An efficient multiple shortest augmenting paths algorithm for constructing high performance VLSI subarray
Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects, which can reduce communication costs, capacitance and dynamic energy dissipation. An existing work proved that the high performance VLSI subarra...
        Saved in:
      
    
          | Published in | Integration (Amsterdam) Vol. 75; pp. 63 - 72 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        01.11.2020
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0167-9260 1872-7522  | 
| DOI | 10.1016/j.vlsi.2020.06.005 | 
Cover
| Abstract | Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects, which can reduce communication costs, capacitance and dynamic energy dissipation. An existing work proved that the high performance VLSI subarray can be constructed in polynomial time using network flow algorithm. However, because of the disadvantage of the previous network model and the low-performing of standard network flow algorithms for reconfiguration, the efficiency of these algorithms is poor for constructing the high performance VLSI subarray. In this paper, we present an efficient multiple shortest augmenting paths algorithm for rapidly constructing high performance VLSI array. Firstly, we proposed an efficient data structure to construct the network model of the VLSI array with faults, which can dramatically reduce the size of the model compared with previous algorithm. Secondly, a multiple shortest augmenting path algorithm based on the new data structure is proposed, which can significant reduce the running time. Finally, we conduct solid experiments to highlight the efficiency of the proposed method in terms of the running time compared to the standard network flow algorithms. The experimental results show that on a 64 × 64 host array with 0.1% faults, the size of the network model can be reduced by about 50% and the average improvements in running time is up to 85.10% compared with four standard network flow algorithms.
•An efficient data structure is proposed to decrease the size of the model to half the original model.•We develop a multiple shortest augmenting path algorithm to find multiple shortest paths at one time.•We prove that the proposed scheme can effectively reduce the running time of the reconfiguration in polynomial time. | 
    
|---|---|
| AbstractList | Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects, which can reduce communication costs, capacitance and dynamic energy dissipation. An existing work proved that the high performance VLSI subarray can be constructed in polynomial time using network flow algorithm. However, because of the disadvantage of the previous network model and the low-performing of standard network flow algorithms for reconfiguration, the efficiency of these algorithms is poor for constructing the high performance VLSI subarray. In this paper, we present an efficient multiple shortest augmenting paths algorithm for rapidly constructing high performance VLSI array. Firstly, we proposed an efficient data structure to construct the network model of the VLSI array with faults, which can dramatically reduce the size of the model compared with previous algorithm. Secondly, a multiple shortest augmenting path algorithm based on the new data structure is proposed, which can significant reduce the running time. Finally, we conduct solid experiments to highlight the efficiency of the proposed method in terms of the running time compared to the standard network flow algorithms. The experimental results show that on a 64 × 64 host array with 0.1% faults, the size of the network model can be reduced by about 50% and the average improvements in running time is up to 85.10% compared with four standard network flow algorithms. Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects, which can reduce communication costs, capacitance and dynamic energy dissipation. An existing work proved that the high performance VLSI subarray can be constructed in polynomial time using network flow algorithm. However, because of the disadvantage of the previous network model and the low-performing of standard network flow algorithms for reconfiguration, the efficiency of these algorithms is poor for constructing the high performance VLSI subarray. In this paper, we present an efficient multiple shortest augmenting paths algorithm for rapidly constructing high performance VLSI array. Firstly, we proposed an efficient data structure to construct the network model of the VLSI array with faults, which can dramatically reduce the size of the model compared with previous algorithm. Secondly, a multiple shortest augmenting path algorithm based on the new data structure is proposed, which can significant reduce the running time. Finally, we conduct solid experiments to highlight the efficiency of the proposed method in terms of the running time compared to the standard network flow algorithms. The experimental results show that on a 64 × 64 host array with 0.1% faults, the size of the network model can be reduced by about 50% and the average improvements in running time is up to 85.10% compared with four standard network flow algorithms. •An efficient data structure is proposed to decrease the size of the model to half the original model.•We develop a multiple shortest augmenting path algorithm to find multiple shortest paths at one time.•We prove that the proposed scheme can effectively reduce the running time of the reconfiguration in polynomial time.  | 
    
| Author | Zhou, Zhide Qian, Junyan Huang, Bisheng Ding, Hao Zhai, Zhongyi Zhao, Lingzhong  | 
    
| Author_xml | – sequence: 1 givenname: Junyan surname: Qian fullname: Qian, Junyan email: qjy2000@gmail.com organization: Guangxi Key Laboratory of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin, 541004, China – sequence: 2 givenname: Bisheng surname: Huang fullname: Huang, Bisheng email: alexhbs@foxmail.com organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China – sequence: 3 givenname: Hao surname: Ding fullname: Ding, Hao email: dhguet@gmail.com organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China – sequence: 4 givenname: Zhide surname: Zhou fullname: Zhou, Zhide email: cszide@gmail.com organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China – sequence: 5 givenname: Lingzhong surname: Zhao fullname: Zhao, Lingzhong email: zhaolingzhong@126.com organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China – sequence: 6 givenname: Zhongyi surname: Zhai fullname: Zhai, Zhongyi email: zhaizhongyi@guet.edu.cn organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China  | 
    
| BookMark | eNp9kE1LxDAQhoMouH78AU8Bz62TtE1b8CLiFyx48OMa0iTdZmmTmqSC_96s68mDMDCHeZ8Z5jlBh9ZZjdAFgZwAYVfb_HMMJqdAIQeWA1QHaEWammZ1RekhWqVQnbWUwTE6CWELAKSsqxUyNxbrvjfSaBvxtIzRzKPGYXA-6hCxWDZTmhi7wbOIQ8Bi3Dhv4jDh3nksnQ3RL_InMJjNgGft02ASVmr8vn55wmHphPfi6wwd9WIM-vy3n6K3-7vX28ds_fzwdHuzzmRBm5jVZceEUpQwJlsqWFt2mopWKQV9SWVXdqKnpYSmUKyiqdpeF52oZaE7AkoVp-hyv3f27mNJP_CtW7xNJzktK0JqgKZOKbpPSe9C8LrnszeT8F-cAN8p5Vu-U8p3SjkwnpQmqPkDSRNFNM5GL8z4P3q9R3V6_dNoz8NOudTKeC0jV878h38DY0KXEQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_ress_2022_108613 crossref_primary_10_1016_j_vlsi_2021_07_004 crossref_primary_10_1016_j_jpdc_2021_08_005 crossref_primary_10_1109_TCAD_2023_3337196 crossref_primary_10_1109_TPDS_2023_3339961 crossref_primary_10_1016_j_vlsi_2021_04_005  | 
    
| Cites_doi | 10.1109/2.56854 10.1109/43.170991 10.1109/ACCESS.2017.2765084 10.1109/12.24292 10.1049/ip-cds:20050273 10.1109/MDT.1987.295111 10.1109/TC.2015.2389846 10.1109/TC.1982.1676058 10.1109/12.641936 10.1145/3243214 10.1007/s11227-014-1096-y 10.1109/TPDS.2013.114 10.1016/j.entcs.2011.06.003 10.1109/TPDS.2016.2539958 10.1109/TC.2006.43 10.1109/12.862214 10.1109/43.662684  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Nov 2020  | 
    
| Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Nov 2020  | 
    
| DBID | AAYXX CITATION 7SP 8FD L7M  | 
    
| DOI | 10.1016/j.vlsi.2020.06.005 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1872-7522 | 
    
| EndPage | 72 | 
    
| ExternalDocumentID | 10_1016_j_vlsi_2020_06_005 S0167926020302534  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD AGCQF L7M  | 
    
| ID | FETCH-LOGICAL-c328t-74b6add2166c92a694be2a9ddd0f42cb4baf24c083d6526529fe3ba7c3eb10dd3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0167-9260 | 
    
| IngestDate | Sun Sep 07 03:47:47 EDT 2025 Thu Oct 02 04:29:28 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Fri Feb 23 02:47:52 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Fault tolerance Network flow Degradable VLSI array Minimum-cost flow algorithm Reconfiguration  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c328t-74b6add2166c92a694be2a9ddd0f42cb4baf24c083d6526529fe3ba7c3eb10dd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2451170087 | 
    
| PQPubID | 2045472 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_journals_2451170087 crossref_primary_10_1016_j_vlsi_2020_06_005 crossref_citationtrail_10_1016_j_vlsi_2020_06_005 elsevier_sciencedirect_doi_10_1016_j_vlsi_2020_06_005  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | November 2020 2020-11-00 20201101  | 
    
| PublicationDateYYYYMMDD | 2020-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Integration (Amsterdam) | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier B.V Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV  | 
    
| References | Dezs, Jttner, Kovcs (bib26) July. 2011; 264 Wu, Srikanthan, Jiang, Wang (bib23) Appil. 2014; 25 Negrini, Sami, Stefanelli (bib8) 1989 Lam, Li, Jakakumar (bib5) June. 1989; 38 Wu, Wu, Miu, Srikanthan (bib18) 2017 Jiang, Wu, Sun (bib13) 2013 Qian, Zhou, Gu, Zhao, Chang (bib24) Dec. 2016; 27 Gray, White (bib9) Jan. 1989 Xiang, Chakrabarty, Fujiwara (bib19) 2018; 23 Low, Leong (bib15) 1997; 16 Kuo, Chen (bib14) Oct. 1992; 11 Wu, Jiang, Shen, Lam, Sun, Srikanthan (bib12) Aug. 2014; 69 Qian, Ding, Xiao (bib21) 2019 Mangir, Avizienis (bib1) July. 1982; 31 Fukushi, Horiguchi (bib11) Oct. 2004 Xiang, Zhang, Pan (bib16) 2009; 58 Kuo, Fuchs (bib2) Feb. 1987; DTC-4 Qian, Wang, Chang, Zhou, Zhao (bib17) 2017; 5 Chen, Upadhyaya, Cheng (bib3) 1997; 46 Jiang, Wu, Ha, Wang, Sun (bib20) 2015; 64 Lombardi, Huang (bib6) 1988 Koren, Singh (bib7) July. 1990; 23 Wu, Srikanthan (bib25) August. 2006; 153 Horita, Takanami (bib4) June. 2000; 49 Wu, Srikanthan (bib10) July. 2003; 49 Wu, Srikanthan (bib22) Mar. 2006; 55 Lombardi (10.1016/j.vlsi.2020.06.005_bib6) 1988 Wu (10.1016/j.vlsi.2020.06.005_bib23) 2014; 25 Mangir (10.1016/j.vlsi.2020.06.005_bib1) 1982; 31 Wu (10.1016/j.vlsi.2020.06.005_bib12) 2014; 69 Wu (10.1016/j.vlsi.2020.06.005_bib25) 2006; 153 Dezs (10.1016/j.vlsi.2020.06.005_bib26) 2011; 264 Kuo (10.1016/j.vlsi.2020.06.005_bib2) 1987; DTC-4 Gray (10.1016/j.vlsi.2020.06.005_bib9) 1989 Negrini (10.1016/j.vlsi.2020.06.005_bib8) 1989 Fukushi (10.1016/j.vlsi.2020.06.005_bib11) 2004 Jiang (10.1016/j.vlsi.2020.06.005_bib13) 2013 Jiang (10.1016/j.vlsi.2020.06.005_bib20) 2015; 64 Xiang (10.1016/j.vlsi.2020.06.005_bib19) 2018; 23 Koren (10.1016/j.vlsi.2020.06.005_bib7) 1990; 23 Wu (10.1016/j.vlsi.2020.06.005_bib10) 2003; 49 Xiang (10.1016/j.vlsi.2020.06.005_bib16) 2009; 58 Lam (10.1016/j.vlsi.2020.06.005_bib5) 1989; 38 Chen (10.1016/j.vlsi.2020.06.005_bib3) 1997; 46 Qian (10.1016/j.vlsi.2020.06.005_bib17) 2017; 5 Qian (10.1016/j.vlsi.2020.06.005_bib24) 2016; 27 Wu (10.1016/j.vlsi.2020.06.005_bib18) 2017 Kuo (10.1016/j.vlsi.2020.06.005_bib14) 1992; 11 Low (10.1016/j.vlsi.2020.06.005_bib15) 1997; 16 Wu (10.1016/j.vlsi.2020.06.005_bib22) 2006; 55 Horita (10.1016/j.vlsi.2020.06.005_bib4) 2000; 49 Qian (10.1016/j.vlsi.2020.06.005_bib21) 2019  | 
    
| References_xml | – volume: 38 start-page: 833 year: June. 1989 end-page: 844 ident: bib5 article-title: A study of two approaches for reconfiguring fault-tolerant systolic array publication-title: IEEE Trans. Comput. – volume: 49 start-page: 23 year: July. 2003 end-page: 31 ident: bib10 article-title: An improved reconfiguration algorithm for degradable VLSI/WSI arrays publication-title: J. Syst. Architect. – year: 1989 ident: bib8 article-title: Fault Tolerance through Reconfiguration in VLSI and WSI Arrays – start-page: 342 year: 1988 end-page: 347 ident: bib6 article-title: Approaches for the repair of VLSI/WSI PRAM's by row/column deletion publication-title: Proc. 18th Int'l Symp. Fault-Tolerant Computing – volume: DTC-4 start-page: 24 year: Feb. 1987 end-page: 31 ident: bib2 article-title: Efficient spare allocation for reconfigurable arrays publication-title: IEEE Design Test Comput. – volume: 55 start-page: 243 year: Mar. 2006 end-page: 253 ident: bib22 article-title: Reconfiguration algorithms for power efficient VLSI subarrays with 4-port switches publication-title: IEEE Trans. Comput. – volume: 46 start-page: 1363 year: 1997 end-page: 1371 ident: bib3 article-title: A comprehensive reconfiguration scheme for fault-tolerant VLSI/WSI array processors publication-title: IEEE Trans. Comput. – volume: 153 start-page: 292 year: August. 2006 end-page: 298 ident: bib25 article-title: Reconfiguration of high performance VLSI sub-arrays publication-title: IEE Proc. Circ. Dev. Syst. – volume: 69 start-page: 610 year: Aug. 2014 end-page: 628 ident: bib12 article-title: Parallel reconfiguration algorithms for mesh-connected processor arrays publication-title: J. Supercomput. – start-page: 131 year: Jan. 1989 end-page: 140 ident: bib9 article-title: Summary of a distributed control algorithm for a dynamically reconfigurable array architecture publication-title: Proc. Int'l Conf. Wafer Scale Integration – volume: 11 start-page: 1289 year: Oct. 1992 end-page: 1300 ident: bib14 article-title: Efficient reconfiguration algorithms for degradable VLSI/WSI arrays publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. – volume: 31 start-page: 609 year: July. 1982 end-page: 615 ident: bib1 article-title: fault-tolerant design for VLSI:effect of interconnection requirements on yield improvement of VLSI design publication-title: IEEE Trans. Comput. – volume: 23 start-page: 73 year: July. 1990 end-page: 83 ident: bib7 article-title: fault tolerance in VLSI circuits publication-title: Computer – volume: 25 start-page: 929 year: Appil. 2014 end-page: 938 ident: bib23 article-title: Constructing sub-arrays with short interconnects from degradable VLSI arrays publication-title: IEEE Trans. Parallel Distr. Syst. – volume: 16 start-page: 1213 year: 1997 end-page: 1221 ident: bib15 article-title: On the reconfiguration of degradable VLSI/WSI arrays publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. – start-page: 496 year: Oct. 2004 end-page: 504 ident: bib11 article-title: Reconfiguration algorithm for degradable processor arrays based on row and column rerouting publication-title: Proc. IEEE 19th Intl Symp. Defect and Fault Tolerance in VLSI Systems – volume: 5 start-page: 23912 year: 2017 end-page: 23919 ident: bib17 article-title: A mathematical model for reconfiguring VLSI subarrays under row and column rerouting publication-title: IEEE Access – volume: 264 start-page: 23 year: July. 2011 end-page: 45 ident: bib26 article-title: LEMON-an open source C graph template library publication-title: Electron. Notes Theor. Comput. Sci. – volume: 23 start-page: 1 year: 2018 end-page: 73 ident: bib19 article-title: fault-tolerant unicast-based multicast for reliable network-on-chip testing publication-title: ACM Trans. Des. Autom. Electron. Syst. – volume: 27 start-page: 3575 year: Dec. 2016 end-page: 3587 ident: bib24 article-title: Optimal reconfiguration of high-performance VLSI subarrays with network flow publication-title: IEEE Trans. Parallel Distr. Syst. – volume: 49 start-page: 542 year: June. 2000 end-page: 552 ident: bib4 article-title: fault-tolerant processor arrays based on the 1.5-track switches with flexible spare distributions publication-title: IEEE Trans. Comput. – start-page: 519 year: 2017 end-page: 524 ident: bib18 article-title: Fault-Driven Reconfiguration Algorithm for Processor Arrays – year: 2019 ident: bib21 article-title: Efficient reconfiguration algorithm with flexible rerouting schemes for constructing 3D VLSI sub-arrays publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. – volume: 64 start-page: 2926 year: 2015 end-page: 2939 ident: bib20 article-title: Reconfiguring three-dimensional processor arrays for fault-tolerance: hardness and heuristic algorithms publication-title: IEEE Trans. Comput. – start-page: 194 year: 2013 end-page: 206 ident: bib13 article-title: Efficiency of flexible rerouting scheme for maximizing logical arrays publication-title: Proc. Network and Parallel Computing - 10th IFIP International Conference – volume: 58 start-page: 620 year: 2009 end-page: 633 ident: bib16 article-title: Practical deadlock-free fault-tolerant routing in meshes based on the planar network fault model publication-title: ACM Trans. Des. Autom. Electron. Syst. – start-page: 131 year: 1989 ident: 10.1016/j.vlsi.2020.06.005_bib9 article-title: Summary of a distributed control algorithm for a dynamically reconfigurable array architecture – volume: 23 start-page: 73 issue: 7 year: 1990 ident: 10.1016/j.vlsi.2020.06.005_bib7 article-title: fault tolerance in VLSI circuits publication-title: Computer doi: 10.1109/2.56854 – volume: 11 start-page: 1289 issue: 10 year: 1992 ident: 10.1016/j.vlsi.2020.06.005_bib14 article-title: Efficient reconfiguration algorithms for degradable VLSI/WSI arrays publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. doi: 10.1109/43.170991 – start-page: 342 year: 1988 ident: 10.1016/j.vlsi.2020.06.005_bib6 article-title: Approaches for the repair of VLSI/WSI PRAM's by row/column deletion – volume: 58 start-page: 620 issue: 5 year: 2009 ident: 10.1016/j.vlsi.2020.06.005_bib16 article-title: Practical deadlock-free fault-tolerant routing in meshes based on the planar network fault model publication-title: ACM Trans. Des. Autom. Electron. Syst. – volume: 5 start-page: 23912 year: 2017 ident: 10.1016/j.vlsi.2020.06.005_bib17 article-title: A mathematical model for reconfiguring VLSI subarrays under row and column rerouting publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2765084 – volume: 38 start-page: 833 issue: 6 year: 1989 ident: 10.1016/j.vlsi.2020.06.005_bib5 article-title: A study of two approaches for reconfiguring fault-tolerant systolic array publication-title: IEEE Trans. Comput. doi: 10.1109/12.24292 – volume: 49 start-page: 23 issue: 1/2 year: 2003 ident: 10.1016/j.vlsi.2020.06.005_bib10 article-title: An improved reconfiguration algorithm for degradable VLSI/WSI arrays publication-title: J. Syst. Architect. – volume: 153 start-page: 292 issue: 4 year: 2006 ident: 10.1016/j.vlsi.2020.06.005_bib25 article-title: Reconfiguration of high performance VLSI sub-arrays publication-title: IEE Proc. Circ. Dev. Syst. doi: 10.1049/ip-cds:20050273 – volume: DTC-4 start-page: 24 issue: 1 year: 1987 ident: 10.1016/j.vlsi.2020.06.005_bib2 article-title: Efficient spare allocation for reconfigurable arrays publication-title: IEEE Design Test Comput. doi: 10.1109/MDT.1987.295111 – start-page: 496 year: 2004 ident: 10.1016/j.vlsi.2020.06.005_bib11 article-title: Reconfiguration algorithm for degradable processor arrays based on row and column rerouting – start-page: 194 year: 2013 ident: 10.1016/j.vlsi.2020.06.005_bib13 article-title: Efficiency of flexible rerouting scheme for maximizing logical arrays – start-page: 519 year: 2017 ident: 10.1016/j.vlsi.2020.06.005_bib18 – volume: 64 start-page: 2926 issue: 10 year: 2015 ident: 10.1016/j.vlsi.2020.06.005_bib20 article-title: Reconfiguring three-dimensional processor arrays for fault-tolerance: hardness and heuristic algorithms publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2015.2389846 – volume: 31 start-page: 609 issue: 7 year: 1982 ident: 10.1016/j.vlsi.2020.06.005_bib1 article-title: fault-tolerant design for VLSI:effect of interconnection requirements on yield improvement of VLSI design publication-title: IEEE Trans. Comput. doi: 10.1109/TC.1982.1676058 – volume: 46 start-page: 1363 issue: 12 year: 1997 ident: 10.1016/j.vlsi.2020.06.005_bib3 article-title: A comprehensive reconfiguration scheme for fault-tolerant VLSI/WSI array processors publication-title: IEEE Trans. Comput. doi: 10.1109/12.641936 – volume: 23 start-page: 1 issue: 73 year: 2018 ident: 10.1016/j.vlsi.2020.06.005_bib19 article-title: fault-tolerant unicast-based multicast for reliable network-on-chip testing publication-title: ACM Trans. Des. Autom. Electron. Syst. doi: 10.1145/3243214 – year: 1989 ident: 10.1016/j.vlsi.2020.06.005_bib8 – volume: 69 start-page: 610 issue: 2 year: 2014 ident: 10.1016/j.vlsi.2020.06.005_bib12 article-title: Parallel reconfiguration algorithms for mesh-connected processor arrays publication-title: J. Supercomput. doi: 10.1007/s11227-014-1096-y – volume: 25 start-page: 929 issue: 4 year: 2014 ident: 10.1016/j.vlsi.2020.06.005_bib23 article-title: Constructing sub-arrays with short interconnects from degradable VLSI arrays publication-title: IEEE Trans. Parallel Distr. Syst. doi: 10.1109/TPDS.2013.114 – volume: 264 start-page: 23 issue: 5 year: 2011 ident: 10.1016/j.vlsi.2020.06.005_bib26 article-title: LEMON-an open source C graph template library publication-title: Electron. Notes Theor. Comput. Sci. doi: 10.1016/j.entcs.2011.06.003 – volume: 27 start-page: 3575 issue: 12 year: 2016 ident: 10.1016/j.vlsi.2020.06.005_bib24 article-title: Optimal reconfiguration of high-performance VLSI subarrays with network flow publication-title: IEEE Trans. Parallel Distr. Syst. doi: 10.1109/TPDS.2016.2539958 – volume: 55 start-page: 243 issue: 3 year: 2006 ident: 10.1016/j.vlsi.2020.06.005_bib22 article-title: Reconfiguration algorithms for power efficient VLSI subarrays with 4-port switches publication-title: IEEE Trans. Comput. doi: 10.1109/TC.2006.43 – volume: 49 start-page: 542 issue: 6 year: 2000 ident: 10.1016/j.vlsi.2020.06.005_bib4 article-title: fault-tolerant processor arrays based on the 1.5-track switches with flexible spare distributions publication-title: IEEE Trans. Comput. doi: 10.1109/12.862214 – year: 2019 ident: 10.1016/j.vlsi.2020.06.005_bib21 article-title: Efficient reconfiguration algorithm with flexible rerouting schemes for constructing 3D VLSI sub-arrays publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. – volume: 16 start-page: 1213 issue: 10 year: 1997 ident: 10.1016/j.vlsi.2020.06.005_bib15 article-title: On the reconfiguration of degradable VLSI/WSI arrays publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. doi: 10.1109/43.662684  | 
    
| SSID | ssj0001475 | 
    
| Score | 2.2470214 | 
    
| Snippet | Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects,... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 63 | 
    
| SubjectTerms | Algorithms Arrays Data structures Degradable VLSI array Energy costs Energy dissipation Energy efficiency Fault tolerance Faults Heat transfer Integrated circuits Minimum-cost flow algorithm Network flow Polynomials Reconfiguration Run time (computers) VLSI  | 
    
| Title | An efficient multiple shortest augmenting paths algorithm for constructing high performance VLSI subarray | 
    
| URI | https://dx.doi.org/10.1016/j.vlsi.2020.06.005 https://www.proquest.com/docview/2451170087  | 
    
| Volume | 75 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7522 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001475 issn: 0167-9260 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Complete Freedom Collection customDbUrl: eissn: 1872-7522 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001475 issn: 0167-9260 databaseCode: ACRLP dateStart: 19950601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7522 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001475 issn: 0167-9260 databaseCode: .~1 dateStart: 0 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-7522 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001475 issn: 0167-9260 databaseCode: AIKHN dateStart: 19950601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-IwPJHvwZip0u30dCZGAIjEihttmX0ANFkLBxIu_3Z0-RI3h4Klps9s0M9uZb5JvvkHoUpuqIhScWiGnrkVdX1uB8qXlEQOOAON7aaF43_PaA3o7dIcl1Cx6YYBWmcf-LKan0Tp_UsutWZtHUa0PBPrQwHFizilxHdAEpdSHKQbXH2uah019t9D3htV540zG8XqbJpGpEUk91fCEEXZ_J6dfYTrNPa09tJuDRtzIvmsflXR8gHa-SQkeoqgRY53KQZgsgguaIE4mQKZNlpivxikxKB5jGEKcYD4dzxbRcvKKDWzFclYoyZoFIGGM5-uOAvzc7XdwshJ8seDvR2jQunlqtq18jIIlHRIsLZ8Kz0QxYnueDAn3Qio04aFSqj6iRAoq-IhQabCY8kAsn4Qj7QjuS8fE8bpSzjEqx7NYnyBcF1TJwHaoo0dUCRJIU664gbKVAWa-Y58iu7Afk7nGOIy6mLKCTPbCwOYMbM5SRp17iq6-9swzhY2Nq93CLezHOWEmBWzcVyl8yPK_NGEExNl8UOU7--drz9E23GXNiRVUNp7SFwalLEU1PYZVtNVoPnYf4Nq5a_c-AewN6Yg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iwoag_ezArbbfdxJEQCClwAw63pC1iDC2EXEy_-dtt9-Irh4HW33Wxm2plvkm--AeBG6aoi4AxbAcPEwsRTli89YblIgyOD8d20UOz13fYIP4zJuASaRS-MoVXmsT-L6Wm0zp_UcmvWlmFYGxgCfaDhONLnFBEHb4FtTJBnKrC79y-eh409Ugh8m-V550xG8nqdx6EuElE9FfE0M-z-zk6_4nSafFoHYD9HjbCR_dghKKnoCOx90xI8BmEjgirVg9BpBBY8QRjPDJs2TiBbT1NmUDSFZgpxDNl8uliFyewFatwKxaKQktULjIYxXH61FMCn7qAD4zVnqxV7OwGj1v2w2bbyOQqWcJCfWB7mrg5jyHZdESDmBpgrxAIpZX2CkeCYswnCQoMx6Rq1fBRMlMOZJxwdyOtSOqegHC0idQZgnWMpfNvBjppgyZEvdL1CfGlLjcw8x64Au7AfFbnIuJl1MacFm-yZGptTY3OaUupIBdx-7llmEhsbV5PCLfTHQaE6B2zcVy18SPNrGlNk1Nk8I8t3_s_PXoOd9rDXpd1O__EC7Jo3WadiFZS119SlhiwJv0qP5AcT-umI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+multiple+shortest+augmenting+paths+algorithm+for+constructing+high+performance+VLSI+subarray&rft.jtitle=Integration+%28Amsterdam%29&rft.au=Qian%2C+Junyan&rft.au=Huang%2C+Bisheng&rft.au=Ding%2C+Hao&rft.au=Zhou%2C+Zhide&rft.date=2020-11-01&rft.pub=Elsevier+BV&rft.issn=0167-9260&rft.eissn=1872-7522&rft.volume=75&rft.spage=63&rft_id=info:doi/10.1016%2Fj.vlsi.2020.06.005&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9260&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9260&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9260&client=summon |