A pareto-based ensemble of feature selection algorithms

•We have designed a method for ensemble feature selection.•We model the feature selection process to a Pareto-based optimization problem.•The crowding distance between solutions is the secondary measure.•The method is an ensemble of relevancy and redundancy methods.•The proposed PEFS method outperfo...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 180; p. 115130
Main Authors Hashemi, Amin, Bagher Dowlatshahi, Mohammad, Nezamabadi-pour, Hossein
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.10.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2021.115130

Cover

Abstract •We have designed a method for ensemble feature selection.•We model the feature selection process to a Pareto-based optimization problem.•The crowding distance between solutions is the secondary measure.•The method is an ensemble of relevancy and redundancy methods.•The proposed PEFS method outperforms competitive algorithms. In this paper, ensemble feature selection is modeled as a bi-objective optimization problem regarding features’ relevancy and redundancy degree. The proposed method, which is called PEFS, first uses the modeled bi-objective optimization problem to find the non-dominated features based on the decision matrix constructed by different feature selection algorithms. In the second step, the found non-dominated features are sorted using the crowding distance in the bi-objective space. These sorted features remove from the feature space, and the process of finding the non-dominated features will continue until all the features are sorted. To illustrate the optimality and efficiency of the proposed method, we have compared our approach with some ensemble feature selection methods and basic algorithms used in the ensemble process. The results show that our method in terms of accuracy and F-score is superior to other similar methods and performs in a short running-time.
AbstractList •We have designed a method for ensemble feature selection.•We model the feature selection process to a Pareto-based optimization problem.•The crowding distance between solutions is the secondary measure.•The method is an ensemble of relevancy and redundancy methods.•The proposed PEFS method outperforms competitive algorithms. In this paper, ensemble feature selection is modeled as a bi-objective optimization problem regarding features’ relevancy and redundancy degree. The proposed method, which is called PEFS, first uses the modeled bi-objective optimization problem to find the non-dominated features based on the decision matrix constructed by different feature selection algorithms. In the second step, the found non-dominated features are sorted using the crowding distance in the bi-objective space. These sorted features remove from the feature space, and the process of finding the non-dominated features will continue until all the features are sorted. To illustrate the optimality and efficiency of the proposed method, we have compared our approach with some ensemble feature selection methods and basic algorithms used in the ensemble process. The results show that our method in terms of accuracy and F-score is superior to other similar methods and performs in a short running-time.
In this paper, ensemble feature selection is modeled as a bi-objective optimization problem regarding features' relevancy and redundancy degree. The proposed method, which is called PEFS, first uses the modeled bi-objective optimization problem to find the non-dominated features based on the decision matrix constructed by different feature selection algorithms. In the second step, the found non-dominated features are sorted using the crowding distance in the bi-objective space. These sorted features remove from the feature space, and the process of finding the non-dominated features will continue until all the features are sorted. To illustrate the optimality and efficiency of the proposed method, we have compared our approach with some ensemble feature selection methods and basic algorithms used in the ensemble process. The results show that our method in terms of accuracy and F-score is superior to other similar methods and performs in a short running-time.
ArticleNumber 115130
Author Bagher Dowlatshahi, Mohammad
Hashemi, Amin
Nezamabadi-pour, Hossein
Author_xml – sequence: 1
  givenname: Amin
  surname: Hashemi
  fullname: Hashemi, Amin
  email: hashemi.am@fe.lu.ac.ir
  organization: Department of Computer Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran
– sequence: 2
  givenname: Mohammad
  surname: Bagher Dowlatshahi
  fullname: Bagher Dowlatshahi, Mohammad
  email: dowlatshahi.mb@lu.ac.ir
  organization: Department of Computer Engineering, Faculty of Engineering, Lorestan University, Khorramabad, Iran
– sequence: 3
  givenname: Hossein
  surname: Nezamabadi-pour
  fullname: Nezamabadi-pour, Hossein
  email: nezam@uk.ac.ir
  organization: Department of Electrical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
BookMark eNp9kE1Lw0AQhhepYFv9A54CnhP3K9kEvJTiFxS86HmZbCa6Ic3W3a3ivzchnjz0NDC8zzvMsyKLwQ1IyDWjGaOsuO0yDN-QccpZxljOBD0jS1YqkRaqEguypFWuUsmUvCCrEDpKmaJULYnaJAfwGF1aQ8AmwSHgvu4xcW3SIsSjxyRgjyZaNyTQvztv48c-XJLzFvqAV39zTd4e7l-3T-nu5fF5u9mlRvAypkoyqMqi4LTlQiAra1NinpdGtsjBmAalyRFBMJB5jU0LVFZ0XHNqajC1WJObuffg3ecRQ9SdO_phPKl5Lis-dfMxxeeU8S4Ej60-eLsH_6MZ1ZMg3elJkJ4E6VnQCJX_IGMjTH9GD7Y_jd7NKI6vf1n0OhiLg8HG-lGVbpw9hf8CXKODag
CitedBy_id crossref_primary_10_1002_int_23044
crossref_primary_10_1631_FITEE_2100569
crossref_primary_10_1016_j_asoc_2022_109747
crossref_primary_10_1007_s11760_024_03088_2
crossref_primary_10_12720_jait_15_4_480_491
crossref_primary_10_3390_app12063209
crossref_primary_10_1155_2024_5529847
crossref_primary_10_1016_j_ins_2021_09_052
crossref_primary_10_32604_cmes_2024_053373
crossref_primary_10_1007_s00521_023_09089_5
crossref_primary_10_1016_j_asoc_2024_112019
crossref_primary_10_1016_j_asoc_2023_110319
crossref_primary_10_1016_j_knosys_2024_112345
crossref_primary_10_1016_j_engappai_2025_110403
crossref_primary_10_1007_s13042_022_01616_5
crossref_primary_10_1016_j_eswa_2024_123521
crossref_primary_10_1016_j_knosys_2021_107538
crossref_primary_10_1007_s00521_024_10837_4
crossref_primary_10_1016_j_eswa_2022_117040
crossref_primary_10_1016_j_engappai_2024_107865
crossref_primary_10_1080_0952813X_2023_2183273
crossref_primary_10_1016_j_ins_2023_119619
crossref_primary_10_1016_j_eswa_2022_117002
crossref_primary_10_3390_e26110992
crossref_primary_10_1088_1361_665X_ad72c0
crossref_primary_10_1016_j_patrec_2023_02_027
crossref_primary_10_1016_j_neucom_2024_128596
crossref_primary_10_1016_j_asoc_2022_109046
Cites_doi 10.1145/3136625
10.1016/j.inffus.2018.11.019
10.1109/TEVC.2015.2420112
10.1007/s13042-020-01180-w
10.1007/s40747-017-0060-x
10.1162/evco_a_00204
10.1111/j.1475-3995.2000.tb00182.x
10.1016/j.knosys.2017.10.028
10.1016/j.ejor.2017.06.033
10.1016/j.knosys.2020.106097
10.1016/j.inffus.2018.11.008
10.1007/BF02985802
10.1038/nm0102-68
10.1016/j.neucom.2017.11.077
10.1016/j.asoc.2018.04.033
10.1007/s13369-020-04683-4
10.1109/TPAMI.2010.215
10.1080/21642583.2020.1723142
10.1145/1068009.1068047
10.1016/j.enbuild.2016.06.043
10.1016/j.eswa.2018.08.049
10.1016/j.procs.2016.07.111
10.7763/IJMLC.2012.V2.148
10.1016/j.trgeo.2020.100446
10.1016/j.patcog.2016.11.003
10.1016/j.knosys.2017.02.013
10.1007/s13042-020-01120-8
10.1109/TEVC.2014.2308305
10.1016/j.neucom.2015.02.045
10.1016/j.patrec.2018.07.018
10.1016/j.asoc.2016.11.021
10.1016/j.ins.2018.12.033
10.1016/j.artint.2015.06.007
10.1007/s11634-017-0285-y
10.1007/978-3-319-90080-3_6
10.1016/j.knosys.2016.11.017
10.1016/j.knosys.2019.105285
10.2478/cait-2019-0001
10.1016/j.engappai.2014.07.016
10.3390/informatics5010013
10.1016/j.eswa.2021.114737
10.1016/j.knosys.2020.106365
10.1002/9780470496916
10.1016/j.ins.2013.09.034
10.1016/j.eswa.2020.113842
10.1016/j.eswa.2019.113024
10.2307/2669565
10.1504/IJBIC.2010.036158
10.18178/ijmlc.2019.9.5.846
10.1007/s10462-016-9516-4
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Oct 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 15, 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2021.115130
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2021_115130
S0957417421005716
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-741a986620f233e18bc8e558c4fe2accde4c5eea31a45bedfa0490cde20cbacb3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Fri Jul 25 07:26:44 EDT 2025
Sat Oct 25 05:32:34 EDT 2025
Thu Apr 24 23:01:08 EDT 2025
Fri Feb 23 02:35:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Crowding distance
Pareto-based method
Bi-objective optimization
Ensemble feature selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-741a986620f233e18bc8e558c4fe2accde4c5eea31a45bedfa0490cde20cbacb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2549286622
PQPubID 2045477
ParticipantIDs proquest_journals_2549286622
crossref_primary_10_1016_j_eswa_2021_115130
crossref_citationtrail_10_1016_j_eswa_2021_115130
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115130
PublicationCentury 2000
PublicationDate 2021-10-15
PublicationDateYYYYMMDD 2021-10-15
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Michalak, Kwasnicka (b0175) 2010; 2
Ehrgott (b0110) 2000; 7
Dowlatshahi, Derhami, Nezamabadi-Pour (b0055) 2020; 17
Dowlatshahi, Derhami, Nezamabadi-pour (b0070) 2017; 8
Paniri, Dowlatshahi, Nezamabadi-pour (b0205) 2020; 192
Shipp, Ross, Tamayo, Weng, Kutok, Aguiar, Golub (b0250) 2002; 8
Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. New York: John Wiley, Section, 10, l.
Miao, Niu (b0170) 2016; 91
Dowlatshahi, Nezamabadi-Pour (b0075) 2014; 36
Bolón-Canedo, V., & Alonso-Betanzos, A. (2018). Evaluation of ensembles for feature selection. In Intelligent Systems Reference Library (Vol. 147, pp. 97–113). https://doi.org/10.1007/978-3-319-90080-3_6.
Bache, Lichman (b0010) 2013
Dowlatshahi, Rezaeian (b0085) 2016
Ng, Tuo, Zhang, Kwong (b0195) 2020; 11
Tsai, Sung (b0265) 2020; 203
Zhou, Zhang, Zhou, Guo, Ma (b0305) 2021; 164
Yuan, Xu, Wang, Yao (b0290) 2016; 20
Bolón-Canedo, Alonso-Betanzos (b0030) 2019; 52
Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. In Metaheuristics: From Design to Implementation. https://doi.org/10.1002/9780470496916.
Hashemi, Dowlatshahi, Nezamabadi-Pour (b0140) 2021; 12
Bayati, Dowlatshahi, Paniri (b0015) 2020
Dowlatshahi, Nezamabadi-Pour, Mashinchi (b0080) 2014; 258
Momeni, Yarivand, Dowlatshahi, Armaghani (b0190) 2021; 26
Zhang, Nie, Li, Wei (b0300) 2019; 50
Venkatesh, Anuradha (b0270) 2019; 19
Hashemi, Dowlatshahi, Nezamabadi-pour (b0125) 2020; 142
Raquel, Naval (b0225) 2005
Gustavsson, Syberfeldt (b0115) 2018; 26
Duleba, Moslem (b0100) 2019; 116
Ebrahimpour, Eftekhari (b0105) 2017; 50
Bozóki, Fülöp (b0035) 2018; 264
Xu, Chong, Karaguzel, Lam (b0285) 2016; 127
Cai, Luo, Wang, Yang (b0040) 2018; 300
Zeng, Cheung (b0295) 2011; 33
Reyes, Morell, Ventura (b0230) 2015; 161
Zhu, Bin Yang (b0310) 2018; 112
Tian, Zhang, Wang, Geng, Wang (b0260) 2020; 8
Pereira, Plastino, Zadrozny, Merschmann (b0210) 2018; 49
Samaria, Harter (b0235) 1994; 138–142
Jadhav, He, Jenkins (b0155) 2018; 69
Nouri-Moghaddam, Ghazanfari, Fathian (b0200) 2021; 175
Seijo-Pardo, Porto-Díaz, Bolón-Canedo, Alonso-Betanzos (b0240) 2017; 118
Dowlatshahi, Derhami (b0060) 2017; 5
Dowlatshahi, Derhami, Nezamabadi-pour (b0065) 2018; 5
Drotár, Gazda, Vokorokos (b0090) 2019; 480
Hancer, Xue, Zhang (b0120) 2018; 140
Sheikhpour, Sarram, Gharaghani, Chahooki (b0245) 2017; 64
Li, Yang, Liu (b0165) 2015; 228
Zhang, Tian, Cheng, Jin (b0280) 2015; 19
Hashemi, Dowlatshahi, Nezamabadi-pour (b0135) 2020; 206
Rafsanjani, Dowlatshahi (b0215) 2012
Das, Das, Ghosh (b0050) 2017; 123
Momeni, Dowlatshahi, Omidinasab, Maizir, Armaghani (b0185) 2020; 45
Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (b0160) 2018; 50
Von Lücken, Barán, Brizuela (b0275) 2014; 58
Coakley, Conover (b0045) 2000; 95
Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Math. Intell. https://doi.org/10.1007/BF02985802.
Rafsanjani, Dowlatshahi, Nezamabadi-Pour (b0220) 2015; 10
Hashemi, Dowlatshahi (b0130) 2020
Ben Brahim, Limam (b0020) 2018; 12
Mlambo (b0180) 2016; 5
Ansari, Ahmad, Doja (b0005) 2019; 9
Hoque, Singh, Bhattacharyya (b0150) 2018; 4
Zhang (10.1016/j.eswa.2021.115130_b0280) 2015; 19
Bozóki (10.1016/j.eswa.2021.115130_b0035) 2018; 264
Michalak (10.1016/j.eswa.2021.115130_b0175) 2010; 2
Bayati (10.1016/j.eswa.2021.115130_b0015) 2020
Dowlatshahi (10.1016/j.eswa.2021.115130_b0080) 2014; 258
Bolón-Canedo (10.1016/j.eswa.2021.115130_b0030) 2019; 52
Ehrgott (10.1016/j.eswa.2021.115130_b0110) 2000; 7
Mlambo (10.1016/j.eswa.2021.115130_b0180) 2016; 5
Samaria (10.1016/j.eswa.2021.115130_b0235) 1994; 138–142
Dowlatshahi (10.1016/j.eswa.2021.115130_b0060) 2017; 5
Das (10.1016/j.eswa.2021.115130_b0050) 2017; 123
Pereira (10.1016/j.eswa.2021.115130_b0210) 2018; 49
Li (10.1016/j.eswa.2021.115130_b0165) 2015; 228
Cai (10.1016/j.eswa.2021.115130_b0040) 2018; 300
Hashemi (10.1016/j.eswa.2021.115130_b0140) 2021; 12
Jadhav (10.1016/j.eswa.2021.115130_b0155) 2018; 69
Hashemi (10.1016/j.eswa.2021.115130_b0125) 2020; 142
Venkatesh (10.1016/j.eswa.2021.115130_b0270) 2019; 19
Von Lücken (10.1016/j.eswa.2021.115130_b0275) 2014; 58
Hoque (10.1016/j.eswa.2021.115130_b0150) 2018; 4
Yuan (10.1016/j.eswa.2021.115130_b0290) 2016; 20
Ng (10.1016/j.eswa.2021.115130_b0195) 2020; 11
Xu (10.1016/j.eswa.2021.115130_b0285) 2016; 127
10.1016/j.eswa.2021.115130_b0025
Dowlatshahi (10.1016/j.eswa.2021.115130_b0070) 2017; 8
10.1016/j.eswa.2021.115130_b0145
Dowlatshahi (10.1016/j.eswa.2021.115130_b0075) 2014; 36
Sheikhpour (10.1016/j.eswa.2021.115130_b0245) 2017; 64
Reyes (10.1016/j.eswa.2021.115130_b0230) 2015; 161
Momeni (10.1016/j.eswa.2021.115130_b0190) 2021; 26
Momeni (10.1016/j.eswa.2021.115130_b0185) 2020; 45
Zhu (10.1016/j.eswa.2021.115130_b0310) 2018; 112
Drotár (10.1016/j.eswa.2021.115130_b0090) 2019; 480
Miao (10.1016/j.eswa.2021.115130_b0170) 2016; 91
Ansari (10.1016/j.eswa.2021.115130_b0005) 2019; 9
Raquel (10.1016/j.eswa.2021.115130_b0225) 2005
Hashemi (10.1016/j.eswa.2021.115130_b0130) 2020
Seijo-Pardo (10.1016/j.eswa.2021.115130_b0240) 2017; 118
Tsai (10.1016/j.eswa.2021.115130_b0265) 2020; 203
Bache (10.1016/j.eswa.2021.115130_b0010) 2013
Ben Brahim (10.1016/j.eswa.2021.115130_b0020) 2018; 12
Dowlatshahi (10.1016/j.eswa.2021.115130_b0055) 2020; 17
Shipp (10.1016/j.eswa.2021.115130_b0250) 2002; 8
Li (10.1016/j.eswa.2021.115130_b0160) 2018; 50
Nouri-Moghaddam (10.1016/j.eswa.2021.115130_b0200) 2021; 175
Rafsanjani (10.1016/j.eswa.2021.115130_b0220) 2015; 10
10.1016/j.eswa.2021.115130_b0255
Hancer (10.1016/j.eswa.2021.115130_b0120) 2018; 140
Dowlatshahi (10.1016/j.eswa.2021.115130_b0085) 2016
10.1016/j.eswa.2021.115130_b0095
Coakley (10.1016/j.eswa.2021.115130_b0045) 2000; 95
Dowlatshahi (10.1016/j.eswa.2021.115130_b0065) 2018; 5
Duleba (10.1016/j.eswa.2021.115130_b0100) 2019; 116
Rafsanjani (10.1016/j.eswa.2021.115130_b0215) 2012
Tian (10.1016/j.eswa.2021.115130_b0260) 2020; 8
Zhou (10.1016/j.eswa.2021.115130_b0305) 2021; 164
Paniri (10.1016/j.eswa.2021.115130_b0205) 2020; 192
Zeng (10.1016/j.eswa.2021.115130_b0295) 2011; 33
Hashemi (10.1016/j.eswa.2021.115130_b0135) 2020; 206
Zhang (10.1016/j.eswa.2021.115130_b0300) 2019; 50
Ebrahimpour (10.1016/j.eswa.2021.115130_b0105) 2017; 50
Gustavsson (10.1016/j.eswa.2021.115130_b0115) 2018; 26
References_xml – volume: 12
  start-page: 459
  year: 2021
  end-page: 475
  ident: b0140
  article-title: A bipartite matching-based feature selection for multi-label learning
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 17
  start-page: 7
  year: 2020
  end-page: 24
  ident: b0055
  article-title: Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
  publication-title: Iranian Journal of Fuzzy Systems
– volume: 52
  start-page: 1
  year: 2019
  end-page: 12
  ident: b0030
  article-title: Ensembles for feature selection: A review and future trends
  publication-title: Information Fusion
– volume: 9
  start-page: 599
  year: 2019
  end-page: 608
  ident: b0005
  article-title: Ensemble of feature ranking methods using hesitant fuzzy sets for sentiment classification
  publication-title: International Journal of Machine Learning and Computing
– volume: 175
  start-page: 114737
  year: 2021
  ident: b0200
  article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection
  publication-title: Expert Systems with Applications
– volume: 127
  start-page: 714
  year: 2016
  end-page: 729
  ident: b0285
  article-title: Improving evolutionary algorithm performance for integer type multi-objective building system design optimization
  publication-title: Energy and Buildings
– volume: 5
  start-page: 169
  year: 2017
  end-page: 181
  ident: b0060
  article-title: Winner determination in combinatorial auctions using hybrid ant colony optimization and multi-neighborhood local search
  publication-title: Journal of AI and Data Mining
– volume: 95
  start-page: 332
  year: 2000
  ident: b0045
  article-title: Practical Nonparametric Statistics
  publication-title: Journal of the American Statistical Association
– reference: Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. New York: John Wiley, Section, 10, l.
– volume: 50
  start-page: 1
  year: 2018
  end-page: 45
  ident: b0160
  article-title: Feature selection: A data perspective
  publication-title: ACM Computing Surveys
– volume: 36
  start-page: 114
  year: 2014
  end-page: 121
  ident: b0075
  article-title: GGSA: A grouping gravitational search algorithm for data clustering
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 45
  start-page: 8255
  year: 2020
  end-page: 8267
  ident: b0185
  article-title: Gaussian process regression technique to estimate the pile bearing capacity
  publication-title: Arabian Journal for Science and Engineering
– start-page: 257
  year: 2005
  end-page: 264
  ident: b0225
  article-title: An effective use of crowding distance in multiobjective particle swarm optimization
  publication-title: GECCO 2005 - Genetic and Evolutionary Computation Conference
– year: 2013
  ident: b0010
  article-title: Repository, UCI machine learning
– volume: 480
  start-page: 365
  year: 2019
  end-page: 380
  ident: b0090
  article-title: Ensemble feature selection using election methods and ranker clustering
  publication-title: Information Sciences
– volume: 116
  start-page: 21
  year: 2019
  end-page: 30
  ident: b0100
  article-title: Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development
  publication-title: Expert Systems with Applications
– volume: 123
  start-page: 116
  year: 2017
  end-page: 127
  ident: b0050
  article-title: Ensemble feature selection using bi-objective genetic algorithm
  publication-title: Knowledge-Based Systems
– volume: 192
  start-page: 105285
  year: 2020
  ident: b0205
  article-title: MLACO: A multi-label feature selection algorithm based on ant colony optimization
  publication-title: Knowledge-Based Systems
– volume: 69
  start-page: 541
  year: 2018
  end-page: 553
  ident: b0155
  article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating
  publication-title: Applied Soft Computing Journal
– volume: 228
  start-page: 45
  year: 2015
  end-page: 65
  ident: b0165
  article-title: Bi-goal evolution for many-objective optimization problems
  publication-title: Artificial Intelligence
– volume: 118
  start-page: 124
  year: 2017
  end-page: 139
  ident: b0240
  article-title: Ensemble feature selection: Homogeneous and heterogeneous approaches
  publication-title: Knowledge-Based Systems
– reference: Bolón-Canedo, V., & Alonso-Betanzos, A. (2018). Evaluation of ensembles for feature selection. In Intelligent Systems Reference Library (Vol. 147, pp. 97–113). https://doi.org/10.1007/978-3-319-90080-3_6.
– volume: 264
  start-page: 419
  year: 2018
  end-page: 427
  ident: b0035
  article-title: Efficient weight vectors from pairwise comparison matrices
  publication-title: European Journal of Operational Research
– volume: 258
  start-page: 94
  year: 2014
  end-page: 107
  ident: b0080
  article-title: A discrete gravitational search algorithm for solving combinatorial optimization problems
  publication-title: Information Sciences
– volume: 300
  start-page: 70
  year: 2018
  end-page: 79
  ident: b0040
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
– volume: 91
  start-page: 919
  year: 2016
  end-page: 926
  ident: b0170
  article-title: A survey on feature selection
  publication-title: Procedia Computer Science
– start-page: 1
  year: 2020
  end-page: 7
  ident: b0130
  article-title: MLCR: A fast multi-label feature selection method based on K-means and L2-norm
  publication-title: 2020 25th International Computer Conference, Computer Society of Iran (CSICC)
– volume: 8
  start-page: 152
  year: 2017
  ident: b0070
  article-title: Ensemble of filter-based rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset selection
  publication-title: Information (Switzerland)
– volume: 50
  start-page: 300
  year: 2017
  end-page: 312
  ident: b0105
  article-title: Ensemble of feature selection methods: A hesitant fuzzy sets approach
  publication-title: Applied Soft Computing Journal
– volume: 20
  start-page: 16
  year: 2016
  end-page: 37
  ident: b0290
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 64
  start-page: 141
  year: 2017
  end-page: 158
  ident: b0245
  article-title: A Survey on semi-supervised feature selection methods
  publication-title: Pattern Recognition
– volume: 11
  start-page: 2313
  year: 2020
  end-page: 2326
  ident: b0195
  article-title: Training error and sensitivity-based ensemble feature selection
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 112
  start-page: 219
  year: 2018
  end-page: 225
  ident: b0310
  article-title: Discriminative embedded unsupervised feature selection
  publication-title: Pattern Recognition Letters
– volume: 19
  start-page: 3
  year: 2019
  end-page: 26
  ident: b0270
  article-title: A review of Feature Selection and its methods
  publication-title: Cybernetics and Information Technologies
– year: 2016
  ident: b0085
  article-title: Training spiking neurons with gravitational search algorithm for data classification
  publication-title: 1st Conference on Swarm Intelligence and Evolutionary Computation
– start-page: 1
  year: 2020
  end-page: 6
  ident: b0015
  article-title: MLPSO: A filter multi-label feature selection based on particle swarm optimization
  publication-title: 2020 25th International Computer Conference, Computer Society of Iran (CSICC)
– volume: 49
  start-page: 57
  year: 2018
  end-page: 78
  ident: b0210
  article-title: Categorizing feature selection methods for multi-label classification
  publication-title: Artificial Intelligence Review
– volume: 26
  start-page: 89
  year: 2018
  end-page: 116
  ident: b0115
  article-title: A new algorithm using the non-dominated tree to improve non-dominated sorting
  publication-title: Evolutionary Computation
– volume: 50
  start-page: 158
  year: 2019
  end-page: 167
  ident: b0300
  article-title: Feature selection with multi-view data: A survey
  publication-title: Information Fusion
– volume: 2
  start-page: 319
  year: 2010
  end-page: 332
  ident: b0175
  article-title: Correlation based feature selection method
  publication-title: International Journal of Bio-Inspired Computation
– volume: 164
  start-page: 113842
  year: 2021
  ident: b0305
  article-title: A feature selection algorithm of decision tree based on feature weight
  publication-title: Expert Systems with Applications
– volume: 138–142
  year: 1994
  ident: b0235
  article-title: Parameterisation of a stochastic model for human face identification
  publication-title: IEEE Workshop on Applications of Computer Vision – Proceedings
– volume: 142
  start-page: 113024
  year: 2020
  ident: b0125
  article-title: MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 5
  year: 2000
  end-page: 31
  ident: b0110
  article-title: Approximation algorithms for combinatorial multicriteria optimization problems
  publication-title: International Transactions in Operational Research
– volume: 161
  start-page: 168
  year: 2015
  end-page: 182
  ident: b0230
  article-title: Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context
  publication-title: Neurocomputing
– volume: 5
  start-page: 13
  year: 2018
  ident: b0065
  article-title: A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification
  publication-title: Informatics
– volume: 5
  start-page: 57
  year: 2016
  end-page: 67
  ident: b0180
  article-title: A survey and comparative study of filter and wrapper feature selection techniques
  publication-title: The International Journal Of Engineering And Science (IJES)
– volume: 26
  start-page: 100446
  year: 2021
  ident: b0190
  article-title: An efficient optimal neural network based on gravitational search algorithm in predicting the deformation of geogrid-reinforced soil structures
  publication-title: Transportation Geotechnics
– reference: Talbi, E. G. (2009). Metaheuristics: From Design to Implementation. In Metaheuristics: From Design to Implementation. https://doi.org/10.1002/9780470496916.
– volume: 10
  start-page: 81
  year: 2015
  end-page: 93
  ident: b0220
  article-title: Gravitational search algorithm to solve the K-of-N lifetime problem in two-tiered WSNs
  publication-title: Iranian Journal of Mathematical Sciences and Informatics
– start-page: 377
  year: 2012
  end-page: 380
  ident: b0215
  article-title: Using gravitational search algorithm for finding near-optimal base station location in two-tiered WSNs
  publication-title: International Journal of Machine Learning and Computing
– volume: 33
  start-page: 1532
  year: 2011
  end-page: 1547
  ident: b0295
  article-title: Feature selection and kernel learning for local learning-based clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 19
  start-page: 201
  year: 2015
  end-page: 213
  ident: b0280
  article-title: An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 12
  start-page: 937
  year: 2018
  end-page: 952
  ident: b0020
  article-title: Ensemble feature selection for high dimensional data: A new method and a comparative study
  publication-title: Advances in Data Analysis and Classification
– volume: 4
  start-page: 105
  year: 2018
  end-page: 118
  ident: b0150
  article-title: EFS-MI: An ensemble feature selection method for classification
  publication-title: Complex & Intelligent Systems
– volume: 8
  start-page: 83
  year: 2020
  end-page: 96
  ident: b0260
  article-title: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection
  publication-title: Systems Science and Control Engineering
– volume: 206
  start-page: 106365
  year: 2020
  ident: b0135
  article-title: MFS-MCDM: Multi-label feature selection using multi-criteria decision making
  publication-title: Knowledge-Based Systems
– reference: Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Math. Intell. https://doi.org/10.1007/BF02985802.
– volume: 8
  start-page: 68
  year: 2002
  end-page: 74
  ident: b0250
  article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
  publication-title: Nature Medicine
– volume: 203
  start-page: 106097
  year: 2020
  ident: b0265
  article-title: Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches
  publication-title: Knowledge-Based Systems
– volume: 140
  start-page: 103
  year: 2018
  end-page: 119
  ident: b0120
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowledge-Based Systems
– volume: 58
  start-page: 707
  year: 2014
  end-page: 756
  ident: b0275
  article-title: A survey on multi-objective evolutionary algorithms for many-objective problems
  publication-title: Computational Optimization and Applications
– volume: 50
  start-page: 1
  issue: 6
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0160
  article-title: Feature selection: A data perspective
  publication-title: ACM Computing Surveys
  doi: 10.1145/3136625
– volume: 50
  start-page: 158
  year: 2019
  ident: 10.1016/j.eswa.2021.115130_b0300
  article-title: Feature selection with multi-view data: A survey
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.019
– volume: 20
  start-page: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115130_b0290
  article-title: A new dominance relation-based evolutionary algorithm for many-objective optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2015.2420112
– volume: 12
  start-page: 459
  issue: 2
  year: 2021
  ident: 10.1016/j.eswa.2021.115130_b0140
  article-title: A bipartite matching-based feature selection for multi-label learning
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-020-01180-w
– volume: 4
  start-page: 105
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0150
  article-title: EFS-MI: An ensemble feature selection method for classification
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-017-0060-x
– volume: 26
  start-page: 89
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0115
  article-title: A new algorithm using the non-dominated tree to improve non-dominated sorting
  publication-title: Evolutionary Computation
  doi: 10.1162/evco_a_00204
– volume: 7
  start-page: 5
  issue: 1
  year: 2000
  ident: 10.1016/j.eswa.2021.115130_b0110
  article-title: Approximation algorithms for combinatorial multicriteria optimization problems
  publication-title: International Transactions in Operational Research
  doi: 10.1111/j.1475-3995.2000.tb00182.x
– volume: 140
  start-page: 103
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0120
  article-title: Differential evolution for filter feature selection based on information theory and feature ranking
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.10.028
– volume: 264
  start-page: 419
  issue: 2
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0035
  article-title: Efficient weight vectors from pairwise comparison matrices
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2017.06.033
– volume: 203
  start-page: 106097
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0265
  article-title: Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106097
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0130
  article-title: MLCR: A fast multi-label feature selection method based on K-means and L2-norm
– year: 2016
  ident: 10.1016/j.eswa.2021.115130_b0085
  article-title: Training spiking neurons with gravitational search algorithm for data classification
– volume: 52
  start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115130_b0030
  article-title: Ensembles for feature selection: A review and future trends
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2018.11.008
– ident: 10.1016/j.eswa.2021.115130_b0145
  doi: 10.1007/BF02985802
– volume: 8
  start-page: 68
  issue: 1
  year: 2002
  ident: 10.1016/j.eswa.2021.115130_b0250
  article-title: Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
  publication-title: Nature Medicine
  doi: 10.1038/nm0102-68
– volume: 300
  start-page: 70
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0040
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: 17
  start-page: 7
  issue: 4
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0055
  article-title: Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
  publication-title: Iranian Journal of Fuzzy Systems
– volume: 69
  start-page: 541
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0155
  article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2018.04.033
– volume: 45
  start-page: 8255
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0185
  article-title: Gaussian process regression technique to estimate the pile bearing capacity
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-020-04683-4
– volume: 33
  start-page: 1532
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2021.115130_b0295
  article-title: Feature selection and kernel learning for local learning-based clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.215
– volume: 5
  start-page: 57
  issue: 8
  year: 2016
  ident: 10.1016/j.eswa.2021.115130_b0180
  article-title: A survey and comparative study of filter and wrapper feature selection techniques
  publication-title: The International Journal Of Engineering And Science (IJES)
– volume: 8
  start-page: 152
  issue: 4
  year: 2017
  ident: 10.1016/j.eswa.2021.115130_b0070
  article-title: Ensemble of filter-based rankers to guide an epsilon-greedy swarm optimizer for high-dimensional feature subset selection
  publication-title: Information (Switzerland)
– volume: 8
  start-page: 83
  issue: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0260
  article-title: Robust human activity recognition using single accelerometer via wavelet energy spectrum features and ensemble feature selection
  publication-title: Systems Science and Control Engineering
  doi: 10.1080/21642583.2020.1723142
– start-page: 257
  year: 2005
  ident: 10.1016/j.eswa.2021.115130_b0225
  article-title: An effective use of crowding distance in multiobjective particle swarm optimization
  publication-title: GECCO 2005 - Genetic and Evolutionary Computation Conference
  doi: 10.1145/1068009.1068047
– volume: 127
  start-page: 714
  year: 2016
  ident: 10.1016/j.eswa.2021.115130_b0285
  article-title: Improving evolutionary algorithm performance for integer type multi-objective building system design optimization
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2016.06.043
– volume: 116
  start-page: 21
  year: 2019
  ident: 10.1016/j.eswa.2021.115130_b0100
  article-title: Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.08.049
– volume: 91
  start-page: 919
  year: 2016
  ident: 10.1016/j.eswa.2021.115130_b0170
  article-title: A survey on feature selection
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.07.111
– start-page: 377
  year: 2012
  ident: 10.1016/j.eswa.2021.115130_b0215
  article-title: Using gravitational search algorithm for finding near-optimal base station location in two-tiered WSNs
  publication-title: International Journal of Machine Learning and Computing
  doi: 10.7763/IJMLC.2012.V2.148
– volume: 26
  start-page: 100446
  year: 2021
  ident: 10.1016/j.eswa.2021.115130_b0190
  article-title: An efficient optimal neural network based on gravitational search algorithm in predicting the deformation of geogrid-reinforced soil structures
  publication-title: Transportation Geotechnics
  doi: 10.1016/j.trgeo.2020.100446
– volume: 138–142
  year: 1994
  ident: 10.1016/j.eswa.2021.115130_b0235
  article-title: Parameterisation of a stochastic model for human face identification
  publication-title: IEEE Workshop on Applications of Computer Vision – Proceedings
– volume: 64
  start-page: 141
  year: 2017
  ident: 10.1016/j.eswa.2021.115130_b0245
  article-title: A Survey on semi-supervised feature selection methods
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2016.11.003
– volume: 5
  start-page: 169
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2021.115130_b0060
  article-title: Winner determination in combinatorial auctions using hybrid ant colony optimization and multi-neighborhood local search
  publication-title: Journal of AI and Data Mining
– volume: 123
  start-page: 116
  year: 2017
  ident: 10.1016/j.eswa.2021.115130_b0050
  article-title: Ensemble feature selection using bi-objective genetic algorithm
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.02.013
– volume: 11
  start-page: 2313
  issue: 10
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0195
  article-title: Training error and sensitivity-based ensemble feature selection
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-020-01120-8
– volume: 10
  start-page: 81
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2021.115130_b0220
  article-title: Gravitational search algorithm to solve the K-of-N lifetime problem in two-tiered WSNs
  publication-title: Iranian Journal of Mathematical Sciences and Informatics
– volume: 19
  start-page: 201
  issue: 2
  year: 2015
  ident: 10.1016/j.eswa.2021.115130_b0280
  article-title: An Efficient Approach to Nondominated Sorting for Evolutionary Multiobjective Optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2014.2308305
– volume: 161
  start-page: 168
  year: 2015
  ident: 10.1016/j.eswa.2021.115130_b0230
  article-title: Scalable extensions of the ReliefF algorithm for weighting and selecting features on the multi-label learning context
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.02.045
– volume: 112
  start-page: 219
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0310
  article-title: Discriminative embedded unsupervised feature selection
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2018.07.018
– volume: 58
  start-page: 707
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2021.115130_b0275
  article-title: A survey on multi-objective evolutionary algorithms for many-objective problems
  publication-title: Computational Optimization and Applications
– year: 2013
  ident: 10.1016/j.eswa.2021.115130_b0010
– volume: 50
  start-page: 300
  year: 2017
  ident: 10.1016/j.eswa.2021.115130_b0105
  article-title: Ensemble of feature selection methods: A hesitant fuzzy sets approach
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2016.11.021
– volume: 480
  start-page: 365
  year: 2019
  ident: 10.1016/j.eswa.2021.115130_b0090
  article-title: Ensemble feature selection using election methods and ranker clustering
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.12.033
– volume: 228
  start-page: 45
  year: 2015
  ident: 10.1016/j.eswa.2021.115130_b0165
  article-title: Bi-goal evolution for many-objective optimization problems
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2015.06.007
– volume: 12
  start-page: 937
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0020
  article-title: Ensemble feature selection for high dimensional data: A new method and a comparative study
  publication-title: Advances in Data Analysis and Classification
  doi: 10.1007/s11634-017-0285-y
– ident: 10.1016/j.eswa.2021.115130_b0025
  doi: 10.1007/978-3-319-90080-3_6
– volume: 118
  start-page: 124
  year: 2017
  ident: 10.1016/j.eswa.2021.115130_b0240
  article-title: Ensemble feature selection: Homogeneous and heterogeneous approaches
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.11.017
– volume: 192
  start-page: 105285
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0205
  article-title: MLACO: A multi-label feature selection algorithm based on ant colony optimization
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105285
– volume: 19
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.eswa.2021.115130_b0270
  article-title: A review of Feature Selection and its methods
  publication-title: Cybernetics and Information Technologies
  doi: 10.2478/cait-2019-0001
– volume: 36
  start-page: 114
  year: 2014
  ident: 10.1016/j.eswa.2021.115130_b0075
  article-title: GGSA: A grouping gravitational search algorithm for data clustering
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2014.07.016
– start-page: 1
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0015
  article-title: MLPSO: A filter multi-label feature selection based on particle swarm optimization
– volume: 5
  start-page: 13
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0065
  article-title: A novel three-stage filter-wrapper framework for miRNA subset selection in cancer classification
  publication-title: Informatics
  doi: 10.3390/informatics5010013
– volume: 175
  start-page: 114737
  year: 2021
  ident: 10.1016/j.eswa.2021.115130_b0200
  article-title: A novel multi-objective forest optimization algorithm for wrapper feature selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2021.114737
– volume: 206
  start-page: 106365
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0135
  article-title: MFS-MCDM: Multi-label feature selection using multi-criteria decision making
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2020.106365
– ident: 10.1016/j.eswa.2021.115130_b0255
  doi: 10.1002/9780470496916
– ident: 10.1016/j.eswa.2021.115130_b0095
– volume: 258
  start-page: 94
  year: 2014
  ident: 10.1016/j.eswa.2021.115130_b0080
  article-title: A discrete gravitational search algorithm for solving combinatorial optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.09.034
– volume: 164
  start-page: 113842
  year: 2021
  ident: 10.1016/j.eswa.2021.115130_b0305
  article-title: A feature selection algorithm of decision tree based on feature weight
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113842
– volume: 142
  start-page: 113024
  year: 2020
  ident: 10.1016/j.eswa.2021.115130_b0125
  article-title: MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.113024
– volume: 95
  start-page: 332
  issue: 449
  year: 2000
  ident: 10.1016/j.eswa.2021.115130_b0045
  article-title: Practical Nonparametric Statistics
  publication-title: Journal of the American Statistical Association
  doi: 10.2307/2669565
– volume: 2
  start-page: 319
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2021.115130_b0175
  article-title: Correlation based feature selection method
  publication-title: International Journal of Bio-Inspired Computation
  doi: 10.1504/IJBIC.2010.036158
– volume: 9
  start-page: 599
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2021.115130_b0005
  article-title: Ensemble of feature ranking methods using hesitant fuzzy sets for sentiment classification
  publication-title: International Journal of Machine Learning and Computing
  doi: 10.18178/ijmlc.2019.9.5.846
– volume: 49
  start-page: 57
  issue: 1
  year: 2018
  ident: 10.1016/j.eswa.2021.115130_b0210
  article-title: Categorizing feature selection methods for multi-label classification
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-016-9516-4
SSID ssj0017007
Score 2.529778
Snippet •We have designed a method for ensemble feature selection.•We model the feature selection process to a Pareto-based optimization problem.•The crowding distance...
In this paper, ensemble feature selection is modeled as a bi-objective optimization problem regarding features' relevancy and redundancy degree. The proposed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115130
SubjectTerms Algorithms
Bi-objective optimization
Crowding distance
Ensemble feature selection
Feature selection
Optimization
Pareto-based method
Redundancy
Title A pareto-based ensemble of feature selection algorithms
URI https://dx.doi.org/10.1016/j.eswa.2021.115130
https://www.proquest.com/docview/2549286622
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLCy8EeUlD2zINHbsxh2rClRAsEAlNst2LlDUl2gQG78dX-JUAiEGxlh2lHwX352V774j5MxrqdPcd5mWsmAy1cCsyBRzIZRBkmU6d1g7fHffGQzlzZN6WiH9phYGaZXR99c-vfLWcaQd0WzPR6P2Q0gOQjgMRzuOFZUcZbelzLCLwcXnkuaB8nNZrbeXMZwdC2dqjhcsPlB7SPDgORRHJvTvwemHm65iz9UW2YhJI-3Vz7VNVmC6Qzabhgw07s9dkvUoEsrLGcPglNNwRIWJGwOdFbSASsKTLqrGN8Ea1I6fZ2-j8mWy2CPDq8vH_oDFzgjMp0KXLLy37epORySFSFPg2nkNSmkvCxDW-xykVwA25VYqB3lh8QdfGBaJd9a7dJ-sTmdTOCA0ZBxWOSsd2EzmPLEFFB1ILRbgijzRLcIbSIyPsuHYvWJsGn7Yq0EYDcJoahhb5Hy5Zl6LZvw5WzVIm2-mN8Gr_7nuuDGLiRtvYfC8KxAZcfjP2x6RdbzC-MTVMVkt397hJCQepTutvqxTsta7vh3cfwGcjtcj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwIZMY8dO3BEhUHkugMRm2c4FikqLaBAbvx1f4iCBEAOrY0fJ5_i7O-XuO0L2vZY6LXyPaSlLJlMNzIpcMRdMGSR5rguHtcNX11n_Tp7fq_spctzWwmBaZeT-htNrto4j3Yhm92Uw6N4E5yCYwxDacayo5Nk0mZFK5BiBHX585Xmg_lzeCO7lDKfHypkmyQsm7yg-JHigDsUxFfp36_SDp2vjc7pI5qPXSI-aB1siUzBaJgttRwYaD-gKyY8oZpRXY4bWqaAhRoVnNwQ6LmkJtYYnndSdb8J2UDt8GL8OqsfnySq5Oz25Pe6z2BqB-VToioUXtz2dZSIpRZoC185rUEp7WYKw3hcgvQKwKbdSOShKi3_4wrBIvLPepWukMxqPYJ3Q4HJY5ax0YHNZ8MSWUGaQWqzAFUWiNwhvITE-6oZj-4qhaRPEngzCaBBG08C4QQ6-1rw0qhl_zlYt0ubb3ptA63-u2263xcSTNzEY8ApERmz-87Z7ZLZ_e3VpLs-uL7bIHF5BY8XVNulUr2-wE7yQyu3WX9knvQbYuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pareto-based+ensemble+of+feature+selection+algorithms&rft.jtitle=Expert+systems+with+applications&rft.au=Hashemi%2C+Amin&rft.au=Bagher+Dowlatshahi%2C+Mohammad&rft.au=Nezamabadi-pour%2C+Hossein&rft.date=2021-10-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=180&rft_id=info:doi/10.1016%2Fj.eswa.2021.115130&rft.externalDocID=S0957417421005716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon