An efficient multiple shortest augmenting paths algorithm for constructing high performance VLSI subarray

Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects, which can reduce communication costs, capacitance and dynamic energy dissipation. An existing work proved that the high performance VLSI subarra...

Full description

Saved in:
Bibliographic Details
Published inIntegration (Amsterdam) Vol. 75; pp. 63 - 72
Main Authors Qian, Junyan, Huang, Bisheng, Ding, Hao, Zhou, Zhide, Zhao, Lingzhong, Zhai, Zhongyi
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0167-9260
1872-7522
DOI10.1016/j.vlsi.2020.06.005

Cover

Abstract Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects, which can reduce communication costs, capacitance and dynamic energy dissipation. An existing work proved that the high performance VLSI subarray can be constructed in polynomial time using network flow algorithm. However, because of the disadvantage of the previous network model and the low-performing of standard network flow algorithms for reconfiguration, the efficiency of these algorithms is poor for constructing the high performance VLSI subarray. In this paper, we present an efficient multiple shortest augmenting paths algorithm for rapidly constructing high performance VLSI array. Firstly, we proposed an efficient data structure to construct the network model of the VLSI array with faults, which can dramatically reduce the size of the model compared with previous algorithm. Secondly, a multiple shortest augmenting path algorithm based on the new data structure is proposed, which can significant reduce the running time. Finally, we conduct solid experiments to highlight the efficiency of the proposed method in terms of the running time compared to the standard network flow algorithms. The experimental results show that on a 64 × 64 host array with 0.1% faults, the size of the network model can be reduced by about 50% and the average improvements in running time is up to 85.10% compared with four standard network flow algorithms. •An efficient data structure is proposed to decrease the size of the model to half the original model.•We develop a multiple shortest augmenting path algorithm to find multiple shortest paths at one time.•We prove that the proposed scheme can effectively reduce the running time of the reconfiguration in polynomial time.
AbstractList Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects, which can reduce communication costs, capacitance and dynamic energy dissipation. An existing work proved that the high performance VLSI subarray can be constructed in polynomial time using network flow algorithm. However, because of the disadvantage of the previous network model and the low-performing of standard network flow algorithms for reconfiguration, the efficiency of these algorithms is poor for constructing the high performance VLSI subarray. In this paper, we present an efficient multiple shortest augmenting paths algorithm for rapidly constructing high performance VLSI array. Firstly, we proposed an efficient data structure to construct the network model of the VLSI array with faults, which can dramatically reduce the size of the model compared with previous algorithm. Secondly, a multiple shortest augmenting path algorithm based on the new data structure is proposed, which can significant reduce the running time. Finally, we conduct solid experiments to highlight the efficiency of the proposed method in terms of the running time compared to the standard network flow algorithms. The experimental results show that on a 64 × 64 host array with 0.1% faults, the size of the network model can be reduced by about 50% and the average improvements in running time is up to 85.10% compared with four standard network flow algorithms.
Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects, which can reduce communication costs, capacitance and dynamic energy dissipation. An existing work proved that the high performance VLSI subarray can be constructed in polynomial time using network flow algorithm. However, because of the disadvantage of the previous network model and the low-performing of standard network flow algorithms for reconfiguration, the efficiency of these algorithms is poor for constructing the high performance VLSI subarray. In this paper, we present an efficient multiple shortest augmenting paths algorithm for rapidly constructing high performance VLSI array. Firstly, we proposed an efficient data structure to construct the network model of the VLSI array with faults, which can dramatically reduce the size of the model compared with previous algorithm. Secondly, a multiple shortest augmenting path algorithm based on the new data structure is proposed, which can significant reduce the running time. Finally, we conduct solid experiments to highlight the efficiency of the proposed method in terms of the running time compared to the standard network flow algorithms. The experimental results show that on a 64 × 64 host array with 0.1% faults, the size of the network model can be reduced by about 50% and the average improvements in running time is up to 85.10% compared with four standard network flow algorithms. •An efficient data structure is proposed to decrease the size of the model to half the original model.•We develop a multiple shortest augmenting path algorithm to find multiple shortest paths at one time.•We prove that the proposed scheme can effectively reduce the running time of the reconfiguration in polynomial time.
Author Zhou, Zhide
Qian, Junyan
Huang, Bisheng
Ding, Hao
Zhai, Zhongyi
Zhao, Lingzhong
Author_xml – sequence: 1
  givenname: Junyan
  surname: Qian
  fullname: Qian, Junyan
  email: qjy2000@gmail.com
  organization: Guangxi Key Laboratory of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin, 541004, China
– sequence: 2
  givenname: Bisheng
  surname: Huang
  fullname: Huang, Bisheng
  email: alexhbs@foxmail.com
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China
– sequence: 3
  givenname: Hao
  surname: Ding
  fullname: Ding, Hao
  email: dhguet@gmail.com
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China
– sequence: 4
  givenname: Zhide
  surname: Zhou
  fullname: Zhou, Zhide
  email: cszide@gmail.com
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China
– sequence: 5
  givenname: Lingzhong
  surname: Zhao
  fullname: Zhao, Lingzhong
  email: zhaolingzhong@126.com
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China
– sequence: 6
  givenname: Zhongyi
  surname: Zhai
  fullname: Zhai, Zhongyi
  email: zhaizhongyi@guet.edu.cn
  organization: Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin, 541004, China
BookMark eNp9kE1LxDAQhoMouH78AU8Bz62TtE1b8CLiFyx48OMa0iTdZmmTmqSC_96s68mDMDCHeZ8Z5jlBh9ZZjdAFgZwAYVfb_HMMJqdAIQeWA1QHaEWammZ1RekhWqVQnbWUwTE6CWELAKSsqxUyNxbrvjfSaBvxtIzRzKPGYXA-6hCxWDZTmhi7wbOIQ8Bi3Dhv4jDh3nksnQ3RL_InMJjNgGft02ASVmr8vn55wmHphPfi6wwd9WIM-vy3n6K3-7vX28ds_fzwdHuzzmRBm5jVZceEUpQwJlsqWFt2mopWKQV9SWVXdqKnpYSmUKyiqdpeF52oZaE7AkoVp-hyv3f27mNJP_CtW7xNJzktK0JqgKZOKbpPSe9C8LrnszeT8F-cAN8p5Vu-U8p3SjkwnpQmqPkDSRNFNM5GL8z4P3q9R3V6_dNoz8NOudTKeC0jV878h38DY0KXEQ
CitedBy_id crossref_primary_10_1016_j_ress_2022_108613
crossref_primary_10_1016_j_vlsi_2021_07_004
crossref_primary_10_1016_j_jpdc_2021_08_005
crossref_primary_10_1109_TCAD_2023_3337196
crossref_primary_10_1109_TPDS_2023_3339961
crossref_primary_10_1016_j_vlsi_2021_04_005
Cites_doi 10.1109/2.56854
10.1109/43.170991
10.1109/ACCESS.2017.2765084
10.1109/12.24292
10.1049/ip-cds:20050273
10.1109/MDT.1987.295111
10.1109/TC.2015.2389846
10.1109/TC.1982.1676058
10.1109/12.641936
10.1145/3243214
10.1007/s11227-014-1096-y
10.1109/TPDS.2013.114
10.1016/j.entcs.2011.06.003
10.1109/TPDS.2016.2539958
10.1109/TC.2006.43
10.1109/12.862214
10.1109/43.662684
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Nov 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 2020
DBID AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/j.vlsi.2020.06.005
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7522
EndPage 72
ExternalDocumentID 10_1016_j_vlsi_2020_06_005
S0167926020302534
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
AGCQF
L7M
ID FETCH-LOGICAL-c328t-74b6add2166c92a694be2a9ddd0f42cb4baf24c083d6526529fe3ba7c3eb10dd3
IEDL.DBID .~1
ISSN 0167-9260
IngestDate Sun Sep 07 03:47:47 EDT 2025
Thu Oct 02 04:29:28 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Fri Feb 23 02:47:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault tolerance
Network flow
Degradable VLSI array
Minimum-cost flow algorithm
Reconfiguration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-74b6add2166c92a694be2a9ddd0f42cb4baf24c083d6526529fe3ba7c3eb10dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2451170087
PQPubID 2045472
PageCount 10
ParticipantIDs proquest_journals_2451170087
crossref_primary_10_1016_j_vlsi_2020_06_005
crossref_citationtrail_10_1016_j_vlsi_2020_06_005
elsevier_sciencedirect_doi_10_1016_j_vlsi_2020_06_005
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Integration (Amsterdam)
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Dezs, Jttner, Kovcs (bib26) July. 2011; 264
Wu, Srikanthan, Jiang, Wang (bib23) Appil. 2014; 25
Negrini, Sami, Stefanelli (bib8) 1989
Lam, Li, Jakakumar (bib5) June. 1989; 38
Wu, Wu, Miu, Srikanthan (bib18) 2017
Jiang, Wu, Sun (bib13) 2013
Qian, Zhou, Gu, Zhao, Chang (bib24) Dec. 2016; 27
Gray, White (bib9) Jan. 1989
Xiang, Chakrabarty, Fujiwara (bib19) 2018; 23
Low, Leong (bib15) 1997; 16
Kuo, Chen (bib14) Oct. 1992; 11
Wu, Jiang, Shen, Lam, Sun, Srikanthan (bib12) Aug. 2014; 69
Qian, Ding, Xiao (bib21) 2019
Mangir, Avizienis (bib1) July. 1982; 31
Fukushi, Horiguchi (bib11) Oct. 2004
Xiang, Zhang, Pan (bib16) 2009; 58
Kuo, Fuchs (bib2) Feb. 1987; DTC-4
Qian, Wang, Chang, Zhou, Zhao (bib17) 2017; 5
Chen, Upadhyaya, Cheng (bib3) 1997; 46
Jiang, Wu, Ha, Wang, Sun (bib20) 2015; 64
Lombardi, Huang (bib6) 1988
Koren, Singh (bib7) July. 1990; 23
Wu, Srikanthan (bib25) August. 2006; 153
Horita, Takanami (bib4) June. 2000; 49
Wu, Srikanthan (bib10) July. 2003; 49
Wu, Srikanthan (bib22) Mar. 2006; 55
Lombardi (10.1016/j.vlsi.2020.06.005_bib6) 1988
Wu (10.1016/j.vlsi.2020.06.005_bib23) 2014; 25
Mangir (10.1016/j.vlsi.2020.06.005_bib1) 1982; 31
Wu (10.1016/j.vlsi.2020.06.005_bib12) 2014; 69
Wu (10.1016/j.vlsi.2020.06.005_bib25) 2006; 153
Dezs (10.1016/j.vlsi.2020.06.005_bib26) 2011; 264
Kuo (10.1016/j.vlsi.2020.06.005_bib2) 1987; DTC-4
Gray (10.1016/j.vlsi.2020.06.005_bib9) 1989
Negrini (10.1016/j.vlsi.2020.06.005_bib8) 1989
Fukushi (10.1016/j.vlsi.2020.06.005_bib11) 2004
Jiang (10.1016/j.vlsi.2020.06.005_bib13) 2013
Jiang (10.1016/j.vlsi.2020.06.005_bib20) 2015; 64
Xiang (10.1016/j.vlsi.2020.06.005_bib19) 2018; 23
Koren (10.1016/j.vlsi.2020.06.005_bib7) 1990; 23
Wu (10.1016/j.vlsi.2020.06.005_bib10) 2003; 49
Xiang (10.1016/j.vlsi.2020.06.005_bib16) 2009; 58
Lam (10.1016/j.vlsi.2020.06.005_bib5) 1989; 38
Chen (10.1016/j.vlsi.2020.06.005_bib3) 1997; 46
Qian (10.1016/j.vlsi.2020.06.005_bib17) 2017; 5
Qian (10.1016/j.vlsi.2020.06.005_bib24) 2016; 27
Wu (10.1016/j.vlsi.2020.06.005_bib18) 2017
Kuo (10.1016/j.vlsi.2020.06.005_bib14) 1992; 11
Low (10.1016/j.vlsi.2020.06.005_bib15) 1997; 16
Wu (10.1016/j.vlsi.2020.06.005_bib22) 2006; 55
Horita (10.1016/j.vlsi.2020.06.005_bib4) 2000; 49
Qian (10.1016/j.vlsi.2020.06.005_bib21) 2019
References_xml – volume: 38
  start-page: 833
  year: June. 1989
  end-page: 844
  ident: bib5
  article-title: A study of two approaches for reconfiguring fault-tolerant systolic array
  publication-title: IEEE Trans. Comput.
– volume: 49
  start-page: 23
  year: July. 2003
  end-page: 31
  ident: bib10
  article-title: An improved reconfiguration algorithm for degradable VLSI/WSI arrays
  publication-title: J. Syst. Architect.
– year: 1989
  ident: bib8
  article-title: Fault Tolerance through Reconfiguration in VLSI and WSI Arrays
– start-page: 342
  year: 1988
  end-page: 347
  ident: bib6
  article-title: Approaches for the repair of VLSI/WSI PRAM's by row/column deletion
  publication-title: Proc. 18th Int'l Symp. Fault-Tolerant Computing
– volume: DTC-4
  start-page: 24
  year: Feb. 1987
  end-page: 31
  ident: bib2
  article-title: Efficient spare allocation for reconfigurable arrays
  publication-title: IEEE Design Test Comput.
– volume: 55
  start-page: 243
  year: Mar. 2006
  end-page: 253
  ident: bib22
  article-title: Reconfiguration algorithms for power efficient VLSI subarrays with 4-port switches
  publication-title: IEEE Trans. Comput.
– volume: 46
  start-page: 1363
  year: 1997
  end-page: 1371
  ident: bib3
  article-title: A comprehensive reconfiguration scheme for fault-tolerant VLSI/WSI array processors
  publication-title: IEEE Trans. Comput.
– volume: 153
  start-page: 292
  year: August. 2006
  end-page: 298
  ident: bib25
  article-title: Reconfiguration of high performance VLSI sub-arrays
  publication-title: IEE Proc. Circ. Dev. Syst.
– volume: 69
  start-page: 610
  year: Aug. 2014
  end-page: 628
  ident: bib12
  article-title: Parallel reconfiguration algorithms for mesh-connected processor arrays
  publication-title: J. Supercomput.
– start-page: 131
  year: Jan. 1989
  end-page: 140
  ident: bib9
  article-title: Summary of a distributed control algorithm for a dynamically reconfigurable array architecture
  publication-title: Proc. Int'l Conf. Wafer Scale Integration
– volume: 11
  start-page: 1289
  year: Oct. 1992
  end-page: 1300
  ident: bib14
  article-title: Efficient reconfiguration algorithms for degradable VLSI/WSI arrays
  publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.
– volume: 31
  start-page: 609
  year: July. 1982
  end-page: 615
  ident: bib1
  article-title: fault-tolerant design for VLSI:effect of interconnection requirements on yield improvement of VLSI design
  publication-title: IEEE Trans. Comput.
– volume: 23
  start-page: 73
  year: July. 1990
  end-page: 83
  ident: bib7
  article-title: fault tolerance in VLSI circuits
  publication-title: Computer
– volume: 25
  start-page: 929
  year: Appil. 2014
  end-page: 938
  ident: bib23
  article-title: Constructing sub-arrays with short interconnects from degradable VLSI arrays
  publication-title: IEEE Trans. Parallel Distr. Syst.
– volume: 16
  start-page: 1213
  year: 1997
  end-page: 1221
  ident: bib15
  article-title: On the reconfiguration of degradable VLSI/WSI arrays
  publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.
– start-page: 496
  year: Oct. 2004
  end-page: 504
  ident: bib11
  article-title: Reconfiguration algorithm for degradable processor arrays based on row and column rerouting
  publication-title: Proc. IEEE 19th Intl Symp. Defect and Fault Tolerance in VLSI Systems
– volume: 5
  start-page: 23912
  year: 2017
  end-page: 23919
  ident: bib17
  article-title: A mathematical model for reconfiguring VLSI subarrays under row and column rerouting
  publication-title: IEEE Access
– volume: 264
  start-page: 23
  year: July. 2011
  end-page: 45
  ident: bib26
  article-title: LEMON-an open source C graph template library
  publication-title: Electron. Notes Theor. Comput. Sci.
– volume: 23
  start-page: 1
  year: 2018
  end-page: 73
  ident: bib19
  article-title: fault-tolerant unicast-based multicast for reliable network-on-chip testing
  publication-title: ACM Trans. Des. Autom. Electron. Syst.
– volume: 27
  start-page: 3575
  year: Dec. 2016
  end-page: 3587
  ident: bib24
  article-title: Optimal reconfiguration of high-performance VLSI subarrays with network flow
  publication-title: IEEE Trans. Parallel Distr. Syst.
– volume: 49
  start-page: 542
  year: June. 2000
  end-page: 552
  ident: bib4
  article-title: fault-tolerant processor arrays based on the 1.5-track switches with flexible spare distributions
  publication-title: IEEE Trans. Comput.
– start-page: 519
  year: 2017
  end-page: 524
  ident: bib18
  article-title: Fault-Driven Reconfiguration Algorithm for Processor Arrays
– year: 2019
  ident: bib21
  article-title: Efficient reconfiguration algorithm with flexible rerouting schemes for constructing 3D VLSI sub-arrays
  publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.
– volume: 64
  start-page: 2926
  year: 2015
  end-page: 2939
  ident: bib20
  article-title: Reconfiguring three-dimensional processor arrays for fault-tolerance: hardness and heuristic algorithms
  publication-title: IEEE Trans. Comput.
– start-page: 194
  year: 2013
  end-page: 206
  ident: bib13
  article-title: Efficiency of flexible rerouting scheme for maximizing logical arrays
  publication-title: Proc. Network and Parallel Computing - 10th IFIP International Conference
– volume: 58
  start-page: 620
  year: 2009
  end-page: 633
  ident: bib16
  article-title: Practical deadlock-free fault-tolerant routing in meshes based on the planar network fault model
  publication-title: ACM Trans. Des. Autom. Electron. Syst.
– start-page: 131
  year: 1989
  ident: 10.1016/j.vlsi.2020.06.005_bib9
  article-title: Summary of a distributed control algorithm for a dynamically reconfigurable array architecture
– volume: 23
  start-page: 73
  issue: 7
  year: 1990
  ident: 10.1016/j.vlsi.2020.06.005_bib7
  article-title: fault tolerance in VLSI circuits
  publication-title: Computer
  doi: 10.1109/2.56854
– volume: 11
  start-page: 1289
  issue: 10
  year: 1992
  ident: 10.1016/j.vlsi.2020.06.005_bib14
  article-title: Efficient reconfiguration algorithms for degradable VLSI/WSI arrays
  publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.
  doi: 10.1109/43.170991
– start-page: 342
  year: 1988
  ident: 10.1016/j.vlsi.2020.06.005_bib6
  article-title: Approaches for the repair of VLSI/WSI PRAM's by row/column deletion
– volume: 58
  start-page: 620
  issue: 5
  year: 2009
  ident: 10.1016/j.vlsi.2020.06.005_bib16
  article-title: Practical deadlock-free fault-tolerant routing in meshes based on the planar network fault model
  publication-title: ACM Trans. Des. Autom. Electron. Syst.
– volume: 5
  start-page: 23912
  year: 2017
  ident: 10.1016/j.vlsi.2020.06.005_bib17
  article-title: A mathematical model for reconfiguring VLSI subarrays under row and column rerouting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2765084
– volume: 38
  start-page: 833
  issue: 6
  year: 1989
  ident: 10.1016/j.vlsi.2020.06.005_bib5
  article-title: A study of two approaches for reconfiguring fault-tolerant systolic array
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.24292
– volume: 49
  start-page: 23
  issue: 1/2
  year: 2003
  ident: 10.1016/j.vlsi.2020.06.005_bib10
  article-title: An improved reconfiguration algorithm for degradable VLSI/WSI arrays
  publication-title: J. Syst. Architect.
– volume: 153
  start-page: 292
  issue: 4
  year: 2006
  ident: 10.1016/j.vlsi.2020.06.005_bib25
  article-title: Reconfiguration of high performance VLSI sub-arrays
  publication-title: IEE Proc. Circ. Dev. Syst.
  doi: 10.1049/ip-cds:20050273
– volume: DTC-4
  start-page: 24
  issue: 1
  year: 1987
  ident: 10.1016/j.vlsi.2020.06.005_bib2
  article-title: Efficient spare allocation for reconfigurable arrays
  publication-title: IEEE Design Test Comput.
  doi: 10.1109/MDT.1987.295111
– start-page: 496
  year: 2004
  ident: 10.1016/j.vlsi.2020.06.005_bib11
  article-title: Reconfiguration algorithm for degradable processor arrays based on row and column rerouting
– start-page: 194
  year: 2013
  ident: 10.1016/j.vlsi.2020.06.005_bib13
  article-title: Efficiency of flexible rerouting scheme for maximizing logical arrays
– start-page: 519
  year: 2017
  ident: 10.1016/j.vlsi.2020.06.005_bib18
– volume: 64
  start-page: 2926
  issue: 10
  year: 2015
  ident: 10.1016/j.vlsi.2020.06.005_bib20
  article-title: Reconfiguring three-dimensional processor arrays for fault-tolerance: hardness and heuristic algorithms
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2015.2389846
– volume: 31
  start-page: 609
  issue: 7
  year: 1982
  ident: 10.1016/j.vlsi.2020.06.005_bib1
  article-title: fault-tolerant design for VLSI:effect of interconnection requirements on yield improvement of VLSI design
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1982.1676058
– volume: 46
  start-page: 1363
  issue: 12
  year: 1997
  ident: 10.1016/j.vlsi.2020.06.005_bib3
  article-title: A comprehensive reconfiguration scheme for fault-tolerant VLSI/WSI array processors
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.641936
– volume: 23
  start-page: 1
  issue: 73
  year: 2018
  ident: 10.1016/j.vlsi.2020.06.005_bib19
  article-title: fault-tolerant unicast-based multicast for reliable network-on-chip testing
  publication-title: ACM Trans. Des. Autom. Electron. Syst.
  doi: 10.1145/3243214
– year: 1989
  ident: 10.1016/j.vlsi.2020.06.005_bib8
– volume: 69
  start-page: 610
  issue: 2
  year: 2014
  ident: 10.1016/j.vlsi.2020.06.005_bib12
  article-title: Parallel reconfiguration algorithms for mesh-connected processor arrays
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-014-1096-y
– volume: 25
  start-page: 929
  issue: 4
  year: 2014
  ident: 10.1016/j.vlsi.2020.06.005_bib23
  article-title: Constructing sub-arrays with short interconnects from degradable VLSI arrays
  publication-title: IEEE Trans. Parallel Distr. Syst.
  doi: 10.1109/TPDS.2013.114
– volume: 264
  start-page: 23
  issue: 5
  year: 2011
  ident: 10.1016/j.vlsi.2020.06.005_bib26
  article-title: LEMON-an open source C graph template library
  publication-title: Electron. Notes Theor. Comput. Sci.
  doi: 10.1016/j.entcs.2011.06.003
– volume: 27
  start-page: 3575
  issue: 12
  year: 2016
  ident: 10.1016/j.vlsi.2020.06.005_bib24
  article-title: Optimal reconfiguration of high-performance VLSI subarrays with network flow
  publication-title: IEEE Trans. Parallel Distr. Syst.
  doi: 10.1109/TPDS.2016.2539958
– volume: 55
  start-page: 243
  issue: 3
  year: 2006
  ident: 10.1016/j.vlsi.2020.06.005_bib22
  article-title: Reconfiguration algorithms for power efficient VLSI subarrays with 4-port switches
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2006.43
– volume: 49
  start-page: 542
  issue: 6
  year: 2000
  ident: 10.1016/j.vlsi.2020.06.005_bib4
  article-title: fault-tolerant processor arrays based on the 1.5-track switches with flexible spare distributions
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.862214
– year: 2019
  ident: 10.1016/j.vlsi.2020.06.005_bib21
  article-title: Efficient reconfiguration algorithm with flexible rerouting schemes for constructing 3D VLSI sub-arrays
  publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.
– volume: 16
  start-page: 1213
  issue: 10
  year: 1997
  ident: 10.1016/j.vlsi.2020.06.005_bib15
  article-title: On the reconfiguration of degradable VLSI/WSI arrays
  publication-title: IEEE Trans. Comput. Aided Des. Integrated Circ. Syst.
  doi: 10.1109/43.662684
SSID ssj0001475
Score 2.2470214
Snippet Reconfiguring a high-performance subarray of a VLSI array with faults is to construct a maximum target array with the minimum number of long interconnects,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Algorithms
Arrays
Data structures
Degradable VLSI array
Energy costs
Energy dissipation
Energy efficiency
Fault tolerance
Faults
Heat transfer
Integrated circuits
Minimum-cost flow algorithm
Network flow
Polynomials
Reconfiguration
Run time (computers)
VLSI
Title An efficient multiple shortest augmenting paths algorithm for constructing high performance VLSI subarray
URI https://dx.doi.org/10.1016/j.vlsi.2020.06.005
https://www.proquest.com/docview/2451170087
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001475
  issn: 0167-9260
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Complete Freedom Collection
  customDbUrl:
  eissn: 1872-7522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001475
  issn: 0167-9260
  databaseCode: ACRLP
  dateStart: 19950601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001475
  issn: 0167-9260
  databaseCode: .~1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-7522
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001475
  issn: 0167-9260
  databaseCode: AIKHN
  dateStart: 19950601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvOjB-IwPJHvwZip0u30dCZGAIjEihttmX0ANFkLBxIu_3Z0-RI3h4Klps9s0M9uZb5JvvkHoUpuqIhScWiGnrkVdX1uB8qXlEQOOAON7aaF43_PaA3o7dIcl1Cx6YYBWmcf-LKan0Tp_UsutWZtHUa0PBPrQwHFizilxHdAEpdSHKQbXH2uah019t9D3htV540zG8XqbJpGpEUk91fCEEXZ_J6dfYTrNPa09tJuDRtzIvmsflXR8gHa-SQkeoqgRY53KQZgsgguaIE4mQKZNlpivxikxKB5jGEKcYD4dzxbRcvKKDWzFclYoyZoFIGGM5-uOAvzc7XdwshJ8seDvR2jQunlqtq18jIIlHRIsLZ8Kz0QxYnueDAn3Qio04aFSqj6iRAoq-IhQabCY8kAsn4Qj7QjuS8fE8bpSzjEqx7NYnyBcF1TJwHaoo0dUCRJIU664gbKVAWa-Y58iu7Afk7nGOIy6mLKCTPbCwOYMbM5SRp17iq6-9swzhY2Nq93CLezHOWEmBWzcVyl8yPK_NGEExNl8UOU7--drz9E23GXNiRVUNp7SFwalLEU1PYZVtNVoPnYf4Nq5a_c-AewN6Yg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QD-rB-Iwoag_ezArbbfdxJEQCClwAw63pC1iDC2EXEy_-dtt9-Irh4HW33Wxm2plvkm--AeBG6aoi4AxbAcPEwsRTli89YblIgyOD8d20UOz13fYIP4zJuASaRS-MoVXmsT-L6Wm0zp_UcmvWlmFYGxgCfaDhONLnFBEHb4FtTJBnKrC79y-eh409Ugh8m-V550xG8nqdx6EuElE9FfE0M-z-zk6_4nSafFoHYD9HjbCR_dghKKnoCOx90xI8BmEjgirVg9BpBBY8QRjPDJs2TiBbT1NmUDSFZgpxDNl8uliFyewFatwKxaKQktULjIYxXH61FMCn7qAD4zVnqxV7OwGj1v2w2bbyOQqWcJCfWB7mrg5jyHZdESDmBpgrxAIpZX2CkeCYswnCQoMx6Rq1fBRMlMOZJxwdyOtSOqegHC0idQZgnWMpfNvBjppgyZEvdL1CfGlLjcw8x64Au7AfFbnIuJl1MacFm-yZGptTY3OaUupIBdx-7llmEhsbV5PCLfTHQaE6B2zcVy18SPNrGlNk1Nk8I8t3_s_PXoOd9rDXpd1O__EC7Jo3WadiFZS119SlhiwJv0qP5AcT-umI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+multiple+shortest+augmenting+paths+algorithm+for+constructing+high+performance+VLSI+subarray&rft.jtitle=Integration+%28Amsterdam%29&rft.au=Qian%2C+Junyan&rft.au=Huang%2C+Bisheng&rft.au=Ding%2C+Hao&rft.au=Zhou%2C+Zhide&rft.date=2020-11-01&rft.pub=Elsevier+BV&rft.issn=0167-9260&rft.eissn=1872-7522&rft.volume=75&rft.spage=63&rft_id=info:doi/10.1016%2Fj.vlsi.2020.06.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9260&client=summon