref52 article-title: Random feature maps for dot product kernels – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representation ident: ref22 article-title: Polylogarithmic width suffices for gradient descent to achieve arbitrarily small test error with shallow ReLU networks – ident: ref8 doi: 10.1017/CBO9780511617539 – ident: ref28 doi: 10.1109/ICASSP40776.2020.9053272 – ident: ref117 doi: 10.1017/9781108627771 – start-page: 1264 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref83 article-title: Low-precision random Fourier features for memory-constrained kernel approximation – ident: ref157 doi: 10.1103/physrevresearch.4.013201 – ident: ref136 doi: 10.1002/cpa.22008 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representation ident: ref78 article-title: Not-so-random features – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref99 article-title: Kernel quadrature with DPPs – start-page: 3383 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref10 article-title: But how does it work in theory? Linear SVM with random features – start-page: 1313 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref71 article-title: Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning – start-page: 2007 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref76 article-title: Implicit kernel learning – start-page: 6158 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref144 article-title: Learning and generalization in overparameterized neural networks, going beyond two layers – ident: ref139 doi: 10.1145/3446776 – year: 2021 ident: ref13 article-title: Scaling neural tangent kernels via sketching and random features – ident: ref118 doi: 10.1007/s10208-006-0196-8 – year: 2018 ident: ref167 article-title: On the approximation properties of random ReLU features – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref173 article-title: On the optimal weighted $\ell _2$ℓ2 regularization in overparameterized linear regression – ident: ref120 doi: 10.1007/s00365-006-0659-y – ident: ref27 doi: 10.1109/ICASSP.2016.7472872 – ident: ref100 doi: 10.1109/TPAMI.2021.3120183 – ident: ref20 doi: 10.1016/j.acha.2021.12.003 – year: 2020 ident: ref172 article-title: Multiple descent: Design your own generalization curve – start-page: 2253 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref44 article-title: Toward deeper understanding of neural networks: The power of initialization and a dual view on expressivity – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representation ident: ref132 article-title: Harnessing the power of infinitely wide deep nets on small-data tasks – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representation ident: ref17 article-title: Random feature attention – start-page: 1 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref59 article-title: Fast learning in reproducing kernel Kreĭn spaces via signed measures – ident: ref31 doi: 10.1007/978-1-4757-2440-0 – start-page: 185 volume-title: Proc. Conf. Learn. Theory ident: ref103 article-title: Sharp analysis of low-rank kernel matrix approximations – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representation ident: ref149 article-title: Generalization of two-layer neural networks: an asymptotic viewpoint – start-page: 295 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref42 article-title: Computing with infinite networks – ident: ref63 doi: 10.1145/3097983.3098081 – start-page: 3063 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref147 article-title: On the spectrum of random features maps of high dimensional data – ident: ref165 doi: 10.1214/17-AAP1328 – start-page: 3905 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref30 article-title: Towards a unified analysis of random Fourier features – ident: ref37 doi: 10.1215/S0012-7094-42-00908-6 – volume: 22 start-page: 1 issue: 108 year: 2021 ident: ref125 article-title: Towards a unified analysis of random fourier features publication-title: J. Mach. Learn. Res. – start-page: 1 volume-title: Proc. Conf. Learn. Theory ident: ref137 article-title: On the multiple descent of minimum-norm interpolants and restricted lower isometry of kernels – volume: 17 start-page: 4096 issue: 1 year: 2016 ident: ref24 article-title: Quasi-Monte Carlo feature maps for shift-invariant kernels publication-title: J. Mach. Learn. Res. – start-page: 2341 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref91 article-title: Scale up nonlinear component analysis with doubly stochastic gradients – start-page: 1 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref14 article-title: Graph neural tangent kernel: Fusing graph neural networks with graph kernels – start-page: 308 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref38 article-title: Regularization with dot-product kernels – start-page: 862 volume-title: Proc. Conf. Uncertainty Artif. Intell. ident: ref29 article-title: On the error of random Fourier features – ident: ref48 doi: 10.1214/20-aos1990 – start-page: 1298 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref73 article-title: Learning kernels with random features – year: 2017 ident: ref114 article-title: Statistical consistency of kernel PCA with random features – ident: ref145 doi: 10.1090/gsm/132 – start-page: 1078 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref82 article-title: Bayesian nonparametric kernel learning – start-page: 476 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref90 article-title: Nyström method vs random Fourier features: A theoretical and empirical comparison – start-page: 13939 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref148 article-title: A random matrix analysis of random fourier features: Beyond the gaussian kernel, a precise phase transition, and the corresponding double descent – start-page: 6594 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref166 article-title: On the power and limitations of random features for understanding neural networks – start-page: 3490 volume-title: Proc. Int. Conf. Artif. Intell. ident: ref62 article-title: Random feature mapping with signed circulant matrix projection – start-page: 253 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref112 article-title: Random Fourier features for kernel ridge regression: Approximation bounds and statistical guarantees – ident: ref156 doi: 10.1137/20M1336072 – start-page: 862 volume-title: Proc. Conf. Uncertainty Artif. Intell. ident: ref111 article-title: On the error of random Fourier features – start-page: 10968 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref15 article-title: Graph random neural features for distance-preserving graph representations – start-page: 1020 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref85 article-title: Structured adaptive and random spinners for fast machine learning computations – start-page: 244 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref60 article-title: FastFood—Approximating kernel expansions in loglinear time – ident: ref110 doi: 10.1109/ALLERTON.2008.4797607 – start-page: 8571 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref11 article-title: Neural tangent kernel: Convergence and generalization in neural networks – volume: 21 start-page: 1 issue: 169 year: 2020 ident: ref174 article-title: The optimal ridge penalty for real-world high-dimensional data can be zero or negative due to the implicit ridge regularization publication-title: J. Mach. Learn. Res. – volume: 18 start-page: 3202 issue: 1 year: 2017 ident: ref122 article-title: Distributed learning with regularized least squares publication-title: J. Mach. Learn. Res. – year: 2020 ident: ref153 article-title: A precise performance analysis of learning with random features – ident: ref74 doi: 10.1609/aaai.v32i1.11697 – start-page: 2258 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref55 article-title: Subspace embeddings for the polynomial kernel – year: 2020 ident: ref150 article-title: Double trouble in double descent: Bias and variance(s) in the lazy regime – start-page: 1683 volume-title: Proc. Conf. Learn. Theory ident: ref161 article-title: Regularized linear regression: A precise analysis of the estimation error – start-page: 2933 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref46 article-title: On lazy training in differentiable programming – start-page: 9147 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref26 article-title: Quadrature-based features for kernel approximation – ident: ref143 doi: 10.1109/5.726791 – ident: ref95 doi: 10.1016/j.jco.2015.02.003 – year: 2019 ident: ref127 article-title: Simple and almost assumption-free out-of-sample bound for random feature mapping – start-page: 1 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref138 article-title: Kernel regression in high dimensions: Refined analysis beyond double descent – start-page: 11022 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref152 article-title: Understanding double descent requires a fine-grained bias-variance decomposition – volume: 39 start-page: 1 issue: 1 year: 2002 ident: ref32 article-title: On the mathematical foundations of learning publication-title: Bull. – start-page: 1305 volume-title: Proc. Conf. Learn. Theory ident: ref21 article-title: Implicit bias of gradient descent for wide two-layer neural networks trained with the logistic loss – ident: ref130 doi: 10.1109/5.726791 – ident: ref40 doi: 10.1016/j.neucom.2005.12.126 – ident: ref151 doi: 10.1088/1742-5468/ac3ae6 – start-page: 1 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref94 article-title: The geometry of random features – year: 2016 ident: ref43 article-title: Gaussian error linear units – volume-title: Proc. Int. Conf. Artif. Intell. Stat ident: ref81 article-title: Harmonizable mixture kernels with variational Fourier features – start-page: 253 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref88 article-title: Random Fourier features for kernel ridge regression: Approximation bounds and statistical guarantees – ident: ref133 doi: 10.1007/s13398-014-0173-7.2 – start-page: 1 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref92 article-title: Triply stochastic gradients on multiple kernel learning. – ident: ref124 doi: 10.1214/009053605000000282 – ident: ref121 doi: 10.1016/j.acha.2017.11.005 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Representation ident: ref49 article-title: Deep equals shallow for ReLU networks in kernel regimes – year: 2016 ident: ref170 article-title: Network trimming: A data-driven neuron pruning approach towards efficient deep architectures – ident: ref98 doi: 10.1016/j.jeconom.2007.12.004 – volume: 22 start-page: 1 issue: 140 year: 2021 ident: ref4 article-title: Generalization properties of hyper-RKHS and its applications publication-title: J. Mach. Learn. Res. – start-page: 1975 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref23 article-title: Orthogonal random features – ident: ref86 doi: 10.1137/1.9781611970081 – start-page: 6269 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref96 article-title: Subgroup-based rank-1 lattice quasi-monte carlo – ident: ref129 doi: 10.7551/mitpress/7496.003.0015 – year: 2019 ident: ref101 article-title: A general scoring rule for randomized kernel approximation with application to canonical correlation analysis – start-page: 2634 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref146 article-title: Nonlinear random matrix theory for deep learning – start-page: 11022 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref171 article-title: Kernel methods through the roof: Handling billions of points efficiently – start-page: 10212 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref126 article-title: Learning with SGD and random features – start-page: 541 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref142 article-title: To understand deep learning we need to understand kernel learning – start-page: 109 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref70 article-title: Fourier sparse leverage scores and approximate kernel learning – start-page: 1822 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref75 article-title: Data-dependent compression of random features for large-scale kernel approximation – year: 2019 ident: ref162 article-title: The generalization error of max-margin linear classifiers: High-dimensional asymptotics in the overparametrized regime – ident: ref135 doi: 10.1214/21-aos2133 – start-page: 1203 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref93 article-title: Unifying orthogonal Monte Carlo methods – start-page: 8139 volume-title: Proc. Int. Conf. Neural Inf. Process. Syst. ident: ref12 article-title: On exact computation with an infinitely wide neural net – ident: ref160 doi: 10.1103/revmodphys.91.045002 |
| SSID | ssj0014503 |
| Score | 2.6919017 |
| SecondaryResourceType | review_article |
| Snippet | The class of random features is one of the most popular techniques to speed up kernel methods in large-scale problems. Related works have been recognized by... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7128 |
| SubjectTerms | Algorithms Approximation Approximation algorithms Artificial neural networks Empirical analysis generalization properties Kernel kernel approximation Kernels Loss measurement Machine learning Mathematical analysis over-parameterized models Prediction algorithms Random features Risk management Scalability Taxonomy |
| Title | Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond |
| URI | https://ieeexplore.ieee.org/document/9495136 https://www.proquest.com/docview/2714891140 https://www.proquest.com/docview/2555639043 |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BhwoO0PKhLqWVkbixWRzbSezeVlURLVpUlUXiFiW2QxGQoCWp2v76jp0PUVpV3CLFsRI9j-dNPDMP4ABZhdDGioBnsgiE0TRQJtKByrkwNOOKe_WG2Vl8ciE-X0aXSzAeamGstT75zE7cpT_LN5Vu3K-yI4VsPuTxMiwnMm5rtYYTAxF5FWRkMGjhGEb0BTJUHc2_TGefMBRk4YRTleCKXoUXHD0n-tboD3_kBVb-2pW9qznegFn_km2Gyc2kqfOJ_vWkf-Nzv-IlrHeck0zbRfIKlmy5CRu9ngPpzHsT1h41J9yC-desNNUdcSSxwaCcIL0lp3ZRWpzKdSL_cd2WPb4nU3LeLL7bn6QqyfT2qlpc19_uHsakLfwfE5yItKUy23Bx_HH-4SToNBgCzZmsg0SrHFmRzKU0TtIG6QuNaUELblRcSCQ0Ge4BFmmW1AUzrGCqCI3NQis1k1bwHVgpq9K-BmIkshGncmZiKVSic81UxjEC1TpUguUjCHskUt01KHc6GbepD1SoSj2QqQMy7YAcweHwzH3bnuO_o7ccHMPIDokR7PWAp50FP6QswUARPYGgI9gfbqPtuQOVrLRVg2Mi115NUcF3_z3zG1hlrlzCJ__twUq9aOxbJDF1_s6v3t--kekQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VVoJyaEsLYvtBjcSNzdaxnazNbYVabWm3QrCVeosS24GKNkHbBNH--o6dDwFFiFukOFai5_G8iWfmAbxBViG0sSLgqcwDYTQNlIl0oDIuDE254l69YXYWT8_Fh4voYgmGfS2MtdYnn9mRu_Rn-abUtftVdqCQzYc8fgQrkRAiaqq1-jMDEXkdZOQwaOMYSHQlMlQdzD9OZscYDLJwxKka45pehcccfSd61-g3j-QlVh7sy97ZHK3DrHvNJsfk26iuspG--6OD4_9-xwastayTTJpl8gyWbLEJ652iA2kNfBOe_tKecAvmn9LClNfE0cQaw3KCBJec2EVhcSrXi_znZVP4-I5MyOd68cPekrIgk6sv5eKy-np9MyRN6f-Q4ESkKZZ5DudHh_P306BVYQg0Z7IKxlplyItkJqVxojZIYGhMc5pzo-JcIqVJcRewSLSkzplhOVN5aGwaWqmZtIK_gOWiLOxLIEYiH3E6ZyaWQo11pplKOcagWodKsGwAYYdEotsW5U4p4yrxoQpViQcycUAmLZADeNs_871p0PHP0VsOjn5ki8QAdjvAk9aGbxI2xlARfYGgA3jd30brc0cqaWHLGsdErsGaooJv_33mfXgync9Ok9Pjs5MdWGWueMKnAu7CcrWo7R5Smip75VfyPR1r7F0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Features+for+Kernel+Approximation%3A+A+Survey+on+Algorithms%2C+Theory%2C+and+Beyond&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Liu%2C+Fanghui&rft.au=Huang%2C+Xiaolin&rft.au=Chen%2C+Yudong&rft.au=Suykens%2C+Johan+A+K&rft.date=2022-10-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=44&rft.issue=10&rft.spage=7128&rft_id=info:doi/10.1109%2FTPAMI.2021.3097011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |