Non-intrusive load monitoring algorithm based on features of V–I trajectory
•Proposing a V-I trajectory extraction approach based on the steady-state data before and after an event.•The method of quantifying the V-I trajectory feature is proposed and the number of trajectory features is expanded.•C-SVC multi-classification method is applied for load recognition.•The algorit...
        Saved in:
      
    
          | Published in | Electric power systems research Vol. 157; pp. 134 - 144 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        01.04.2018
     Elsevier Science Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0378-7796 1873-2046  | 
| DOI | 10.1016/j.epsr.2017.12.012 | 
Cover
| Abstract | •Proposing a V-I trajectory extraction approach based on the steady-state data before and after an event.•The method of quantifying the V-I trajectory feature is proposed and the number of trajectory features is expanded.•C-SVC multi-classification method is applied for load recognition.•The algorithm is tested with both the REDD database and the laboratory data.
Non-intrusive load monitoring (NILM) can monitor the status of electrical appliances on-line and provide detailed power consumption data, which is the basis for customers to perform energy usage analyses and electricity management. The voltage–current (V–I) trajectory can be used as a load signature to represent the electrical characteristics of appliances with different statuses. Therefore, this paper proposes an NILM algorithm based on features of the V–I trajectory. The variation in the overall apparent power was used as the criterion of event detection, and the delta of the V–I trajectory was extracted by smoothing and interpolation. Then, ten V–I trajectory features were quantified based on physical significance, which accurately represented those appliances that had multiple built-in modes with distinct power consumption profiles. Finally, the support vector machine multi-classification algorithm was employed for load recognition. We tested the proposed algorithm on both the REDD database and laboratory data. The numerical results demonstrate that the algorithm has higher accuracy than the algorithm using other load features. | 
    
|---|---|
| AbstractList | •Proposing a V-I trajectory extraction approach based on the steady-state data before and after an event.•The method of quantifying the V-I trajectory feature is proposed and the number of trajectory features is expanded.•C-SVC multi-classification method is applied for load recognition.•The algorithm is tested with both the REDD database and the laboratory data.
Non-intrusive load monitoring (NILM) can monitor the status of electrical appliances on-line and provide detailed power consumption data, which is the basis for customers to perform energy usage analyses and electricity management. The voltage–current (V–I) trajectory can be used as a load signature to represent the electrical characteristics of appliances with different statuses. Therefore, this paper proposes an NILM algorithm based on features of the V–I trajectory. The variation in the overall apparent power was used as the criterion of event detection, and the delta of the V–I trajectory was extracted by smoothing and interpolation. Then, ten V–I trajectory features were quantified based on physical significance, which accurately represented those appliances that had multiple built-in modes with distinct power consumption profiles. Finally, the support vector machine multi-classification algorithm was employed for load recognition. We tested the proposed algorithm on both the REDD database and laboratory data. The numerical results demonstrate that the algorithm has higher accuracy than the algorithm using other load features. Non-intrusive load monitoring (NILM) can monitor the status of electrical appliances on-line and provide detailed power consumption data, which is the basis for customers to perform energy usage analyses and electricity management. The voltage–current (V–I) trajectory can be used as a load signature to represent the electrical characteristics of appliances with different statuses. Therefore, this paper proposes an NILM algorithm based on features of the V–I trajectory. The variation in the overall apparent power was used as the criterion of event detection, and the delta of the V–I trajectory was extracted by smoothing and interpolation. Then, ten V–I trajectory features were quantified based on physical significance, which accurately represented those appliances that had multiple built-in modes with distinct power consumption profiles. Finally, the support vector machine multi-classification algorithm was employed for load recognition. We tested the proposed algorithm on both the REDD database and laboratory data. The numerical results demonstrate that the algorithm has higher accuracy than the algorithm using other load features.  | 
    
| Author | Chen, B. Xiaomin Hua, D. Wang, A. Longjun Wang, C. Gang  | 
    
| Author_xml | – sequence: 1 givenname: A. Longjun surname: Wang fullname: Wang, A. Longjun – sequence: 2 givenname: B. Xiaomin surname: Chen fullname: Chen, B. Xiaomin – sequence: 3 givenname: C. Gang surname: Wang fullname: Wang, C. Gang – sequence: 4 givenname: D. surname: Hua fullname: Hua, D. email: 21100173@qq.com  | 
    
| BookMark | eNp9kLtOAzEQRS0EEkngB6gsUe_ix2bXK9GgiJfEowFay-sdB68SO9gOUjr-gT_kS3AUKopUM8U9M7pnjA6dd4DQGSUlJbS-GEpYxVAyQpuSspJQdoBGVDS8YKSqD9GI8EYUTdPWx2gc40AIqdtmOkKPT94V1qWwjvYT8MKrHi-9s8kH6-ZYLeZ5Se9L3KkIPfYOG1BpHSBib_Dbz9f3PU5BDaAzsTlBR0YtIpz-zQl6vbl-md0VD8-397Orh0JzJlJRV0wQAR0lLVWtEUJrUBw0702nW0IYmxpBadVAJWAK0Ju66jiBjhtNFO_5BJ3v7q6C_1hDTHLw6-DyS5n7ti3nU0ZzSuxSOvgYAxipbVLJ-lxX2YWkRG7lyUFu5cmtPEmZzPIyyv6hq2CXKmz2Q5c7CHL1TwtBRm3BaehtyH5k7-0-_BdGRYy5 | 
    
| CitedBy_id | crossref_primary_10_1007_s00202_020_01183_4 crossref_primary_10_1016_j_enbuild_2020_110404 crossref_primary_10_1016_j_nexus_2024_100348 crossref_primary_10_1016_j_epsr_2020_106459 crossref_primary_10_1016_j_jclepro_2022_131208 crossref_primary_10_3390_s23031444 crossref_primary_10_1016_j_ijepes_2024_110002 crossref_primary_10_1109_TCE_2021_3129356 crossref_primary_10_3389_fenrg_2023_1171437 crossref_primary_10_3390_en13174396 crossref_primary_10_1109_TSG_2020_3002668 crossref_primary_10_1016_j_enbuild_2021_111043 crossref_primary_10_3390_su11010251 crossref_primary_10_3390_fi11020051 crossref_primary_10_1088_1742_6596_2221_1_012038 crossref_primary_10_1109_TIM_2023_3273663 crossref_primary_10_1016_j_heliyon_2024_e34457 crossref_primary_10_1051_e3sconf_202235101021 crossref_primary_10_1109_TII_2023_3301026 crossref_primary_10_1109_TIM_2022_3169536 crossref_primary_10_1049_gtd2_12242 crossref_primary_10_1016_j_apenergy_2023_121193 crossref_primary_10_3390_pr9030505 crossref_primary_10_1049_cje_2020_00_268 crossref_primary_10_1007_s40747_025_01803_1 crossref_primary_10_3390_s23115226 crossref_primary_10_12677_HJDM_2021_112010 crossref_primary_10_1016_j_measurement_2024_116593 crossref_primary_10_1016_j_epsr_2019_106037 crossref_primary_10_1109_JSEN_2023_3241000 crossref_primary_10_1109_TII_2024_3451504 crossref_primary_10_1016_j_ijepes_2018_07_026 crossref_primary_10_1038_s41598_023_48736_8 crossref_primary_10_3390_s23073540 crossref_primary_10_3389_fenef_2023_1302121 crossref_primary_10_46481_jnsps_2023_1208 crossref_primary_10_1007_s12559_020_09764_y crossref_primary_10_1109_TSG_2019_2938068 crossref_primary_10_1016_j_eswa_2022_118750 crossref_primary_10_1109_ACCESS_2019_2960465 crossref_primary_10_1016_j_egyr_2022_07_043 crossref_primary_10_1109_ACCESS_2020_3027664 crossref_primary_10_1016_j_adhoc_2021_102643 crossref_primary_10_1109_TSG_2020_3010621 crossref_primary_10_1002_tee_24164 crossref_primary_10_1109_TSG_2019_2909931 crossref_primary_10_3390_en13133374 crossref_primary_10_1016_j_apenergy_2019_04_078 crossref_primary_10_1016_j_segan_2021_100490 crossref_primary_10_1016_j_epsr_2021_107472 crossref_primary_10_1109_TSG_2023_3285117 crossref_primary_10_1016_j_measurement_2018_07_037 crossref_primary_10_3390_app9173558 crossref_primary_10_1016_j_ijepes_2019_04_034 crossref_primary_10_1016_j_enbuild_2025_115334 crossref_primary_10_1109_TSG_2018_2888581 crossref_primary_10_1109_JSEN_2022_3155883 crossref_primary_10_1016_j_apenergy_2024_123157 crossref_primary_10_3390_app9245363 crossref_primary_10_1109_JSEN_2021_3127322 crossref_primary_10_3389_fenrg_2023_1091131 crossref_primary_10_3390_en13226030 crossref_primary_10_1016_j_epsr_2022_108673 crossref_primary_10_3390_en13164154 crossref_primary_10_1016_j_fraope_2024_100198 crossref_primary_10_1016_j_ijepes_2025_110573 crossref_primary_10_1109_TIM_2024_3381273 crossref_primary_10_1109_TII_2023_3240924 crossref_primary_10_1007_s00521_022_07508_7 crossref_primary_10_3390_en15093325 crossref_primary_10_1016_j_epsr_2020_106887 crossref_primary_10_3390_en12112203 crossref_primary_10_3390_aerospace9070350 crossref_primary_10_3390_en14154649 crossref_primary_10_1109_TNNLS_2019_2921952 crossref_primary_10_1016_j_scs_2020_102411 crossref_primary_10_1109_JSEN_2022_3194999 crossref_primary_10_1007_s40313_023_00999_2 crossref_primary_10_3233_ICA_240736 crossref_primary_10_1007_s10586_022_03573_8 crossref_primary_10_1016_j_segan_2021_100446 crossref_primary_10_1109_TSG_2021_3112341 crossref_primary_10_32604_cmc_2024_051820 crossref_primary_10_1016_j_enbuild_2019_05_028 crossref_primary_10_1016_j_heliyon_2024_e30666 crossref_primary_10_1109_ACCESS_2023_3337385 crossref_primary_10_1109_ACCESS_2020_3003778 crossref_primary_10_1063_5_0180804 crossref_primary_10_1016_j_ijepes_2018_05_010 crossref_primary_10_32604_cmc_2022_028358 crossref_primary_10_3390_app8040554 crossref_primary_10_3390_app10041454 crossref_primary_10_1088_1742_6596_2066_1_012027 crossref_primary_10_3390_e24111558 crossref_primary_10_1109_TIM_2020_3036651 crossref_primary_10_3390_s24082562 crossref_primary_10_1016_j_apenergy_2020_115872 crossref_primary_10_1016_j_apenergy_2020_115237 crossref_primary_10_1016_j_enbuild_2021_111025 crossref_primary_10_3390_en16020939 crossref_primary_10_1109_TIM_2024_3476562 crossref_primary_10_3389_fenrg_2022_896398 crossref_primary_10_1109_JSEN_2024_3365132 crossref_primary_10_3390_electricity5010005 crossref_primary_10_3390_en16073027 crossref_primary_10_3390_su10041001 crossref_primary_10_1145_3477301 crossref_primary_10_1016_j_ifacol_2019_09_135 crossref_primary_10_1109_ACCESS_2021_3118947  | 
    
| Cites_doi | 10.1109/TSG.2012.2219327 10.1109/TCE.2011.5735484 10.1145/1961189.1961199 10.3390/en5114569 10.1109/ACCESS.2016.2557460 10.1109/TPWRD.2009.2033799 10.1109/5.192069 10.1109/TSG.2013.2271282 10.1016/j.apenergy.2011.11.027 10.1109/TGRS.2003.817815 10.1109/TPWRD.2005.852370 10.1109/TSG.2015.2388492 10.1109/TEC.2005.852963 10.1109/TCE.2007.381742  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Elsevier B.V. Copyright Elsevier Science Ltd. Apr 2018  | 
    
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Apr 2018  | 
    
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M  | 
    
| DOI | 10.1016/j.epsr.2017.12.012 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-2046 | 
    
| EndPage | 144 | 
    
| ExternalDocumentID | 10_1016_j_epsr_2017_12_012 S0378779617304911  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD AFXIZ AGCQF AGRNS FR3 KR7 L7M SSH  | 
    
| ID | FETCH-LOGICAL-c328t-642808eb1091a9f88ccea3ec3dfbc900225f81147e48e5eedf64b30eb3fc0a3d3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0378-7796 | 
    
| IngestDate | Fri Jul 25 04:46:58 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Wed Oct 01 05:08:58 EDT 2025 Fri Feb 23 02:33:08 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Non-intrusive load monitoring Multi-classification Smart metering Load signatures V–I trajectory Load disaggregation  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c328t-642808eb1091a9f88ccea3ec3dfbc900225f81147e48e5eedf64b30eb3fc0a3d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2049933521 | 
    
| PQPubID | 2047565 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_journals_2049933521 crossref_citationtrail_10_1016_j_epsr_2017_12_012 crossref_primary_10_1016_j_epsr_2017_12_012 elsevier_sciencedirect_doi_10_1016_j_epsr_2017_12_012  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | April 2018 2018-04-00 20180401  | 
    
| PublicationDateYYYYMMDD | 2018-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2018 text: April 2018  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Electric power systems research | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier B.V Elsevier Science Ltd  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd  | 
    
| References | Lin, Tsai (bib0020) 2015; 6 He (bib0060) 2012; 3 Kolter, Johnson (bib0170) 2011 Zhao, Lina, Vladimir (bib0105) 2016; 4 Chang, Lin (bib0160) 2011; 2 Kong, Zhao, Jin (bib0110) 2016; PP Orji (bib0010) 2010 Liang (bib0055) 2010; 25 Chang (bib0085) 2012; 2012 Juan, Danton, Bruno (bib0070) 2016; 140 Srinivasan, Ng, Liew (bib0040) 2006; 21 Wichakool, Avestruz, Cox (bib0050) 2009; 1 Froehlich (bib0025) 2010; 10 Hart (bib0030) 1992; 80 Kaustav, Vincent, Seddik (bib0150) 2014; 11 Marisa, Bernardete, Ana (bib0145) 2013; 63 Chang, Lian, Su, Lee (bib0095) 2013; 50 Lam, Fung, Lee (bib0120) 2007; 53 Dubuisson, Jain (bib0130) 1994 Sahay (bib0155) 2015 Martins (bib0090) 2012 Dundar, Landgrebe (bib0165) 2004; 42 Du (bib0135) 2015; 7 Bennett, Highfill (bib0005) 2008 Zeifman, Roth (bib0035) 2011; 57 Iwayemi, Zhou (bib0175) 2015; 8 Cox (bib0080) 2006 Tsai, Lin (bib0075) 2012; 96 Stephen, Fred, Ivan (bib0140) 2015; 7 Tabatabaei, Dick, Xu (bib0180) 2016; 8 Lee (bib0045) 2005; 20 Lima, Silva, Nascimento (bib0065) 2012 Iksan (bib0125) 2015 Hassan, Javed, Arshad (bib0115) 2014; 5 Dominik, Venkata, Wilfried (bib0100) 2014; 64 He (bib0015) 2013; 4 He (10.1016/j.epsr.2017.12.012_bib0060) 2012; 3 Chang (10.1016/j.epsr.2017.12.012_bib0095) 2013; 50 Dubuisson (10.1016/j.epsr.2017.12.012_bib0130) 1994 Du (10.1016/j.epsr.2017.12.012_bib0135) 2015; 7 Iwayemi (10.1016/j.epsr.2017.12.012_bib0175) 2015; 8 Hassan (10.1016/j.epsr.2017.12.012_bib0115) 2014; 5 He (10.1016/j.epsr.2017.12.012_bib0015) 2013; 4 Bennett (10.1016/j.epsr.2017.12.012_bib0005) 2008 Wichakool (10.1016/j.epsr.2017.12.012_bib0050) 2009; 1 Kaustav (10.1016/j.epsr.2017.12.012_bib0150) 2014; 11 Lin (10.1016/j.epsr.2017.12.012_bib0020) 2015; 6 Froehlich (10.1016/j.epsr.2017.12.012_bib0025) 2010; 10 Chang (10.1016/j.epsr.2017.12.012_bib0085) 2012; 2012 Orji (10.1016/j.epsr.2017.12.012_bib0010) 2010 Srinivasan (10.1016/j.epsr.2017.12.012_bib0040) 2006; 21 Chang (10.1016/j.epsr.2017.12.012_bib0160) 2011; 2 Liang (10.1016/j.epsr.2017.12.012_bib0055) 2010; 25 Lam (10.1016/j.epsr.2017.12.012_bib0120) 2007; 53 Kolter (10.1016/j.epsr.2017.12.012_bib0170) 2011 Zhao (10.1016/j.epsr.2017.12.012_bib0105) 2016; 4 Sahay (10.1016/j.epsr.2017.12.012_bib0155) 2015 Zeifman (10.1016/j.epsr.2017.12.012_bib0035) 2011; 57 Juan (10.1016/j.epsr.2017.12.012_bib0070) 2016; 140 Lee (10.1016/j.epsr.2017.12.012_bib0045) 2005; 20 Kong (10.1016/j.epsr.2017.12.012_bib0110) 2016; PP Cox (10.1016/j.epsr.2017.12.012_bib0080) 2006 Dominik (10.1016/j.epsr.2017.12.012_bib0100) 2014; 64 Lima (10.1016/j.epsr.2017.12.012_bib0065) 2012 Stephen (10.1016/j.epsr.2017.12.012_bib0140) 2015; 7 Marisa (10.1016/j.epsr.2017.12.012_bib0145) 2013; 63 Tsai (10.1016/j.epsr.2017.12.012_bib0075) 2012; 96 Tabatabaei (10.1016/j.epsr.2017.12.012_bib0180) 2016; 8 Martins (10.1016/j.epsr.2017.12.012_bib0090) 2012 Dundar (10.1016/j.epsr.2017.12.012_bib0165) 2004; 42 Iksan (10.1016/j.epsr.2017.12.012_bib0125) 2015 Hart (10.1016/j.epsr.2017.12.012_bib0030) 1992; 80  | 
    
| References_xml | – volume: 11 start-page: 262 year: 2014 end-page: 270 ident: bib0150 article-title: Nonintrusive load monitoring: a temporal multilabel classification approach publication-title: IEEE Trans. Ind. Inform. – start-page: 973 year: 2012 end-page: 978 ident: bib0090 article-title: A novel nonintrusive load monitoring system based on the S-Transform publication-title: Proc. OPTIM – volume: 42 start-page: 264 year: 2004 end-page: 270 ident: bib0165 article-title: A cost-effective semi supervised classifier approach with kernels publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 8 start-page: 779 year: 2015 end-page: 786 ident: bib0175 article-title: SARAA: semi-supervised learning for automated residential appliance annotation publication-title: IEEE Trans. Smart Grid – start-page: 1751 year: 2006 end-page: 1757 ident: bib0080 article-title: Transient event detection for nonintrusive load monitoring and demand side management using voltage distortion publication-title: APEC – volume: 80 start-page: 1870 year: 1992 end-page: 1891 ident: bib0030 article-title: Nonintrusive appliance load monitoring publication-title: Proc. IEEE – start-page: 59 year: 2011 end-page: 62 ident: bib0170 article-title: REDD: a public data set for energy disaggregation research publication-title: Proc. SustKDD Workshop Data Min. Appl. Sustain. – volume: 4 start-page: 1870 year: 2013 end-page: 1877 ident: bib0015 article-title: Incorporating non-intrusive load monitoring into building level demand response publication-title: IEEE Trans. Smart Grid – volume: PP start-page: 1 year: 2016 ident: bib0110 article-title: An extensible approach for non-intrusive load disaggregation with smart meter data publication-title: IEEE Trans. Smart Grid – volume: 53 start-page: 653 year: 2007 end-page: 660 ident: bib0120 article-title: A novel method to construct taxonomy of electrical appliances based on load signatures publication-title: IEEE Trans. Consum. Electron. – volume: 6 start-page: 1839 year: 2015 end-page: 1851 ident: bib0020 article-title: An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling publication-title: IEEE Trans. Smart Grid – start-page: 566 year: 1994 end-page: 568 ident: bib0130 article-title: A modified Hausdorff distance for object matching publication-title: Proc. Iapr International Conference on Pattern Recognition – volume: 3 start-page: 2286 year: 2012 end-page: 2293 ident: bib0060 article-title: Front-end electronic circuit topology analysis for model-driven classification and monitoring of appliance loads in smart buildings publication-title: IEEE Trans. Smart Grid – volume: 96 start-page: 55 year: 2012 end-page: 73 ident: bib0075 article-title: Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation publication-title: Appl. Energy – volume: 7 start-page: 358 year: 2015 end-page: 365 ident: bib0135 article-title: Electric load classification by binary voltage–current trajectory mapping publication-title: IEEE Trans. Smart Grid – volume: 20 start-page: 566 year: 2005 end-page: 574 ident: bib0045 article-title: Estimation of variable-speed-drive power consumption from harmonic content publication-title: IEEE Trans. Energy Convers. – volume: 57 start-page: 76 year: 2011 end-page: 84 ident: bib0035 article-title: Nonintrusive appliance load monitoring: review and outlook publication-title: IEEE Trans. Consum. Electron. – volume: 25 start-page: 551 year: 2010 end-page: 560 ident: bib0055 article-title: Load signature study, part I: basic concept, structure, and methodology publication-title: IEEE Trans. Power Deliv. – volume: 1 start-page: 56 year: 2009 end-page: 63 ident: bib0050 article-title: Modeling and estimating current harmonics of variable electronic loads publication-title: IEEE Trans. Power Electron. – volume: 2 start-page: 1 year: 2011 end-page: 27 ident: bib0160 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. – start-page: 1 year: 2012 end-page: 5 ident: bib0065 article-title: Noninvasive monitoring of residential loads publication-title: Proc. IEEE Pes International Conference and Exhibition on Innovative Smart Grid Technologies – volume: 64 start-page: 467 year: 2014 end-page: 477 ident: bib0100 article-title: PALDi: online load disaggregation via particle filtering publication-title: IEEE Trans. Instrum. Meas. – volume: 63 start-page: 364 year: 2013 end-page: 373 ident: bib0145 article-title: Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home publication-title: IEEE Trans. Instrum. Meas. – start-page: 1547 year: 2010 end-page: 1554 ident: bib0010 article-title: Fault detection and diagnostics for non-intrusive monitoring using motor harmonics publication-title: Proc. APEC – volume: 140 start-page: 65 year: 2016 end-page: 69 ident: bib0070 article-title: A non-intrusive approach to classify electrical appliances based on higher-order statistics and genetic algorithm: a smart grid perspective publication-title: Electr. Power Syst. Res. – volume: 4 start-page: 1784 year: 2016 end-page: 1799 ident: bib0105 article-title: On a training-less solution for non-intrusive appliance load monitoring using graph signal processing publication-title: IEEE Access – start-page: 1 year: 2015 end-page: 6 ident: bib0125 article-title: Appliances identification method of non-intrusive load monitoring based on load signature of V-I trajectory publication-title: Proc. ICITSI – start-page: 961 year: 2015 end-page: 964 ident: bib0155 article-title: SVM and ANN: a comparative evaluation publication-title: Proc. NGCT – volume: 8 start-page: 26 year: 2016 end-page: 40 ident: bib0180 article-title: Toward non-intrusive load monitoring via multi-label classification publication-title: IEEE Trans. Smart Grid – start-page: 1 year: 2008 end-page: 8 ident: bib0005 article-title: Networking AMI smart meters publication-title: Proc. Energy 2030 Conference – volume: 2012 start-page: 4569 year: 2012 end-page: 4589 ident: bib0085 article-title: Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses publication-title: Energies – volume: 10 start-page: 28 year: 2010 end-page: 39 ident: bib0025 article-title: Disaggregated end-use energy sensing for the smart grid publication-title: IEEE Pervasive Comput. – volume: 5 start-page: 870 year: 2014 end-page: 878 ident: bib0115 article-title: An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring publication-title: IEEE Trans. Smart Grid – volume: 21 start-page: 398 year: 2006 end-page: 405 ident: bib0040 article-title: Neural-network-based signature recognition for harmonic source identification publication-title: IEEE Trans. Power Deliv. – volume: 50 start-page: 2081 year: 2013 end-page: 2089 ident: bib0095 article-title: Power-spectrum-based wavelet transform for nonintrusive demand monitoring and load identification publication-title: IEEE Trans. Ind. Appl. – volume: 7 start-page: 2575 year: 2015 end-page: 2585 ident: bib0140 article-title: Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring publication-title: IEEE Trans. Smart Grid – volume: 8 start-page: 779 issue: December (2) year: 2015 ident: 10.1016/j.epsr.2017.12.012_bib0175 article-title: SARAA: semi-supervised learning for automated residential appliance annotation publication-title: IEEE Trans. Smart Grid – volume: 4 start-page: 1870 issue: November (1) year: 2013 ident: 10.1016/j.epsr.2017.12.012_bib0015 article-title: Incorporating non-intrusive load monitoring into building level demand response publication-title: IEEE Trans. Smart Grid – start-page: 1 year: 2008 ident: 10.1016/j.epsr.2017.12.012_bib0005 article-title: Networking AMI smart meters – volume: 3 start-page: 2286 issue: December (4) year: 2012 ident: 10.1016/j.epsr.2017.12.012_bib0060 article-title: Front-end electronic circuit topology analysis for model-driven classification and monitoring of appliance loads in smart buildings publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2012.2219327 – volume: 10 start-page: 28 issue: September (1) year: 2010 ident: 10.1016/j.epsr.2017.12.012_bib0025 article-title: Disaggregated end-use energy sensing for the smart grid publication-title: IEEE Pervasive Comput. – volume: 57 start-page: 76 issue: March (1) year: 2011 ident: 10.1016/j.epsr.2017.12.012_bib0035 article-title: Nonintrusive appliance load monitoring: review and outlook publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2011.5735484 – volume: PP start-page: 1 issue: November (99) year: 2016 ident: 10.1016/j.epsr.2017.12.012_bib0110 article-title: An extensible approach for non-intrusive load disaggregation with smart meter data publication-title: IEEE Trans. Smart Grid – volume: 140 start-page: 65 issue: July year: 2016 ident: 10.1016/j.epsr.2017.12.012_bib0070 article-title: A non-intrusive approach to classify electrical appliances based on higher-order statistics and genetic algorithm: a smart grid perspective publication-title: Electr. Power Syst. Res. – start-page: 1751 year: 2006 ident: 10.1016/j.epsr.2017.12.012_bib0080 article-title: Transient event detection for nonintrusive load monitoring and demand side management using voltage distortion – volume: 2 start-page: 1 issue: January (3) year: 2011 ident: 10.1016/j.epsr.2017.12.012_bib0160 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – volume: 2012 start-page: 4569 issue: Novemebr (5) year: 2012 ident: 10.1016/j.epsr.2017.12.012_bib0085 article-title: Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses publication-title: Energies doi: 10.3390/en5114569 – volume: 4 start-page: 1784 issue: April year: 2016 ident: 10.1016/j.epsr.2017.12.012_bib0105 article-title: On a training-less solution for non-intrusive appliance load monitoring using graph signal processing publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2557460 – volume: 25 start-page: 551 issue: September (2) year: 2010 ident: 10.1016/j.epsr.2017.12.012_bib0055 article-title: Load signature study, part I: basic concept, structure, and methodology publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2009.2033799 – start-page: 59 year: 2011 ident: 10.1016/j.epsr.2017.12.012_bib0170 article-title: REDD: a public data set for energy disaggregation research – volume: 7 start-page: 2575 issue: November (6) year: 2015 ident: 10.1016/j.epsr.2017.12.012_bib0140 article-title: Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring publication-title: IEEE Trans. Smart Grid – volume: 11 start-page: 262 issue: October (1) year: 2014 ident: 10.1016/j.epsr.2017.12.012_bib0150 article-title: Nonintrusive load monitoring: a temporal multilabel classification approach publication-title: IEEE Trans. Ind. Inform. – volume: 7 start-page: 358 issue: June (1) year: 2015 ident: 10.1016/j.epsr.2017.12.012_bib0135 article-title: Electric load classification by binary voltage–current trajectory mapping publication-title: IEEE Trans. Smart Grid – start-page: 1547 year: 2010 ident: 10.1016/j.epsr.2017.12.012_bib0010 article-title: Fault detection and diagnostics for non-intrusive monitoring using motor harmonics – start-page: 961 year: 2015 ident: 10.1016/j.epsr.2017.12.012_bib0155 article-title: SVM and ANN: a comparative evaluation – volume: 1 start-page: 56 issue: December (2) year: 2009 ident: 10.1016/j.epsr.2017.12.012_bib0050 article-title: Modeling and estimating current harmonics of variable electronic loads publication-title: IEEE Trans. Power Electron. – volume: 64 start-page: 467 issue: December (2) year: 2014 ident: 10.1016/j.epsr.2017.12.012_bib0100 article-title: PALDi: online load disaggregation via particle filtering publication-title: IEEE Trans. Instrum. Meas. – volume: 80 start-page: 1870 issue: December (12) year: 1992 ident: 10.1016/j.epsr.2017.12.012_bib0030 article-title: Nonintrusive appliance load monitoring publication-title: Proc. IEEE doi: 10.1109/5.192069 – volume: 8 start-page: 26 issue: June (1) year: 2016 ident: 10.1016/j.epsr.2017.12.012_bib0180 article-title: Toward non-intrusive load monitoring via multi-label classification publication-title: IEEE Trans. Smart Grid – volume: 5 start-page: 870 issue: October (2) year: 2014 ident: 10.1016/j.epsr.2017.12.012_bib0115 article-title: An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2013.2271282 – volume: 96 start-page: 55 issue: August (8) year: 2012 ident: 10.1016/j.epsr.2017.12.012_bib0075 article-title: Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.11.027 – volume: 42 start-page: 264 issue: January (1) year: 2004 ident: 10.1016/j.epsr.2017.12.012_bib0165 article-title: A cost-effective semi supervised classifier approach with kernels publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.817815 – start-page: 1 year: 2015 ident: 10.1016/j.epsr.2017.12.012_bib0125 article-title: Appliances identification method of non-intrusive load monitoring based on load signature of V-I trajectory – volume: 63 start-page: 364 issue: September (2) year: 2013 ident: 10.1016/j.epsr.2017.12.012_bib0145 article-title: Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home publication-title: IEEE Trans. Instrum. Meas. – volume: 21 start-page: 398 issue: January (1) year: 2006 ident: 10.1016/j.epsr.2017.12.012_bib0040 article-title: Neural-network-based signature recognition for harmonic source identification publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2005.852370 – volume: 50 start-page: 2081 issue: September (3) year: 2013 ident: 10.1016/j.epsr.2017.12.012_bib0095 article-title: Power-spectrum-based wavelet transform for nonintrusive demand monitoring and load identification publication-title: IEEE Trans. Ind. Appl. – start-page: 566 year: 1994 ident: 10.1016/j.epsr.2017.12.012_bib0130 article-title: A modified Hausdorff distance for object matching – volume: 6 start-page: 1839 issue: January (4) year: 2015 ident: 10.1016/j.epsr.2017.12.012_bib0020 article-title: An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2015.2388492 – start-page: 973 year: 2012 ident: 10.1016/j.epsr.2017.12.012_bib0090 article-title: A novel nonintrusive load monitoring system based on the S-Transform – volume: 20 start-page: 566 issue: September (3) year: 2005 ident: 10.1016/j.epsr.2017.12.012_bib0045 article-title: Estimation of variable-speed-drive power consumption from harmonic content publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2005.852963 – volume: 53 start-page: 653 issue: July (20) year: 2007 ident: 10.1016/j.epsr.2017.12.012_bib0120 article-title: A novel method to construct taxonomy of electrical appliances based on load signatures publication-title: IEEE Trans. Consum. Electron. doi: 10.1109/TCE.2007.381742 – start-page: 1 year: 2012 ident: 10.1016/j.epsr.2017.12.012_bib0065 article-title: Noninvasive monitoring of residential loads  | 
    
| SSID | ssj0006975 | 
    
| Score | 2.5479033 | 
    
| Snippet | •Proposing a V-I trajectory extraction approach based on the steady-state data before and after an event.•The method of quantifying the V-I trajectory feature... Non-intrusive load monitoring (NILM) can monitor the status of electrical appliances on-line and provide detailed power consumption data, which is the basis...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 134 | 
    
| SubjectTerms | Algorithms Automatic meter reading Electric appliances Energy consumption Energy management Feature extraction Interpolation Load disaggregation Load signatures Monitoring Monitoring systems Multi-classification Non-intrusive load monitoring Power consumption Smart metering Studies Support vector machines Trajectory analysis V–I trajectory  | 
    
| Title | Non-intrusive load monitoring algorithm based on features of V–I trajectory | 
    
| URI | https://dx.doi.org/10.1016/j.epsr.2017.12.012 https://www.proquest.com/docview/2049933521  | 
    
| Volume | 157 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AKRWK dateStart: 19770901 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIpCqTywodA8nMQZq4qqgNoFirpZiWNDqzapaBcWxD_wh3wJ9zoJL4kObElsR9G1fU6ufe8xIWfKQ81uN7VwT8piqRtaSSAZuCo-uG6uiqSPCc6DYdAfseuxP66RbpULg2GVJfYXmG7QunzSLq3ZXkwm7Vvbg8EWRkDBuFVk8nsZC_EUg4uXrzCPIDJiu1jZwtpl4kwR46UWS9QEdUKzJOi4f5HTL5g23NPbIdvlTyPtFN-1S2oq2yNb36QE98lgmGfWJMMUCsAvOsvjlM7NfMVyGs8e4GL1OKdIWynNM6qV0fRc0lzT-_fXtyu6eoqnZhH_-YCMepd33b5VHpVgSc_lKwu9CJsD7gL9x5HmXEoVe0p6qU5khETtaw6uT6gYVz7wog5Y4tnQHVrasZd6h6Se5Zk6IjTxOU_DILYDpZmME6ArAGcwcsps7bhOgziVjYQsdcTxOIuZqALGpgLtKtCuwnEF2LVBzj_bLAoVjbW1_cr04sdYEADza9s1q34S5UxcQjn4dJhY5hz_87UnZBPueBGu0yR16El1Cn8iq6RlhlqLbHSubvrDD4f63qw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqMgAD4ikKBTywodC844yoomqh7UKLulmJY0OrNqloFxbEP_CHfAn3Jg4viQ5sUWxH0bV9jq997zEh59JBzW47MfBMynATOzBiX7jgqnjgutkyFB4mOPf6fnvo3oy8UYU0y1wYDKvU2F9geo7W-k1DW7MxH48bd6YDgy0IgYLxqAjze9dczw7QA7t8-Yrz8MNcbRdrG1hdZ84UQV5yvkBRUCvI9wQt-y92-oXTOfm0tsmWXjXSq-LHdkhFprtk85uW4B7p9bPUGKeYQwEARqdZlNBZPmGxnEbTB3hYPs4o8lZCs5QqmYt6Lmim6P3761uHLp-iSb6L_7xPhq3rQbNt6LsSDOHYbGmgG2EyAF7g_yhUjAkhI0cKJ1GxCJGpPcXA9wmky6QHxKh8N3ZM6A8lzMhJnANSTbNUHhIae4wlgR-ZvlSuiGLgK0BnsHLimsqyrRqxShtxoYXE8T6LKS8jxiYc7crRrtyyOdi1Ri4-28wLGY2Vtb3S9PzHYOCA8yvb1ct-4noqLqAcnDrMLLOO_vnZM7LeHvS6vNvp3x6TDShhRexOnVShV-UJLEuW8Wk-7D4AygLgQQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+load+monitoring+algorithm+based+on+features+of+V%E2%80%93I+trajectory&rft.jtitle=Electric+power+systems+research&rft.au=Wang%2C+A+Longjun&rft.au=Chen%2C+B+Xiaomin&rft.au=Wang%2C+C+Gang&rft.au=Hua%2C+D&rft.date=2018-04-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=157&rft.spage=134&rft_id=info:doi/10.1016%2Fj.epsr.2017.12.012&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |