Microbial experimental evolution

Microbes have been widely used in experimental evolutionary studies because they possess a variety of valuable traits that facilitate large-scale experimentation. Many replicated populations can be cultured in the laboratory simultaneously along with appropriate controls. Short generation times and...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Regulatory, integrative and comparative physiology Vol. 297; no. 1; pp. R17 - R25
Main Authors Bennett, Albert F., Hughes, Bradley S.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.07.2009
Subjects
Online AccessGet full text
ISSN0363-6119
1522-1490
1522-1490
DOI10.1152/ajpregu.90562.2008

Cover

Abstract Microbes have been widely used in experimental evolutionary studies because they possess a variety of valuable traits that facilitate large-scale experimentation. Many replicated populations can be cultured in the laboratory simultaneously along with appropriate controls. Short generation times and large population sizes make microbes ideal experimental subjects, ensuring that many spontaneous mutations occur every generation and that adaptive variants can spread rapidly through a population. Another highly useful experimental feature is the ability to preserve and store ancestral and evolutionarily derived clones. These can be revived in parallel to allow the direct measurement of the competitive fitness of a descendant compared with its ancestor. The extent of adaptation can thereby be measured quantitatively and compared statistically by direct competition among derived groups and with the ancestor. Thus, fitness and adaptation need not be matters of qualitative speculation, but are quantitatively measurable variables in these systems. Replication allows the quantification of heterogeneity in responses to imposed selection and thereby statistical distinction between changes that are systematic responses to the selective regimen and those that are specific to individual populations.
AbstractList Microbes have been widely used in experimental evolutionary studies because they possess a variety of valuable traits that facilitate large-scale experimentation. Many replicated populations can be cultured in the laboratory simultaneously along with appropriate controls. Short generation times and large population sizes make microbes ideal experimental subjects, ensuring that many spontaneous mutations occur every generation and that adaptive variants can spread rapidly through a population. Another highly useful experimental feature is the ability to preserve and store ancestral and evolutionarily derived clones. These can be revived in parallel to allow the direct measurement of the competitive fitness of a descendant compared with its ancestor. The extent of adaptation can thereby be measured quantitatively and compared statistically by direct competition among derived groups and with the ancestor. Thus, fitness and adaptation need not be matters of qualitative speculation, but are quantitatively measurable variables in these systems. Replication allows the quantification of heterogeneity in responses to imposed selection and thereby statistical distinction between changes that are systematic responses to the selective regimen and those that are specific to individual populations.Microbes have been widely used in experimental evolutionary studies because they possess a variety of valuable traits that facilitate large-scale experimentation. Many replicated populations can be cultured in the laboratory simultaneously along with appropriate controls. Short generation times and large population sizes make microbes ideal experimental subjects, ensuring that many spontaneous mutations occur every generation and that adaptive variants can spread rapidly through a population. Another highly useful experimental feature is the ability to preserve and store ancestral and evolutionarily derived clones. These can be revived in parallel to allow the direct measurement of the competitive fitness of a descendant compared with its ancestor. The extent of adaptation can thereby be measured quantitatively and compared statistically by direct competition among derived groups and with the ancestor. Thus, fitness and adaptation need not be matters of qualitative speculation, but are quantitatively measurable variables in these systems. Replication allows the quantification of heterogeneity in responses to imposed selection and thereby statistical distinction between changes that are systematic responses to the selective regimen and those that are specific to individual populations.
Microbes have been widely used in experimental evolutionary studies because they possess a variety of valuable traits that facilitate large-scale experimentation. Many replicated populations can be cultured in the laboratory simultaneously along with appropriate controls. Short generation times and large population sizes make microbes ideal experimental subjects, ensuring that many spontaneous mutations occur every generation and that adaptive variants can spread rapidly through a population. Another highly useful experimental feature is the ability to preserve and store ancestral and evolutionarily derived clones. These can be revived in parallel to allow the direct measurement of the competitive fitness of a descendant compared with its ancestor. The extent of adaptation can thereby be measured quantitatively and compared statistically by direct competition among derived groups and with the ancestor. Thus, fitness and adaptation need not be matters of qualitative speculation, but are quantitatively measurable variables in these systems. Replication allows the quantification of heterogeneity in responses to imposed selection and thereby statistical distinction between changes that are systematic responses to the selective regimen and those that are specific to individual populations.
Microbes have been widely used in experimental evolutionary studies because they possess a variety of valuable traits that facilitate large-scale experimentation. Many replicated populations can be cultured in the laboratory simultaneously along with appropriate controls. Short generation times and large population sizes make microbes ideal experimental subjects, ensuring that many spontaneous mutations occur every generation and that adaptive variants can spread rapidly through a population. Another highly useful experimental feature is the ability to preserve and store ancestral and evolutionarily derived clones. These can be revived in parallel to allow the direct measurement of the competitive fitness of a descendant compared with its ancestor. The extent of adaptation can thereby be measured quantitatively and compared statistically by direct competition among derived groups and with the ancestor. Thus, fitness and adaptation need not be matters of qualitative speculation, but are quantitatively measurable variables in these systems. Replication allows the quantification of heterogeneity in responses to imposed selection and thereby statistical distinction between changes that are systematic responses to the selective regimen and those that are specific to individual populations. [PUBLICATION ABSTRACT]
Author Bennett, Albert F.
Hughes, Bradley S.
Author_xml – sequence: 1
  givenname: Albert F.
  surname: Bennett
  fullname: Bennett, Albert F.
– sequence: 2
  givenname: Bradley S.
  surname: Hughes
  fullname: Hughes, Bradley S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19403860$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtPwzAQhC1URB_wBzigigO3FL_q2EdU8ZKKuMDZ2iRrlCpNgp0g-Pc4tHCoxGm12m9GOzMlo7qpkZBzRheMLfk1bFqPb_3C0KXiC06pPiKTeOAJk4aOyIQKJRLFmBmTaQgbSqkUUpyQMTOSCq3ohMyfytw3WQnVHD9b9OUW625YPpqq78qmPiXHDqqAZ_s5I693ty-rh2T9fP-4ulknueC6S6QTXIFURVY4xsBo4XKkhnGXpcJwbQAUAnKlUw5MI2cu0gDaFZE0TszI1c639c17j6Gz2zLkWFVQY9MHq1Ip0yUzEbw8ADdN7-v4m-XcpEYrmUboYg_12RYL28Zg4L_sb_AI6B0Q04fg0dm87GAI3HkoK8uoHTq2-47tT8d26DhK-YH0z_1_0TcI9YBP
CODEN AJPRDO
CitedBy_id crossref_primary_10_1111_1574_6976_12082
crossref_primary_10_1007_s11274_021_03226_9
crossref_primary_10_1038_s42003_024_06485_y
crossref_primary_10_1128_AEM_02920_12
crossref_primary_10_3390_genes9050249
crossref_primary_10_1371_journal_pone_0271709
crossref_primary_10_1186_s43141_021_00283_3
crossref_primary_10_1007_s00253_019_09616_2
crossref_primary_10_1016_j_crcon_2024_100270
crossref_primary_10_3390_jof9020186
crossref_primary_10_1002_ece3_3823
crossref_primary_10_3389_fmicb_2016_00946
crossref_primary_10_4014_jmb_2003_03072
crossref_primary_10_1016_j_biotechadv_2021_107795
crossref_primary_10_15406_jabb_2018_05_00160
crossref_primary_10_3389_fevo_2024_1335452
crossref_primary_10_1093_molbev_msab341
crossref_primary_10_1002_mbo3_146
crossref_primary_10_1016_j_tibtech_2021_04_002
crossref_primary_10_1016_j_ymben_2013_01_007
crossref_primary_10_1146_annurev_phyto_082712_102302
crossref_primary_10_1534_g3_114_013664
crossref_primary_10_5735_086_057_0109
crossref_primary_10_1016_j_ymben_2019_08_004
crossref_primary_10_1111_j_1558_5646_2011_01547_x
crossref_primary_10_1128_AEM_03225_15
crossref_primary_10_1016_j_foodres_2023_112665
crossref_primary_10_1186_1475_2859_12_64
crossref_primary_10_3390_fermentation9060525
crossref_primary_10_1016_j_procbio_2022_11_027
crossref_primary_10_1029_2021EF002322
crossref_primary_10_2139_ssrn_2171064
crossref_primary_10_2147_IDR_S260708
Cites_doi 10.1242/jeb.02129
10.1093/oso/9780195117028.001.0001
10.1023/A:1015827908309
10.1111/j.1558-5646.1994.tb05307.x
10.1111/j.1558-5646.1993.tb01194.x
10.1086/285289
10.1073/pnas.0602917103
10.1126/science.146.3642.347
10.1086/518353
10.1098/rspb.2007.1244
10.1111/j.1558-5646.2007.00139.x
10.1146/annurev.es.24.110193.000343
10.1098/rsnr.2000.0096
10.1242/jeb.000125
10.1078/1438-4221-00106
10.1086/physzool.61.3.30161237
10.1111/j.1365-2818.1887.tb01566.x
10.1021/es0501464
10.2166/wh.2003.0004
10.1152/ajpregu.1997.272.1.R243
10.1038/sj.hdy.6801095
10.1128/AEM.71.1.320-325.2005
10.1073/pnas.0404397101
10.1086/physzool.51.1.30158660
10.1007/s00239-002-2423-0
10.1515/9780691209418
10.1038/346079a0
10.1016/0168-1605(92)90144-R
10.1242/jeb.02244
10.1111/j.1365-2672.1989.tb04955.x
10.1071/ZO9950051
10.1111/j.1558-5646.1992.tb01981.x
10.1152/ajplegacy.1929.90.2.243
10.1086/282616
10.1086/284168
10.1086/374275
10.1093/genetics/147.4.1497
10.1073/pnas.91.5.1917
10.3354/ame01246
10.1086/346135
10.4315/0362-028X-69.3.480
10.1146/annurev.es.21.110190.002105
10.1023/A:1018970323716
10.1111/j.1558-5646.1997.tb02386.x
10.1093/icb/45.3.532
10.1073/pnas.0702117104
ContentType Journal Article
Copyright Copyright American Physiological Society Jul 2009
Copyright_xml – notice: Copyright American Physiological Society Jul 2009
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/ajpregu.90562.2008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1490
EndPage R25
ExternalDocumentID 1778381421
19403860
10_1152_ajpregu_90562_2008
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Review
GroupedDBID 23M
2WC
39C
4.4
53G
5GY
5VS
6J9
8M5
AAFWJ
AAYXX
ACIWK
ACPRK
ADBBV
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
C1A
CITATION
EBS
EJD
EMOBN
F5P
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TAE
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
YYP
~02
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c328t-4f326a46dbdf11a983fce0912fb739289aa6eae26872a18e21fa46aa8fd3fc9f3
ISSN 0363-6119
1522-1490
IngestDate Thu Oct 02 09:58:43 EDT 2025
Mon Jun 30 08:19:16 EDT 2025
Thu Apr 03 07:02:45 EDT 2025
Tue Jul 01 03:07:49 EDT 2025
Thu Apr 24 22:52:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-4f326a46dbdf11a983fce0912fb739289aa6eae26872a18e21fa46aa8fd3fc9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 19403860
PQID 229798647
PQPubID 48263
ParticipantIDs proquest_miscellaneous_67447519
proquest_journals_229798647
pubmed_primary_19403860
crossref_citationtrail_10_1152_ajpregu_90562_2008
crossref_primary_10_1152_ajpregu_90562_2008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-07-00
2009-Jul
20090701
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07-00
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
PublicationTitle American journal of physiology. Regulatory, integrative and comparative physiology
PublicationTitleAlternate Am J Physiol Regul Integr Comp Physiol
PublicationYear 2009
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References R1A
R21
R20
R23
R22
R25
R24
R27
R26
R29
R28
R1
R2
R3
R4
R5
R6
R7
R8
R9
R30
R32
R31
R34
R33
R36
R35
R38
R37
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R55
  doi: 10.1242/jeb.02129
– ident: R27
  doi: 10.1093/oso/9780195117028.001.0001
– ident: R16
  doi: 10.1023/A:1015827908309
– ident: R40
  doi: 10.1111/j.1558-5646.1994.tb05307.x
– ident: R6
  doi: 10.1111/j.1558-5646.1993.tb01194.x
– ident: R23
– ident: R35
  doi: 10.1086/285289
– ident: R58
  doi: 10.1073/pnas.0602917103
– ident: R47
  doi: 10.1126/science.146.3642.347
– ident: R30
  doi: 10.1086/518353
– ident: R46
  doi: 10.1098/rspb.2007.1244
– ident: R29
  doi: 10.1111/j.1558-5646.2007.00139.x
– ident: R52
  doi: 10.1146/annurev.es.24.110193.000343
– ident: R26
  doi: 10.1098/rsnr.2000.0096
– ident: R53
  doi: 10.1242/jeb.000125
– ident: R2
  doi: 10.1078/1438-4221-00106
– ident: R56
  doi: 10.1086/physzool.61.3.30161237
– ident: R15
  doi: 10.1111/j.1365-2818.1887.tb01566.x
– ident: R43
– ident: R1
  doi: 10.1021/es0501464
– ident: R45
  doi: 10.2166/wh.2003.0004
– ident: R1A
– ident: R12
  doi: 10.1152/ajpregu.1997.272.1.R243
– ident: R13
  doi: 10.1038/sj.hdy.6801095
– ident: R54
  doi: 10.1128/AEM.71.1.320-325.2005
– ident: R59
  doi: 10.1073/pnas.0404397101
– ident: R19
  doi: 10.1086/physzool.51.1.30158660
– ident: R36
– ident: R38
  doi: 10.1007/s00239-002-2423-0
– ident: R41
  doi: 10.1515/9780691209418
– ident: R4
  doi: 10.1038/346079a0
– ident: R10
  doi: 10.1016/0168-1605(92)90144-R
– ident: R22
  doi: 10.1242/jeb.02244
– ident: R33
  doi: 10.1111/j.1365-2672.1989.tb04955.x
– ident: R21
– ident: R25
– ident: R57
  doi: 10.1071/ZO9950051
– ident: R5
  doi: 10.1111/j.1558-5646.1992.tb01981.x
– ident: R34
  doi: 10.1152/ajplegacy.1929.90.2.243
– ident: R42
  doi: 10.1086/282616
– ident: R3
– ident: R51
  doi: 10.1086/284168
– ident: R8
  doi: 10.1086/374275
– ident: R11
  doi: 10.1093/genetics/147.4.1497
– ident: R18
– ident: R31
– ident: R39
  doi: 10.1073/pnas.91.5.1917
– ident: R37
– ident: R32
  doi: 10.3354/ame01246
– ident: R28
  doi: 10.1086/346135
– ident: R44
  doi: 10.4315/0362-028X-69.3.480
– ident: R17
  doi: 10.1146/annurev.es.21.110190.002105
– ident: R20
– ident: R50
  doi: 10.1023/A:1018970323716
– ident: R24
– ident: R48
– ident: R7
  doi: 10.1111/j.1558-5646.1997.tb02386.x
– ident: R49
  doi: 10.1093/icb/45.3.532
– ident: R9
  doi: 10.1073/pnas.0702117104
SSID ssj0004343
Score 2.0956044
SecondaryResourceType review_article
Snippet Microbes have been widely used in experimental evolutionary studies because they possess a variety of valuable traits that facilitate large-scale...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage R17
SubjectTerms Adaptation, Physiological - genetics
Biomedical Research - trends
Cell culture
Cryopreservation
Environment
Evolution
Evolution, Molecular
Gene Expression Regulation
Genetics, Microbial - trends
Genotype
Heterogeneity
Hydrogen-Ion Concentration
Microbiological Techniques - trends
Mutation
Phenotype
Population Density
Reproducibility of Results
Reproduction
Selection, Genetic
Studies
Time Factors
Title Microbial experimental evolution
URI https://www.ncbi.nlm.nih.gov/pubmed/19403860
https://www.proquest.com/docview/229798647
https://www.proquest.com/docview/67447519
Volume 297
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1522-1490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004343
  issn: 0363-6119
  databaseCode: KQ8
  dateStart: 19971001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JToQwtHG5eDHujuPCwXgxILRMgaMxGqPRqNHEGynQukSZiTIm-vW-LhTGLeqFTJgutO_1LX0bQpsc2CiL8sQtijB0pf3WzYKIuISBuC6AQzJ133FySg-vwqPr3nXjEqSiS6rMy9--jCv5D1ThHcBVRsn-AbJ2UHgBvwG-8AQIw_NXMD65U2mUYJdHEvXzFzNrW_K0pplWrgh1raHu1T3YZ1WUvq_N6nUWCelXZCLfbJLwppfV5VVwj05gIHNmVdsHXoMvN7eaFEmzvaJV3shVQ2LdUpsQKwK6pqFx3FBM0GZBzfLbJBVrn9sR3NEE8kJHahpee6GDnj-T8Z5MC8vuB0-wdi-RQppye22YVm2o_8DLrIeh0m16ODVjpGoMVXNzHE1i4ACyzMfxeSuzPNEelvUS6wCrHt75_B2jQsw3momSUC5n0LRRLZxdjSezaIyXc2h-twSgPr46W86Zhds8cizqOG3UcSzqLKCrg_3LvUPXFMtwc4Ljyg0FCOIspEVWiCBgSUxEzkEYxCKLQAaGQ8coZxzTOMIsiDkOBLRmLBYFtEwEWUQTZb_ky8iheUyKPAtjTkVI8ygJQCn3fU6hO8541EFBvfo0N5nkZUGTh_T7Xe-gbdtnoPOo_Ni6W29qak7Fc4oBq2QxAZh_w_4LxFBauFjJ-8PnlEYyf2WQdNCShkQzVxL6JKb-yp--o4ummnOwiiaqpyFfAyG0ytYV9rwD27uIUw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+experimental+evolution&rft.jtitle=American+journal+of+physiology.+Regulatory%2C+integrative+and+comparative+physiology&rft.au=Bennett%2C+Albert+F.&rft.au=Hughes%2C+Bradley+S.&rft.date=2009-07-01&rft.issn=0363-6119&rft.eissn=1522-1490&rft.volume=297&rft.issue=1&rft.spage=R17&rft.epage=R25&rft_id=info:doi/10.1152%2Fajpregu.90562.2008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1152_ajpregu_90562_2008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6119&client=summon