Small-signal stability analysis in smart grids: An approach based on distributed decision trees
•Each distributed DT uses only local data to assess the small-signal stability.•The TSO can assess the stability from any of the available individual DT predictions.•The distributed DTs require a low computational burden and a reduced number of features.•The higher classification ratios provided by...
Saved in:
Published in | Electric power systems research Vol. 203; p. 107651 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0378-7796 1873-2046 |
DOI | 10.1016/j.epsr.2021.107651 |
Cover
Abstract | •Each distributed DT uses only local data to assess the small-signal stability.•The TSO can assess the stability from any of the available individual DT predictions.•The distributed DTs require a low computational burden and a reduced number of features.•The higher classification ratios provided by distributed DTs show their efficiency.
Accurate information on the dynamic behavior of a smart grid is essential for its effective control and reliable operation. Specifically, ensuring that the electromechanical oscillations are properly damped is needed for the dynamic security operation of an interconnected system. Since the model-based method to evaluate these oscillations is subject to uncertainties, the data from a wide-area measurement system can assist in this challenging task. In this context, this paper proposes a decentralized approach based on decision trees to classify the interarea oscillations through data measured in the generation buses. For each generation bus, there is an individual decision tree capable of evaluating the interarea oscillations damping. The decision trees presented a low computational burden and, consequently, they can be embedded in phasor measurement units with low-cost hardware. The results obtained with the 68-bus test system show that the classifications provided by individual decision trees are accurate, even when contingency scenarios were evaluated, reaching accuracies greater than 0.93. Thus, the possibility of analyzing the power system stability to small disturbances from local information is one of the main contributions of the proposed approach to advance the state-of-the-art, since the use of distributed decision trees is robust even when there is loss of information from a specific generator. |
---|---|
AbstractList | •Each distributed DT uses only local data to assess the small-signal stability.•The TSO can assess the stability from any of the available individual DT predictions.•The distributed DTs require a low computational burden and a reduced number of features.•The higher classification ratios provided by distributed DTs show their efficiency.
Accurate information on the dynamic behavior of a smart grid is essential for its effective control and reliable operation. Specifically, ensuring that the electromechanical oscillations are properly damped is needed for the dynamic security operation of an interconnected system. Since the model-based method to evaluate these oscillations is subject to uncertainties, the data from a wide-area measurement system can assist in this challenging task. In this context, this paper proposes a decentralized approach based on decision trees to classify the interarea oscillations through data measured in the generation buses. For each generation bus, there is an individual decision tree capable of evaluating the interarea oscillations damping. The decision trees presented a low computational burden and, consequently, they can be embedded in phasor measurement units with low-cost hardware. The results obtained with the 68-bus test system show that the classifications provided by individual decision trees are accurate, even when contingency scenarios were evaluated, reaching accuracies greater than 0.93. Thus, the possibility of analyzing the power system stability to small disturbances from local information is one of the main contributions of the proposed approach to advance the state-of-the-art, since the use of distributed decision trees is robust even when there is loss of information from a specific generator. Accurate information on the dynamic behavior of a smart grid is essential for its effective control and reliable operation. Specifically, ensuring that the electromechanical oscillations are properly damped is needed for the dynamic security operation of an interconnected system. Since the model-based method to evaluate these oscillations is subject to uncertainties, the data from a wide-area measurement system can assist in this challenging task. In this context, this paper proposes a decentralized approach based on decision trees to classify the interarea oscillations through data measured in the generation buses. For each generation bus, there is an individual decision tree capable of evaluating the interarea oscillations damping. The decision trees presented a low computational burden and, consequently, they can be embedded in phasor measurement units with low-cost hardware. The results obtained with the 68-bus test system show that the classifications provided by individual decision trees are accurate, even when contingency scenarios were evaluated, reaching accuracies greater than 0.93. Thus, the possibility of analyzing the power system stability to small disturbances from local information is one of the main contributions of the proposed approach to advance the state-of-the-art, since the use of distributed decision trees is robust even when there is loss of information from a specific generator. |
ArticleNumber | 107651 |
Author | Fernandes, Ricardo A.S. Fernandes, Tatiane Cristina C. da Cunha, Guilherme L. |
Author_xml | – sequence: 1 givenname: Guilherme L. orcidid: 0000-0001-7584-1283 surname: da Cunha fullname: da Cunha, Guilherme L. – sequence: 2 givenname: Ricardo A.S. orcidid: 0000-0003-2361-6505 surname: Fernandes fullname: Fernandes, Ricardo A.S. – sequence: 3 givenname: Tatiane Cristina C. orcidid: 0000-0003-2605-0893 surname: Fernandes fullname: Fernandes, Tatiane Cristina C. email: tatianefernandes@ufscar.br |
BookMark | eNp9kE1LAzEQhoNUsFX_gKeA561JdjfZFS-l-AUFD3oP2WSqU9bdmkmF_ntT6smDp2GGeYZ5nxmbDOMAjF1JMZdC6pvNHLYU50oomQdG1_KETWVjykKJSk_YVJSmKYxp9RmbEW2EELo19ZTZ10_X9wXh--B6Tsl12GPac5fbPSFxHDh9upj4e8RAt3wxcLfdxtH5D945gsDHgQekFLHbpdwG8EiYhykC0AU7Xbue4PK3nrO3h_u35VOxenl8Xi5WhS9Vk4radAoaDblKFxonQmeMXFeVl6KqgvKlcDpAKzuhamWqMkdxSkivS-OELM_Z9fFs_uxrB5TsZtzFnIGs0qoVTV21Jm81xy0fR6IIa-sxuZSfTdFhb6WwB5t2Yw827cGmPdrMqPqDbiNmL_v_obsjBDn5N0K05BEGDwEj-GTDiP_hP7N-kEk |
CitedBy_id | crossref_primary_10_1186_s41601_023_00319_5 crossref_primary_10_1016_j_epsr_2024_110853 crossref_primary_10_3390_en16248054 crossref_primary_10_3390_e27010035 crossref_primary_10_1002_oca_3053 crossref_primary_10_1016_j_epsr_2024_111056 crossref_primary_10_32604_cmes_2024_058202 crossref_primary_10_1080_00051144_2023_2218164 crossref_primary_10_1109_ACCESS_2021_3133285 crossref_primary_10_1016_j_jiixd_2024_01_003 crossref_primary_10_3390_electronics12183860 crossref_primary_10_1016_j_csite_2023_103237 crossref_primary_10_1016_j_ymssp_2022_110022 |
Cites_doi | 10.1109/TPWRS.2011.2112784 10.1109/TPWRS.2006.873408 10.1109/TII.2015.2492861 10.1109/MPAE.2004.1338120 10.3390/en9110927 10.1016/j.ijepes.2021.106898 10.1109/TPWRS.2013.2281323 10.1109/TPWRS.2013.2283064 10.1016/j.epsr.2021.107200 10.17775/CSEEJPES.2015.00019 10.1109/TSG.2020.3007063 10.1109/TPWRS.2009.2016528 10.1016/j.epsr.2017.03.029 10.1109/TPWRS.2004.825981 10.1109/TPWRS.2017.2707501 10.1016/0142-0615(93)90029-M 10.1109/TPWRD.2004.824763 10.1109/TPWRS.2015.2453424 10.1049/iet-gtd.2019.0311 10.1109/JSYST.2020.2978504 10.1109/TPWRS.2016.2561263 10.1109/TSTE.2014.2348491 10.1109/TPWRS.2013.2240022 10.1109/TPWRS.2015.2422072 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier Science Ltd. Feb 2022 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Feb 2022 |
DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1016/j.epsr.2021.107651 |
DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2046 |
ExternalDocumentID | 10_1016_j_epsr_2021_107651 S0378779621006325 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADHUB ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC BNPGV CS3 DU5 E.L EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSH SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7SP 8FD EFKBS FR3 KR7 L7M |
ID | FETCH-LOGICAL-c328t-57b2e86e57b1ad8a0db771f44c1044d2c30a6de91b0252743779a201c637a013 |
IEDL.DBID | AIKHN |
ISSN | 0378-7796 |
IngestDate | Fri Jul 25 06:27:23 EDT 2025 Tue Jul 01 04:32:06 EDT 2025 Thu Apr 24 22:50:43 EDT 2025 Sun Apr 06 06:54:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electromechanical oscillations Small-signal stability Phasor measurement units Decision tree Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-57b2e86e57b1ad8a0db771f44c1044d2c30a6de91b0252743779a201c637a013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7584-1283 0000-0003-2361-6505 0000-0003-2605-0893 |
PQID | 2629085497 |
PQPubID | 2047565 |
ParticipantIDs | proquest_journals_2629085497 crossref_citationtrail_10_1016_j_epsr_2021_107651 crossref_primary_10_1016_j_epsr_2021_107651 elsevier_sciencedirect_doi_10_1016_j_epsr_2021_107651 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Electric power systems research |
PublicationYear | 2022 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Teeuwsen, Erlich, El-Sharkawi (bib0018) 2003; vol. 4 Zanjani, Mazlumi, Kamwa (bib0006) 2019; 13 Guo, Milanović (bib0002) 2016; 31 Oliveira, Vieira, Bezerra, Martins, Rodrigues (bib0012) 2017; 148 Kuiava, Bogodorova, Fernandes, Ramos (bib0026) 2020 Cao, Fan (bib0022) 2018 Zhang, Chung, Wang, Zheng (bib0008) 2016; 12 Verbic, Gubina (bib0016) 2004; 19 Rokach, Maimon (bib0031) 2014 Diao, Sun, Vittal, O’Keefe, Richardson, Bhatt, Stradford, Sarawgi (bib0015) 2009; 24 Wang, Bi, Wang, Liu (bib0020) 2015; 1 Sauer, Lesieutre, Pai (bib0027) 1993; 15 Asvapoositkul, Preece (bib0021) 2021; 196 Mukherjee, Chakraborty, Banerjee (bib0036) 2020 Canizares, Fernandes, Geraldi, Gerin-Lajoie, Gibbard, Hiskens, Kersulis, Kuiava, Lima, DeMarco, Martins, Pal, Piardi, Ramos, dos Santos, Silva, Singh, Tamimi, Vowles (bib0035) 2017; 32 Patidar, Tiwari (bib0030) 2013; 70 Liu, Sun, Rather, Chen, Bak, Thøgersen, Lund (bib0009) 2014; 29 McNabb, Wilson, Bialek (bib0007) 2013; 28 Yu, Hill, Lam, Gu, Li (bib0017) 2018; 33 Breiman, Friedman, Oslen, Stone (bib0032) 2017 Huang, Peng, Cai, Chen (bib0034) 2016; 9 Liu, Shi, Zhang, Tang, Zhang, Liu, Mao, Li, Li, Cheng, Yan, Liu, Li, Liao, Zhang (bib0010) 2021; 130 Singh, Allen, Muljadi, Gevorgian, Zhang, Santoso (bib0005) 2015; 6 Mansour, Alberto, Ramos (bib0025) 2016; 31 Guddanti, Matavalam, Weng (bib0014) 2020; 11 Electrical Networks Department, ANAREDE - Network Analsys Program v11.2.0 - User’s Manual, Research Center in Electrical Energy - CEPEL, 2019. Geron (bib0033) 2017 Mukherjee, De (bib0001) 2020; 14 Morison, Lei Wang, Kundur (bib0003) 2004; 2 Asvapoositkul (bib0023) 2021 Singh, Pal (bib0013) 2014; 29 Kundur (bib0024) 1994 Teeuwsen, Erlich, El-Sharkawi, Bachmann (bib0019) 2006; 21 Krishnan, McCalley, Henry, Issad (bib0011) 2011; 26 Kundur, Paserba, Ajjarapu, Andersson, Bose, Canizares, Hatziargyriou, Hill, Stankovic, Taylor, Van Cutsem, Vittal (bib0004) 2004; 19 S. Gomes Jr., T.J.M.A. Parreiras, T.S. Amaral, PacDyn - Small-Signal Stability Analysis & Control v9.2.2 - User’s Manual, Research Center in Electrical Energy - CEPEL, 2018. Verbic (10.1016/j.epsr.2021.107651_bib0016) 2004; 19 Singh (10.1016/j.epsr.2021.107651_bib0005) 2015; 6 Liu (10.1016/j.epsr.2021.107651_bib0010) 2021; 130 10.1016/j.epsr.2021.107651_bib0029 Zanjani (10.1016/j.epsr.2021.107651_bib0006) 2019; 13 Sauer (10.1016/j.epsr.2021.107651_bib0027) 1993; 15 10.1016/j.epsr.2021.107651_bib0028 Morison (10.1016/j.epsr.2021.107651_bib0003) 2004; 2 Mansour (10.1016/j.epsr.2021.107651_bib0025) 2016; 31 Huang (10.1016/j.epsr.2021.107651_bib0034) 2016; 9 Diao (10.1016/j.epsr.2021.107651_bib0015) 2009; 24 Zhang (10.1016/j.epsr.2021.107651_bib0008) 2016; 12 Breiman (10.1016/j.epsr.2021.107651_bib0032) 2017 Guo (10.1016/j.epsr.2021.107651_bib0002) 2016; 31 McNabb (10.1016/j.epsr.2021.107651_bib0007) 2013; 28 Singh (10.1016/j.epsr.2021.107651_bib0013) 2014; 29 Teeuwsen (10.1016/j.epsr.2021.107651_bib0018) 2003; vol. 4 Asvapoositkul (10.1016/j.epsr.2021.107651_bib0021) 2021; 196 Liu (10.1016/j.epsr.2021.107651_bib0009) 2014; 29 Guddanti (10.1016/j.epsr.2021.107651_bib0014) 2020; 11 Mukherjee (10.1016/j.epsr.2021.107651_bib0001) 2020; 14 Yu (10.1016/j.epsr.2021.107651_bib0017) 2018; 33 Kundur (10.1016/j.epsr.2021.107651_bib0024) 1994 Kuiava (10.1016/j.epsr.2021.107651_bib0026) 2020 Canizares (10.1016/j.epsr.2021.107651_bib0035) 2017; 32 Teeuwsen (10.1016/j.epsr.2021.107651_bib0019) 2006; 21 Wang (10.1016/j.epsr.2021.107651_bib0020) 2015; 1 Geron (10.1016/j.epsr.2021.107651_bib0033) 2017 Krishnan (10.1016/j.epsr.2021.107651_bib0011) 2011; 26 Mukherjee (10.1016/j.epsr.2021.107651_bib0036) 2020 Cao (10.1016/j.epsr.2021.107651_bib0022) 2018 Kundur (10.1016/j.epsr.2021.107651_bib0004) 2004; 19 Oliveira (10.1016/j.epsr.2021.107651_bib0012) 2017; 148 Asvapoositkul (10.1016/j.epsr.2021.107651_bib0023) 2021 Patidar (10.1016/j.epsr.2021.107651_bib0030) 2013; 70 Rokach (10.1016/j.epsr.2021.107651_bib0031) 2014 |
References_xml | – volume: 2 start-page: 30 year: 2004 end-page: 39 ident: bib0003 article-title: Power system security assessment publication-title: IEEE Power Energy Mag. – volume: 13 start-page: 3634 year: 2019 end-page: 3641 ident: bib0006 article-title: Combined analysis of distribution-level PMU data with transmission-level PMU for early detection of long-term voltage instability publication-title: IET Gener. Trans. Distrib. – volume: vol. 4 start-page: 2349 year: 2003 end-page: 2649 ident: bib0018 article-title: Small-signal stability assessment based on advanced neural network methods publication-title: 2003 IEEE Power Engineering Society General Meeting – volume: 148 start-page: 264 year: 2017 end-page: 272 ident: bib0012 article-title: Power system security assessment for multiple contingencies using multiway decision tree publication-title: Electr. Power Syst. Res. – start-page: 216 year: 2018 end-page: 221 ident: bib0022 article-title: Deep learning-based online small signal stability assessment of power systems with renewable generation publication-title: 2018 IEEE Smart World, Ubiquitous Intelligence Computing, Advanced Trusted Computing, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation – reference: Electrical Networks Department, ANAREDE - Network Analsys Program v11.2.0 - User’s Manual, Research Center in Electrical Energy - CEPEL, 2019. – start-page: 1 year: 2020 end-page: 6 ident: bib0036 article-title: Power system fault classification with imbalanced learning for distribution systems publication-title: 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering – year: 2021 ident: bib0023 publication-title: Data-driven small-signal stability assessment and preventive control in low inertia power systems – year: 1994 ident: bib0024 article-title: Power System Stability and Control – start-page: 1 year: 2020 end-page: 5 ident: bib0026 article-title: A study on the relation between the maximum loadability point and undervoltage load shedding schemes publication-title: 2020 IEEE Power Energy Society General Meeting – volume: 9 start-page: 927 year: 2016 ident: bib0034 article-title: Power quality disturbances feature selection and recognition using optimal multi-resolution fast s-transform and cart algorithm publication-title: Energies – volume: 29 start-page: 717 year: 2014 end-page: 730 ident: bib0009 article-title: A systematic approach for dynamic security assessment and the corresponding preventive control scheme based on decision trees publication-title: IEEE Trans. Power Syst. – year: 2017 ident: bib0033 article-title: Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems – volume: 33 start-page: 1049 year: 2018 end-page: 1058 ident: bib0017 article-title: Intelligent time-adaptive transient stability assessment system publication-title: IEEE Trans. Power Syst. – volume: 32 start-page: 715 year: 2017 end-page: 722 ident: bib0035 article-title: Benchmark models for the analysis and control of small-signal oscillatory dynamics in power systems publication-title: IEEE Trans. Power Syst. – volume: 14 start-page: 3836 year: 2020 end-page: 3843 ident: bib0001 article-title: Development of an ensemble decision tree-based power system dynamic security state predictor publication-title: IEEE Syst. J. – volume: 130 start-page: 106898 year: 2021 ident: bib0010 article-title: An integrated scheme for static voltage stability assessment based on correlation detection and random bits forest publication-title: Int. J. Electr. Power Energy Syst. – volume: 15 start-page: 145 year: 1993 end-page: 153 ident: bib0027 article-title: Maximum loadability and voltage stability in power systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 31 start-page: 1760 year: 2016 end-page: 1768 ident: bib0002 article-title: Online identification of power system dynamic signature using PMU measurements and data mining publication-title: IEEE Trans. Power Syst. – volume: 28 start-page: 1988 year: 2013 end-page: 1996 ident: bib0007 article-title: Classification of model damping and amplitude in power systems using synchrophasor measurements and classification trees publication-title: IEEE Trans. Power Syst. – volume: 11 start-page: 5203 year: 2020 end-page: 5215 ident: bib0014 article-title: PMU-based distributed non-iterative algorithm for real-time voltage stability monitoring publication-title: IEEE Trans. Smart Grid – volume: 31 start-page: 1517 year: 2016 end-page: 1525 ident: bib0025 article-title: Preventive control design for voltage stability considering multiple critical contingencies publication-title: IEEE Trans. Power Syst. – year: 2014 ident: bib0031 article-title: Data Mining with Decision Trees: Theory and Applications – volume: 19 start-page: 1387 year: 2004 end-page: 1401 ident: bib0004 article-title: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions publication-title: IEEE Trans. Power Syst. – volume: 19 start-page: 576 year: 2004 end-page: 581 ident: bib0016 article-title: A new concept of voltage-collapse protection based on local phasors publication-title: IEEE Trans. Power Deliv. – volume: 21 start-page: 746 year: 2006 end-page: 753 ident: bib0019 article-title: Genetic algorithm and decision tree-based oscillatory stability assessment publication-title: IEEE Trans. Power Syst. – volume: 196 start-page: 107200 year: 2021 ident: bib0021 article-title: Decision tree-based prediction model for small signal stability and generation-rescheduling preventive control publication-title: Electr. Power Syst. Res. – volume: 29 start-page: 794 year: 2014 end-page: 804 ident: bib0013 article-title: Decentralized dynamic state estimation in power systems using unscented transformation publication-title: IEEE Trans. Power Syst. – volume: 24 start-page: 832 year: 2009 end-page: 839 ident: bib0015 article-title: Decision tree-based online voltage security assessment using PMU measurements publication-title: IEEE Trans. Power Syst. – volume: 70 start-page: 31 year: 2013 end-page: 36 ident: bib0030 article-title: Handling missing value in decision tree algorithm publication-title: Int. J. Comput. Appl. – reference: S. Gomes Jr., T.J.M.A. Parreiras, T.S. Amaral, PacDyn - Small-Signal Stability Analysis & Control v9.2.2 - User’s Manual, Research Center in Electrical Energy - CEPEL, 2018. – volume: 6 start-page: 967 year: 2015 end-page: 975 ident: bib0005 article-title: Interarea oscillation damping controls for wind power plants publication-title: IEEE Trans. Sustain. Energy – volume: 1 start-page: 53 year: 2015 end-page: 61 ident: bib0020 article-title: Decision tree based online stability assessment scheme for power systems with renewable generations publication-title: CSEE J. Power Energy Syst. – volume: 12 start-page: 844 year: 2016 end-page: 852 ident: bib0008 article-title: Instantaneous electromechanical dynamics monitoring in smart transmission grid publication-title: IEEE Trans. Ind. Inf. – volume: 26 start-page: 2319 year: 2011 end-page: 2327 ident: bib0011 article-title: Efficient database generation for decision tree based power system security assessment publication-title: IEEE Trans. Power Syst. – year: 2017 ident: bib0032 article-title: Classification and regression trees – volume: 26 start-page: 2319 issue: 4 year: 2011 ident: 10.1016/j.epsr.2021.107651_bib0011 article-title: Efficient database generation for decision tree based power system security assessment publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2112784 – volume: vol. 4 start-page: 2349 year: 2003 ident: 10.1016/j.epsr.2021.107651_bib0018 article-title: Small-signal stability assessment based on advanced neural network methods – volume: 21 start-page: 746 issue: 2 year: 2006 ident: 10.1016/j.epsr.2021.107651_bib0019 article-title: Genetic algorithm and decision tree-based oscillatory stability assessment publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.873408 – start-page: 1 year: 2020 ident: 10.1016/j.epsr.2021.107651_bib0026 article-title: A study on the relation between the maximum loadability point and undervoltage load shedding schemes – volume: 12 start-page: 844 issue: 2 year: 2016 ident: 10.1016/j.epsr.2021.107651_bib0008 article-title: Instantaneous electromechanical dynamics monitoring in smart transmission grid publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2015.2492861 – ident: 10.1016/j.epsr.2021.107651_bib0028 – volume: 2 start-page: 30 issue: 5 year: 2004 ident: 10.1016/j.epsr.2021.107651_bib0003 article-title: Power system security assessment publication-title: IEEE Power Energy Mag. doi: 10.1109/MPAE.2004.1338120 – volume: 9 start-page: 927 issue: 11 year: 2016 ident: 10.1016/j.epsr.2021.107651_bib0034 article-title: Power quality disturbances feature selection and recognition using optimal multi-resolution fast s-transform and cart algorithm publication-title: Energies doi: 10.3390/en9110927 – volume: 130 start-page: 106898 year: 2021 ident: 10.1016/j.epsr.2021.107651_bib0010 article-title: An integrated scheme for static voltage stability assessment based on correlation detection and random bits forest publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2021.106898 – volume: 29 start-page: 794 issue: 2 year: 2014 ident: 10.1016/j.epsr.2021.107651_bib0013 article-title: Decentralized dynamic state estimation in power systems using unscented transformation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2281323 – volume: 29 start-page: 717 issue: 2 year: 2014 ident: 10.1016/j.epsr.2021.107651_bib0009 article-title: A systematic approach for dynamic security assessment and the corresponding preventive control scheme based on decision trees publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2283064 – start-page: 1 year: 2020 ident: 10.1016/j.epsr.2021.107651_bib0036 article-title: Power system fault classification with imbalanced learning for distribution systems – volume: 70 start-page: 31 issue: 13 year: 2013 ident: 10.1016/j.epsr.2021.107651_bib0030 article-title: Handling missing value in decision tree algorithm publication-title: Int. J. Comput. Appl. – volume: 196 start-page: 107200 year: 2021 ident: 10.1016/j.epsr.2021.107651_bib0021 article-title: Decision tree-based prediction model for small signal stability and generation-rescheduling preventive control publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2021.107200 – year: 2021 ident: 10.1016/j.epsr.2021.107651_bib0023 – volume: 1 start-page: 53 issue: 2 year: 2015 ident: 10.1016/j.epsr.2021.107651_bib0020 article-title: Decision tree based online stability assessment scheme for power systems with renewable generations publication-title: CSEE J. Power Energy Syst. doi: 10.17775/CSEEJPES.2015.00019 – year: 1994 ident: 10.1016/j.epsr.2021.107651_bib0024 – volume: 11 start-page: 5203 issue: 6 year: 2020 ident: 10.1016/j.epsr.2021.107651_bib0014 article-title: PMU-based distributed non-iterative algorithm for real-time voltage stability monitoring publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2020.3007063 – volume: 24 start-page: 832 issue: 2 year: 2009 ident: 10.1016/j.epsr.2021.107651_bib0015 article-title: Decision tree-based online voltage security assessment using PMU measurements publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2016528 – ident: 10.1016/j.epsr.2021.107651_bib0029 – volume: 148 start-page: 264 year: 2017 ident: 10.1016/j.epsr.2021.107651_bib0012 article-title: Power system security assessment for multiple contingencies using multiway decision tree publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.03.029 – volume: 19 start-page: 1387 issue: 3 year: 2004 ident: 10.1016/j.epsr.2021.107651_bib0004 article-title: Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2004.825981 – volume: 33 start-page: 1049 issue: 1 year: 2018 ident: 10.1016/j.epsr.2021.107651_bib0017 article-title: Intelligent time-adaptive transient stability assessment system publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2707501 – volume: 15 start-page: 145 issue: 3 year: 1993 ident: 10.1016/j.epsr.2021.107651_bib0027 article-title: Maximum loadability and voltage stability in power systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/0142-0615(93)90029-M – volume: 19 start-page: 576 issue: 2 year: 2004 ident: 10.1016/j.epsr.2021.107651_bib0016 article-title: A new concept of voltage-collapse protection based on local phasors publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2004.824763 – start-page: 216 year: 2018 ident: 10.1016/j.epsr.2021.107651_bib0022 article-title: Deep learning-based online small signal stability assessment of power systems with renewable generation – volume: 31 start-page: 1760 issue: 3 year: 2016 ident: 10.1016/j.epsr.2021.107651_bib0002 article-title: Online identification of power system dynamic signature using PMU measurements and data mining publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2453424 – year: 2014 ident: 10.1016/j.epsr.2021.107651_bib0031 – volume: 13 start-page: 3634 issue: 16 year: 2019 ident: 10.1016/j.epsr.2021.107651_bib0006 article-title: Combined analysis of distribution-level PMU data with transmission-level PMU for early detection of long-term voltage instability publication-title: IET Gener. Trans. Distrib. doi: 10.1049/iet-gtd.2019.0311 – volume: 14 start-page: 3836 issue: 3 year: 2020 ident: 10.1016/j.epsr.2021.107651_bib0001 article-title: Development of an ensemble decision tree-based power system dynamic security state predictor publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2020.2978504 – volume: 32 start-page: 715 issue: 1 year: 2017 ident: 10.1016/j.epsr.2021.107651_bib0035 article-title: Benchmark models for the analysis and control of small-signal oscillatory dynamics in power systems publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2016.2561263 – year: 2017 ident: 10.1016/j.epsr.2021.107651_bib0032 – volume: 6 start-page: 967 issue: 3 year: 2015 ident: 10.1016/j.epsr.2021.107651_bib0005 article-title: Interarea oscillation damping controls for wind power plants publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2014.2348491 – volume: 28 start-page: 1988 year: 2013 ident: 10.1016/j.epsr.2021.107651_bib0007 article-title: Classification of model damping and amplitude in power systems using synchrophasor measurements and classification trees publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2240022 – volume: 31 start-page: 1517 issue: 2 year: 2016 ident: 10.1016/j.epsr.2021.107651_bib0025 article-title: Preventive control design for voltage stability considering multiple critical contingencies publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2422072 – year: 2017 ident: 10.1016/j.epsr.2021.107651_bib0033 |
SSID | ssj0006975 |
Score | 2.4340808 |
Snippet | •Each distributed DT uses only local data to assess the small-signal stability.•The TSO can assess the stability from any of the available individual DT... Accurate information on the dynamic behavior of a smart grid is essential for its effective control and reliable operation. Specifically, ensuring that the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 107651 |
SubjectTerms | Contingency Control systems Damping Decision analysis Decision tree Decision trees Electricity distribution Electromechanical oscillations Evaluation Machine learning Measurement Measuring instruments Oscillations Phasor measurement units Phasors Small-signal stability Smart grid Stability analysis Systems stability |
Title | Small-signal stability analysis in smart grids: An approach based on distributed decision trees |
URI | https://dx.doi.org/10.1016/j.epsr.2021.107651 https://www.proquest.com/docview/2629085497 |
Volume | 203 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BWWBAPMWz8sCGTBM7dmK2qgIVECyAxGY5sYuK2lCRMrDw2zknDgIkGJiiWL487py775TzdwBHKUJoXjhFVWFGNBEppxjlFM1yLvJcSqfqznPXN3J4n1w-iIcFGLR7YXxZZfD9jU-vvXUY6QVt9mbjce824rjY8F6YtGCcZWIRlhhXUnRgqX9xNbz5dMhS1Xy7fj71AmHvTFPm5WaVpwVlMQ6kUsS_xacfnroOP-drsBpwI-k3j7YOC67cgJUvbIKboG-nZjKhviIDZyLqq-te34gJvCNkXJJqii9HHl_Gtjol_ZK0lOLERzNLnktiPZOub4KFpzY04CH-13W1BXfnZ3eDIQ39E2jBWTanIs2Zy6TDY2xsZiKbp2k8SpICc7DEsoJHRlq0Ro7AB7NTzz1oEBAUkqcGoeE2dMrn0u0AMVbKgvNo5NwoyY0ykUsMxvbMCZNhArMLcas0XQRucd_iYqLbIrIn7RWtvaJ1o-hdOP6UmTXMGn_OFq0t9Lf1odH1_yl30BpOh6-z0kwyhVAzUenePy-7D8vM74Ooy7cPoDN_eXWHiE7meRcWT97jbliDHzQ74vU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4DMCAeIry9MCGTJP4lbAhRFWgZWmRullO7KKiEqqmDCz8ds6Jw0uiA1MU65zH2bn7Trn7DqFTCRCaZjYhSaaHhHFJCXi5hMQp5WkqhE3KznPde9F-YLcDPlhAV3UtjEur9La_sumltfYjTa_N5mQ0avYCCpsN7gVBC_jZiC-iZcapdAT65-9feR4iKdl2nTRx4r5ypkryspPCkYJGIQxIwcO_vNMvO106n9YGWveoEV9WD7aJFmy-hda-cQluI9V71uMxcfkYIAmYr8x6fcPas47gUY6LZ3g1_DgdmeICX-a4JhTHzpcZ_JJj43h0XQssODW-_Q52P66LHdRvXfev2sR3TyAZjeIZ4TKNbCwsHENtYh2YVMpwyFgGERgzUUYDLQysRQqwB2JTxzyoAQ5kgkoNwHAXLeUvud1DWBshMkqDobVDlupEB5Zp8Oyx5TqG8KWBwlppKvPM4q7BxVjVKWRPyilaOUWrStENdPY5Z1LxasyV5vVaqB-7Q4HhnzvvsF445b_NQkUiSgBoskTu__OyJ2il3e92VOfm_u4ArUauIqJM5D5ES7Ppqz0CnDJLj8t9-AEaCeO_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-signal+stability+analysis+in+smart+grids%3A+An+approach+based+on+distributed+decision+trees&rft.jtitle=Electric+power+systems+research&rft.au=da+Cunha%2C+Guilherme+L.&rft.au=Fernandes%2C+Ricardo+A.S.&rft.au=Fernandes%2C+Tatiane+Cristina+C.&rft.date=2022-02-01&rft.issn=0378-7796&rft.volume=203&rft.spage=107651&rft_id=info:doi/10.1016%2Fj.epsr.2021.107651&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2021_107651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |