Investigation of therapeutic-like irradiation effect on magnetic hyperthermia characteristics of a water-based ferrofluid with magnetite particles

[Display omitted] •A water-based ferrofluid was irradiated with photons and electrons.•The dose was that usually involved in radiation therapy of human subjects (50 Gy).•Electron irradiation induced minor change in the colloidal stability of ferrofluid.•Magnetic heating of ferrofluid at 100 kHz is n...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetism and magnetic materials Vol. 502; p. 166605
Main Authors Lazič, D., Malaescu, I., Bunoiu, O.M., Marin, I., Popescu, F.G., Socoliuc, V., Marin, C.N.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.05.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0304-8853
1873-4766
DOI10.1016/j.jmmm.2020.166605

Cover

Abstract [Display omitted] •A water-based ferrofluid was irradiated with photons and electrons.•The dose was that usually involved in radiation therapy of human subjects (50 Gy).•Electron irradiation induced minor change in the colloidal stability of ferrofluid.•Magnetic heating of ferrofluid at 100 kHz is not affected by irradiation.•Magnetic hyperthermia can be applied in the same time period as radiation therapy. The paper reports on the effect of therapeutic-like irradiation of a water based magnetic fluid with magnetite particles double-surfacted with oleic acid on its magnetic heating characteristics. To assess the effect of irradiation, a quantity of the initial sample was retained as the reference sample. The other part of the ferrofluid was irradiated with a photon beam (with the energy of 10 MeV and the dose of 50 Gy) and with an electron beam (of the energy of 9 MeV and the dose of 50 Gy). The frequency dependence of the complex magnetic permeability, μ(ω) = μ′(ω)-i μ″(ω), was affected only in the case of the electron irradiated sample and over the approximate range of 10–100 kHz. The dynamic light scattering investigation revealed a small increase of the average of the size of light scattering entities and of the polydispersity index of the sample irradiated with electrons compared to the reference sample. Magnetic heating experiments, performed at the frequency of 100 kHz and with various amplitudes of magnetic field, H, (of 25, 50, 75 and 100 Oe) did not reveal significant difference in the heating rate values of the reference sample and of the irradiated samples. Therefore, magnetic hyperthermia can be involved in the therapy plan, in the same period of time as the radiation therapy, provided at the frequency of the alternating magnetic field larger than the frequency corresponding to the Brownian relaxation peak.
AbstractList The paper reports on the effect of therapeutic-like irradiation of a water based magnetic fluid with magnetite particles double-surfacted with oleic acid on its magnetic heating characteristics. To assess the effect of irradiation, a quantity of the initial sample was retained as the reference sample. The other part of the ferrofluid was irradiated with a photon beam (with the energy of 10 MeV and the dose of 50 Gy) and with an electron beam (of the energy of 9 MeV and the dose of 50 Gy). The frequency dependence of the complex magnetic permeability, μ(ω) = μ′(ω)-i μ″(ω), was affected only in the case of the electron irradiated sample and over the approximate range of 10–100 kHz. The dynamic light scattering investigation revealed a small increase of the average of the size of light scattering entities and of the polydispersity index of the sample irradiated with electrons compared to the reference sample. Magnetic heating experiments, performed at the frequency of 100 kHz and with various amplitudes of magnetic field, H, (of 25, 50, 75 and 100 Oe) did not reveal significant difference in the heating rate values of the reference sample and of the irradiated samples. Therefore, magnetic hyperthermia can be involved in the therapy plan, in the same period of time as the radiation therapy, provided at the frequency of the alternating magnetic field larger than the frequency corresponding to the Brownian relaxation peak.
[Display omitted] •A water-based ferrofluid was irradiated with photons and electrons.•The dose was that usually involved in radiation therapy of human subjects (50 Gy).•Electron irradiation induced minor change in the colloidal stability of ferrofluid.•Magnetic heating of ferrofluid at 100 kHz is not affected by irradiation.•Magnetic hyperthermia can be applied in the same time period as radiation therapy. The paper reports on the effect of therapeutic-like irradiation of a water based magnetic fluid with magnetite particles double-surfacted with oleic acid on its magnetic heating characteristics. To assess the effect of irradiation, a quantity of the initial sample was retained as the reference sample. The other part of the ferrofluid was irradiated with a photon beam (with the energy of 10 MeV and the dose of 50 Gy) and with an electron beam (of the energy of 9 MeV and the dose of 50 Gy). The frequency dependence of the complex magnetic permeability, μ(ω) = μ′(ω)-i μ″(ω), was affected only in the case of the electron irradiated sample and over the approximate range of 10–100 kHz. The dynamic light scattering investigation revealed a small increase of the average of the size of light scattering entities and of the polydispersity index of the sample irradiated with electrons compared to the reference sample. Magnetic heating experiments, performed at the frequency of 100 kHz and with various amplitudes of magnetic field, H, (of 25, 50, 75 and 100 Oe) did not reveal significant difference in the heating rate values of the reference sample and of the irradiated samples. Therefore, magnetic hyperthermia can be involved in the therapy plan, in the same period of time as the radiation therapy, provided at the frequency of the alternating magnetic field larger than the frequency corresponding to the Brownian relaxation peak.
ArticleNumber 166605
Author Popescu, F.G.
Marin, I.
Marin, C.N.
Malaescu, I.
Bunoiu, O.M.
Lazič, D.
Socoliuc, V.
Author_xml – sequence: 1
  givenname: D.
  surname: Lazič
  fullname: Lazič, D.
  organization: West University of Timisoara, Faculty of Physics, V. Parvan Ave. no. 4, 300223 Timisoara, Romania
– sequence: 2
  givenname: I.
  surname: Malaescu
  fullname: Malaescu, I.
  organization: West University of Timisoara, Faculty of Physics, V. Parvan Ave. no. 4, 300223 Timisoara, Romania
– sequence: 3
  givenname: O.M.
  surname: Bunoiu
  fullname: Bunoiu, O.M.
  organization: West University of Timisoara, Faculty of Physics, V. Parvan Ave. no. 4, 300223 Timisoara, Romania
– sequence: 4
  givenname: I.
  surname: Marin
  fullname: Marin, I.
  organization: University of Medicine and Pharmacy “Victor Babeş”, Department of Occupational Medicine, Revolutiei 1989 Ave. no. 12, 300041 Timisoara, Romania
– sequence: 5
  givenname: F.G.
  surname: Popescu
  fullname: Popescu, F.G.
  organization: University of Medicine and Pharmacy “Victor Babeş”, Department of Occupational Medicine, Revolutiei 1989 Ave. no. 12, 300041 Timisoara, Romania
– sequence: 6
  givenname: V.
  surname: Socoliuc
  fullname: Socoliuc, V.
  organization: Romanian Academy-Timisoara Branch, Center for Fundamental Technical Research, Laboratory of Magnetic Fluids, M. Viteazu Ave. 24, 300223 Timisoara, Romania
– sequence: 7
  givenname: C.N.
  surname: Marin
  fullname: Marin, C.N.
  email: catalin.marin@e-uvt.ro
  organization: West University of Timisoara, Faculty of Physics, V. Parvan Ave. no. 4, 300223 Timisoara, Romania
BookMark eNp9kc1u1DAUhS1UJKaFF2BliXUGO3EcR2KDKiiVKrGBtXXHvu445Ge49rTqa_DEOAQ2LLqydX2-c-VzLtnFvMzI2Fsp9lJI_X7YD9M07WtRl4HWWrQv2E6arqlUp_UF24lGqMqYtnnFLlMahBBSGb1jv27nB0w53kOOy8yXwPMRCU54ztFVY_yBPBKBj9s7hoAu83Kb4H7GouHHpxPSCk0RuDsCgctIsXi6tPoBf4QyqA6Q0POAREsYz9Hzx5iP_2wy8hNQQUZMr9nLAGPCN3_PK_b986dv11-qu683t9cf7yrX1CZXCo1ysheu9X2rOwnYicb44HUNOnhovfcgDsIp41V3AFUr0Xl5cH0XirZtrti7zfdEy89zCcEOy5nmstLWSslG9KZvispsKkdLSoTBupj_hJEJ4milsGsDdrBrA3ZtwG4NFLT-Dz1RnICenoc-bBCWrz9EJJtcxNmhj1Sit36Jz-G_AWbNpno
CitedBy_id crossref_primary_10_2139_ssrn_4157380
crossref_primary_10_1007_s13233_021_9102_8
crossref_primary_10_1007_s11051_023_05768_5
crossref_primary_10_1038_s41598_021_03514_2
crossref_primary_10_1016_j_jmmm_2022_170171
Cites_doi 10.3109/02656739709023559
10.1002/adma.200701799
10.1080/02656730802104757
10.1097/00000658-195710000-00007
10.1016/j.mehy.2017.11.004
10.1039/tf9615700755
10.1016/j.jmmm.2004.11.022
10.1016/j.molliq.2019.111549
10.1088/0022-3735/22/6/019
10.1007/s11060-018-03005-x
10.1088/0953-8984/20/38/385214
10.1103/PhysRevE.64.041405
10.1016/j.ijpharm.2013.02.042
10.1016/j.biomaterials.2013.07.012
10.1016/j.jmmm.2003.09.001
10.3109/02656736.2015.1005178
10.1016/j.jmmm.2006.10.1156
10.1021/ja00979a008
10.3109/02656739409012371
10.1007/s40005-019-00431-5
10.1111/jop.12921
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV May 15, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV May 15, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jmmm.2020.166605
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-4766
ExternalDocumentID 10_1016_j_jmmm_2020_166605
S0304885319340272
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29K
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FGOYB
G-2
HMV
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
WUQ
XXG
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c328t-4e84c190c5d95671ae7038dfd62a6fda5ddda0b0c48d47ba42407d1bc97fae753
IEDL.DBID .~1
ISSN 0304-8853
IngestDate Mon Jul 14 10:25:11 EDT 2025
Tue Jul 01 01:56:09 EDT 2025
Thu Apr 24 23:06:17 EDT 2025
Fri Feb 23 02:48:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnetic hyperthermia
Ferrofluid
Radiation therapy
Cancer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-4e84c190c5d95671ae7038dfd62a6fda5ddda0b0c48d47ba42407d1bc97fae753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2441309893
PQPubID 2045450
ParticipantIDs proquest_journals_2441309893
crossref_citationtrail_10_1016_j_jmmm_2020_166605
crossref_primary_10_1016_j_jmmm_2020_166605
elsevier_sciencedirect_doi_10_1016_j_jmmm_2020_166605
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-15
PublicationDateYYYYMMDD 2020-05-15
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of magnetism and magnetic materials
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Schleich, Sibret, Danhier, Ucakar, Laurent, Muller, Jérôme, Gallez, Préat, Danhier (b0070) 2013; 447
Reyes-Ortega, Fernández, Delgado, Iglesias (b0065) 2019; 517
Warner (b0100) 2008; 20
Howton, Guey-Shuang (b0110) 1967; 89
Hergt, Dutz, Röder (b0035) 2008; 20
Fannin, Marin, Malaescu, Giannitsis (b0125) 2005; 289
Hergt, Dutz (b0030) 2007; 311
Phung, Nguyen, Tran, Jin, Yong, Truong, Kim (b0090) 2019; 49
Kandasamy, Sudame, Maity, Soni, Sushmita, Veerapu, Bose, Tomy (b0085) 2019; 293
Williams (b0105) 1961; 57
Gilchrist, Medal, Shorey, Hanselman, Parrott, Taylor (b0005) 1957; 146
Ivanov, Kuznetsova (b0120) 2001; 64
Jose Delannoy, Denis Le Bihan, Ching-nien Chen, Ronald L. Levin, Robert Turner, Apparatus for hypertherma treatment of cancer, US Patent no. 5284144, 1994.
Masakatsu Hasegawa, Syusaburo Hokkoku, Magnetic iron oxide-dextran complex and process for its production, US Patent no. 4101435, 1978.
Grauer, Jaber, Hess, Weckesser, Schwindt, Maring, Wölfer, Stummer (b0015) 2019; 141
Legge, Colley, Lawson, Rawlings (b0075) 2019; 48
Tombácz, Bica, Hajdú, Illés, Majzik, Vékás (b0115) 2008; 20
Mitsumori, Hiraoka, Shibata, Okuno, Masunaga, Koishi, Okajima, Nagata, Nishimura, Abe, Ohura, Hasegawa, Nagae, Ebisawa (b0060) 1994; 10
.
Brezovich (b0025) 1988; 16
Malaescu, Fannin, Marin, Lazic (b0130) 2018; 110
Fannin, Charles (b0135) 1989; 22
Attaluri, Kandala, Wabler, Zhou, Cornejo, Armour, Hedayati, Zhang, DeWeese, Herman, Ivkov (b0095) 2015; 31
Hergt, Hiergeist, Hilger, Kaiser, Lapatnikov, Margel, Richter (b0040) 2004; 270
Li, Huang, Ruan, Chuang, Huang, Shieh, Yeh (b0080) 2013; 34
Jordan, Scholz, Wust, Fahling, Krause, Wlodarczyk, Sander, Vogl, Felix (b0020) 1997; 13
Thiesen, Jordan (b0050) 2008; 24
Attaluri (10.1016/j.jmmm.2020.166605_b0095) 2015; 31
Tombácz (10.1016/j.jmmm.2020.166605_b0115) 2008; 20
Warner (10.1016/j.jmmm.2020.166605_b0100) 2008; 20
Ivanov (10.1016/j.jmmm.2020.166605_b0120) 2001; 64
Reyes-Ortega (10.1016/j.jmmm.2020.166605_b0065) 2019; 517
Brezovich (10.1016/j.jmmm.2020.166605_b0025) 1988; 16
Malaescu (10.1016/j.jmmm.2020.166605_b0130) 2018; 110
Thiesen (10.1016/j.jmmm.2020.166605_b0050) 2008; 24
Phung (10.1016/j.jmmm.2020.166605_b0090) 2019; 49
Williams (10.1016/j.jmmm.2020.166605_b0105) 1961; 57
Hergt (10.1016/j.jmmm.2020.166605_b0035) 2008; 20
10.1016/j.jmmm.2020.166605_b0045
Legge (10.1016/j.jmmm.2020.166605_b0075) 2019; 48
Schleich (10.1016/j.jmmm.2020.166605_b0070) 2013; 447
Jordan (10.1016/j.jmmm.2020.166605_b0020) 1997; 13
Howton (10.1016/j.jmmm.2020.166605_b0110) 1967; 89
Mitsumori (10.1016/j.jmmm.2020.166605_b0060) 1994; 10
Kandasamy (10.1016/j.jmmm.2020.166605_b0085) 2019; 293
Fannin (10.1016/j.jmmm.2020.166605_b0125) 2005; 289
Hergt (10.1016/j.jmmm.2020.166605_b0030) 2007; 311
Hergt (10.1016/j.jmmm.2020.166605_b0040) 2004; 270
10.1016/j.jmmm.2020.166605_b0010
10.1016/j.jmmm.2020.166605_b0055
Li (10.1016/j.jmmm.2020.166605_b0080) 2013; 34
Grauer (10.1016/j.jmmm.2020.166605_b0015) 2019; 141
Gilchrist (10.1016/j.jmmm.2020.166605_b0005) 1957; 146
Fannin (10.1016/j.jmmm.2020.166605_b0135) 1989; 22
References_xml – volume: 10
  start-page: 785
  year: 1994
  end-page: 793
  ident: b0060
  article-title: Development of intro-arterial hyperthermia using a dextran-magnetite complex
  publication-title: Int. J. Hyperthermia
– volume: 141
  start-page: 83
  year: 2019
  end-page: 94
  ident: b0015
  article-title: Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients
  publication-title: J. Neurooncol.
– reference: Masakatsu Hasegawa, Syusaburo Hokkoku, Magnetic iron oxide-dextran complex and process for its production, US Patent no. 4101435, 1978.
– volume: 89
  start-page: 516
  year: 1967
  end-page: 525
  ident: b0110
  article-title: γ Radiolysis of oleic acid
  publication-title: J. Am. Chem. Soc.
– volume: 20
  year: 2008
  ident: b0115
  article-title: Surfactant double layer stabilized magnetic nanofluids for biomedical application
  publication-title: J. Phys.: Condens. Matter
– volume: 64
  year: 2001
  ident: b0120
  article-title: Magnetic properties of dense ferrofluids: an influence of interparticle correlations
  publication-title: Phys. Rev. E
– volume: 270
  start-page: 345
  year: 2004
  end-page: 357
  ident: b0040
  article-title: Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia
  publication-title: J. Magn. Magn. Mater.
– volume: 311
  start-page: 187
  year: 2007
  end-page: 192
  ident: b0030
  article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy
  publication-title: J. Magn. Magn. Mater.
– volume: 49
  start-page: 519
  year: 2019
  end-page: 526
  ident: b0090
  article-title: Combined hyperthermia and chemotherapy as a synergistic anticancer treatment
  publication-title: J. Pharm. Investig.
– reference: Jose Delannoy, Denis Le Bihan, Ching-nien Chen, Ronald L. Levin, Robert Turner, Apparatus for hypertherma treatment of cancer, US Patent no. 5284144, 1994.
– volume: 20
  start-page: 784
  year: 2008
  end-page: 787
  ident: b0100
  article-title: Self-assembly of ligand-free PbS nanocrystals into nanorods and their nanosculpturing by electron-beam irradiation
  publication-title: Adv. Mater.
– volume: 57
  start-page: 755
  year: 1961
  end-page: 763
  ident: b0105
  article-title: Correlation of the radiation chemistry of liquid hydrocarbons with the energetics of molecular-ion reactions
  publication-title: Trans. Faraday Soc.
– volume: 293
  year: 2019
  ident: b0085
  article-title: Multifunctional magnetic-polymeric nanoparticles based ferrofluids for multi-modal in vitro cancer treatment using thermotherapy and chemotherapy
  publication-title: J. Mol. Liq.
– volume: 289
  start-page: 78
  year: 2005
  end-page: 80
  ident: b0125
  article-title: Microwave absorption of composite magnetic fluids
  publication-title: J. Magn. Magn. Mater.
– volume: 517
  start-page: 11
  year: 2019
  ident: b0065
  article-title: Hyperthermia-triggered doxorubicin release from polymer-coated magnetic nanorods
  publication-title: Pharmaceutics
– volume: 146
  start-page: 596
  year: 1957
  end-page: 606
  ident: b0005
  article-title: Selective inductive heating of lymph nodes
  publication-title: Ann. Surg.
– volume: 48
  start-page: 803
  year: 2019
  end-page: 809
  ident: b0075
  article-title: Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer
  publication-title: J. Oral Pathol. Med.
– volume: 34
  start-page: 7873
  year: 2013
  end-page: 7883
  ident: b0080
  article-title: In vivo anti-cancer efficacy of magnetite nanocrystal–based system using locoregional hyperthermia combined with 5-fluorouracil chemotherapy
  publication-title: Biomaterials
– volume: 31
  start-page: 359
  year: 2015
  end-page: 374
  ident: b0095
  article-title: Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer
  publication-title: Int. J. Hyperther.
– volume: 13
  start-page: 587
  year: 1997
  end-page: 605
  ident: b0020
  article-title: Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo
  publication-title: Int. J. Hyperthermia
– reference: .
– volume: 16
  start-page: 82
  year: 1988
  end-page: 111
  ident: b0025
  article-title: Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods
  publication-title: Med. Phys. Monogr.
– volume: 447
  start-page: 94
  year: 2013
  end-page: 101
  ident: b0070
  article-title: Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging
  publication-title: Int. J. Pharmaceut.
– volume: 24
  start-page: 467
  year: 2008
  end-page: 474
  ident: b0050
  article-title: Clinical applications of magnetic nanoparticles for hyperthermia
  publication-title: Int. J. Hyperthermia
– volume: 20
  year: 2008
  ident: b0035
  article-title: Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia
  publication-title: J. Phys. Condens. Matter.
– volume: 110
  start-page: 76
  year: 2018
  end-page: 79
  ident: b0130
  article-title: The concept of ferrofluid preheating in the treatment of cancer by magnetic hyperthermia of tissues
  publication-title: Med. Hypotheses
– volume: 22
  start-page: 412
  year: 1989
  end-page: 413
  ident: b0135
  article-title: An improvement technique for the measurement of the field-dependent susceptibility of ferrofluids
  publication-title: J. Phys. E: Sci. Instrum.
– ident: 10.1016/j.jmmm.2020.166605_b0055
– volume: 13
  start-page: 587
  year: 1997
  ident: 10.1016/j.jmmm.2020.166605_b0020
  article-title: Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo
  publication-title: Int. J. Hyperthermia
  doi: 10.3109/02656739709023559
– volume: 16
  start-page: 82
  year: 1988
  ident: 10.1016/j.jmmm.2020.166605_b0025
  article-title: Low frequency hyperthermia: capacitive and ferromagnetic thermoseed methods
  publication-title: Med. Phys. Monogr.
– volume: 20
  start-page: 784
  year: 2008
  ident: 10.1016/j.jmmm.2020.166605_b0100
  article-title: Self-assembly of ligand-free PbS nanocrystals into nanorods and their nanosculpturing by electron-beam irradiation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701799
– volume: 24
  start-page: 467
  year: 2008
  ident: 10.1016/j.jmmm.2020.166605_b0050
  article-title: Clinical applications of magnetic nanoparticles for hyperthermia
  publication-title: Int. J. Hyperthermia
  doi: 10.1080/02656730802104757
– volume: 146
  start-page: 596
  year: 1957
  ident: 10.1016/j.jmmm.2020.166605_b0005
  article-title: Selective inductive heating of lymph nodes
  publication-title: Ann. Surg.
  doi: 10.1097/00000658-195710000-00007
– volume: 110
  start-page: 76
  year: 2018
  ident: 10.1016/j.jmmm.2020.166605_b0130
  article-title: The concept of ferrofluid preheating in the treatment of cancer by magnetic hyperthermia of tissues
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2017.11.004
– volume: 57
  start-page: 755
  year: 1961
  ident: 10.1016/j.jmmm.2020.166605_b0105
  article-title: Correlation of the radiation chemistry of liquid hydrocarbons with the energetics of molecular-ion reactions
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9615700755
– ident: 10.1016/j.jmmm.2020.166605_b0045
– volume: 289
  start-page: 78
  year: 2005
  ident: 10.1016/j.jmmm.2020.166605_b0125
  article-title: Microwave absorption of composite magnetic fluids
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2004.11.022
– ident: 10.1016/j.jmmm.2020.166605_b0010
– volume: 293
  year: 2019
  ident: 10.1016/j.jmmm.2020.166605_b0085
  article-title: Multifunctional magnetic-polymeric nanoparticles based ferrofluids for multi-modal in vitro cancer treatment using thermotherapy and chemotherapy
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.111549
– volume: 22
  start-page: 412
  year: 1989
  ident: 10.1016/j.jmmm.2020.166605_b0135
  article-title: An improvement technique for the measurement of the field-dependent susceptibility of ferrofluids
  publication-title: J. Phys. E: Sci. Instrum.
  doi: 10.1088/0022-3735/22/6/019
– volume: 141
  start-page: 83
  year: 2019
  ident: 10.1016/j.jmmm.2020.166605_b0015
  article-title: Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-018-03005-x
– volume: 20
  year: 2008
  ident: 10.1016/j.jmmm.2020.166605_b0035
  article-title: Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/0953-8984/20/38/385214
– volume: 64
  year: 2001
  ident: 10.1016/j.jmmm.2020.166605_b0120
  article-title: Magnetic properties of dense ferrofluids: an influence of interparticle correlations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.041405
– volume: 447
  start-page: 94
  year: 2013
  ident: 10.1016/j.jmmm.2020.166605_b0070
  article-title: Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging
  publication-title: Int. J. Pharmaceut.
  doi: 10.1016/j.ijpharm.2013.02.042
– volume: 34
  start-page: 7873
  year: 2013
  ident: 10.1016/j.jmmm.2020.166605_b0080
  article-title: In vivo anti-cancer efficacy of magnetite nanocrystal–based system using locoregional hyperthermia combined with 5-fluorouracil chemotherapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.07.012
– volume: 270
  start-page: 345
  year: 2004
  ident: 10.1016/j.jmmm.2020.166605_b0040
  article-title: Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2003.09.001
– volume: 31
  start-page: 359
  year: 2015
  ident: 10.1016/j.jmmm.2020.166605_b0095
  article-title: Magnetic nanoparticle hyperthermia enhances radiation therapy: a study in mouse models of human prostate cancer
  publication-title: Int. J. Hyperther.
  doi: 10.3109/02656736.2015.1005178
– volume: 311
  start-page: 187
  year: 2007
  ident: 10.1016/j.jmmm.2020.166605_b0030
  article-title: Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2006.10.1156
– volume: 89
  start-page: 516
  year: 1967
  ident: 10.1016/j.jmmm.2020.166605_b0110
  article-title: γ Radiolysis of oleic acid
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00979a008
– volume: 517
  start-page: 11
  year: 2019
  ident: 10.1016/j.jmmm.2020.166605_b0065
  article-title: Hyperthermia-triggered doxorubicin release from polymer-coated magnetic nanorods
  publication-title: Pharmaceutics
– volume: 20
  year: 2008
  ident: 10.1016/j.jmmm.2020.166605_b0115
  article-title: Surfactant double layer stabilized magnetic nanofluids for biomedical application
  publication-title: J. Phys.: Condens. Matter
– volume: 10
  start-page: 785
  year: 1994
  ident: 10.1016/j.jmmm.2020.166605_b0060
  article-title: Development of intro-arterial hyperthermia using a dextran-magnetite complex
  publication-title: Int. J. Hyperthermia
  doi: 10.3109/02656739409012371
– volume: 49
  start-page: 519
  year: 2019
  ident: 10.1016/j.jmmm.2020.166605_b0090
  article-title: Combined hyperthermia and chemotherapy as a synergistic anticancer treatment
  publication-title: J. Pharm. Investig.
  doi: 10.1007/s40005-019-00431-5
– volume: 48
  start-page: 803
  year: 2019
  ident: 10.1016/j.jmmm.2020.166605_b0075
  article-title: Targeted magnetic nanoparticle hyperthermia for the treatment of oral cancer
  publication-title: J. Oral Pathol. Med.
  doi: 10.1111/jop.12921
SSID ssj0001486
ssib019626450
Score 2.3558147
Snippet [Display omitted] •A water-based ferrofluid was irradiated with photons and electrons.•The dose was that usually involved in radiation therapy of human...
The paper reports on the effect of therapeutic-like irradiation of a water based magnetic fluid with magnetite particles double-surfacted with oleic acid on...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 166605
SubjectTerms Cancer
Electron beams
Ferrofluid
Ferrofluids
Heating rate
Hyperthermia
Irradiation
Magnetic fields
Magnetic fluids
Magnetic hyperthermia
Magnetic permeability
Magnetite
Oleic acid
Particle physics
Photon beams
Photon correlation spectroscopy
Polydispersity
Radiation therapy
Scattering
Title Investigation of therapeutic-like irradiation effect on magnetic hyperthermia characteristics of a water-based ferrofluid with magnetite particles
URI https://dx.doi.org/10.1016/j.jmmm.2020.166605
https://www.proquest.com/docview/2441309893
Volume 502
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001486
  issn: 0304-8853
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001486
  issn: 0304-8853
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-4766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001486
  issn: 0304-8853
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001486
  issn: 0304-8853
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4766
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001486
  issn: 0304-8853
  databaseCode: AKRWK
  dateStart: 19751001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQERIL4ikeBXlgQ6Z5OI0zIgQqIFigUjfLsR0INGmVtmLjR_CLucsDWoQ6sCWObVm5y9138XdnQk5xpyrmrmDGc3zGI84Z2MCEhQE2e24Sl-UY7h-6vT6_HQSDFXLZ5MIgrbK2_ZVNL6113dKp32ZnnKadR9zUEwJ1yIcgKEQ7jNW_QKfPP35oHgD3q_1KB1YBvevEmYrj9ZplmI3uQQPAeDzC7m_n9MtMl77nepNs1KCRXlTr2iIrNt8mayV5U092yOdcsYxRTkcJncuqYsP0zdK0KLAIQfm8onBQuMrUc45JjPQFotECB2WponqxhjPOp-g7YNKCoc8zNLEFWO_hLDUUf-M200wtHTc8u13Sv756uuyx-qwFpn1PTBm3gmsABzowEDGFrrJgCoRJTNdT3cSowBijnNjRXBgexopjJGjcWEdhAn0Df4-08lFu9wlVgsNEESABk_BIYQG_GICkjpVjIQYWB8RtXrLUdSFyPA9jKBvG2atEwUgUjKwEc0DOvseMqzIcS3sHjezkgjJJ8BNLx7UbQcv6U55IwD_g5yPAdYf_nPaIrOMdcg7coE1a02JmjwHKTOOTUldPyOrFzV3v4QsMkvUq
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8MwDI3QEIIL4lMMBuTADUVru3RNjxMCDQa7ABK3KE1SKGzd1G3if_CLsdt0AoQ4cKvSOIri9Pm5sR1CzvCkKuG-YCbwOozHnDPAwJRFITYHfpqU5Rjuht3-I795Cp9WyEWdC4NhlQ77K0wv0dq1tN1qtqdZ1r7HQz0hcA91wAmKAIdXeQiY3CCrvetBf7gEZGD81ZGlBxMBAZc7U4V5vY7HmJAeQAMwebzF7nf79AOpS_NztUU2HW-kvWpq22TF5jtkrYzf1LNd8vGlXsYkp5OUfkmsYqPszdKsKLAOQfm-iuKg8DRWzznmMdIXcEgLFBpniurvZZxxPEXfgZYWDM2eoaktAMBHi8xQ_JNbDzO3dFqH2u2Rx6vLh4s-c9ctMN0JxJxxK7gGfqBDA05T5CsLaCBMarqB6qZGhcYY5SWe5sLwKFEcnUHjJzqOUugbdvZJI5_k9oBQJTgMFAMZMCmPFdbwS4BL6kR5Ftxg0SR-vchSu1rkeCXGSNZBZ68SFSNRMbJSTJOcL2WmVSWOP3uHte7kt_0kwVT8KdeqFS3d1zyTQIHA1MdA7Q7_OewpWe8_3N3K2-vh4Ihs4BsMQfDDFmnMi4U9BmYzT07czv0EWnf31Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+therapeutic-like+irradiation+effect+on+magnetic+hyperthermia+characteristics+of+a+water-based+ferrofluid+with+magnetite+particles&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Lazi%C4%8D%2C+D&rft.au=Malaescu%2C+I&rft.au=Bunoiu%2C+OM&rft.au=Marin%2C+I&rft.date=2020-05-15&rft.pub=Elsevier+BV&rft.issn=0304-8853&rft.eissn=1873-4766&rft.volume=502&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jmmm.2020.166605&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon