Small-signal stability analysis in smart grids: An approach based on distributed decision trees

•Each distributed DT uses only local data to assess the small-signal stability.•The TSO can assess the stability from any of the available individual DT predictions.•The distributed DTs require a low computational burden and a reduced number of features.•The higher classification ratios provided by...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 203; p. 107651
Main Authors da Cunha, Guilherme L., Fernandes, Ricardo A.S., Fernandes, Tatiane Cristina C.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0378-7796
1873-2046
DOI10.1016/j.epsr.2021.107651

Cover

Abstract •Each distributed DT uses only local data to assess the small-signal stability.•The TSO can assess the stability from any of the available individual DT predictions.•The distributed DTs require a low computational burden and a reduced number of features.•The higher classification ratios provided by distributed DTs show their efficiency. Accurate information on the dynamic behavior of a smart grid is essential for its effective control and reliable operation. Specifically, ensuring that the electromechanical oscillations are properly damped is needed for the dynamic security operation of an interconnected system. Since the model-based method to evaluate these oscillations is subject to uncertainties, the data from a wide-area measurement system can assist in this challenging task. In this context, this paper proposes a decentralized approach based on decision trees to classify the interarea oscillations through data measured in the generation buses. For each generation bus, there is an individual decision tree capable of evaluating the interarea oscillations damping. The decision trees presented a low computational burden and, consequently, they can be embedded in phasor measurement units with low-cost hardware. The results obtained with the 68-bus test system show that the classifications provided by individual decision trees are accurate, even when contingency scenarios were evaluated, reaching accuracies greater than 0.93. Thus, the possibility of analyzing the power system stability to small disturbances from local information is one of the main contributions of the proposed approach to advance the state-of-the-art, since the use of distributed decision trees is robust even when there is loss of information from a specific generator.
AbstractList •Each distributed DT uses only local data to assess the small-signal stability.•The TSO can assess the stability from any of the available individual DT predictions.•The distributed DTs require a low computational burden and a reduced number of features.•The higher classification ratios provided by distributed DTs show their efficiency. Accurate information on the dynamic behavior of a smart grid is essential for its effective control and reliable operation. Specifically, ensuring that the electromechanical oscillations are properly damped is needed for the dynamic security operation of an interconnected system. Since the model-based method to evaluate these oscillations is subject to uncertainties, the data from a wide-area measurement system can assist in this challenging task. In this context, this paper proposes a decentralized approach based on decision trees to classify the interarea oscillations through data measured in the generation buses. For each generation bus, there is an individual decision tree capable of evaluating the interarea oscillations damping. The decision trees presented a low computational burden and, consequently, they can be embedded in phasor measurement units with low-cost hardware. The results obtained with the 68-bus test system show that the classifications provided by individual decision trees are accurate, even when contingency scenarios were evaluated, reaching accuracies greater than 0.93. Thus, the possibility of analyzing the power system stability to small disturbances from local information is one of the main contributions of the proposed approach to advance the state-of-the-art, since the use of distributed decision trees is robust even when there is loss of information from a specific generator.
Accurate information on the dynamic behavior of a smart grid is essential for its effective control and reliable operation. Specifically, ensuring that the electromechanical oscillations are properly damped is needed for the dynamic security operation of an interconnected system. Since the model-based method to evaluate these oscillations is subject to uncertainties, the data from a wide-area measurement system can assist in this challenging task. In this context, this paper proposes a decentralized approach based on decision trees to classify the interarea oscillations through data measured in the generation buses. For each generation bus, there is an individual decision tree capable of evaluating the interarea oscillations damping. The decision trees presented a low computational burden and, consequently, they can be embedded in phasor measurement units with low-cost hardware. The results obtained with the 68-bus test system show that the classifications provided by individual decision trees are accurate, even when contingency scenarios were evaluated, reaching accuracies greater than 0.93. Thus, the possibility of analyzing the power system stability to small disturbances from local information is one of the main contributions of the proposed approach to advance the state-of-the-art, since the use of distributed decision trees is robust even when there is loss of information from a specific generator.
ArticleNumber 107651
Author Fernandes, Ricardo A.S.
Fernandes, Tatiane Cristina C.
da Cunha, Guilherme L.
Author_xml – sequence: 1
  givenname: Guilherme L.
  orcidid: 0000-0001-7584-1283
  surname: da Cunha
  fullname: da Cunha, Guilherme L.
– sequence: 2
  givenname: Ricardo A.S.
  orcidid: 0000-0003-2361-6505
  surname: Fernandes
  fullname: Fernandes, Ricardo A.S.
– sequence: 3
  givenname: Tatiane Cristina C.
  orcidid: 0000-0003-2605-0893
  surname: Fernandes
  fullname: Fernandes, Tatiane Cristina C.
  email: tatianefernandes@ufscar.br
BookMark eNp9kE1LAzEQhoNUsFX_gKeA561JdjfZFS-l-AUFD3oP2WSqU9bdmkmF_ntT6smDp2GGeYZ5nxmbDOMAjF1JMZdC6pvNHLYU50oomQdG1_KETWVjykKJSk_YVJSmKYxp9RmbEW2EELo19ZTZ10_X9wXh--B6Tsl12GPac5fbPSFxHDh9upj4e8RAt3wxcLfdxtH5D945gsDHgQekFLHbpdwG8EiYhykC0AU7Xbue4PK3nrO3h_u35VOxenl8Xi5WhS9Vk4radAoaDblKFxonQmeMXFeVl6KqgvKlcDpAKzuhamWqMkdxSkivS-OELM_Z9fFs_uxrB5TsZtzFnIGs0qoVTV21Jm81xy0fR6IIa-sxuZSfTdFhb6WwB5t2Yw827cGmPdrMqPqDbiNmL_v_obsjBDn5N0K05BEGDwEj-GTDiP_hP7N-kEk
CitedBy_id crossref_primary_10_1186_s41601_023_00319_5
crossref_primary_10_1016_j_epsr_2024_110853
crossref_primary_10_3390_en16248054
crossref_primary_10_3390_e27010035
crossref_primary_10_1002_oca_3053
crossref_primary_10_1016_j_epsr_2024_111056
crossref_primary_10_32604_cmes_2024_058202
crossref_primary_10_1080_00051144_2023_2218164
crossref_primary_10_1109_ACCESS_2021_3133285
crossref_primary_10_1016_j_jiixd_2024_01_003
crossref_primary_10_3390_electronics12183860
crossref_primary_10_1016_j_csite_2023_103237
crossref_primary_10_1016_j_ymssp_2022_110022
Cites_doi 10.1109/TPWRS.2011.2112784
10.1109/TPWRS.2006.873408
10.1109/TII.2015.2492861
10.1109/MPAE.2004.1338120
10.3390/en9110927
10.1016/j.ijepes.2021.106898
10.1109/TPWRS.2013.2281323
10.1109/TPWRS.2013.2283064
10.1016/j.epsr.2021.107200
10.17775/CSEEJPES.2015.00019
10.1109/TSG.2020.3007063
10.1109/TPWRS.2009.2016528
10.1016/j.epsr.2017.03.029
10.1109/TPWRS.2004.825981
10.1109/TPWRS.2017.2707501
10.1016/0142-0615(93)90029-M
10.1109/TPWRD.2004.824763
10.1109/TPWRS.2015.2453424
10.1049/iet-gtd.2019.0311
10.1109/JSYST.2020.2978504
10.1109/TPWRS.2016.2561263
10.1109/TSTE.2014.2348491
10.1109/TPWRS.2013.2240022
10.1109/TPWRS.2015.2422072
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Feb 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Feb 2022
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.epsr.2021.107651
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID 10_1016_j_epsr_2021_107651
S0378779621006325
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADHUB
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
E.L
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
7SP
8FD
EFKBS
FR3
KR7
L7M
ID FETCH-LOGICAL-c328t-57b2e86e57b1ad8a0db771f44c1044d2c30a6de91b0252743779a201c637a013
IEDL.DBID AIKHN
ISSN 0378-7796
IngestDate Fri Jul 25 06:27:23 EDT 2025
Tue Jul 01 04:32:06 EDT 2025
Thu Apr 24 22:50:43 EDT 2025
Sun Apr 06 06:54:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Electromechanical oscillations
Small-signal stability
Phasor measurement units
Decision tree
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-57b2e86e57b1ad8a0db771f44c1044d2c30a6de91b0252743779a201c637a013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7584-1283
0000-0003-2361-6505
0000-0003-2605-0893
PQID 2629085497
PQPubID 2047565
ParticipantIDs proquest_journals_2629085497
crossref_citationtrail_10_1016_j_epsr_2021_107651
crossref_primary_10_1016_j_epsr_2021_107651
elsevier_sciencedirect_doi_10_1016_j_epsr_2021_107651
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Teeuwsen, Erlich, El-Sharkawi (bib0018) 2003; vol. 4
Zanjani, Mazlumi, Kamwa (bib0006) 2019; 13
Guo, Milanović (bib0002) 2016; 31
Oliveira, Vieira, Bezerra, Martins, Rodrigues (bib0012) 2017; 148
Kuiava, Bogodorova, Fernandes, Ramos (bib0026) 2020
Cao, Fan (bib0022) 2018
Zhang, Chung, Wang, Zheng (bib0008) 2016; 12
Verbic, Gubina (bib0016) 2004; 19
Rokach, Maimon (bib0031) 2014
Diao, Sun, Vittal, O’Keefe, Richardson, Bhatt, Stradford, Sarawgi (bib0015) 2009; 24
Wang, Bi, Wang, Liu (bib0020) 2015; 1
Sauer, Lesieutre, Pai (bib0027) 1993; 15
Asvapoositkul, Preece (bib0021) 2021; 196
Mukherjee, Chakraborty, Banerjee (bib0036) 2020
Canizares, Fernandes, Geraldi, Gerin-Lajoie, Gibbard, Hiskens, Kersulis, Kuiava, Lima, DeMarco, Martins, Pal, Piardi, Ramos, dos Santos, Silva, Singh, Tamimi, Vowles (bib0035) 2017; 32
Patidar, Tiwari (bib0030) 2013; 70
Liu, Sun, Rather, Chen, Bak, Thøgersen, Lund (bib0009) 2014; 29
McNabb, Wilson, Bialek (bib0007) 2013; 28
Yu, Hill, Lam, Gu, Li (bib0017) 2018; 33
Breiman, Friedman, Oslen, Stone (bib0032) 2017
Huang, Peng, Cai, Chen (bib0034) 2016; 9
Liu, Shi, Zhang, Tang, Zhang, Liu, Mao, Li, Li, Cheng, Yan, Liu, Li, Liao, Zhang (bib0010) 2021; 130
Singh, Allen, Muljadi, Gevorgian, Zhang, Santoso (bib0005) 2015; 6
Mansour, Alberto, Ramos (bib0025) 2016; 31
Guddanti, Matavalam, Weng (bib0014) 2020; 11
Electrical Networks Department, ANAREDE - Network Analsys Program v11.2.0 - User’s Manual, Research Center in Electrical Energy - CEPEL, 2019.
Geron (bib0033) 2017
Mukherjee, De (bib0001) 2020; 14
Morison, Lei Wang, Kundur (bib0003) 2004; 2
Asvapoositkul (bib0023) 2021
Singh, Pal (bib0013) 2014; 29
Kundur (bib0024) 1994
Teeuwsen, Erlich, El-Sharkawi, Bachmann (bib0019) 2006; 21
Krishnan, McCalley, Henry, Issad (bib0011) 2011; 26
Kundur, Paserba, Ajjarapu, Andersson, Bose, Canizares, Hatziargyriou, Hill, Stankovic, Taylor, Van Cutsem, Vittal (bib0004) 2004; 19
S. Gomes Jr., T.J.M.A. Parreiras, T.S. Amaral, PacDyn - Small-Signal Stability Analysis & Control v9.2.2 - User’s Manual, Research Center in Electrical Energy - CEPEL, 2018.
Verbic (10.1016/j.epsr.2021.107651_bib0016) 2004; 19
Singh (10.1016/j.epsr.2021.107651_bib0005) 2015; 6
Liu (10.1016/j.epsr.2021.107651_bib0010) 2021; 130
10.1016/j.epsr.2021.107651_bib0029
Zanjani (10.1016/j.epsr.2021.107651_bib0006) 2019; 13
Sauer (10.1016/j.epsr.2021.107651_bib0027) 1993; 15
10.1016/j.epsr.2021.107651_bib0028
Morison (10.1016/j.epsr.2021.107651_bib0003) 2004; 2
Mansour (10.1016/j.epsr.2021.107651_bib0025) 2016; 31
Huang (10.1016/j.epsr.2021.107651_bib0034) 2016; 9
Diao (10.1016/j.epsr.2021.107651_bib0015) 2009; 24
Zhang (10.1016/j.epsr.2021.107651_bib0008) 2016; 12
Breiman (10.1016/j.epsr.2021.107651_bib0032) 2017
Guo (10.1016/j.epsr.2021.107651_bib0002) 2016; 31
McNabb (10.1016/j.epsr.2021.107651_bib0007) 2013; 28
Singh (10.1016/j.epsr.2021.107651_bib0013) 2014; 29
Teeuwsen (10.1016/j.epsr.2021.107651_bib0018) 2003; vol. 4
Asvapoositkul (10.1016/j.epsr.2021.107651_bib0021) 2021; 196
Liu (10.1016/j.epsr.2021.107651_bib0009) 2014; 29
Guddanti (10.1016/j.epsr.2021.107651_bib0014) 2020; 11
Mukherjee (10.1016/j.epsr.2021.107651_bib0001) 2020; 14
Yu (10.1016/j.epsr.2021.107651_bib0017) 2018; 33
Kundur (10.1016/j.epsr.2021.107651_bib0024) 1994
Kuiava (10.1016/j.epsr.2021.107651_bib0026) 2020
Canizares (10.1016/j.epsr.2021.107651_bib0035) 2017; 32
Teeuwsen (10.1016/j.epsr.2021.107651_bib0019) 2006; 21
Wang (10.1016/j.epsr.2021.107651_bib0020) 2015; 1
Geron (10.1016/j.epsr.2021.107651_bib0033) 2017
Krishnan (10.1016/j.epsr.2021.107651_bib0011) 2011; 26
Mukherjee (10.1016/j.epsr.2021.107651_bib0036) 2020
Cao (10.1016/j.epsr.2021.107651_bib0022) 2018
Kundur (10.1016/j.epsr.2021.107651_bib0004) 2004; 19
Oliveira (10.1016/j.epsr.2021.107651_bib0012) 2017; 148
Asvapoositkul (10.1016/j.epsr.2021.107651_bib0023) 2021
Patidar (10.1016/j.epsr.2021.107651_bib0030) 2013; 70
Rokach (10.1016/j.epsr.2021.107651_bib0031) 2014
References_xml – volume: 2
  start-page: 30
  year: 2004
  end-page: 39
  ident: bib0003
  article-title: Power system security assessment
  publication-title: IEEE Power Energy Mag.
– volume: 13
  start-page: 3634
  year: 2019
  end-page: 3641
  ident: bib0006
  article-title: Combined analysis of distribution-level PMU data with transmission-level PMU for early detection of long-term voltage instability
  publication-title: IET Gener. Trans. Distrib.
– volume: vol. 4
  start-page: 2349
  year: 2003
  end-page: 2649
  ident: bib0018
  article-title: Small-signal stability assessment based on advanced neural network methods
  publication-title: 2003 IEEE Power Engineering Society General Meeting
– volume: 148
  start-page: 264
  year: 2017
  end-page: 272
  ident: bib0012
  article-title: Power system security assessment for multiple contingencies using multiway decision tree
  publication-title: Electr. Power Syst. Res.
– start-page: 216
  year: 2018
  end-page: 221
  ident: bib0022
  article-title: Deep learning-based online small signal stability assessment of power systems with renewable generation
  publication-title: 2018 IEEE Smart World, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation
– reference: Electrical Networks Department, ANAREDE - Network Analsys Program v11.2.0 - User’s Manual, Research Center in Electrical Energy - CEPEL, 2019.
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib0036
  article-title: Power system fault classification with imbalanced learning for distribution systems
  publication-title: 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering
– year: 2021
  ident: bib0023
  publication-title: Data-driven small-signal stability assessment and preventive control in low inertia power systems
– year: 1994
  ident: bib0024
  article-title: Power System Stability and Control
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib0026
  article-title: A study on the relation between the maximum loadability point and undervoltage load shedding schemes
  publication-title: 2020 IEEE Power Energy Society General Meeting
– volume: 9
  start-page: 927
  year: 2016
  ident: bib0034
  article-title: Power quality disturbances feature selection and recognition using optimal multi-resolution fast s-transform and cart algorithm
  publication-title: Energies
– volume: 29
  start-page: 717
  year: 2014
  end-page: 730
  ident: bib0009
  article-title: A systematic approach for dynamic security assessment and the corresponding preventive control scheme based on decision trees
  publication-title: IEEE Trans. Power Syst.
– year: 2017
  ident: bib0033
  article-title: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
– volume: 33
  start-page: 1049
  year: 2018
  end-page: 1058
  ident: bib0017
  article-title: Intelligent time-adaptive transient stability assessment system
  publication-title: IEEE Trans. Power Syst.
– volume: 32
  start-page: 715
  year: 2017
  end-page: 722
  ident: bib0035
  article-title: Benchmark models for the analysis and control of small-signal oscillatory dynamics in power systems
  publication-title: IEEE Trans. Power Syst.
– volume: 14
  start-page: 3836
  year: 2020
  end-page: 3843
  ident: bib0001
  article-title: Development of an ensemble decision tree-based power system dynamic security state predictor
  publication-title: IEEE Syst. J.
– volume: 130
  start-page: 106898
  year: 2021
  ident: bib0010
  article-title: An integrated scheme for static voltage stability assessment based on correlation detection and random bits forest
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 15
  start-page: 145
  year: 1993
  end-page: 153
  ident: bib0027
  article-title: Maximum loadability and voltage stability in power systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 31
  start-page: 1760
  year: 2016
  end-page: 1768
  ident: bib0002
  article-title: Online identification of power system dynamic signature using PMU measurements and data mining
  publication-title: IEEE Trans. Power Syst.
– volume: 28
  start-page: 1988
  year: 2013
  end-page: 1996
  ident: bib0007
  article-title: Classification of model damping and amplitude in power systems using synchrophasor measurements and classification trees
  publication-title: IEEE Trans. Power Syst.
– volume: 11
  start-page: 5203
  year: 2020
  end-page: 5215
  ident: bib0014
  article-title: PMU-based distributed non-iterative algorithm for real-time voltage stability monitoring
  publication-title: IEEE Trans. Smart Grid
– volume: 31
  start-page: 1517
  year: 2016
  end-page: 1525
  ident: bib0025
  article-title: Preventive control design for voltage stability considering multiple critical contingencies
  publication-title: IEEE Trans. Power Syst.
– year: 2014
  ident: bib0031
  article-title: Data Mining with Decision Trees: Theory and Applications
– volume: 19
  start-page: 1387
  year: 2004
  end-page: 1401
  ident: bib0004
  article-title: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions
  publication-title: IEEE Trans. Power Syst.
– volume: 19
  start-page: 576
  year: 2004
  end-page: 581
  ident: bib0016
  article-title: A new concept of voltage-collapse protection based on local phasors
  publication-title: IEEE Trans. Power Deliv.
– volume: 21
  start-page: 746
  year: 2006
  end-page: 753
  ident: bib0019
  article-title: Genetic algorithm and decision tree-based oscillatory stability assessment
  publication-title: IEEE Trans. Power Syst.
– volume: 196
  start-page: 107200
  year: 2021
  ident: bib0021
  article-title: Decision tree-based prediction model for small signal stability and generation-rescheduling preventive control
  publication-title: Electr. Power Syst. Res.
– volume: 29
  start-page: 794
  year: 2014
  end-page: 804
  ident: bib0013
  article-title: Decentralized dynamic state estimation in power systems using unscented transformation
  publication-title: IEEE Trans. Power Syst.
– volume: 24
  start-page: 832
  year: 2009
  end-page: 839
  ident: bib0015
  article-title: Decision tree-based online voltage security assessment using PMU measurements
  publication-title: IEEE Trans. Power Syst.
– volume: 70
  start-page: 31
  year: 2013
  end-page: 36
  ident: bib0030
  article-title: Handling missing value in decision tree algorithm
  publication-title: Int. J. Comput. Appl.
– reference: S. Gomes Jr., T.J.M.A. Parreiras, T.S. Amaral, PacDyn - Small-Signal Stability Analysis & Control v9.2.2 - User’s Manual, Research Center in Electrical Energy - CEPEL, 2018.
– volume: 6
  start-page: 967
  year: 2015
  end-page: 975
  ident: bib0005
  article-title: Interarea oscillation damping controls for wind power plants
  publication-title: IEEE Trans. Sustain. Energy
– volume: 1
  start-page: 53
  year: 2015
  end-page: 61
  ident: bib0020
  article-title: Decision tree based online stability assessment scheme for power systems with renewable generations
  publication-title: CSEE J. Power Energy Syst.
– volume: 12
  start-page: 844
  year: 2016
  end-page: 852
  ident: bib0008
  article-title: Instantaneous electromechanical dynamics monitoring in smart transmission grid
  publication-title: IEEE Trans. Ind. Inf.
– volume: 26
  start-page: 2319
  year: 2011
  end-page: 2327
  ident: bib0011
  article-title: Efficient database generation for decision tree based power system security assessment
  publication-title: IEEE Trans. Power Syst.
– year: 2017
  ident: bib0032
  article-title: Classification and regression trees
– volume: 26
  start-page: 2319
  issue: 4
  year: 2011
  ident: 10.1016/j.epsr.2021.107651_bib0011
  article-title: Efficient database generation for decision tree based power system security assessment
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2112784
– volume: vol. 4
  start-page: 2349
  year: 2003
  ident: 10.1016/j.epsr.2021.107651_bib0018
  article-title: Small-signal stability assessment based on advanced neural network methods
– volume: 21
  start-page: 746
  issue: 2
  year: 2006
  ident: 10.1016/j.epsr.2021.107651_bib0019
  article-title: Genetic algorithm and decision tree-based oscillatory stability assessment
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.873408
– start-page: 1
  year: 2020
  ident: 10.1016/j.epsr.2021.107651_bib0026
  article-title: A study on the relation between the maximum loadability point and undervoltage load shedding schemes
– volume: 12
  start-page: 844
  issue: 2
  year: 2016
  ident: 10.1016/j.epsr.2021.107651_bib0008
  article-title: Instantaneous electromechanical dynamics monitoring in smart transmission grid
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2015.2492861
– ident: 10.1016/j.epsr.2021.107651_bib0028
– volume: 2
  start-page: 30
  issue: 5
  year: 2004
  ident: 10.1016/j.epsr.2021.107651_bib0003
  article-title: Power system security assessment
  publication-title: IEEE Power Energy Mag.
  doi: 10.1109/MPAE.2004.1338120
– volume: 9
  start-page: 927
  issue: 11
  year: 2016
  ident: 10.1016/j.epsr.2021.107651_bib0034
  article-title: Power quality disturbances feature selection and recognition using optimal multi-resolution fast s-transform and cart algorithm
  publication-title: Energies
  doi: 10.3390/en9110927
– volume: 130
  start-page: 106898
  year: 2021
  ident: 10.1016/j.epsr.2021.107651_bib0010
  article-title: An integrated scheme for static voltage stability assessment based on correlation detection and random bits forest
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.106898
– volume: 29
  start-page: 794
  issue: 2
  year: 2014
  ident: 10.1016/j.epsr.2021.107651_bib0013
  article-title: Decentralized dynamic state estimation in power systems using unscented transformation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2281323
– volume: 29
  start-page: 717
  issue: 2
  year: 2014
  ident: 10.1016/j.epsr.2021.107651_bib0009
  article-title: A systematic approach for dynamic security assessment and the corresponding preventive control scheme based on decision trees
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2283064
– start-page: 1
  year: 2020
  ident: 10.1016/j.epsr.2021.107651_bib0036
  article-title: Power system fault classification with imbalanced learning for distribution systems
– volume: 70
  start-page: 31
  issue: 13
  year: 2013
  ident: 10.1016/j.epsr.2021.107651_bib0030
  article-title: Handling missing value in decision tree algorithm
  publication-title: Int. J. Comput. Appl.
– volume: 196
  start-page: 107200
  year: 2021
  ident: 10.1016/j.epsr.2021.107651_bib0021
  article-title: Decision tree-based prediction model for small signal stability and generation-rescheduling preventive control
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107200
– year: 2021
  ident: 10.1016/j.epsr.2021.107651_bib0023
– volume: 1
  start-page: 53
  issue: 2
  year: 2015
  ident: 10.1016/j.epsr.2021.107651_bib0020
  article-title: Decision tree based online stability assessment scheme for power systems with renewable generations
  publication-title: CSEE J. Power Energy Syst.
  doi: 10.17775/CSEEJPES.2015.00019
– year: 1994
  ident: 10.1016/j.epsr.2021.107651_bib0024
– volume: 11
  start-page: 5203
  issue: 6
  year: 2020
  ident: 10.1016/j.epsr.2021.107651_bib0014
  article-title: PMU-based distributed non-iterative algorithm for real-time voltage stability monitoring
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3007063
– volume: 24
  start-page: 832
  issue: 2
  year: 2009
  ident: 10.1016/j.epsr.2021.107651_bib0015
  article-title: Decision tree-based online voltage security assessment using PMU measurements
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2016528
– ident: 10.1016/j.epsr.2021.107651_bib0029
– volume: 148
  start-page: 264
  year: 2017
  ident: 10.1016/j.epsr.2021.107651_bib0012
  article-title: Power system security assessment for multiple contingencies using multiway decision tree
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.03.029
– volume: 19
  start-page: 1387
  issue: 3
  year: 2004
  ident: 10.1016/j.epsr.2021.107651_bib0004
  article-title: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.825981
– volume: 33
  start-page: 1049
  issue: 1
  year: 2018
  ident: 10.1016/j.epsr.2021.107651_bib0017
  article-title: Intelligent time-adaptive transient stability assessment system
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2707501
– volume: 15
  start-page: 145
  issue: 3
  year: 1993
  ident: 10.1016/j.epsr.2021.107651_bib0027
  article-title: Maximum loadability and voltage stability in power systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/0142-0615(93)90029-M
– volume: 19
  start-page: 576
  issue: 2
  year: 2004
  ident: 10.1016/j.epsr.2021.107651_bib0016
  article-title: A new concept of voltage-collapse protection based on local phasors
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2004.824763
– start-page: 216
  year: 2018
  ident: 10.1016/j.epsr.2021.107651_bib0022
  article-title: Deep learning-based online small signal stability assessment of power systems with renewable generation
– volume: 31
  start-page: 1760
  issue: 3
  year: 2016
  ident: 10.1016/j.epsr.2021.107651_bib0002
  article-title: Online identification of power system dynamic signature using PMU measurements and data mining
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2453424
– year: 2014
  ident: 10.1016/j.epsr.2021.107651_bib0031
– volume: 13
  start-page: 3634
  issue: 16
  year: 2019
  ident: 10.1016/j.epsr.2021.107651_bib0006
  article-title: Combined analysis of distribution-level PMU data with transmission-level PMU for early detection of long-term voltage instability
  publication-title: IET Gener. Trans. Distrib.
  doi: 10.1049/iet-gtd.2019.0311
– volume: 14
  start-page: 3836
  issue: 3
  year: 2020
  ident: 10.1016/j.epsr.2021.107651_bib0001
  article-title: Development of an ensemble decision tree-based power system dynamic security state predictor
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2020.2978504
– volume: 32
  start-page: 715
  issue: 1
  year: 2017
  ident: 10.1016/j.epsr.2021.107651_bib0035
  article-title: Benchmark models for the analysis and control of small-signal oscillatory dynamics in power systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2561263
– year: 2017
  ident: 10.1016/j.epsr.2021.107651_bib0032
– volume: 6
  start-page: 967
  issue: 3
  year: 2015
  ident: 10.1016/j.epsr.2021.107651_bib0005
  article-title: Interarea oscillation damping controls for wind power plants
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2348491
– volume: 28
  start-page: 1988
  year: 2013
  ident: 10.1016/j.epsr.2021.107651_bib0007
  article-title: Classification of model damping and amplitude in power systems using synchrophasor measurements and classification trees
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2240022
– volume: 31
  start-page: 1517
  issue: 2
  year: 2016
  ident: 10.1016/j.epsr.2021.107651_bib0025
  article-title: Preventive control design for voltage stability considering multiple critical contingencies
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2422072
– year: 2017
  ident: 10.1016/j.epsr.2021.107651_bib0033
SSID ssj0006975
Score 2.4340808
Snippet •Each distributed DT uses only local data to assess the small-signal stability.•The TSO can assess the stability from any of the available individual DT...
Accurate information on the dynamic behavior of a smart grid is essential for its effective control and reliable operation. Specifically, ensuring that the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107651
SubjectTerms Contingency
Control systems
Damping
Decision analysis
Decision tree
Decision trees
Electricity distribution
Electromechanical oscillations
Evaluation
Machine learning
Measurement
Measuring instruments
Oscillations
Phasor measurement units
Phasors
Small-signal stability
Smart grid
Stability analysis
Systems stability
Title Small-signal stability analysis in smart grids: An approach based on distributed decision trees
URI https://dx.doi.org/10.1016/j.epsr.2021.107651
https://www.proquest.com/docview/2629085497
Volume 203
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWWBAPMWz8sCGTBM7dmK2qgIVECyAxGY5sYuK2lCRMrDw2zknDgIkGJiiWL487py775TzdwBHKUJoXjhFVWFGNBEppxjlFM1yLvJcSqfqznPXN3J4n1w-iIcFGLR7YXxZZfD9jU-vvXUY6QVt9mbjce824rjY8F6YtGCcZWIRlhhXUnRgqX9xNbz5dMhS1Xy7fj71AmHvTFPm5WaVpwVlMQ6kUsS_xacfnroOP-drsBpwI-k3j7YOC67cgJUvbIKboG-nZjKhviIDZyLqq-te34gJvCNkXJJqii9HHl_Gtjol_ZK0lOLERzNLnktiPZOub4KFpzY04CH-13W1BXfnZ3eDIQ39E2jBWTanIs2Zy6TDY2xsZiKbp2k8SpICc7DEsoJHRlq0Ro7AB7NTzz1oEBAUkqcGoeE2dMrn0u0AMVbKgvNo5NwoyY0ykUsMxvbMCZNhArMLcas0XQRucd_iYqLbIrIn7RWtvaJ1o-hdOP6UmTXMGn_OFq0t9Lf1odH1_yl30BpOh6-z0kwyhVAzUenePy-7D8vM74Ooy7cPoDN_eXWHiE7meRcWT97jbliDHzQ74vU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIry9MCGTJP4lbAhRFWgZWmRullO7KKiEqqmDCz8ds6Jw0uiA1MU65zH2bn7Trn7DqFTCRCaZjYhSaaHhHFJCXi5hMQp5WkqhE3KznPde9F-YLcDPlhAV3UtjEur9La_sumltfYjTa_N5mQ0avYCCpsN7gVBC_jZiC-iZcapdAT65-9feR4iKdl2nTRx4r5ypkryspPCkYJGIQxIwcO_vNMvO106n9YGWveoEV9WD7aJFmy-hda-cQluI9V71uMxcfkYIAmYr8x6fcPas47gUY6LZ3g1_DgdmeICX-a4JhTHzpcZ_JJj43h0XQssODW-_Q52P66LHdRvXfev2sR3TyAZjeIZ4TKNbCwsHENtYh2YVMpwyFgGERgzUUYDLQysRQqwB2JTxzyoAQ5kgkoNwHAXLeUvud1DWBshMkqDobVDlupEB5Zp8Oyx5TqG8KWBwlppKvPM4q7BxVjVKWRPyilaOUWrStENdPY5Z1LxasyV5vVaqB-7Q4HhnzvvsF445b_NQkUiSgBoskTu__OyJ2il3e92VOfm_u4ArUauIqJM5D5ES7Ppqz0CnDJLj8t9-AEaCeO_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-signal+stability+analysis+in+smart+grids%3A+An+approach+based+on+distributed+decision+trees&rft.jtitle=Electric+power+systems+research&rft.au=da+Cunha%2C+Guilherme+L.&rft.au=Fernandes%2C+Ricardo+A.S.&rft.au=Fernandes%2C+Tatiane+Cristina+C.&rft.date=2022-02-01&rft.issn=0378-7796&rft.volume=203&rft.spage=107651&rft_id=info:doi/10.1016%2Fj.epsr.2021.107651&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2021_107651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon