A pareto-based ensemble of feature selection algorithms
•We have designed a method for ensemble feature selection.•We model the feature selection process to a Pareto-based optimization problem.•The crowding distance between solutions is the secondary measure.•The method is an ensemble of relevancy and redundancy methods.•The proposed PEFS method outperfo...
Saved in:
| Published in | Expert systems with applications Vol. 180; p. 115130 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
15.10.2021
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2021.115130 |
Cover
| Abstract | •We have designed a method for ensemble feature selection.•We model the feature selection process to a Pareto-based optimization problem.•The crowding distance between solutions is the secondary measure.•The method is an ensemble of relevancy and redundancy methods.•The proposed PEFS method outperforms competitive algorithms.
In this paper, ensemble feature selection is modeled as a bi-objective optimization problem regarding features’ relevancy and redundancy degree. The proposed method, which is called PEFS, first uses the modeled bi-objective optimization problem to find the non-dominated features based on the decision matrix constructed by different feature selection algorithms. In the second step, the found non-dominated features are sorted using the crowding distance in the bi-objective space. These sorted features remove from the feature space, and the process of finding the non-dominated features will continue until all the features are sorted. To illustrate the optimality and efficiency of the proposed method, we have compared our approach with some ensemble feature selection methods and basic algorithms used in the ensemble process. The results show that our method in terms of accuracy and F-score is superior to other similar methods and performs in a short running-time. |
|---|---|
| AbstractList | •We have designed a method for ensemble feature selection.•We model the feature selection process to a Pareto-based optimization problem.•The crowding distance between solutions is the secondary measure.•The method is an ensemble of relevancy and redundancy methods.•The proposed PEFS method outperforms competitive algorithms.
In this paper, ensemble feature selection is modeled as a bi-objective optimization problem regarding features’ relevancy and redundancy degree. The proposed method, which is called PEFS, first uses the modeled bi-objective optimization problem to find the non-dominated features based on the decision matrix constructed by different feature selection algorithms. In the second step, the found non-dominated features are sorted using the crowding distance in the bi-objective space. These sorted features remove from the feature space, and the process of finding the non-dominated features will continue until all the features are sorted. To illustrate the optimality and efficiency of the proposed method, we have compared our approach with some ensemble feature selection methods and basic algorithms used in the ensemble process. The results show that our method in terms of accuracy and F-score is superior to other similar methods and performs in a short running-time. In this paper, ensemble feature selection is modeled as a bi-objective optimization problem regarding features' relevancy and redundancy degree. The proposed method, which is called PEFS, first uses the modeled bi-objective optimization problem to find the non-dominated features based on the decision matrix constructed by different feature selection algorithms. In the second step, the found non-dominated features are sorted using the crowding distance in the bi-objective space. These sorted features remove from the feature space, and the process of finding the non-dominated features will continue until all the features are sorted. To illustrate the optimality and efficiency of the proposed method, we have compared our approach with some ensemble feature selection methods and basic algorithms used in the ensemble process. The results show that our method in terms of accuracy and F-score is superior to other similar methods and performs in a short running-time. |
| ArticleNumber | 115130 |
| Author | Bagher Dowlatshahi, Mohammad Hashemi, Amin Nezamabadi-pour, Hossein |
| Author_xml | – sequence: 1 givenname: Amin surname: Hashemi fullname: Hashemi, Amin email: hashemi.am@fe.lu.ac.ir organization: Department of Computer Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran – sequence: 2 givenname: Mohammad surname: Bagher Dowlatshahi fullname: Bagher Dowlatshahi, Mohammad email: dowlatshahi.mb@lu.ac.ir organization: Department of Computer Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran – sequence: 3 givenname: Hossein surname: Nezamabadi-pour fullname: Nezamabadi-pour, Hossein email: nezam@uk.ac.ir organization: Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran |
| BookMark | eNp9kE1Lw0AQhhepYFv9A54CnhP3K9kEvJTiFxS86HmZbCa6Ic3W3a3ivzchnjz0NDC8zzvMsyKLwQ1IyDWjGaOsuO0yDN-QccpZxljOBD0jS1YqkRaqEguypFWuUsmUvCCrEDpKmaJULYnaJAfwGF1aQ8AmwSHgvu4xcW3SIsSjxyRgjyZaNyTQvztv48c-XJLzFvqAV39zTd4e7l-3T-nu5fF5u9mlRvAypkoyqMqi4LTlQiAra1NinpdGtsjBmAalyRFBMJB5jU0LVFZ0XHNqajC1WJObuffg3ecRQ9SdO_phPKl5Lis-dfMxxeeU8S4Ej60-eLsH_6MZ1ZMg3elJkJ4E6VnQCJX_IGMjTH9GD7Y_jd7NKI6vf1n0OhiLg8HG-lGVbpw9hf8CXKODag |
| CitedBy_id | crossref_primary_10_1002_int_23044 crossref_primary_10_1631_FITEE_2100569 crossref_primary_10_1016_j_asoc_2022_109747 crossref_primary_10_1007_s11760_024_03088_2 crossref_primary_10_12720_jait_15_4_480_491 crossref_primary_10_3390_app12063209 crossref_primary_10_1155_2024_5529847 crossref_primary_10_1016_j_ins_2021_09_052 crossref_primary_10_32604_cmes_2024_053373 crossref_primary_10_1007_s00521_023_09089_5 crossref_primary_10_1016_j_asoc_2024_112019 crossref_primary_10_1016_j_asoc_2023_110319 crossref_primary_10_1016_j_knosys_2024_112345 crossref_primary_10_1016_j_engappai_2025_110403 crossref_primary_10_1007_s13042_022_01616_5 crossref_primary_10_1016_j_eswa_2024_123521 crossref_primary_10_1016_j_knosys_2021_107538 crossref_primary_10_1007_s00521_024_10837_4 crossref_primary_10_1016_j_eswa_2022_117040 crossref_primary_10_1016_j_engappai_2024_107865 crossref_primary_10_1080_0952813X_2023_2183273 crossref_primary_10_1016_j_ins_2023_119619 crossref_primary_10_1016_j_eswa_2022_117002 crossref_primary_10_3390_e26110992 crossref_primary_10_1088_1361_665X_ad72c0 crossref_primary_10_1016_j_patrec_2023_02_027 crossref_primary_10_1016_j_neucom_2024_128596 crossref_primary_10_1016_j_asoc_2022_109046 |
| Cites_doi | 10.1145/3136625 10.1016/j.inffus.2018.11.019 10.1109/TEVC.2015.2420112 10.1007/s13042-020-01180-w 10.1007/s40747-017-0060-x 10.1162/evco_a_00204 10.1111/j.1475-3995.2000.tb00182.x 10.1016/j.knosys.2017.10.028 10.1016/j.ejor.2017.06.033 10.1016/j.knosys.2020.106097 10.1016/j.inffus.2018.11.008 10.1007/BF02985802 10.1038/nm0102-68 10.1016/j.neucom.2017.11.077 10.1016/j.asoc.2018.04.033 10.1007/s13369-020-04683-4 10.1109/TPAMI.2010.215 10.1080/21642583.2020.1723142 10.1145/1068009.1068047 10.1016/j.enbuild.2016.06.043 10.1016/j.eswa.2018.08.049 10.1016/j.procs.2016.07.111 10.7763/IJMLC.2012.V2.148 10.1016/j.trgeo.2020.100446 10.1016/j.patcog.2016.11.003 10.1016/j.knosys.2017.02.013 10.1007/s13042-020-01120-8 10.1109/TEVC.2014.2308305 10.1016/j.neucom.2015.02.045 10.1016/j.patrec.2018.07.018 10.1016/j.asoc.2016.11.021 10.1016/j.ins.2018.12.033 10.1016/j.artint.2015.06.007 10.1007/s11634-017-0285-y 10.1007/978-3-319-90080-3_6 10.1016/j.knosys.2016.11.017 10.1016/j.knosys.2019.105285 10.2478/cait-2019-0001 10.1016/j.engappai.2014.07.016 10.3390/informatics5010013 10.1016/j.eswa.2021.114737 10.1016/j.knosys.2020.106365 10.1002/9780470496916 10.1016/j.ins.2013.09.034 10.1016/j.eswa.2020.113842 10.1016/j.eswa.2019.113024 10.2307/2669565 10.1504/IJBIC.2010.036158 10.18178/ijmlc.2019.9.5.846 10.1007/s10462-016-9516-4 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Oct 15, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Oct 15, 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2021.115130 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2021_115130 S0957417421005716 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-741a986620f233e18bc8e558c4fe2accde4c5eea31a45bedfa0490cde20cbacb3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Fri Jul 25 07:26:44 EDT 2025 Sat Oct 25 05:32:34 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 Fri Feb 23 02:35:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Crowding distance Pareto-based method Bi-objective optimization Ensemble feature selection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-741a986620f233e18bc8e558c4fe2accde4c5eea31a45bedfa0490cde20cbacb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2549286622 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2549286622 crossref_primary_10_1016_j_eswa_2021_115130 crossref_citationtrail_10_1016_j_eswa_2021_115130 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115130 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-15 |
| PublicationDateYYYYMMDD | 2021-10-15 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Michalak, Kwasnicka (b0175) 2010; 2 Ehrgott (b0110) 2000; 7 Dowlatshahi, Derhami, Nezamabadi-Pour (b0055) 2020; 17 Dowlatshahi, Derhami, Nezamabadi-pour (b0070) 2017; 8 Paniri, Dowlatshahi, Nezamabadi-pour (b0205) 2020; 192 Shipp, Ross, Tamayo, Weng, Kutok, Aguiar, Golub (b0250) 2002; 8 Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. New York: John Wiley, Section, 10, l. Miao, Niu (b0170) 2016; 91 Dowlatshahi, Nezamabadi-Pour (b0075) 2014; 36 Bolón-Canedo, V., & Alonso-Betanzos, A. (2018). Evaluation of ensembles for feature selection. In Intelligent Systems Reference Library (Vol. 147, pp. 97–113). https://doi.org/10.1007/978-3-319-90080-3_6. Bache, Lichman (b0010) 2013 Dowlatshahi, Rezaeian (b0085) 2016 Ng, Tuo, Zhang, Kwong (b0195) 2020; 11 Tsai, Sung (b0265) 2020; 203 Zhou, Zhang, Zhou, Guo, Ma (b0305) 2021; 164 Yuan, Xu, Wang, Yao (b0290) 2016; 20 Bolón-Canedo, Alonso-Betanzos (b0030) 2019; 52 Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. In Metaheuristics: From Design to Implementation. https://doi.org/10.1002/9780470496916. Hashemi, Dowlatshahi, Nezamabadi-Pour (b0140) 2021; 12 Bayati, Dowlatshahi, Paniri (b0015) 2020 Dowlatshahi, Nezamabadi-Pour, Mashinchi (b0080) 2014; 258 Momeni, Yarivand, Dowlatshahi, Armaghani (b0190) 2021; 26 Zhang, Nie, Li, Wei (b0300) 2019; 50 Venkatesh, Anuradha (b0270) 2019; 19 Hashemi, Dowlatshahi, Nezamabadi-pour (b0125) 2020; 142 Raquel, Naval (b0225) 2005 Gustavsson, Syberfeldt (b0115) 2018; 26 Duleba, Moslem (b0100) 2019; 116 Ebrahimpour, Eftekhari (b0105) 2017; 50 Bozóki, Fülöp (b0035) 2018; 264 Xu, Chong, Karaguzel, Lam (b0285) 2016; 127 Cai, Luo, Wang, Yang (b0040) 2018; 300 Zeng, Cheung (b0295) 2011; 33 Reyes, Morell, Ventura (b0230) 2015; 161 Zhu, Bin Yang (b0310) 2018; 112 Tian, Zhang, Wang, Geng, Wang (b0260) 2020; 8 Pereira, Plastino, Zadrozny, Merschmann (b0210) 2018; 49 Samaria, Harter (b0235) 1994; 138–142 Jadhav, He, Jenkins (b0155) 2018; 69 Nouri-Moghaddam, Ghazanfari, Fathian (b0200) 2021; 175 Seijo-Pardo, Porto-Díaz, Bolón-Canedo, Alonso-Betanzos (b0240) 2017; 118 Dowlatshahi, Derhami (b0060) 2017; 5 Dowlatshahi, Derhami, Nezamabadi-pour (b0065) 2018; 5 Drotár, Gazda, Vokorokos (b0090) 2019; 480 Hancer, Xue, Zhang (b0120) 2018; 140 Sheikhpour, Sarram, Gharaghani, Chahooki (b0245) 2017; 64 Li, Yang, Liu (b0165) 2015; 228 Zhang, Tian, Cheng, Jin (b0280) 2015; 19 Hashemi, Dowlatshahi, Nezamabadi-pour (b0135) 2020; 206 Rafsanjani, Dowlatshahi (b0215) 2012 Das, Das, Ghosh (b0050) 2017; 123 Momeni, Dowlatshahi, Omidinasab, Maizir, Armaghani (b0185) 2020; 45 Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b0160) 2018; 50 Von Lücken, Barán, Brizuela (b0275) 2014; 58 Coakley, Conover (b0045) 2000; 95 Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Math. Intell. https://doi.org/10.1007/BF02985802. Rafsanjani, Dowlatshahi, Nezamabadi-Pour (b0220) 2015; 10 Hashemi, Dowlatshahi (b0130) 2020 Ben Brahim, Limam (b0020) 2018; 12 Mlambo (b0180) 2016; 5 Ansari, Ahmad, Doja (b0005) 2019; 9 Hoque, Singh, Bhattacharyya (b0150) 2018; 4 Zhang (10.1016/j.eswa.2021.115130_b0280) 2015; 19 Bozóki (10.1016/j.eswa.2021.115130_b0035) 2018; 264 Michalak (10.1016/j.eswa.2021.115130_b0175) 2010; 2 Bayati (10.1016/j.eswa.2021.115130_b0015) 2020 Dowlatshahi (10.1016/j.eswa.2021.115130_b0080) 2014; 258 Bolón-Canedo (10.1016/j.eswa.2021.115130_b0030) 2019; 52 Ehrgott (10.1016/j.eswa.2021.115130_b0110) 2000; 7 Mlambo (10.1016/j.eswa.2021.115130_b0180) 2016; 5 Samaria (10.1016/j.eswa.2021.115130_b0235) 1994; 138–142 Dowlatshahi (10.1016/j.eswa.2021.115130_b0060) 2017; 5 Das (10.1016/j.eswa.2021.115130_b0050) 2017; 123 Pereira (10.1016/j.eswa.2021.115130_b0210) 2018; 49 Li (10.1016/j.eswa.2021.115130_b0165) 2015; 228 Cai (10.1016/j.eswa.2021.115130_b0040) 2018; 300 Hashemi (10.1016/j.eswa.2021.115130_b0140) 2021; 12 Jadhav (10.1016/j.eswa.2021.115130_b0155) 2018; 69 Hashemi (10.1016/j.eswa.2021.115130_b0125) 2020; 142 Venkatesh (10.1016/j.eswa.2021.115130_b0270) 2019; 19 Von Lücken (10.1016/j.eswa.2021.115130_b0275) 2014; 58 Hoque (10.1016/j.eswa.2021.115130_b0150) 2018; 4 Yuan (10.1016/j.eswa.2021.115130_b0290) 2016; 20 Ng (10.1016/j.eswa.2021.115130_b0195) 2020; 11 Xu (10.1016/j.eswa.2021.115130_b0285) 2016; 127 10.1016/j.eswa.2021.115130_b0025 Dowlatshahi (10.1016/j.eswa.2021.115130_b0070) 2017; 8 10.1016/j.eswa.2021.115130_b0145 Dowlatshahi (10.1016/j.eswa.2021.115130_b0075) 2014; 36 Sheikhpour (10.1016/j.eswa.2021.115130_b0245) 2017; 64 Reyes (10.1016/j.eswa.2021.115130_b0230) 2015; 161 Momeni (10.1016/j.eswa.2021.115130_b0190) 2021; 26 Momeni (10.1016/j.eswa.2021.115130_b0185) 2020; 45 Zhu (10.1016/j.eswa.2021.115130_b0310) 2018; 112 Drotár (10.1016/j.eswa.2021.115130_b0090) 2019; 480 Miao (10.1016/j.eswa.2021.115130_b0170) 2016; 91 Ansari (10.1016/j.eswa.2021.115130_b0005) 2019; 9 Raquel (10.1016/j.eswa.2021.115130_b0225) 2005 Hashemi (10.1016/j.eswa.2021.115130_b0130) 2020 Seijo-Pardo (10.1016/j.eswa.2021.115130_b0240) 2017; 118 Tsai (10.1016/j.eswa.2021.115130_b0265) 2020; 203 Bache (10.1016/j.eswa.2021.115130_b0010) 2013 Ben Brahim (10.1016/j.eswa.2021.115130_b0020) 2018; 12 Dowlatshahi (10.1016/j.eswa.2021.115130_b0055) 2020; 17 Shipp (10.1016/j.eswa.2021.115130_b0250) 2002; 8 Li (10.1016/j.eswa.2021.115130_b0160) 2018; 50 Nouri-Moghaddam (10.1016/j.eswa.2021.115130_b0200) 2021; 175 Rafsanjani (10.1016/j.eswa.2021.115130_b0220) 2015; 10 10.1016/j.eswa.2021.115130_b0255 Hancer (10.1016/j.eswa.2021.115130_b0120) 2018; 140 Dowlatshahi (10.1016/j.eswa.2021.115130_b0085) 2016 10.1016/j.eswa.2021.115130_b0095 Coakley (10.1016/j.eswa.2021.115130_b0045) 2000; 95 Dowlatshahi (10.1016/j.eswa.2021.115130_b0065) 2018; 5 Duleba (10.1016/j.eswa.2021.115130_b0100) 2019; 116 Rafsanjani (10.1016/j.eswa.2021.115130_b0215) 2012 Tian (10.1016/j.eswa.2021.115130_b0260) 2020; 8 Zhou (10.1016/j.eswa.2021.115130_b0305) 2021; 164 Paniri (10.1016/j.eswa.2021.115130_b0205) 2020; 192 Zeng (10.1016/j.eswa.2021.115130_b0295) 2011; 33 Hashemi (10.1016/j.eswa.2021.115130_b0135) 2020; 206 Zhang (10.1016/j.eswa.2021.115130_b0300) 2019; 50 Ebrahimpour (10.1016/j.eswa.2021.115130_b0105) 2017; 50 Gustavsson (10.1016/j.eswa.2021.115130_b0115) 2018; 26 |
| References_xml | – volume: 12 start-page: 459 year: 2021 end-page: 475 ident: b0140 article-title: A bipartite matching-based feature selection for multi-label learning publication-title: International Journal of Machine Learning and Cybernetics – volume: 17 start-page: 7 year: 2020 end-page: 24 ident: b0055 article-title: Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization publication-title: Iranian Journal of Fuzzy Systems – volume: 52 start-page: 1 year: 2019 end-page: 12 ident: b0030 article-title: Ensembles for feature selection: A review and future trends publication-title: Information Fusion – volume: 9 start-page: 599 year: 2019 end-page: 608 ident: b0005 article-title: Ensemble of feature ranking methods using hesitant fuzzy sets for sentiment classification publication-title: International Journal of Machine Learning and Computing – volume: 175 start-page: 114737 year: 2021 ident: b0200 article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection publication-title: Expert Systems with Applications – volume: 127 start-page: 714 year: 2016 end-page: 729 ident: b0285 article-title: Improving evolutionary algorithm performance for integer type multi-objective building system design optimization publication-title: Energy and Buildings – volume: 5 start-page: 169 year: 2017 end-page: 181 ident: b0060 article-title: Winner determination in combinatorial auctions using hybrid ant colony optimization and multi-neighborhood local search publication-title: Journal of AI and Data Mining – volume: 95 start-page: 332 year: 2000 ident: b0045 article-title: Practical Nonparametric Statistics publication-title: Journal of the American Statistical Association – reference: Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. New York: John Wiley, Section, 10, l. – volume: 50 start-page: 1 year: 2018 end-page: 45 ident: b0160 article-title: Feature selection: A data perspective publication-title: ACM Computing Surveys – volume: 36 start-page: 114 year: 2014 end-page: 121 ident: b0075 article-title: GGSA: A grouping gravitational search algorithm for data clustering publication-title: Engineering Applications of Artificial Intelligence – volume: 45 start-page: 8255 year: 2020 end-page: 8267 ident: b0185 article-title: Gaussian process regression technique to estimate the pile bearing capacity publication-title: Arabian Journal for Science and Engineering – start-page: 257 year: 2005 end-page: 264 ident: b0225 article-title: An effective use of crowding distance in multiobjective particle swarm optimization publication-title: GECCO 2005 - Genetic and Evolutionary Computation Conference – year: 2013 ident: b0010 article-title: Repository, UCI machine learning – volume: 480 start-page: 365 year: 2019 end-page: 380 ident: b0090 article-title: Ensemble feature selection using election methods and ranker clustering publication-title: Information Sciences – volume: 116 start-page: 21 year: 2019 end-page: 30 ident: b0100 article-title: Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development publication-title: Expert Systems with Applications – volume: 123 start-page: 116 year: 2017 end-page: 127 ident: b0050 article-title: Ensemble feature selection using bi-objective genetic algorithm publication-title: Knowledge-Based Systems – volume: 192 start-page: 105285 year: 2020 ident: b0205 article-title: MLACO: A multi-label feature selection algorithm based on ant colony optimization publication-title: Knowledge-Based Systems – volume: 69 start-page: 541 year: 2018 end-page: 553 ident: b0155 article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating publication-title: Applied Soft Computing Journal – volume: 228 start-page: 45 year: 2015 end-page: 65 ident: b0165 article-title: Bi-goal evolution for many-objective optimization problems publication-title: Artificial Intelligence – volume: 118 start-page: 124 year: 2017 end-page: 139 ident: b0240 article-title: Ensemble feature selection: Homogeneous and heterogeneous approaches publication-title: Knowledge-Based Systems – reference: Bolón-Canedo, V., & Alonso-Betanzos, A. (2018). Evaluation of ensembles for feature selection. In Intelligent Systems Reference Library (Vol. 147, pp. 97–113). https://doi.org/10.1007/978-3-319-90080-3_6. – volume: 264 start-page: 419 year: 2018 end-page: 427 ident: b0035 article-title: Efficient weight vectors from pairwise comparison matrices publication-title: European Journal of Operational Research – volume: 258 start-page: 94 year: 2014 end-page: 107 ident: b0080 article-title: A discrete gravitational search algorithm for solving combinatorial optimization problems publication-title: Information Sciences – volume: 300 start-page: 70 year: 2018 end-page: 79 ident: b0040 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing – volume: 91 start-page: 919 year: 2016 end-page: 926 ident: b0170 article-title: A survey on feature selection publication-title: Procedia Computer Science – start-page: 1 year: 2020 end-page: 7 ident: b0130 article-title: MLCR: A fast multi-label feature selection method based on K-means and L2-norm publication-title: 2020 25th International Computer Conference, Computer Society of Iran (CSICC) – volume: 8 start-page: 152 year: 2017 ident: b0070 article-title: Ensemble of filter-based rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset selection publication-title: Information (Switzerland) – volume: 50 start-page: 300 year: 2017 end-page: 312 ident: b0105 article-title: Ensemble of feature selection methods: A hesitant fuzzy sets approach publication-title: Applied Soft Computing Journal – volume: 20 start-page: 16 year: 2016 end-page: 37 ident: b0290 article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 64 start-page: 141 year: 2017 end-page: 158 ident: b0245 article-title: A Survey on semi-supervised feature selection methods publication-title: Pattern Recognition – volume: 11 start-page: 2313 year: 2020 end-page: 2326 ident: b0195 article-title: Training error and sensitivity-based ensemble feature selection publication-title: International Journal of Machine Learning and Cybernetics – volume: 112 start-page: 219 year: 2018 end-page: 225 ident: b0310 article-title: Discriminative embedded unsupervised feature selection publication-title: Pattern Recognition Letters – volume: 19 start-page: 3 year: 2019 end-page: 26 ident: b0270 article-title: A review of Feature Selection and its methods publication-title: Cybernetics and Information Technologies – year: 2016 ident: b0085 article-title: Training spiking neurons with gravitational search algorithm for data classification publication-title: 1st Conference on Swarm Intelligence and Evolutionary Computation – start-page: 1 year: 2020 end-page: 6 ident: b0015 article-title: MLPSO: A filter multi-label feature selection based on particle swarm optimization publication-title: 2020 25th International Computer Conference, Computer Society of Iran (CSICC) – volume: 49 start-page: 57 year: 2018 end-page: 78 ident: b0210 article-title: Categorizing feature selection methods for multi-label classification publication-title: Artificial Intelligence Review – volume: 26 start-page: 89 year: 2018 end-page: 116 ident: b0115 article-title: A new algorithm using the non-dominated tree to improve non-dominated sorting publication-title: Evolutionary Computation – volume: 50 start-page: 158 year: 2019 end-page: 167 ident: b0300 article-title: Feature selection with multi-view data: A survey publication-title: Information Fusion – volume: 2 start-page: 319 year: 2010 end-page: 332 ident: b0175 article-title: Correlation based feature selection method publication-title: International Journal of Bio-Inspired Computation – volume: 164 start-page: 113842 year: 2021 ident: b0305 article-title: A feature selection algorithm of decision tree based on feature weight publication-title: Expert Systems with Applications – volume: 138–142 year: 1994 ident: b0235 article-title: Parameterisation of a stochastic model for human face identification publication-title: IEEE Workshop on Applications of Computer Vision – Proceedings – volume: 142 start-page: 113024 year: 2020 ident: b0125 article-title: MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality publication-title: Expert Systems with Applications – volume: 7 start-page: 5 year: 2000 end-page: 31 ident: b0110 article-title: Approximation algorithms for combinatorial multicriteria optimization problems publication-title: International Transactions in Operational Research – volume: 161 start-page: 168 year: 2015 end-page: 182 ident: b0230 article-title: Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context publication-title: Neurocomputing – volume: 5 start-page: 13 year: 2018 ident: b0065 article-title: A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification publication-title: Informatics – volume: 5 start-page: 57 year: 2016 end-page: 67 ident: b0180 article-title: A survey and comparative study of filter and wrapper feature selection techniques publication-title: The International Journal Of Engineering And Science (IJES) – volume: 26 start-page: 100446 year: 2021 ident: b0190 article-title: An efficient optimal neural network based on gravitational search algorithm in predicting the deformation of geogrid-reinforced soil structures publication-title: Transportation Geotechnics – reference: Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. In Metaheuristics: From Design to Implementation. https://doi.org/10.1002/9780470496916. – volume: 10 start-page: 81 year: 2015 end-page: 93 ident: b0220 article-title: Gravitational search algorithm to solve the K-of-N lifetime problem in two-tiered WSNs publication-title: Iranian Journal of Mathematical Sciences and Informatics – start-page: 377 year: 2012 end-page: 380 ident: b0215 article-title: Using gravitational search algorithm for finding near-optimal base station location in two-tiered WSNs publication-title: International Journal of Machine Learning and Computing – volume: 33 start-page: 1532 year: 2011 end-page: 1547 ident: b0295 article-title: Feature selection and kernel learning for local learning-based clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 19 start-page: 201 year: 2015 end-page: 213 ident: b0280 article-title: An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 12 start-page: 937 year: 2018 end-page: 952 ident: b0020 article-title: Ensemble feature selection for high dimensional data: A new method and a comparative study publication-title: Advances in Data Analysis and Classification – volume: 4 start-page: 105 year: 2018 end-page: 118 ident: b0150 article-title: EFS-MI: An ensemble feature selection method for classification publication-title: Complex & Intelligent Systems – volume: 8 start-page: 83 year: 2020 end-page: 96 ident: b0260 article-title: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection publication-title: Systems Science and Control Engineering – volume: 206 start-page: 106365 year: 2020 ident: b0135 article-title: MFS-MCDM: Multi-label feature selection using multi-criteria decision making publication-title: Knowledge-Based Systems – reference: Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Math. Intell. https://doi.org/10.1007/BF02985802. – volume: 8 start-page: 68 year: 2002 end-page: 74 ident: b0250 article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning publication-title: Nature Medicine – volume: 203 start-page: 106097 year: 2020 ident: b0265 article-title: Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches publication-title: Knowledge-Based Systems – volume: 140 start-page: 103 year: 2018 end-page: 119 ident: b0120 article-title: Differential evolution for filter feature selection based on information theory and feature ranking publication-title: Knowledge-Based Systems – volume: 58 start-page: 707 year: 2014 end-page: 756 ident: b0275 article-title: A survey on multi-objective evolutionary algorithms for many-objective problems publication-title: Computational Optimization and Applications – volume: 50 start-page: 1 issue: 6 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0160 article-title: Feature selection: A data perspective publication-title: ACM Computing Surveys doi: 10.1145/3136625 – volume: 50 start-page: 158 year: 2019 ident: 10.1016/j.eswa.2021.115130_b0300 article-title: Feature selection with multi-view data: A survey publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.019 – volume: 20 start-page: 16 issue: 1 year: 2016 ident: 10.1016/j.eswa.2021.115130_b0290 article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2015.2420112 – volume: 12 start-page: 459 issue: 2 year: 2021 ident: 10.1016/j.eswa.2021.115130_b0140 article-title: A bipartite matching-based feature selection for multi-label learning publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-020-01180-w – volume: 4 start-page: 105 issue: 2 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0150 article-title: EFS-MI: An ensemble feature selection method for classification publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-017-0060-x – volume: 26 start-page: 89 issue: 1 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0115 article-title: A new algorithm using the non-dominated tree to improve non-dominated sorting publication-title: Evolutionary Computation doi: 10.1162/evco_a_00204 – volume: 7 start-page: 5 issue: 1 year: 2000 ident: 10.1016/j.eswa.2021.115130_b0110 article-title: Approximation algorithms for combinatorial multicriteria optimization problems publication-title: International Transactions in Operational Research doi: 10.1111/j.1475-3995.2000.tb00182.x – volume: 140 start-page: 103 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0120 article-title: Differential evolution for filter feature selection based on information theory and feature ranking publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.10.028 – volume: 264 start-page: 419 issue: 2 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0035 article-title: Efficient weight vectors from pairwise comparison matrices publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.06.033 – volume: 203 start-page: 106097 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0265 article-title: Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106097 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0130 article-title: MLCR: A fast multi-label feature selection method based on K-means and L2-norm – year: 2016 ident: 10.1016/j.eswa.2021.115130_b0085 article-title: Training spiking neurons with gravitational search algorithm for data classification – volume: 52 start-page: 1 year: 2019 ident: 10.1016/j.eswa.2021.115130_b0030 article-title: Ensembles for feature selection: A review and future trends publication-title: Information Fusion doi: 10.1016/j.inffus.2018.11.008 – ident: 10.1016/j.eswa.2021.115130_b0145 doi: 10.1007/BF02985802 – volume: 8 start-page: 68 issue: 1 year: 2002 ident: 10.1016/j.eswa.2021.115130_b0250 article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning publication-title: Nature Medicine doi: 10.1038/nm0102-68 – volume: 300 start-page: 70 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0040 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 17 start-page: 7 issue: 4 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0055 article-title: Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization publication-title: Iranian Journal of Fuzzy Systems – volume: 69 start-page: 541 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0155 article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2018.04.033 – volume: 45 start-page: 8255 issue: 10 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0185 article-title: Gaussian process regression technique to estimate the pile bearing capacity publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-020-04683-4 – volume: 33 start-page: 1532 issue: 8 year: 2011 ident: 10.1016/j.eswa.2021.115130_b0295 article-title: Feature selection and kernel learning for local learning-based clustering publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.215 – volume: 5 start-page: 57 issue: 8 year: 2016 ident: 10.1016/j.eswa.2021.115130_b0180 article-title: A survey and comparative study of filter and wrapper feature selection techniques publication-title: The International Journal Of Engineering And Science (IJES) – volume: 8 start-page: 152 issue: 4 year: 2017 ident: 10.1016/j.eswa.2021.115130_b0070 article-title: Ensemble of filter-based rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset selection publication-title: Information (Switzerland) – volume: 8 start-page: 83 issue: 1 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0260 article-title: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection publication-title: Systems Science and Control Engineering doi: 10.1080/21642583.2020.1723142 – start-page: 257 year: 2005 ident: 10.1016/j.eswa.2021.115130_b0225 article-title: An effective use of crowding distance in multiobjective particle swarm optimization publication-title: GECCO 2005 - Genetic and Evolutionary Computation Conference doi: 10.1145/1068009.1068047 – volume: 127 start-page: 714 year: 2016 ident: 10.1016/j.eswa.2021.115130_b0285 article-title: Improving evolutionary algorithm performance for integer type multi-objective building system design optimization publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2016.06.043 – volume: 116 start-page: 21 year: 2019 ident: 10.1016/j.eswa.2021.115130_b0100 article-title: Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.08.049 – volume: 91 start-page: 919 year: 2016 ident: 10.1016/j.eswa.2021.115130_b0170 article-title: A survey on feature selection publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.07.111 – start-page: 377 year: 2012 ident: 10.1016/j.eswa.2021.115130_b0215 article-title: Using gravitational search algorithm for finding near-optimal base station location in two-tiered WSNs publication-title: International Journal of Machine Learning and Computing doi: 10.7763/IJMLC.2012.V2.148 – volume: 26 start-page: 100446 year: 2021 ident: 10.1016/j.eswa.2021.115130_b0190 article-title: An efficient optimal neural network based on gravitational search algorithm in predicting the deformation of geogrid-reinforced soil structures publication-title: Transportation Geotechnics doi: 10.1016/j.trgeo.2020.100446 – volume: 138–142 year: 1994 ident: 10.1016/j.eswa.2021.115130_b0235 article-title: Parameterisation of a stochastic model for human face identification publication-title: IEEE Workshop on Applications of Computer Vision – Proceedings – volume: 64 start-page: 141 year: 2017 ident: 10.1016/j.eswa.2021.115130_b0245 article-title: A Survey on semi-supervised feature selection methods publication-title: Pattern Recognition doi: 10.1016/j.patcog.2016.11.003 – volume: 5 start-page: 169 issue: 2 year: 2017 ident: 10.1016/j.eswa.2021.115130_b0060 article-title: Winner determination in combinatorial auctions using hybrid ant colony optimization and multi-neighborhood local search publication-title: Journal of AI and Data Mining – volume: 123 start-page: 116 year: 2017 ident: 10.1016/j.eswa.2021.115130_b0050 article-title: Ensemble feature selection using bi-objective genetic algorithm publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.02.013 – volume: 11 start-page: 2313 issue: 10 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0195 article-title: Training error and sensitivity-based ensemble feature selection publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-020-01120-8 – volume: 10 start-page: 81 issue: 1 year: 2015 ident: 10.1016/j.eswa.2021.115130_b0220 article-title: Gravitational search algorithm to solve the K-of-N lifetime problem in two-tiered WSNs publication-title: Iranian Journal of Mathematical Sciences and Informatics – volume: 19 start-page: 201 issue: 2 year: 2015 ident: 10.1016/j.eswa.2021.115130_b0280 article-title: An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2014.2308305 – volume: 161 start-page: 168 year: 2015 ident: 10.1016/j.eswa.2021.115130_b0230 article-title: Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.02.045 – volume: 112 start-page: 219 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0310 article-title: Discriminative embedded unsupervised feature selection publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2018.07.018 – volume: 58 start-page: 707 issue: 3 year: 2014 ident: 10.1016/j.eswa.2021.115130_b0275 article-title: A survey on multi-objective evolutionary algorithms for many-objective problems publication-title: Computational Optimization and Applications – year: 2013 ident: 10.1016/j.eswa.2021.115130_b0010 – volume: 50 start-page: 300 year: 2017 ident: 10.1016/j.eswa.2021.115130_b0105 article-title: Ensemble of feature selection methods: A hesitant fuzzy sets approach publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2016.11.021 – volume: 480 start-page: 365 year: 2019 ident: 10.1016/j.eswa.2021.115130_b0090 article-title: Ensemble feature selection using election methods and ranker clustering publication-title: Information Sciences doi: 10.1016/j.ins.2018.12.033 – volume: 228 start-page: 45 year: 2015 ident: 10.1016/j.eswa.2021.115130_b0165 article-title: Bi-goal evolution for many-objective optimization problems publication-title: Artificial Intelligence doi: 10.1016/j.artint.2015.06.007 – volume: 12 start-page: 937 issue: 4 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0020 article-title: Ensemble feature selection for high dimensional data: A new method and a comparative study publication-title: Advances in Data Analysis and Classification doi: 10.1007/s11634-017-0285-y – ident: 10.1016/j.eswa.2021.115130_b0025 doi: 10.1007/978-3-319-90080-3_6 – volume: 118 start-page: 124 year: 2017 ident: 10.1016/j.eswa.2021.115130_b0240 article-title: Ensemble feature selection: Homogeneous and heterogeneous approaches publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2016.11.017 – volume: 192 start-page: 105285 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0205 article-title: MLACO: A multi-label feature selection algorithm based on ant colony optimization publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2019.105285 – volume: 19 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.eswa.2021.115130_b0270 article-title: A review of Feature Selection and its methods publication-title: Cybernetics and Information Technologies doi: 10.2478/cait-2019-0001 – volume: 36 start-page: 114 year: 2014 ident: 10.1016/j.eswa.2021.115130_b0075 article-title: GGSA: A grouping gravitational search algorithm for data clustering publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2014.07.016 – start-page: 1 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0015 article-title: MLPSO: A filter multi-label feature selection based on particle swarm optimization – volume: 5 start-page: 13 issue: 1 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0065 article-title: A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification publication-title: Informatics doi: 10.3390/informatics5010013 – volume: 175 start-page: 114737 year: 2021 ident: 10.1016/j.eswa.2021.115130_b0200 article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.114737 – volume: 206 start-page: 106365 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0135 article-title: MFS-MCDM: Multi-label feature selection using multi-criteria decision making publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106365 – ident: 10.1016/j.eswa.2021.115130_b0255 doi: 10.1002/9780470496916 – ident: 10.1016/j.eswa.2021.115130_b0095 – volume: 258 start-page: 94 year: 2014 ident: 10.1016/j.eswa.2021.115130_b0080 article-title: A discrete gravitational search algorithm for solving combinatorial optimization problems publication-title: Information Sciences doi: 10.1016/j.ins.2013.09.034 – volume: 164 start-page: 113842 year: 2021 ident: 10.1016/j.eswa.2021.115130_b0305 article-title: A feature selection algorithm of decision tree based on feature weight publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113842 – volume: 142 start-page: 113024 year: 2020 ident: 10.1016/j.eswa.2021.115130_b0125 article-title: MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.113024 – volume: 95 start-page: 332 issue: 449 year: 2000 ident: 10.1016/j.eswa.2021.115130_b0045 article-title: Practical Nonparametric Statistics publication-title: Journal of the American Statistical Association doi: 10.2307/2669565 – volume: 2 start-page: 319 issue: 5 year: 2010 ident: 10.1016/j.eswa.2021.115130_b0175 article-title: Correlation based feature selection method publication-title: International Journal of Bio-Inspired Computation doi: 10.1504/IJBIC.2010.036158 – volume: 9 start-page: 599 issue: 5 year: 2019 ident: 10.1016/j.eswa.2021.115130_b0005 article-title: Ensemble of feature ranking methods using hesitant fuzzy sets for sentiment classification publication-title: International Journal of Machine Learning and Computing doi: 10.18178/ijmlc.2019.9.5.846 – volume: 49 start-page: 57 issue: 1 year: 2018 ident: 10.1016/j.eswa.2021.115130_b0210 article-title: Categorizing feature selection methods for multi-label classification publication-title: Artificial Intelligence Review doi: 10.1007/s10462-016-9516-4 |
| SSID | ssj0017007 |
| Score | 2.529778 |
| Snippet | •We have designed a method for ensemble feature selection.•We model the feature selection process to a Pareto-based optimization problem.•The crowding distance... In this paper, ensemble feature selection is modeled as a bi-objective optimization problem regarding features' relevancy and redundancy degree. The proposed... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115130 |
| SubjectTerms | Algorithms Bi-objective optimization Crowding distance Ensemble feature selection Feature selection Optimization Pareto-based method Redundancy |
| Title | A pareto-based ensemble of feature selection algorithms |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.115130 https://www.proquest.com/docview/2549286622 |
| Volume | 180 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCy8EeUlD2zINHbsxh2rClRAsEAlNst2LlDUl2gQG78dX-JUAiEGxlh2lHwX352V774j5MxrqdPcd5mWsmAy1cCsyBRzIZRBkmU6d1g7fHffGQzlzZN6WiH9phYGaZXR99c-vfLWcaQd0WzPR6P2Q0gOQjgMRzuOFZUcZbelzLCLwcXnkuaB8nNZrbeXMZwdC2dqjhcsPlB7SPDgORRHJvTvwemHm65iz9UW2YhJI-3Vz7VNVmC6Qzabhgw07s9dkvUoEsrLGcPglNNwRIWJGwOdFbSASsKTLqrGN8Ea1I6fZ2-j8mWy2CPDq8vH_oDFzgjMp0KXLLy37epORySFSFPg2nkNSmkvCxDW-xykVwA25VYqB3lh8QdfGBaJd9a7dJ-sTmdTOCA0ZBxWOSsd2EzmPLEFFB1ILRbgijzRLcIbSIyPsuHYvWJsGn7Yq0EYDcJoahhb5Hy5Zl6LZvw5WzVIm2-mN8Gr_7nuuDGLiRtvYfC8KxAZcfjP2x6RdbzC-MTVMVkt397hJCQepTutvqxTsta7vh3cfwGcjtcj |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwIZMY8dO3BEhUHkugMRm2c4FikqLaBAbvx1f4iCBEAOrY0fJ5_i7O-XuO0L2vZY6LXyPaSlLJlMNzIpcMRdMGSR5rguHtcNX11n_Tp7fq_spctzWwmBaZeT-htNrto4j3Yhm92Uw6N4E5yCYwxDacayo5Nk0mZFK5BiBHX585Xmg_lzeCO7lDKfHypkmyQsm7yg-JHigDsUxFfp36_SDp2vjc7pI5qPXSI-aB1siUzBaJgttRwYaD-gKyY8oZpRXY4bWqaAhRoVnNwQ6LmkJtYYnndSdb8J2UDt8GL8OqsfnySq5Oz25Pe6z2BqB-VToioUXtz2dZSIpRZoC185rUEp7WYKw3hcgvQKwKbdSOShKi3_4wrBIvLPepWukMxqPYJ3Q4HJY5ax0YHNZ8MSWUGaQWqzAFUWiNwhvITE-6oZj-4qhaRPEngzCaBBG08C4QQ6-1rw0qhl_zlYt0ubb3ptA63-u2263xcSTNzEY8ApERmz-87Z7ZLZ_e3VpLs-uL7bIHF5BY8XVNulUr2-wE7yQyu3WX9knvQbYuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pareto-based+ensemble+of+feature+selection+algorithms&rft.jtitle=Expert+systems+with+applications&rft.au=Hashemi%2C+Amin&rft.au=Bagher+Dowlatshahi%2C+Mohammad&rft.au=Nezamabadi-pour%2C+Hossein&rft.date=2021-10-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=180&rft_id=info:doi/10.1016%2Fj.eswa.2021.115130&rft.externalDocID=S0957417421005716 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |