Non-intrusive load monitoring algorithm based on features of V–I trajectory

•Proposing a V-I trajectory extraction approach based on the steady-state data before and after an event.•The method of quantifying the V-I trajectory feature is proposed and the number of trajectory features is expanded.•C-SVC multi-classification method is applied for load recognition.•The algorit...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 157; pp. 134 - 144
Main Authors Wang, A. Longjun, Chen, B. Xiaomin, Wang, C. Gang, Hua, D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0378-7796
1873-2046
DOI10.1016/j.epsr.2017.12.012

Cover

Abstract •Proposing a V-I trajectory extraction approach based on the steady-state data before and after an event.•The method of quantifying the V-I trajectory feature is proposed and the number of trajectory features is expanded.•C-SVC multi-classification method is applied for load recognition.•The algorithm is tested with both the REDD database and the laboratory data. Non-intrusive load monitoring (NILM) can monitor the status of electrical appliances on-line and provide detailed power consumption data, which is the basis for customers to perform energy usage analyses and electricity management. The voltage–current (V–I) trajectory can be used as a load signature to represent the electrical characteristics of appliances with different statuses. Therefore, this paper proposes an NILM algorithm based on features of the V–I trajectory. The variation in the overall apparent power was used as the criterion of event detection, and the delta of the V–I trajectory was extracted by smoothing and interpolation. Then, ten V–I trajectory features were quantified based on physical significance, which accurately represented those appliances that had multiple built-in modes with distinct power consumption profiles. Finally, the support vector machine multi-classification algorithm was employed for load recognition. We tested the proposed algorithm on both the REDD database and laboratory data. The numerical results demonstrate that the algorithm has higher accuracy than the algorithm using other load features.
AbstractList •Proposing a V-I trajectory extraction approach based on the steady-state data before and after an event.•The method of quantifying the V-I trajectory feature is proposed and the number of trajectory features is expanded.•C-SVC multi-classification method is applied for load recognition.•The algorithm is tested with both the REDD database and the laboratory data. Non-intrusive load monitoring (NILM) can monitor the status of electrical appliances on-line and provide detailed power consumption data, which is the basis for customers to perform energy usage analyses and electricity management. The voltage–current (V–I) trajectory can be used as a load signature to represent the electrical characteristics of appliances with different statuses. Therefore, this paper proposes an NILM algorithm based on features of the V–I trajectory. The variation in the overall apparent power was used as the criterion of event detection, and the delta of the V–I trajectory was extracted by smoothing and interpolation. Then, ten V–I trajectory features were quantified based on physical significance, which accurately represented those appliances that had multiple built-in modes with distinct power consumption profiles. Finally, the support vector machine multi-classification algorithm was employed for load recognition. We tested the proposed algorithm on both the REDD database and laboratory data. The numerical results demonstrate that the algorithm has higher accuracy than the algorithm using other load features.
Non-intrusive load monitoring (NILM) can monitor the status of electrical appliances on-line and provide detailed power consumption data, which is the basis for customers to perform energy usage analyses and electricity management. The voltage–current (V–I) trajectory can be used as a load signature to represent the electrical characteristics of appliances with different statuses. Therefore, this paper proposes an NILM algorithm based on features of the V–I trajectory. The variation in the overall apparent power was used as the criterion of event detection, and the delta of the V–I trajectory was extracted by smoothing and interpolation. Then, ten V–I trajectory features were quantified based on physical significance, which accurately represented those appliances that had multiple built-in modes with distinct power consumption profiles. Finally, the support vector machine multi-classification algorithm was employed for load recognition. We tested the proposed algorithm on both the REDD database and laboratory data. The numerical results demonstrate that the algorithm has higher accuracy than the algorithm using other load features.
Author Chen, B. Xiaomin
Hua, D.
Wang, A. Longjun
Wang, C. Gang
Author_xml – sequence: 1
  givenname: A. Longjun
  surname: Wang
  fullname: Wang, A. Longjun
– sequence: 2
  givenname: B. Xiaomin
  surname: Chen
  fullname: Chen, B. Xiaomin
– sequence: 3
  givenname: C. Gang
  surname: Wang
  fullname: Wang, C. Gang
– sequence: 4
  givenname: D.
  surname: Hua
  fullname: Hua, D.
  email: 21100173@qq.com
BookMark eNp9kLtOAzEQRS0EEkngB6gsUe_ix2bXK9GgiJfEowFay-sdB68SO9gOUjr-gT_kS3AUKopUM8U9M7pnjA6dd4DQGSUlJbS-GEpYxVAyQpuSspJQdoBGVDS8YKSqD9GI8EYUTdPWx2gc40AIqdtmOkKPT94V1qWwjvYT8MKrHi-9s8kH6-ZYLeZ5Se9L3KkIPfYOG1BpHSBib_Dbz9f3PU5BDaAzsTlBR0YtIpz-zQl6vbl-md0VD8-397Orh0JzJlJRV0wQAR0lLVWtEUJrUBw0702nW0IYmxpBadVAJWAK0Ju66jiBjhtNFO_5BJ3v7q6C_1hDTHLw6-DyS5n7ti3nU0ZzSuxSOvgYAxipbVLJ-lxX2YWkRG7lyUFu5cmtPEmZzPIyyv6hq2CXKmz2Q5c7CHL1TwtBRm3BaehtyH5k7-0-_BdGRYy5
CitedBy_id crossref_primary_10_1007_s00202_020_01183_4
crossref_primary_10_1016_j_enbuild_2020_110404
crossref_primary_10_1016_j_nexus_2024_100348
crossref_primary_10_1016_j_epsr_2020_106459
crossref_primary_10_1016_j_jclepro_2022_131208
crossref_primary_10_3390_s23031444
crossref_primary_10_1016_j_ijepes_2024_110002
crossref_primary_10_1109_TCE_2021_3129356
crossref_primary_10_3389_fenrg_2023_1171437
crossref_primary_10_3390_en13174396
crossref_primary_10_1109_TSG_2020_3002668
crossref_primary_10_1016_j_enbuild_2021_111043
crossref_primary_10_3390_su11010251
crossref_primary_10_3390_fi11020051
crossref_primary_10_1088_1742_6596_2221_1_012038
crossref_primary_10_1109_TIM_2023_3273663
crossref_primary_10_1016_j_heliyon_2024_e34457
crossref_primary_10_1051_e3sconf_202235101021
crossref_primary_10_1109_TII_2023_3301026
crossref_primary_10_1109_TIM_2022_3169536
crossref_primary_10_1049_gtd2_12242
crossref_primary_10_1016_j_apenergy_2023_121193
crossref_primary_10_3390_pr9030505
crossref_primary_10_1049_cje_2020_00_268
crossref_primary_10_1007_s40747_025_01803_1
crossref_primary_10_3390_s23115226
crossref_primary_10_12677_HJDM_2021_112010
crossref_primary_10_1016_j_measurement_2024_116593
crossref_primary_10_1016_j_epsr_2019_106037
crossref_primary_10_1109_JSEN_2023_3241000
crossref_primary_10_1109_TII_2024_3451504
crossref_primary_10_1016_j_ijepes_2018_07_026
crossref_primary_10_1038_s41598_023_48736_8
crossref_primary_10_3390_s23073540
crossref_primary_10_3389_fenef_2023_1302121
crossref_primary_10_46481_jnsps_2023_1208
crossref_primary_10_1007_s12559_020_09764_y
crossref_primary_10_1109_TSG_2019_2938068
crossref_primary_10_1016_j_eswa_2022_118750
crossref_primary_10_1109_ACCESS_2019_2960465
crossref_primary_10_1016_j_egyr_2022_07_043
crossref_primary_10_1109_ACCESS_2020_3027664
crossref_primary_10_1016_j_adhoc_2021_102643
crossref_primary_10_1109_TSG_2020_3010621
crossref_primary_10_1002_tee_24164
crossref_primary_10_1109_TSG_2019_2909931
crossref_primary_10_3390_en13133374
crossref_primary_10_1016_j_apenergy_2019_04_078
crossref_primary_10_1016_j_segan_2021_100490
crossref_primary_10_1016_j_epsr_2021_107472
crossref_primary_10_1109_TSG_2023_3285117
crossref_primary_10_1016_j_measurement_2018_07_037
crossref_primary_10_3390_app9173558
crossref_primary_10_1016_j_ijepes_2019_04_034
crossref_primary_10_1016_j_enbuild_2025_115334
crossref_primary_10_1109_TSG_2018_2888581
crossref_primary_10_1109_JSEN_2022_3155883
crossref_primary_10_1016_j_apenergy_2024_123157
crossref_primary_10_3390_app9245363
crossref_primary_10_1109_JSEN_2021_3127322
crossref_primary_10_3389_fenrg_2023_1091131
crossref_primary_10_3390_en13226030
crossref_primary_10_1016_j_epsr_2022_108673
crossref_primary_10_3390_en13164154
crossref_primary_10_1016_j_fraope_2024_100198
crossref_primary_10_1016_j_ijepes_2025_110573
crossref_primary_10_1109_TIM_2024_3381273
crossref_primary_10_1109_TII_2023_3240924
crossref_primary_10_1007_s00521_022_07508_7
crossref_primary_10_3390_en15093325
crossref_primary_10_1016_j_epsr_2020_106887
crossref_primary_10_3390_en12112203
crossref_primary_10_3390_aerospace9070350
crossref_primary_10_3390_en14154649
crossref_primary_10_1109_TNNLS_2019_2921952
crossref_primary_10_1016_j_scs_2020_102411
crossref_primary_10_1109_JSEN_2022_3194999
crossref_primary_10_1007_s40313_023_00999_2
crossref_primary_10_3233_ICA_240736
crossref_primary_10_1007_s10586_022_03573_8
crossref_primary_10_1016_j_segan_2021_100446
crossref_primary_10_1109_TSG_2021_3112341
crossref_primary_10_32604_cmc_2024_051820
crossref_primary_10_1016_j_enbuild_2019_05_028
crossref_primary_10_1016_j_heliyon_2024_e30666
crossref_primary_10_1109_ACCESS_2023_3337385
crossref_primary_10_1109_ACCESS_2020_3003778
crossref_primary_10_1063_5_0180804
crossref_primary_10_1016_j_ijepes_2018_05_010
crossref_primary_10_32604_cmc_2022_028358
crossref_primary_10_3390_app8040554
crossref_primary_10_3390_app10041454
crossref_primary_10_1088_1742_6596_2066_1_012027
crossref_primary_10_3390_e24111558
crossref_primary_10_1109_TIM_2020_3036651
crossref_primary_10_3390_s24082562
crossref_primary_10_1016_j_apenergy_2020_115872
crossref_primary_10_1016_j_apenergy_2020_115237
crossref_primary_10_1016_j_enbuild_2021_111025
crossref_primary_10_3390_en16020939
crossref_primary_10_1109_TIM_2024_3476562
crossref_primary_10_3389_fenrg_2022_896398
crossref_primary_10_1109_JSEN_2024_3365132
crossref_primary_10_3390_electricity5010005
crossref_primary_10_3390_en16073027
crossref_primary_10_3390_su10041001
crossref_primary_10_1145_3477301
crossref_primary_10_1016_j_ifacol_2019_09_135
crossref_primary_10_1109_ACCESS_2021_3118947
Cites_doi 10.1109/TSG.2012.2219327
10.1109/TCE.2011.5735484
10.1145/1961189.1961199
10.3390/en5114569
10.1109/ACCESS.2016.2557460
10.1109/TPWRD.2009.2033799
10.1109/5.192069
10.1109/TSG.2013.2271282
10.1016/j.apenergy.2011.11.027
10.1109/TGRS.2003.817815
10.1109/TPWRD.2005.852370
10.1109/TSG.2015.2388492
10.1109/TEC.2005.852963
10.1109/TCE.2007.381742
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier Science Ltd. Apr 2018
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Apr 2018
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2017.12.012
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
EndPage 144
ExternalDocumentID 10_1016_j_epsr_2017_12_012
S0378779617304911
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
AFXIZ
AGCQF
AGRNS
FR3
KR7
L7M
SSH
ID FETCH-LOGICAL-c328t-642808eb1091a9f88ccea3ec3dfbc900225f81147e48e5eedf64b30eb3fc0a3d3
IEDL.DBID .~1
ISSN 0378-7796
IngestDate Fri Jul 25 04:46:58 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Wed Oct 01 05:08:58 EDT 2025
Fri Feb 23 02:33:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-intrusive load monitoring
Multi-classification
Smart metering
Load signatures
V–I trajectory
Load disaggregation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-642808eb1091a9f88ccea3ec3dfbc900225f81147e48e5eedf64b30eb3fc0a3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2049933521
PQPubID 2047565
PageCount 11
ParticipantIDs proquest_journals_2049933521
crossref_citationtrail_10_1016_j_epsr_2017_12_012
crossref_primary_10_1016_j_epsr_2017_12_012
elsevier_sciencedirect_doi_10_1016_j_epsr_2017_12_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2018
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Lin, Tsai (bib0020) 2015; 6
He (bib0060) 2012; 3
Kolter, Johnson (bib0170) 2011
Zhao, Lina, Vladimir (bib0105) 2016; 4
Chang, Lin (bib0160) 2011; 2
Kong, Zhao, Jin (bib0110) 2016; PP
Orji (bib0010) 2010
Liang (bib0055) 2010; 25
Chang (bib0085) 2012; 2012
Juan, Danton, Bruno (bib0070) 2016; 140
Srinivasan, Ng, Liew (bib0040) 2006; 21
Wichakool, Avestruz, Cox (bib0050) 2009; 1
Froehlich (bib0025) 2010; 10
Hart (bib0030) 1992; 80
Kaustav, Vincent, Seddik (bib0150) 2014; 11
Marisa, Bernardete, Ana (bib0145) 2013; 63
Chang, Lian, Su, Lee (bib0095) 2013; 50
Lam, Fung, Lee (bib0120) 2007; 53
Dubuisson, Jain (bib0130) 1994
Sahay (bib0155) 2015
Martins (bib0090) 2012
Dundar, Landgrebe (bib0165) 2004; 42
Du (bib0135) 2015; 7
Bennett, Highfill (bib0005) 2008
Zeifman, Roth (bib0035) 2011; 57
Iwayemi, Zhou (bib0175) 2015; 8
Cox (bib0080) 2006
Tsai, Lin (bib0075) 2012; 96
Stephen, Fred, Ivan (bib0140) 2015; 7
Tabatabaei, Dick, Xu (bib0180) 2016; 8
Lee (bib0045) 2005; 20
Lima, Silva, Nascimento (bib0065) 2012
Iksan (bib0125) 2015
Hassan, Javed, Arshad (bib0115) 2014; 5
Dominik, Venkata, Wilfried (bib0100) 2014; 64
He (bib0015) 2013; 4
He (10.1016/j.epsr.2017.12.012_bib0060) 2012; 3
Chang (10.1016/j.epsr.2017.12.012_bib0095) 2013; 50
Dubuisson (10.1016/j.epsr.2017.12.012_bib0130) 1994
Du (10.1016/j.epsr.2017.12.012_bib0135) 2015; 7
Iwayemi (10.1016/j.epsr.2017.12.012_bib0175) 2015; 8
Hassan (10.1016/j.epsr.2017.12.012_bib0115) 2014; 5
He (10.1016/j.epsr.2017.12.012_bib0015) 2013; 4
Bennett (10.1016/j.epsr.2017.12.012_bib0005) 2008
Wichakool (10.1016/j.epsr.2017.12.012_bib0050) 2009; 1
Kaustav (10.1016/j.epsr.2017.12.012_bib0150) 2014; 11
Lin (10.1016/j.epsr.2017.12.012_bib0020) 2015; 6
Froehlich (10.1016/j.epsr.2017.12.012_bib0025) 2010; 10
Chang (10.1016/j.epsr.2017.12.012_bib0085) 2012; 2012
Orji (10.1016/j.epsr.2017.12.012_bib0010) 2010
Srinivasan (10.1016/j.epsr.2017.12.012_bib0040) 2006; 21
Chang (10.1016/j.epsr.2017.12.012_bib0160) 2011; 2
Liang (10.1016/j.epsr.2017.12.012_bib0055) 2010; 25
Lam (10.1016/j.epsr.2017.12.012_bib0120) 2007; 53
Kolter (10.1016/j.epsr.2017.12.012_bib0170) 2011
Zhao (10.1016/j.epsr.2017.12.012_bib0105) 2016; 4
Sahay (10.1016/j.epsr.2017.12.012_bib0155) 2015
Zeifman (10.1016/j.epsr.2017.12.012_bib0035) 2011; 57
Juan (10.1016/j.epsr.2017.12.012_bib0070) 2016; 140
Lee (10.1016/j.epsr.2017.12.012_bib0045) 2005; 20
Kong (10.1016/j.epsr.2017.12.012_bib0110) 2016; PP
Cox (10.1016/j.epsr.2017.12.012_bib0080) 2006
Dominik (10.1016/j.epsr.2017.12.012_bib0100) 2014; 64
Lima (10.1016/j.epsr.2017.12.012_bib0065) 2012
Stephen (10.1016/j.epsr.2017.12.012_bib0140) 2015; 7
Marisa (10.1016/j.epsr.2017.12.012_bib0145) 2013; 63
Tsai (10.1016/j.epsr.2017.12.012_bib0075) 2012; 96
Tabatabaei (10.1016/j.epsr.2017.12.012_bib0180) 2016; 8
Martins (10.1016/j.epsr.2017.12.012_bib0090) 2012
Dundar (10.1016/j.epsr.2017.12.012_bib0165) 2004; 42
Iksan (10.1016/j.epsr.2017.12.012_bib0125) 2015
Hart (10.1016/j.epsr.2017.12.012_bib0030) 1992; 80
References_xml – volume: 11
  start-page: 262
  year: 2014
  end-page: 270
  ident: bib0150
  article-title: Nonintrusive load monitoring: a temporal multilabel classification approach
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 973
  year: 2012
  end-page: 978
  ident: bib0090
  article-title: A novel nonintrusive load monitoring system based on the S-Transform
  publication-title: Proc. OPTIM
– volume: 42
  start-page: 264
  year: 2004
  end-page: 270
  ident: bib0165
  article-title: A cost-effective semi supervised classifier approach with kernels
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 779
  year: 2015
  end-page: 786
  ident: bib0175
  article-title: SARAA: semi-supervised learning for automated residential appliance annotation
  publication-title: IEEE Trans. Smart Grid
– start-page: 1751
  year: 2006
  end-page: 1757
  ident: bib0080
  article-title: Transient event detection for nonintrusive load monitoring and demand side management using voltage distortion
  publication-title: APEC
– volume: 80
  start-page: 1870
  year: 1992
  end-page: 1891
  ident: bib0030
  article-title: Nonintrusive appliance load monitoring
  publication-title: Proc. IEEE
– start-page: 59
  year: 2011
  end-page: 62
  ident: bib0170
  article-title: REDD: a public data set for energy disaggregation research
  publication-title: Proc. SustKDD Workshop Data Min. Appl. Sustain.
– volume: 4
  start-page: 1870
  year: 2013
  end-page: 1877
  ident: bib0015
  article-title: Incorporating non-intrusive load monitoring into building level demand response
  publication-title: IEEE Trans. Smart Grid
– volume: PP
  start-page: 1
  year: 2016
  ident: bib0110
  article-title: An extensible approach for non-intrusive load disaggregation with smart meter data
  publication-title: IEEE Trans. Smart Grid
– volume: 53
  start-page: 653
  year: 2007
  end-page: 660
  ident: bib0120
  article-title: A novel method to construct taxonomy of electrical appliances based on load signatures
  publication-title: IEEE Trans. Consum. Electron.
– volume: 6
  start-page: 1839
  year: 2015
  end-page: 1851
  ident: bib0020
  article-title: An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling
  publication-title: IEEE Trans. Smart Grid
– start-page: 566
  year: 1994
  end-page: 568
  ident: bib0130
  article-title: A modified Hausdorff distance for object matching
  publication-title: Proc. Iapr International Conference on Pattern Recognition
– volume: 3
  start-page: 2286
  year: 2012
  end-page: 2293
  ident: bib0060
  article-title: Front-end electronic circuit topology analysis for model-driven classification and monitoring of appliance loads in smart buildings
  publication-title: IEEE Trans. Smart Grid
– volume: 96
  start-page: 55
  year: 2012
  end-page: 73
  ident: bib0075
  article-title: Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation
  publication-title: Appl. Energy
– volume: 7
  start-page: 358
  year: 2015
  end-page: 365
  ident: bib0135
  article-title: Electric load classification by binary voltage–current trajectory mapping
  publication-title: IEEE Trans. Smart Grid
– volume: 20
  start-page: 566
  year: 2005
  end-page: 574
  ident: bib0045
  article-title: Estimation of variable-speed-drive power consumption from harmonic content
  publication-title: IEEE Trans. Energy Convers.
– volume: 57
  start-page: 76
  year: 2011
  end-page: 84
  ident: bib0035
  article-title: Nonintrusive appliance load monitoring: review and outlook
  publication-title: IEEE Trans. Consum. Electron.
– volume: 25
  start-page: 551
  year: 2010
  end-page: 560
  ident: bib0055
  article-title: Load signature study, part I: basic concept, structure, and methodology
  publication-title: IEEE Trans. Power Deliv.
– volume: 1
  start-page: 56
  year: 2009
  end-page: 63
  ident: bib0050
  article-title: Modeling and estimating current harmonics of variable electronic loads
  publication-title: IEEE Trans. Power Electron.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 27
  ident: bib0160
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– start-page: 1
  year: 2012
  end-page: 5
  ident: bib0065
  article-title: Noninvasive monitoring of residential loads
  publication-title: Proc. IEEE Pes International Conference and Exhibition on Innovative Smart Grid Technologies
– volume: 64
  start-page: 467
  year: 2014
  end-page: 477
  ident: bib0100
  article-title: PALDi: online load disaggregation via particle filtering
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 63
  start-page: 364
  year: 2013
  end-page: 373
  ident: bib0145
  article-title: Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1547
  year: 2010
  end-page: 1554
  ident: bib0010
  article-title: Fault detection and diagnostics for non-intrusive monitoring using motor harmonics
  publication-title: Proc. APEC
– volume: 140
  start-page: 65
  year: 2016
  end-page: 69
  ident: bib0070
  article-title: A non-intrusive approach to classify electrical appliances based on higher-order statistics and genetic algorithm: a smart grid perspective
  publication-title: Electr. Power Syst. Res.
– volume: 4
  start-page: 1784
  year: 2016
  end-page: 1799
  ident: bib0105
  article-title: On a training-less solution for non-intrusive appliance load monitoring using graph signal processing
  publication-title: IEEE Access
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0125
  article-title: Appliances identification method of non-intrusive load monitoring based on load signature of V-I trajectory
  publication-title: Proc. ICITSI
– start-page: 961
  year: 2015
  end-page: 964
  ident: bib0155
  article-title: SVM and ANN: a comparative evaluation
  publication-title: Proc. NGCT
– volume: 8
  start-page: 26
  year: 2016
  end-page: 40
  ident: bib0180
  article-title: Toward non-intrusive load monitoring via multi-label classification
  publication-title: IEEE Trans. Smart Grid
– start-page: 1
  year: 2008
  end-page: 8
  ident: bib0005
  article-title: Networking AMI smart meters
  publication-title: Proc. Energy 2030 Conference
– volume: 2012
  start-page: 4569
  year: 2012
  end-page: 4589
  ident: bib0085
  article-title: Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses
  publication-title: Energies
– volume: 10
  start-page: 28
  year: 2010
  end-page: 39
  ident: bib0025
  article-title: Disaggregated end-use energy sensing for the smart grid
  publication-title: IEEE Pervasive Comput.
– volume: 5
  start-page: 870
  year: 2014
  end-page: 878
  ident: bib0115
  article-title: An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring
  publication-title: IEEE Trans. Smart Grid
– volume: 21
  start-page: 398
  year: 2006
  end-page: 405
  ident: bib0040
  article-title: Neural-network-based signature recognition for harmonic source identification
  publication-title: IEEE Trans. Power Deliv.
– volume: 50
  start-page: 2081
  year: 2013
  end-page: 2089
  ident: bib0095
  article-title: Power-spectrum-based wavelet transform for nonintrusive demand monitoring and load identification
  publication-title: IEEE Trans. Ind. Appl.
– volume: 7
  start-page: 2575
  year: 2015
  end-page: 2585
  ident: bib0140
  article-title: Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring
  publication-title: IEEE Trans. Smart Grid
– volume: 8
  start-page: 779
  issue: December (2)
  year: 2015
  ident: 10.1016/j.epsr.2017.12.012_bib0175
  article-title: SARAA: semi-supervised learning for automated residential appliance annotation
  publication-title: IEEE Trans. Smart Grid
– volume: 4
  start-page: 1870
  issue: November (1)
  year: 2013
  ident: 10.1016/j.epsr.2017.12.012_bib0015
  article-title: Incorporating non-intrusive load monitoring into building level demand response
  publication-title: IEEE Trans. Smart Grid
– start-page: 1
  year: 2008
  ident: 10.1016/j.epsr.2017.12.012_bib0005
  article-title: Networking AMI smart meters
– volume: 3
  start-page: 2286
  issue: December (4)
  year: 2012
  ident: 10.1016/j.epsr.2017.12.012_bib0060
  article-title: Front-end electronic circuit topology analysis for model-driven classification and monitoring of appliance loads in smart buildings
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2012.2219327
– volume: 10
  start-page: 28
  issue: September (1)
  year: 2010
  ident: 10.1016/j.epsr.2017.12.012_bib0025
  article-title: Disaggregated end-use energy sensing for the smart grid
  publication-title: IEEE Pervasive Comput.
– volume: 57
  start-page: 76
  issue: March (1)
  year: 2011
  ident: 10.1016/j.epsr.2017.12.012_bib0035
  article-title: Nonintrusive appliance load monitoring: review and outlook
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2011.5735484
– volume: PP
  start-page: 1
  issue: November (99)
  year: 2016
  ident: 10.1016/j.epsr.2017.12.012_bib0110
  article-title: An extensible approach for non-intrusive load disaggregation with smart meter data
  publication-title: IEEE Trans. Smart Grid
– volume: 140
  start-page: 65
  issue: July
  year: 2016
  ident: 10.1016/j.epsr.2017.12.012_bib0070
  article-title: A non-intrusive approach to classify electrical appliances based on higher-order statistics and genetic algorithm: a smart grid perspective
  publication-title: Electr. Power Syst. Res.
– start-page: 1751
  year: 2006
  ident: 10.1016/j.epsr.2017.12.012_bib0080
  article-title: Transient event detection for nonintrusive load monitoring and demand side management using voltage distortion
– volume: 2
  start-page: 1
  issue: January (3)
  year: 2011
  ident: 10.1016/j.epsr.2017.12.012_bib0160
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 2012
  start-page: 4569
  issue: Novemebr (5)
  year: 2012
  ident: 10.1016/j.epsr.2017.12.012_bib0085
  article-title: Non-intrusive demand monitoring and load identification for energy management systems based on transient feature analyses
  publication-title: Energies
  doi: 10.3390/en5114569
– volume: 4
  start-page: 1784
  issue: April
  year: 2016
  ident: 10.1016/j.epsr.2017.12.012_bib0105
  article-title: On a training-less solution for non-intrusive appliance load monitoring using graph signal processing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2557460
– volume: 25
  start-page: 551
  issue: September (2)
  year: 2010
  ident: 10.1016/j.epsr.2017.12.012_bib0055
  article-title: Load signature study, part I: basic concept, structure, and methodology
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2009.2033799
– start-page: 59
  year: 2011
  ident: 10.1016/j.epsr.2017.12.012_bib0170
  article-title: REDD: a public data set for energy disaggregation research
– volume: 7
  start-page: 2575
  issue: November (6)
  year: 2015
  ident: 10.1016/j.epsr.2017.12.012_bib0140
  article-title: Exploiting HMM sparsity to perform online real-time nonintrusive load monitoring
  publication-title: IEEE Trans. Smart Grid
– volume: 11
  start-page: 262
  issue: October (1)
  year: 2014
  ident: 10.1016/j.epsr.2017.12.012_bib0150
  article-title: Nonintrusive load monitoring: a temporal multilabel classification approach
  publication-title: IEEE Trans. Ind. Inform.
– volume: 7
  start-page: 358
  issue: June (1)
  year: 2015
  ident: 10.1016/j.epsr.2017.12.012_bib0135
  article-title: Electric load classification by binary voltage–current trajectory mapping
  publication-title: IEEE Trans. Smart Grid
– start-page: 1547
  year: 2010
  ident: 10.1016/j.epsr.2017.12.012_bib0010
  article-title: Fault detection and diagnostics for non-intrusive monitoring using motor harmonics
– start-page: 961
  year: 2015
  ident: 10.1016/j.epsr.2017.12.012_bib0155
  article-title: SVM and ANN: a comparative evaluation
– volume: 1
  start-page: 56
  issue: December (2)
  year: 2009
  ident: 10.1016/j.epsr.2017.12.012_bib0050
  article-title: Modeling and estimating current harmonics of variable electronic loads
  publication-title: IEEE Trans. Power Electron.
– volume: 64
  start-page: 467
  issue: December (2)
  year: 2014
  ident: 10.1016/j.epsr.2017.12.012_bib0100
  article-title: PALDi: online load disaggregation via particle filtering
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 80
  start-page: 1870
  issue: December (12)
  year: 1992
  ident: 10.1016/j.epsr.2017.12.012_bib0030
  article-title: Nonintrusive appliance load monitoring
  publication-title: Proc. IEEE
  doi: 10.1109/5.192069
– volume: 8
  start-page: 26
  issue: June (1)
  year: 2016
  ident: 10.1016/j.epsr.2017.12.012_bib0180
  article-title: Toward non-intrusive load monitoring via multi-label classification
  publication-title: IEEE Trans. Smart Grid
– volume: 5
  start-page: 870
  issue: October (2)
  year: 2014
  ident: 10.1016/j.epsr.2017.12.012_bib0115
  article-title: An empirical investigation of V-I trajectory based load signatures for non-intrusive load monitoring
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2013.2271282
– volume: 96
  start-page: 55
  issue: August (8)
  year: 2012
  ident: 10.1016/j.epsr.2017.12.012_bib0075
  article-title: Modern development of an Adaptive Non-Intrusive Appliance Load Monitoring system in electricity energy conservation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.11.027
– volume: 42
  start-page: 264
  issue: January (1)
  year: 2004
  ident: 10.1016/j.epsr.2017.12.012_bib0165
  article-title: A cost-effective semi supervised classifier approach with kernels
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.817815
– start-page: 1
  year: 2015
  ident: 10.1016/j.epsr.2017.12.012_bib0125
  article-title: Appliances identification method of non-intrusive load monitoring based on load signature of V-I trajectory
– volume: 63
  start-page: 364
  issue: September (2)
  year: 2013
  ident: 10.1016/j.epsr.2017.12.012_bib0145
  article-title: Electrical signal source separation via nonnegative tensor factorization using on site measurements in a smart home
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 21
  start-page: 398
  issue: January (1)
  year: 2006
  ident: 10.1016/j.epsr.2017.12.012_bib0040
  article-title: Neural-network-based signature recognition for harmonic source identification
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2005.852370
– volume: 50
  start-page: 2081
  issue: September (3)
  year: 2013
  ident: 10.1016/j.epsr.2017.12.012_bib0095
  article-title: Power-spectrum-based wavelet transform for nonintrusive demand monitoring and load identification
  publication-title: IEEE Trans. Ind. Appl.
– start-page: 566
  year: 1994
  ident: 10.1016/j.epsr.2017.12.012_bib0130
  article-title: A modified Hausdorff distance for object matching
– volume: 6
  start-page: 1839
  issue: January (4)
  year: 2015
  ident: 10.1016/j.epsr.2017.12.012_bib0020
  article-title: An advanced home energy management system facilitated by nonintrusive load monitoring with automated multiobjective power scheduling
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2388492
– start-page: 973
  year: 2012
  ident: 10.1016/j.epsr.2017.12.012_bib0090
  article-title: A novel nonintrusive load monitoring system based on the S-Transform
– volume: 20
  start-page: 566
  issue: September (3)
  year: 2005
  ident: 10.1016/j.epsr.2017.12.012_bib0045
  article-title: Estimation of variable-speed-drive power consumption from harmonic content
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2005.852963
– volume: 53
  start-page: 653
  issue: July (20)
  year: 2007
  ident: 10.1016/j.epsr.2017.12.012_bib0120
  article-title: A novel method to construct taxonomy of electrical appliances based on load signatures
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2007.381742
– start-page: 1
  year: 2012
  ident: 10.1016/j.epsr.2017.12.012_bib0065
  article-title: Noninvasive monitoring of residential loads
SSID ssj0006975
Score 2.5479033
Snippet •Proposing a V-I trajectory extraction approach based on the steady-state data before and after an event.•The method of quantifying the V-I trajectory feature...
Non-intrusive load monitoring (NILM) can monitor the status of electrical appliances on-line and provide detailed power consumption data, which is the basis...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Algorithms
Automatic meter reading
Electric appliances
Energy consumption
Energy management
Feature extraction
Interpolation
Load disaggregation
Load signatures
Monitoring
Monitoring systems
Multi-classification
Non-intrusive load monitoring
Power consumption
Smart metering
Studies
Support vector machines
Trajectory analysis
V–I trajectory
Title Non-intrusive load monitoring algorithm based on features of V–I trajectory
URI https://dx.doi.org/10.1016/j.epsr.2017.12.012
https://www.proquest.com/docview/2049933521
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AKRWK
  dateStart: 19770901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqssCAeIpCqTywodA8nMQZq4qqgNoFirpZiWNDqzapaBcWxD_wh3wJ9zoJL4kObElsR9G1fU6ufe8xIWfKQ81uN7VwT8piqRtaSSAZuCo-uG6uiqSPCc6DYdAfseuxP66RbpULg2GVJfYXmG7QunzSLq3ZXkwm7Vvbg8EWRkDBuFVk8nsZC_EUg4uXrzCPIDJiu1jZwtpl4kwR46UWS9QEdUKzJOi4f5HTL5g23NPbIdvlTyPtFN-1S2oq2yNb36QE98lgmGfWJMMUCsAvOsvjlM7NfMVyGs8e4GL1OKdIWynNM6qV0fRc0lzT-_fXtyu6eoqnZhH_-YCMepd33b5VHpVgSc_lKwu9CJsD7gL9x5HmXEoVe0p6qU5khETtaw6uT6gYVz7wog5Y4tnQHVrasZd6h6Se5Zk6IjTxOU_DILYDpZmME6ArAGcwcsps7bhOgziVjYQsdcTxOIuZqALGpgLtKtCuwnEF2LVBzj_bLAoVjbW1_cr04sdYEADza9s1q34S5UxcQjn4dJhY5hz_87UnZBPueBGu0yR16El1Cn8iq6RlhlqLbHSubvrDD4f63qw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqMgAD4ikKBTywodC844yoomqh7UKLulmJY0OrNqloFxbEP_CHfAn3Jg4viQ5sUWxH0bV9jq997zEh59JBzW47MfBMynATOzBiX7jgqnjgutkyFB4mOPf6fnvo3oy8UYU0y1wYDKvU2F9geo7W-k1DW7MxH48bd6YDgy0IgYLxqAjze9dczw7QA7t8-Yrz8MNcbRdrG1hdZ84UQV5yvkBRUCvI9wQt-y92-oXTOfm0tsmWXjXSq-LHdkhFprtk85uW4B7p9bPUGKeYQwEARqdZlNBZPmGxnEbTB3hYPs4o8lZCs5QqmYt6Lmim6P3761uHLp-iSb6L_7xPhq3rQbNt6LsSDOHYbGmgG2EyAF7g_yhUjAkhI0cKJ1GxCJGpPcXA9wmky6QHxKh8N3ZM6A8lzMhJnANSTbNUHhIae4wlgR-ZvlSuiGLgK0BnsHLimsqyrRqxShtxoYXE8T6LKS8jxiYc7crRrtyyOdi1Ri4-28wLGY2Vtb3S9PzHYOCA8yvb1ct-4noqLqAcnDrMLLOO_vnZM7LeHvS6vNvp3x6TDShhRexOnVShV-UJLEuW8Wk-7D4AygLgQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-intrusive+load+monitoring+algorithm+based+on+features+of+V%E2%80%93I+trajectory&rft.jtitle=Electric+power+systems+research&rft.au=Wang%2C+A+Longjun&rft.au=Chen%2C+B+Xiaomin&rft.au=Wang%2C+C+Gang&rft.au=Hua%2C+D&rft.date=2018-04-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=157&rft.spage=134&rft_id=info:doi/10.1016%2Fj.epsr.2017.12.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon