Extending mixtures of factor models using the restricted multivariate skew-normal distribution
The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through its factor-analytic representation of the component covariance matrices. This paper extends the MFA model to incorporate a restricted versio...
        Saved in:
      
    
          | Published in | Journal of multivariate analysis Vol. 143; pp. 398 - 413 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Inc
    
        01.01.2016
     Taylor & Francis LLC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0047-259X 1095-7243  | 
| DOI | 10.1016/j.jmva.2015.09.025 | 
Cover
| Abstract | The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through its factor-analytic representation of the component covariance matrices. This paper extends the MFA model to incorporate a restricted version of the multivariate skew-normal distribution for the latent component factors, called mixtures of skew-normal factor analyzers (MSNFA). The proposed MSNFA model allows us to relax the need of the normality assumption for the latent factors in order to accommodate skewness in the observed data. The MSNFA model thus provides an approach to model-based density estimation and clustering of high-dimensional data exhibiting asymmetric characteristics. A computationally feasible Expectation Conditional Maximization (ECM) algorithm is developed for computing the maximum likelihood estimates of model parameters. The potential of the proposed methodology is exemplified using both real and simulated data. | 
    
|---|---|
| AbstractList | The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through its factor-analytic representation of the component covariance matrices. This paper extends the MFA model to incorporate a restricted version of the multivariate skew-normal distribution for the latent component factors, called mixtures of skew-normal factor analyzers (MSNFA). The proposed MSNFA model allows us to relax the need of the normality assumption for the latent factors in order to accommodate skewness in the observed data. The MSNFA model thus provides an approach to model-based density estimation and clustering of high-dimensional data exhibiting asymmetric characteristics. A computationally feasible Expectation Conditional Maximization (ECM) algorithm is developed for computing the maximum likelihood estimates of model parameters. The potential of the proposed methodology is exemplified using both real and simulated data. | 
    
| Author | Lin, Tsung-I McLachlan, Geoffrey J. Lee, Sharon X.  | 
    
| Author_xml | – sequence: 1 givenname: Tsung-I surname: Lin fullname: Lin, Tsung-I email: tilin@nchu.edu.tw organization: Institute of Statistics, National Chung Hsing University, Taichung 402, Taiwan – sequence: 2 givenname: Geoffrey J. surname: McLachlan fullname: McLachlan, Geoffrey J. organization: Department of Mathematics, University of Queensland, St Lucia, 4072, Australia – sequence: 3 givenname: Sharon X. surname: Lee fullname: Lee, Sharon X. organization: Department of Mathematics, University of Queensland, St Lucia, 4072, Australia  | 
    
| BookMark | eNp9kE1L7TAQhoMoePz4A64CrlsnbdI24EZE7xUENwquDGkyR1PbRpP0qP_eluPKhYthFvM-M8NzQHZHPyIhJwxyBqw66_Ju2Oi8ACZykDkUYoesGEiR1QUvd8kKgNdZIeTjPjmIsQNgTNR8RZ6uPhOO1o3PdHCfaQoYqV_TtTbJBzp4i32kU1zm6QXpPE7BmYSWDlOf3EYHpxPS-Iof2ejDoHtq3ZJpp-T8eET21rqPePzTD8nD9dX95f_s9u7fzeXFbWbKokkZb6G0NQjTQN0Ijrpp5ypkayqt0WotWdlaXunGWMnrtjJCIuetxgLBIi8Pyel271vw79P8pOr8FMb5pGI1b4QUFbA51WxTJvgYA66VcUkvf6agXa8YqMWm6tRiUy02FUg125zR4hf6Ftygw9ff0PkWmiXixmFQ0TgcDVoX0CRlvfsL_wYZl5O9 | 
    
| CODEN | JMVAAI | 
    
| CitedBy_id | crossref_primary_10_1109_TPAMI_2018_2885760 crossref_primary_10_1007_s11749_018_0585_3 crossref_primary_10_1007_s00357_016_9211_9 crossref_primary_10_1007_s11634_022_00532_4 crossref_primary_10_1007_s40995_020_01020_0 crossref_primary_10_1016_j_csda_2020_107162 crossref_primary_10_1007_s00357_019_09351_3 crossref_primary_10_1016_j_jkss_2018_12_001 crossref_primary_10_1007_s11634_020_00420_9 crossref_primary_10_1007_s00357_018_9280_z crossref_primary_10_1007_s00180_019_00870_6 crossref_primary_10_1007_s00357_019_9309_y crossref_primary_10_1111_insr_12274 crossref_primary_10_1002_sta4_372 crossref_primary_10_1007_s11634_015_0221_y crossref_primary_10_1002_sam_11555 crossref_primary_10_1002_sta4_177 crossref_primary_10_1016_j_csda_2019_06_001 crossref_primary_10_3389_feduc_2020_589965 crossref_primary_10_1016_j_neucom_2017_02_028 crossref_primary_10_1007_s00180_022_01270_z crossref_primary_10_1007_s10260_022_00674_x crossref_primary_10_1007_s11749_018_0612_4 crossref_primary_10_1007_s11634_018_0317_2 crossref_primary_10_1016_j_ecosta_2017_05_001 crossref_primary_10_1016_j_spl_2020_108935 crossref_primary_10_1016_j_jmva_2021_104853 crossref_primary_10_1007_s11749_021_00766_y crossref_primary_10_1080_02664763_2019_1709054 crossref_primary_10_3390_sym12010118 crossref_primary_10_1080_03610918_2019_1622718 crossref_primary_10_1177_1471082X17718119 crossref_primary_10_1111_sjos_12377 crossref_primary_10_3934_math_2024765 crossref_primary_10_1016_j_comnet_2018_02_010 crossref_primary_10_1007_s10479_021_04045_9 crossref_primary_10_1016_j_trb_2016_10_014 crossref_primary_10_1016_j_spl_2022_109681 crossref_primary_10_1109_TNNLS_2018_2805317 crossref_primary_10_1146_annurev_statistics_031017_100325 crossref_primary_10_1007_s11634_021_00453_8 crossref_primary_10_1007_s00184_022_00873_2 crossref_primary_10_1007_s00357_022_09415_x crossref_primary_10_1016_j_jmva_2018_11_015 crossref_primary_10_1007_s11634_018_0308_3 crossref_primary_10_1016_j_trb_2025_103186 crossref_primary_10_1214_21_AOAS1478 crossref_primary_10_1002_bimj_70042  | 
    
| Cites_doi | 10.1007/BF01908075 10.1093/biomet/85.4.755 10.18637/jss.v055.i12 10.1093/jjfinec/nbj006 10.1080/00273171.2012.658339 10.1007/s11222-008-9056-0 10.1080/01621459.1991.10475130 10.1111/j.1469-1809.1936.tb02137.x 10.1111/j.1467-9469.2005.00426.x 10.1198/jcgs.2010.08111 10.1109/TCBB.2007.70244 10.1016/j.csda.2006.09.015 10.1002/sta4.43 10.1016/j.csda.2012.05.011 10.2307/3316064 10.1016/S0167-9473(02)00163-9 10.1093/biomet/83.4.715 10.1214/aos/1176346060 10.1023/A:1020297828025 10.1016/S0167-9473(02)00177-9 10.1007/s11222-012-9362-4 10.1016/j.csda.2011.11.002 10.1007/s11222-013-9386-4 10.1016/j.jmva.2004.10.002 10.1111/1467-9868.00282 10.1093/bioinformatics/18.3.413 10.1016/j.jmva.2013.02.003 10.1111/1467-9868.00194 10.1016/j.jmva.2013.07.014 10.1214/aos/1176344136 10.18637/jss.v051.i12 10.1093/biomet/80.2.267 10.1007/s00180-012-0327-z 10.1111/j.2517-6161.1977.tb01600.x 10.1007/s11634-013-0132-8 10.1111/1467-9868.00391 10.1073/pnas.0903028106 10.1016/j.jmva.2008.04.010 10.1111/j.2517-6161.1982.tb01203.x 10.1093/biomet/65.3.457 10.1162/08997660151134299 10.1137/S1064827596311451 10.1198/jcgs.2009.08054 10.1111/j.1467-9469.2006.00503.x 10.1080/02664760902736737 10.1214/07-AOS571 10.1016/j.csda.2014.03.012 10.1080/01621459.1963.10500845 10.1016/S0167-9473(02)00183-4 10.1109/TNN.2008.2003467 10.1016/j.csda.2014.10.007 10.1093/bioinformatics/btr112 10.1109/34.865189  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2015 Elsevier Inc. Copyright Taylor & Francis Group Jan 2016  | 
    
| Copyright_xml | – notice: 2015 Elsevier Inc. – notice: Copyright Taylor & Francis Group Jan 2016  | 
    
| DBID | AAYXX CITATION JQ2  | 
    
| DOI | 10.1016/j.jmva.2015.09.025 | 
    
| DatabaseName | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitle | CrossRef ProQuest Computer Science Collection  | 
    
| DatabaseTitleList | ProQuest Computer Science Collection  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1095-7243 | 
    
| EndPage | 413 | 
    
| ExternalDocumentID | 3894135811 10_1016_j_jmva_2015_09_025 S0047259X15002523  | 
    
| Genre | Feature | 
    
| GroupedDBID | --K --M --Z -~X .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN 9JO AAAKF AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYJJ ABAOU ABEFU ABFNM ABIVO ABJNI ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HVGLF HZ~ IHE IXB J1W KOM LG5 M25 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSB SSD SSW SSZ T5K TN5 UHS WUQ XFK XOL XPP YHZ ZGI ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF JQ2  | 
    
| ID | FETCH-LOGICAL-c328t-4b03d705c807854ea8bea829bc6aaedaa913bd46a8cd947b6c59e44bae2e0de43 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0047-259X | 
    
| IngestDate | Wed Aug 13 09:32:17 EDT 2025 Wed Oct 01 02:04:32 EDT 2025 Thu Apr 24 22:54:35 EDT 2025 Fri Feb 23 02:27:55 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Skewness 62H30 ECM algorithm Factor analyzer rMSN distribution 65C60 Clustering Data reduction 62H25  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c328t-4b03d705c807854ea8bea829bc6aaedaa913bd46a8cd947b6c59e44bae2e0de43 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14  | 
    
| PQID | 1748595601 | 
    
| PQPubID | 27957 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_1748595601 crossref_citationtrail_10_1016_j_jmva_2015_09_025 crossref_primary_10_1016_j_jmva_2015_09_025 elsevier_sciencedirect_doi_10_1016_j_jmva_2015_09_025  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2016 2016-01-00 20160101  | 
    
| PublicationDateYYYYMMDD | 2016-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2016 text: January 2016  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Journal of multivariate analysis | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier Inc Taylor & Francis LLC  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Taylor & Francis LLC  | 
    
| References | Azzalini, Capitanio (br000030) 2003; 65 Efron, Hinkley (br000090) 1978; 65 Biernacki, Celeux, Govaert (br000065) 2000; 22 Lin, Ho, Lee (br000195) 2014; 24 Frühwirth-Schnatter (br000130) 2006 Lee, McLachlan (br000175) 2013; 55 distributions, 2009. Wang, Lin (br000375) 2013; 8 Ward (br000380) 1963; 58 Murray, Browne, McNicholas (br000305) 2014; 77 Murray, McNicholas, Browne (br000315) 2014; 3 Utsugi, Kumagai (br000350) 2001; 13 Dempster, Laird, Rubin (br000080) 1977; 39 McLachlan, Peel (br000250) 2000 Pyne, Hu, Wang, Rossin, Lin, Maier, Baecher-Allan, McLachlan, Tamayo, Hafler, De Jager, Mesirov (br000325) 2009; 106 Lee, McLachlan (br000165) 2013; 7 Maitra, Melnykov (br000225) 2010; 19 Karlis, Xekalaki (br000155) 2003; 41 Everitt, Hand (br000095) 1981 Meng, Rubin (br000295) 1991; 86 C. Tortora, P.D. McNicholas, R. Browne, A mixture of generalized hyperbolic factor analyzers, 2013 Mengersen, Robert, Titterington (br000285) 2011 Schwarz (br000335) 1978; 6 Wang (br000360) 2013; 117 P. Murray, R. Browne, P.D. McNicholas, Mixtures of ‘unrestricted’ skew- Titterington, Smith, Markov (br000340) 1985 McLachlan, Basford (br000230) 1988 Louis (br000215) 1982; 44 Lindsay (br000190) 1995; vol. 5 Lopes, West (br000210) 2004; 4 . Azzalini (br000020) 2005; 32 Ghahramani, Beal (br000135) 2000; vol. 12 A. Frank, A. Asuncion, UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science, 2010. Wang (br000365) 2015; 83 Böhning (br000070) 1999 McLachlan, Bean, Peel (br000240) 2002; 18 Sahu, Dey, Branco (br000330) 2003; 31 Wall, Guo, Amemiya (br000355) 2012; 47 Azzalini, Capitanio (br000025) 1999; 61 McLachlan, Peel, Bean (br000260) 2003; 41 Baudry, Raftery, Celeux, Lo, Gottardo (br000055) 2010; 9 McNicholas, Murphy (br000265) 2008; 18 Drton (br000085) 2009; 37 McLachlan, Krishnan (br000245) 2008 Aas, Haff (br000005) 2005; 4 Wu (br000385) 1983; 11 Hubert, Arabie (br000145) 1985; 2 Charytanowicz, Niewczas, Kulczycki, Kowalski, Lukasik, Zak (br000075) 2010 K. Wang, EMMIX-skew (R package version 1.0-12): EM algorithm for mixture of multivariate skew Normal Fisher (br000100) 1936; 7 Lin, Lee, Yen (br000200) 2007; 17 Azzalini, Dalla Valle (br000035) 1996; 83 Lee, McLachlan (br000170) 2014; 24 Melnykov, Melnykov (br000280) 2012; 56 O’Hagan, Murphy, Gormley (br000320) 2012; 56 McLachlan, Peel (br000255) 2000 B.C. Franczak, P.D. McNicholas, R.P. Browne, P.M. Murray, Parsimonious shifted asymmetric Laplace mixtures, 2013, Preprint Arellano-Valle, Genton (br000015) 2005; 96 McLachlan, Bean, Jones (br000235) 2007; 51 Fraley (br000110) 1998; 20 Arellano-Valle, Azzalini (br000010) 2006; 33 Y.W. Lee, S.H. Poon, Systemic and systematic factors for loan portfolio loss distribution, in: Econometrics and Applied Economics Workshops, School of Social Science, University of Manchester, 2011, pp. 1–61. Fraley, Raftery, Murphy, Scrucca (br000115) 2012 Ghahramani, Hinton (br000140) 1997 Baek, McLachlan (br000040) 2011; 27 Fokoué, Titterington (br000105) 2003; 50 Barndorff-Nielsen, Shephard (br000050) 2001; 63 Jamshidian (br000150) 1997 factor analyzers, 2013, Preprint Baek, McLachlan, Flack (br000045) 2010; 32 Meng, Rubin (br000290) 1993; 80 Biernacki, Celeux, Govaert (br000060) 2003; 41 Liu, Rubin, Wu (br000205) 1998; 85 Maitra (br000220) 2009; 6 Melnykov, Chen, Maitra (br000275) 2012; 51 Melnykov (br000270) 2013; 122 Montanari, Viroli (br000300) 2010; 37 Lin (br000185) 2009; 100 Lachos, Ghosh, Arellano-Valle (br000160) 2010; 20 Zhao, Yu (br000390) 2008; 19 Maitra (10.1016/j.jmva.2015.09.025_br000225) 2010; 19 Biernacki (10.1016/j.jmva.2015.09.025_br000060) 2003; 41 Lachos (10.1016/j.jmva.2015.09.025_br000160) 2010; 20 Lin (10.1016/j.jmva.2015.09.025_br000195) 2014; 24 Fisher (10.1016/j.jmva.2015.09.025_br000100) 1936; 7 Hubert (10.1016/j.jmva.2015.09.025_br000145) 1985; 2 Sahu (10.1016/j.jmva.2015.09.025_br000330) 2003; 31 Utsugi (10.1016/j.jmva.2015.09.025_br000350) 2001; 13 O’Hagan (10.1016/j.jmva.2015.09.025_br000320) 2012; 56 Zhao (10.1016/j.jmva.2015.09.025_br000390) 2008; 19 McLachlan (10.1016/j.jmva.2015.09.025_br000235) 2007; 51 Melnykov (10.1016/j.jmva.2015.09.025_br000280) 2012; 56 10.1016/j.jmva.2015.09.025_br000370 Murray (10.1016/j.jmva.2015.09.025_br000315) 2014; 3 Lopes (10.1016/j.jmva.2015.09.025_br000210) 2004; 4 McLachlan (10.1016/j.jmva.2015.09.025_br000245) 2008 Ward (10.1016/j.jmva.2015.09.025_br000380) 1963; 58 Barndorff-Nielsen (10.1016/j.jmva.2015.09.025_br000050) 2001; 63 Efron (10.1016/j.jmva.2015.09.025_br000090) 1978; 65 Baek (10.1016/j.jmva.2015.09.025_br000040) 2011; 27 Montanari (10.1016/j.jmva.2015.09.025_br000300) 2010; 37 Meng (10.1016/j.jmva.2015.09.025_br000290) 1993; 80 Maitra (10.1016/j.jmva.2015.09.025_br000220) 2009; 6 McLachlan (10.1016/j.jmva.2015.09.025_br000255) 2000 Böhning (10.1016/j.jmva.2015.09.025_br000070) 1999 10.1016/j.jmva.2015.09.025_br000180 Ghahramani (10.1016/j.jmva.2015.09.025_br000140) 1997 Aas (10.1016/j.jmva.2015.09.025_br000005) 2005; 4 McLachlan (10.1016/j.jmva.2015.09.025_br000240) 2002; 18 Wang (10.1016/j.jmva.2015.09.025_br000375) 2013; 8 Baudry (10.1016/j.jmva.2015.09.025_br000055) 2010; 9 10.1016/j.jmva.2015.09.025_br000345 Drton (10.1016/j.jmva.2015.09.025_br000085) 2009; 37 Lin (10.1016/j.jmva.2015.09.025_br000185) 2009; 100 Liu (10.1016/j.jmva.2015.09.025_br000205) 1998; 85 Azzalini (10.1016/j.jmva.2015.09.025_br000020) 2005; 32 Lee (10.1016/j.jmva.2015.09.025_br000165) 2013; 7 McNicholas (10.1016/j.jmva.2015.09.025_br000265) 2008; 18 Melnykov (10.1016/j.jmva.2015.09.025_br000270) 2013; 122 McLachlan (10.1016/j.jmva.2015.09.025_br000260) 2003; 41 Lee (10.1016/j.jmva.2015.09.025_br000170) 2014; 24 Fraley (10.1016/j.jmva.2015.09.025_br000110) 1998; 20 Arellano-Valle (10.1016/j.jmva.2015.09.025_br000010) 2006; 33 Fraley (10.1016/j.jmva.2015.09.025_br000115) 2012 Azzalini (10.1016/j.jmva.2015.09.025_br000035) 1996; 83 10.1016/j.jmva.2015.09.025_br000310 Titterington (10.1016/j.jmva.2015.09.025_br000340) 1985 Arellano-Valle (10.1016/j.jmva.2015.09.025_br000015) 2005; 96 Meng (10.1016/j.jmva.2015.09.025_br000295) 1991; 86 Karlis (10.1016/j.jmva.2015.09.025_br000155) 2003; 41 Ghahramani (10.1016/j.jmva.2015.09.025_br000135) 2000; vol. 12 Biernacki (10.1016/j.jmva.2015.09.025_br000065) 2000; 22 Azzalini (10.1016/j.jmva.2015.09.025_br000025) 1999; 61 Wu (10.1016/j.jmva.2015.09.025_br000385) 1983; 11 Lindsay (10.1016/j.jmva.2015.09.025_br000190) 1995; vol. 5 Lin (10.1016/j.jmva.2015.09.025_br000200) 2007; 17 Azzalini (10.1016/j.jmva.2015.09.025_br000030) 2003; 65 Murray (10.1016/j.jmva.2015.09.025_br000305) 2014; 77 Dempster (10.1016/j.jmva.2015.09.025_br000080) 1977; 39 McLachlan (10.1016/j.jmva.2015.09.025_br000250) 2000 Everitt (10.1016/j.jmva.2015.09.025_br000095) 1981 Baek (10.1016/j.jmva.2015.09.025_br000045) 2010; 32 Jamshidian (10.1016/j.jmva.2015.09.025_br000150) 1997 Fokoué (10.1016/j.jmva.2015.09.025_br000105) 2003; 50 Wang (10.1016/j.jmva.2015.09.025_br000360) 2013; 117 Wang (10.1016/j.jmva.2015.09.025_br000365) 2015; 83 Charytanowicz (10.1016/j.jmva.2015.09.025_br000075) 2010 Pyne (10.1016/j.jmva.2015.09.025_br000325) 2009; 106 10.1016/j.jmva.2015.09.025_br000120 Louis (10.1016/j.jmva.2015.09.025_br000215) 1982; 44 Frühwirth-Schnatter (10.1016/j.jmva.2015.09.025_br000130) 2006 Schwarz (10.1016/j.jmva.2015.09.025_br000335) 1978; 6 Melnykov (10.1016/j.jmva.2015.09.025_br000275) 2012; 51 Lee (10.1016/j.jmva.2015.09.025_br000175) 2013; 55 10.1016/j.jmva.2015.09.025_br000125 McLachlan (10.1016/j.jmva.2015.09.025_br000230) 1988 Wall (10.1016/j.jmva.2015.09.025_br000355) 2012; 47 Mengersen (10.1016/j.jmva.2015.09.025_br000285) 2011  | 
    
| References_xml | – volume: 4 start-page: 275 year: 2005 end-page: 309 ident: br000005 article-title: The generalized hyperbolic skew Student’s publication-title: J. Financ. Econom. – volume: 56 start-page: 3843 year: 2012 end-page: 3864 ident: br000320 article-title: Computational aspects of fitting mixture models via the expectation–maximization algorithm publication-title: Comput. Statist. Data Anal. – volume: 20 start-page: 303 year: 2010 end-page: 322 ident: br000160 article-title: Likelihood based inference for skew-normal/independent linear mixed model publication-title: Stat. Sin. – volume: 61 start-page: 579 year: 1999 end-page: 602 ident: br000025 article-title: Statistical applications of the multivariate skew normal distribution publication-title: J. R. Stat. Soc. Ser. B – volume: 80 start-page: 267 year: 1993 end-page: 278 ident: br000290 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika – volume: 37 start-page: 979 year: 2009 end-page: 1012 ident: br000085 article-title: Likelihood ratio tests and singularities publication-title: Ann. Statist. – volume: 7 start-page: 241 year: 2013 end-page: 266 ident: br000165 article-title: On mixtures of skew normal and skew publication-title: Adv. Data Anal. Classif. – volume: 8 start-page: 751 year: 2013 end-page: 769 ident: br000375 article-title: An efficient ECM algorithm for maximum likelihood estimation in mixtures of publication-title: Comput. Statist. – volume: 32 start-page: 1 year: 2010 end-page: 13 ident: br000045 article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 20 start-page: 270 year: 1998 end-page: 281 ident: br000110 article-title: Algorithms for model-based Gaussian hierarchical clustering publication-title: SIAM J. Sci. Comput. – volume: 3 start-page: 68 year: 2014 end-page: 82 ident: br000315 article-title: Mixtures of common skew- publication-title: Stat – volume: 41 start-page: 577 year: 2003 end-page: 590 ident: br000155 article-title: Choosing initial values for the EM algorithm for finite mixtures publication-title: Comput. Statist. Data Anal. – volume: vol. 5 year: 1995 ident: br000190 publication-title: Mixture Models: Theory, Geometry, and Applications – volume: 19 start-page: 354 year: 2010 end-page: 376 ident: br000225 article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms publication-title: J. Comput. Graph. Stat. – year: 2000 ident: br000250 article-title: Finite Mixture Models – volume: 96 start-page: 93 year: 2005 end-page: 116 ident: br000015 article-title: On fundamental skew distributions publication-title: J. Multivariate Anal. – volume: 32 start-page: 159 year: 2005 end-page: 188 ident: br000020 article-title: The skew-normal distribution and related multivariate families publication-title: Scand. J. Stat. – year: 1988 ident: br000230 article-title: Mixture Models: Inference and Application to Clustering – year: 2011 ident: br000285 article-title: Mixtures: Estimation and Applications – volume: 6 start-page: 461 year: 1978 end-page: 464 ident: br000335 article-title: Estimating the dimension of a model publication-title: Ann. Statist. – volume: 33 start-page: 561 year: 2006 end-page: 574 ident: br000010 article-title: On the unification of families of skew-normal distributions publication-title: Scand. J. Stat. – volume: 55 year: 2013 ident: br000175 article-title: EMMIX-uskew: an R package for fitting mixtures of multivariate skew publication-title: J. Statist. Software – volume: vol. 12 start-page: 449 year: 2000 end-page: 455 ident: br000135 article-title: Variational inference for Bayesian mixture of factor analysers publication-title: Adv. Neur. Info. Proc. Sys. – volume: 50 start-page: 73 year: 2003 end-page: 94 ident: br000105 article-title: Mixtures of factor analyzers. Bayesian estimation and inference by stochastic simulation publication-title: Mach. Learn. – reference: K. Wang, EMMIX-skew (R package version 1.0-12): EM algorithm for mixture of multivariate skew Normal/ – year: 1999 ident: br000070 article-title: Computer-Assisted Analysis of Mixtures and Applications: Meta-Analysis, Disease Mapping and Others – volume: 51 start-page: 1 year: 2012 end-page: 25 ident: br000275 article-title: MixSim: an R package for simulating data to study performance of clustering algorithms publication-title: J. Stat. Softw. – volume: 19 start-page: 1956 year: 2008 end-page: 1961 ident: br000390 article-title: Fast ML estimation for the mixture of factor analyzers via an ECM algorithm publication-title: IEEE. Trans. Neural Netw. – volume: 39 start-page: 1 year: 1977 end-page: 38 ident: br000080 article-title: Maximum likelihood from incomplete data via the EM algorithm (with discussion) publication-title: J. Roy. Statist. Soc. B – volume: 77 start-page: 326 year: 2014 end-page: 335 ident: br000305 article-title: Mixtures of skew- publication-title: Comput. Statist. Data Anal. – reference: P. Murray, R. Browne, P.D. McNicholas, Mixtures of ‘unrestricted’ skew- – year: 1985 ident: br000340 article-title: Statistical Analysis of Finite Mixture Distributions – volume: 117 start-page: 120 year: 2013 end-page: 133 ident: br000360 article-title: Mixtures of common factor analyzers for high-dimensional data with missing information publication-title: J. Multivariate Anal. – reference: distributions, 2009. – volume: 9 start-page: 332 year: 2010 end-page: 353 ident: br000055 article-title: Combining mixture components for clustering publication-title: J. Comput. Graph. Stat. – volume: 17 start-page: 909 year: 2007 end-page: 927 ident: br000200 article-title: Finite mixture modelling using the skew normal distribution publication-title: Stat. Sin. – reference: factor analyzers, 2013, Preprint – volume: 56 start-page: 1381 year: 2012 end-page: 1395 ident: br000280 article-title: Initializing the EM algorithm in Gaussian mixture models with an unknown number of components publication-title: Comput. Statist. Data Anal. – volume: 44 start-page: 226 year: 1982 end-page: 232 ident: br000215 article-title: Finding the observed information when using the EM algorithm publication-title: J. R. Stat. Soc. Ser. B – volume: 83 start-page: 715 year: 1996 end-page: 726 ident: br000035 article-title: The multivariate skew-normal distribution publication-title: Biometrika – year: 1981 ident: br000095 article-title: Finite Mixture Distributions – reference: B.C. Franczak, P.D. McNicholas, R.P. Browne, P.M. Murray, Parsimonious shifted asymmetric Laplace mixtures, 2013, Preprint – volume: 85 start-page: 755 year: 1998 end-page: 770 ident: br000205 article-title: Parameter expansion to accelerate EM: the PX-EM algorithm publication-title: Biometrika – start-page: 599 year: 2000 end-page: 606 ident: br000255 article-title: Mixtures of factor analyzers publication-title: Proceedings of the Seventeenth International Conference on Machine Learning – volume: 31 start-page: 129 year: 2003 end-page: 150 ident: br000330 article-title: A new class of multivariate skew distributions with application to Bayesian regression models publication-title: Canad. J. Statist. – volume: 51 start-page: 5327 year: 2007 end-page: 5338 ident: br000235 article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate publication-title: Comput. Statist. Data Anal. – volume: 24 start-page: 531 year: 2014 end-page: 546 ident: br000195 article-title: Flexible mixture modelling using the multivariate skew- publication-title: Statist. Comput. – volume: 41 start-page: 379 year: 2003 end-page: 388 ident: br000260 article-title: Modelling high-dimensional data by mixtures of factor analyzers publication-title: Comput. Statist. Data Anal. – volume: 37 start-page: 473 year: 2010 end-page: 487 ident: br000300 article-title: A skew-normal factor model for the analysis of student satisfaction towards university courses publication-title: J. Appl. Statist. – year: 1997 ident: br000140 article-title: The EM Algorithm for Mixtures of Factor Analyzers, Technical Report No. CRG-TR-96-1 – volume: 65 start-page: 457 year: 1978 end-page: 482 ident: br000090 article-title: Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information publication-title: Biometrika – volume: 18 start-page: 285 year: 2008 end-page: 296 ident: br000265 article-title: Parsimonious Gaussian mixture models publication-title: Statist. Comput. – volume: 7 start-page: 179 year: 1936 end-page: 188 ident: br000100 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugenics – volume: 2 start-page: 193 year: 1985 end-page: 218 ident: br000145 article-title: Comparing partitions publication-title: J. Classification – volume: 22 start-page: 719 year: 2000 end-page: 725 ident: br000065 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 122 start-page: 175 year: 2013 end-page: 189 ident: br000270 article-title: On the distribution of posterior probabilities in finite mixture models with application in clustering publication-title: J. Multivariate Anal. – volume: 27 start-page: 1269 year: 2011 end-page: 1276 ident: br000040 article-title: Mixtures of common publication-title: Bioinformatics – reference: C. Tortora, P.D. McNicholas, R. Browne, A mixture of generalized hyperbolic factor analyzers, 2013, – volume: 6 start-page: 144 year: 2009 end-page: 157 ident: br000220 article-title: Initializing partition-optimization algorithms publication-title: IEEE ACM Trans. Comput. Biol. Bioinformatics – volume: 65 start-page: 367 year: 2003 end-page: 389 ident: br000030 article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew publication-title: J. R. Stat. Soc. Ser. B – volume: 13 start-page: 993 year: 2001 end-page: 1002 ident: br000350 article-title: Bayesian analysis of mixtures of factor analyzers publication-title: Neural Comp. – volume: 83 start-page: 223 year: 2015 end-page: 235 ident: br000365 article-title: Mixtures of common publication-title: Comput. Statist. Data Anal. – volume: 63 start-page: 167 year: 2001 end-page: 241 ident: br000050 article-title: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics publication-title: J. R. Stat. Soc. Ser. B – volume: 11 start-page: 95 year: 1983 end-page: 103 ident: br000385 article-title: On the convergence properties of the EM algorithm publication-title: Ann. Stat. – volume: 4 start-page: 41 year: 2004 end-page: 67 ident: br000210 article-title: Bayesian model assessment in factor analysis publication-title: Stat. Sin. – volume: 86 start-page: 899 year: 1991 end-page: 909 ident: br000295 article-title: Using EM to obtain asymptotic variance–covariance matrices: The SEM algorithm publication-title: J. Amer. Statist. Assoc. – reference: A. Frank, A. Asuncion, UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science, 2010. – volume: 24 start-page: 181 year: 2014 end-page: 202 ident: br000170 article-title: Finite mixtures of multivariate skew publication-title: Statist. Comput. – reference: . – year: 2008 ident: br000245 article-title: The EM Algorithm and Extensions – volume: 58 start-page: 236 year: 1963 end-page: 244 ident: br000380 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Amer. Statist. Assoc. – reference: Y.W. Lee, S.H. Poon, Systemic and systematic factors for loan portfolio loss distribution, in: Econometrics and Applied Economics Workshops, School of Social Science, University of Manchester, 2011, pp. 1–61. – volume: 41 start-page: 561 year: 2003 end-page: 575 ident: br000060 article-title: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models publication-title: Comput. Statist. Data Anal. – year: 2006 ident: br000130 article-title: Finite Mixture and Markov Switching Models – volume: 106 start-page: 8519 year: 2009 end-page: 8524 ident: br000325 article-title: Automated high- dimensional flow cytometric data analysis publication-title: Proc. Natl. Acad. Sci USA – start-page: 15 year: 2010 end-page: 24 ident: br000075 article-title: A complete gradient clustering algorithm for features analysis of X-ray images publication-title: Information Technologies in Biomedicine – volume: 18 start-page: 413 year: 2002 end-page: 422 ident: br000240 article-title: A mixture model-based approach to the clustering of microarray expression data publication-title: Bioinformatics – year: 2012 ident: br000115 article-title: MCLUST Version 4 for R: Normal Mixture Modeling and Model-Based Clustering, Technical Report 597 – start-page: 247 year: 1997 end-page: 258 ident: br000150 article-title: An EM algorithm for ML factor analysis with missing data publication-title: Latent Variable Modeling and Applications to Causality – volume: 47 start-page: 276 year: 2012 end-page: 313 ident: br000355 article-title: Mixture factor analysis for approximating a non-normally distributed continuous latent factor with continuous and dichotomous observed variables publication-title: Multivar. Behav. Res. – volume: 100 start-page: 257 year: 2009 end-page: 265 ident: br000185 article-title: Maximum likelihood estimation for multivariate skew normal mixture models publication-title: J. Multivariate Anal. – ident: 10.1016/j.jmva.2015.09.025_br000125 – volume: 2 start-page: 193 year: 1985 ident: 10.1016/j.jmva.2015.09.025_br000145 article-title: Comparing partitions publication-title: J. Classification doi: 10.1007/BF01908075 – volume: vol. 5 year: 1995 ident: 10.1016/j.jmva.2015.09.025_br000190 – volume: 85 start-page: 755 year: 1998 ident: 10.1016/j.jmva.2015.09.025_br000205 article-title: Parameter expansion to accelerate EM: the PX-EM algorithm publication-title: Biometrika doi: 10.1093/biomet/85.4.755 – volume: 55 issue: 12 year: 2013 ident: 10.1016/j.jmva.2015.09.025_br000175 article-title: EMMIX-uskew: an R package for fitting mixtures of multivariate skew t-distributions via the EM algorithm publication-title: J. Statist. Software doi: 10.18637/jss.v055.i12 – volume: 17 start-page: 909 year: 2007 ident: 10.1016/j.jmva.2015.09.025_br000200 article-title: Finite mixture modelling using the skew normal distribution publication-title: Stat. Sin. – ident: 10.1016/j.jmva.2015.09.025_br000310 – volume: 4 start-page: 275 year: 2005 ident: 10.1016/j.jmva.2015.09.025_br000005 article-title: The generalized hyperbolic skew Student’s t-distribution publication-title: J. Financ. Econom. doi: 10.1093/jjfinec/nbj006 – volume: 47 start-page: 276 year: 2012 ident: 10.1016/j.jmva.2015.09.025_br000355 article-title: Mixture factor analysis for approximating a non-normally distributed continuous latent factor with continuous and dichotomous observed variables publication-title: Multivar. Behav. Res. doi: 10.1080/00273171.2012.658339 – year: 1999 ident: 10.1016/j.jmva.2015.09.025_br000070 – volume: 18 start-page: 285 year: 2008 ident: 10.1016/j.jmva.2015.09.025_br000265 article-title: Parsimonious Gaussian mixture models publication-title: Statist. Comput. doi: 10.1007/s11222-008-9056-0 – volume: 86 start-page: 899 year: 1991 ident: 10.1016/j.jmva.2015.09.025_br000295 article-title: Using EM to obtain asymptotic variance–covariance matrices: The SEM algorithm publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1991.10475130 – volume: 7 start-page: 179 year: 1936 ident: 10.1016/j.jmva.2015.09.025_br000100 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – year: 2000 ident: 10.1016/j.jmva.2015.09.025_br000250 – year: 1997 ident: 10.1016/j.jmva.2015.09.025_br000140 – start-page: 15 year: 2010 ident: 10.1016/j.jmva.2015.09.025_br000075 article-title: A complete gradient clustering algorithm for features analysis of X-ray images – year: 2006 ident: 10.1016/j.jmva.2015.09.025_br000130 – year: 1985 ident: 10.1016/j.jmva.2015.09.025_br000340 – volume: 32 start-page: 159 year: 2005 ident: 10.1016/j.jmva.2015.09.025_br000020 article-title: The skew-normal distribution and related multivariate families publication-title: Scand. J. Stat. doi: 10.1111/j.1467-9469.2005.00426.x – volume: 9 start-page: 332 year: 2010 ident: 10.1016/j.jmva.2015.09.025_br000055 article-title: Combining mixture components for clustering publication-title: J. Comput. Graph. Stat. doi: 10.1198/jcgs.2010.08111 – volume: 6 start-page: 144 year: 2009 ident: 10.1016/j.jmva.2015.09.025_br000220 article-title: Initializing partition-optimization algorithms publication-title: IEEE ACM Trans. Comput. Biol. Bioinformatics doi: 10.1109/TCBB.2007.70244 – start-page: 599 year: 2000 ident: 10.1016/j.jmva.2015.09.025_br000255 article-title: Mixtures of factor analyzers – volume: 51 start-page: 5327 year: 2007 ident: 10.1016/j.jmva.2015.09.025_br000235 article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2006.09.015 – volume: 3 start-page: 68 year: 2014 ident: 10.1016/j.jmva.2015.09.025_br000315 article-title: Mixtures of common skew-t factor analyzers publication-title: Stat doi: 10.1002/sta4.43 – year: 1988 ident: 10.1016/j.jmva.2015.09.025_br000230 – volume: 56 start-page: 3843 year: 2012 ident: 10.1016/j.jmva.2015.09.025_br000320 article-title: Computational aspects of fitting mixture models via the expectation–maximization algorithm publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2012.05.011 – ident: 10.1016/j.jmva.2015.09.025_br000180 – volume: 31 start-page: 129 year: 2003 ident: 10.1016/j.jmva.2015.09.025_br000330 article-title: A new class of multivariate skew distributions with application to Bayesian regression models publication-title: Canad. J. Statist. doi: 10.2307/3316064 – volume: 41 start-page: 561 year: 2003 ident: 10.1016/j.jmva.2015.09.025_br000060 article-title: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(02)00163-9 – volume: 83 start-page: 715 year: 1996 ident: 10.1016/j.jmva.2015.09.025_br000035 article-title: The multivariate skew-normal distribution publication-title: Biometrika doi: 10.1093/biomet/83.4.715 – volume: 11 start-page: 95 year: 1983 ident: 10.1016/j.jmva.2015.09.025_br000385 article-title: On the convergence properties of the EM algorithm publication-title: Ann. Stat. doi: 10.1214/aos/1176346060 – year: 1981 ident: 10.1016/j.jmva.2015.09.025_br000095 – volume: 50 start-page: 73 year: 2003 ident: 10.1016/j.jmva.2015.09.025_br000105 article-title: Mixtures of factor analyzers. Bayesian estimation and inference by stochastic simulation publication-title: Mach. Learn. doi: 10.1023/A:1020297828025 – volume: 41 start-page: 577 year: 2003 ident: 10.1016/j.jmva.2015.09.025_br000155 article-title: Choosing initial values for the EM algorithm for finite mixtures publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(02)00177-9 – volume: 24 start-page: 181 year: 2014 ident: 10.1016/j.jmva.2015.09.025_br000170 article-title: Finite mixtures of multivariate skew t-distributions: some recent and new results publication-title: Statist. Comput. doi: 10.1007/s11222-012-9362-4 – volume: 56 start-page: 1381 year: 2012 ident: 10.1016/j.jmva.2015.09.025_br000280 article-title: Initializing the EM algorithm in Gaussian mixture models with an unknown number of components publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2011.11.002 – volume: 24 start-page: 531 year: 2014 ident: 10.1016/j.jmva.2015.09.025_br000195 article-title: Flexible mixture modelling using the multivariate skew-t-normal distribution publication-title: Statist. Comput. doi: 10.1007/s11222-013-9386-4 – volume: 96 start-page: 93 year: 2005 ident: 10.1016/j.jmva.2015.09.025_br000015 article-title: On fundamental skew distributions publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2004.10.002 – volume: 63 start-page: 167 year: 2001 ident: 10.1016/j.jmva.2015.09.025_br000050 article-title: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/1467-9868.00282 – volume: 18 start-page: 413 year: 2002 ident: 10.1016/j.jmva.2015.09.025_br000240 article-title: A mixture model-based approach to the clustering of microarray expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.3.413 – volume: 117 start-page: 120 year: 2013 ident: 10.1016/j.jmva.2015.09.025_br000360 article-title: Mixtures of common factor analyzers for high-dimensional data with missing information publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2013.02.003 – volume: 61 start-page: 579 year: 1999 ident: 10.1016/j.jmva.2015.09.025_br000025 article-title: Statistical applications of the multivariate skew normal distribution publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/1467-9868.00194 – year: 2008 ident: 10.1016/j.jmva.2015.09.025_br000245 – volume: 122 start-page: 175 year: 2013 ident: 10.1016/j.jmva.2015.09.025_br000270 article-title: On the distribution of posterior probabilities in finite mixture models with application in clustering publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2013.07.014 – volume: 6 start-page: 461 year: 1978 ident: 10.1016/j.jmva.2015.09.025_br000335 article-title: Estimating the dimension of a model publication-title: Ann. Statist. doi: 10.1214/aos/1176344136 – volume: 20 start-page: 303 year: 2010 ident: 10.1016/j.jmva.2015.09.025_br000160 article-title: Likelihood based inference for skew-normal/independent linear mixed model publication-title: Stat. Sin. – year: 2011 ident: 10.1016/j.jmva.2015.09.025_br000285 – volume: 51 start-page: 1 year: 2012 ident: 10.1016/j.jmva.2015.09.025_br000275 article-title: MixSim: an R package for simulating data to study performance of clustering algorithms publication-title: J. Stat. Softw. doi: 10.18637/jss.v051.i12 – volume: 80 start-page: 267 year: 1993 ident: 10.1016/j.jmva.2015.09.025_br000290 article-title: Maximum likelihood estimation via the ECM algorithm: a general framework publication-title: Biometrika doi: 10.1093/biomet/80.2.267 – volume: 8 start-page: 751 year: 2013 ident: 10.1016/j.jmva.2015.09.025_br000375 article-title: An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers publication-title: Comput. Statist. doi: 10.1007/s00180-012-0327-z – volume: 39 start-page: 1 year: 1977 ident: 10.1016/j.jmva.2015.09.025_br000080 article-title: Maximum likelihood from incomplete data via the EM algorithm (with discussion) publication-title: J. Roy. Statist. Soc. B doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 7 start-page: 241 year: 2013 ident: 10.1016/j.jmva.2015.09.025_br000165 article-title: On mixtures of skew normal and skew t-distributions publication-title: Adv. Data Anal. Classif. doi: 10.1007/s11634-013-0132-8 – year: 2012 ident: 10.1016/j.jmva.2015.09.025_br000115 – volume: 65 start-page: 367 year: 2003 ident: 10.1016/j.jmva.2015.09.025_br000030 article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/1467-9868.00391 – ident: 10.1016/j.jmva.2015.09.025_br000370 – volume: 106 start-page: 8519 year: 2009 ident: 10.1016/j.jmva.2015.09.025_br000325 article-title: Automated high- dimensional flow cytometric data analysis publication-title: Proc. Natl. Acad. Sci USA doi: 10.1073/pnas.0903028106 – volume: 100 start-page: 257 year: 2009 ident: 10.1016/j.jmva.2015.09.025_br000185 article-title: Maximum likelihood estimation for multivariate skew normal mixture models publication-title: J. Multivariate Anal. doi: 10.1016/j.jmva.2008.04.010 – volume: 44 start-page: 226 year: 1982 ident: 10.1016/j.jmva.2015.09.025_br000215 article-title: Finding the observed information when using the EM algorithm publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.2517-6161.1982.tb01203.x – volume: 4 start-page: 41 year: 2004 ident: 10.1016/j.jmva.2015.09.025_br000210 article-title: Bayesian model assessment in factor analysis publication-title: Stat. Sin. – volume: 32 start-page: 1 year: 2010 ident: 10.1016/j.jmva.2015.09.025_br000045 article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: 10.1016/j.jmva.2015.09.025_br000120 – volume: 65 start-page: 457 year: 1978 ident: 10.1016/j.jmva.2015.09.025_br000090 article-title: Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information publication-title: Biometrika doi: 10.1093/biomet/65.3.457 – volume: 13 start-page: 993 year: 2001 ident: 10.1016/j.jmva.2015.09.025_br000350 article-title: Bayesian analysis of mixtures of factor analyzers publication-title: Neural Comp. doi: 10.1162/08997660151134299 – volume: 20 start-page: 270 year: 1998 ident: 10.1016/j.jmva.2015.09.025_br000110 article-title: Algorithms for model-based Gaussian hierarchical clustering publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827596311451 – volume: 19 start-page: 354 year: 2010 ident: 10.1016/j.jmva.2015.09.025_br000225 article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms publication-title: J. Comput. Graph. Stat. doi: 10.1198/jcgs.2009.08054 – volume: 33 start-page: 561 year: 2006 ident: 10.1016/j.jmva.2015.09.025_br000010 article-title: On the unification of families of skew-normal distributions publication-title: Scand. J. Stat. doi: 10.1111/j.1467-9469.2006.00503.x – start-page: 247 year: 1997 ident: 10.1016/j.jmva.2015.09.025_br000150 article-title: An EM algorithm for ML factor analysis with missing data – volume: vol. 12 start-page: 449 year: 2000 ident: 10.1016/j.jmva.2015.09.025_br000135 article-title: Variational inference for Bayesian mixture of factor analysers – volume: 37 start-page: 473 year: 2010 ident: 10.1016/j.jmva.2015.09.025_br000300 article-title: A skew-normal factor model for the analysis of student satisfaction towards university courses publication-title: J. Appl. Statist. doi: 10.1080/02664760902736737 – volume: 37 start-page: 979 year: 2009 ident: 10.1016/j.jmva.2015.09.025_br000085 article-title: Likelihood ratio tests and singularities publication-title: Ann. Statist. doi: 10.1214/07-AOS571 – volume: 77 start-page: 326 year: 2014 ident: 10.1016/j.jmva.2015.09.025_br000305 article-title: Mixtures of skew-t factor analyzers publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2014.03.012 – volume: 58 start-page: 236 year: 1963 ident: 10.1016/j.jmva.2015.09.025_br000380 article-title: Hierarchical grouping to optimize an objective function publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.1963.10500845 – volume: 41 start-page: 379 year: 2003 ident: 10.1016/j.jmva.2015.09.025_br000260 article-title: Modelling high-dimensional data by mixtures of factor analyzers publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(02)00183-4 – volume: 19 start-page: 1956 year: 2008 ident: 10.1016/j.jmva.2015.09.025_br000390 article-title: Fast ML estimation for the mixture of factor analyzers via an ECM algorithm publication-title: IEEE. Trans. Neural Netw. doi: 10.1109/TNN.2008.2003467 – volume: 83 start-page: 223 year: 2015 ident: 10.1016/j.jmva.2015.09.025_br000365 article-title: Mixtures of common t-factor analyzers for modeling high-dimensional data with missing values publication-title: Comput. Statist. Data Anal. doi: 10.1016/j.csda.2014.10.007 – ident: 10.1016/j.jmva.2015.09.025_br000345 – volume: 27 start-page: 1269 year: 2011 ident: 10.1016/j.jmva.2015.09.025_br000040 article-title: Mixtures of common t-factor analyzers for clustering high-dimensional microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr112 – volume: 22 start-page: 719 year: 2000 ident: 10.1016/j.jmva.2015.09.025_br000065 article-title: Assessing a mixture model for clustering with the integrated completed likelihood publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.865189  | 
    
| SSID | ssj0011574 | 
    
| Score | 2.3735137 | 
    
| Snippet | The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 398 | 
    
| SubjectTerms | Algorithms Clustering Data reduction Discriminant analysis ECM algorithm Factor analyzer Mathematical models Maximum likelihood method Multivariate analysis Normal distribution rMSN distribution Skewness Studies  | 
    
| Title | Extending mixtures of factor models using the restricted multivariate skew-normal distribution | 
    
| URI | https://dx.doi.org/10.1016/j.jmva.2015.09.025 https://www.proquest.com/docview/1748595601  | 
    
| Volume | 143 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-7243 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011574 issn: 0047-259X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1095-7243 dateEnd: 20210930 omitProxy: true ssIdentifier: ssj0011574 issn: 0047-259X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-7243 dateEnd: 20210930 omitProxy: true ssIdentifier: ssj0011574 issn: 0047-259X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-7243 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011574 issn: 0047-259X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1095-7243 dateEnd: 20211102 omitProxy: true ssIdentifier: ssj0011574 issn: 0047-259X databaseCode: IXB dateStart: 19710401 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-7243 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011574 issn: 0047-259X databaseCode: AKRWK dateStart: 19710401 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuJZeWBDgTqxk3gEBCqgdgIpE5YdO6ilL5HymPjt3CVOJRDqwJDBVhxFZ-fuu8vdd4SchLZgSY4hsJRLLMnRgQyZDiKw1nlY2EKkWI3c7cWdR36XiWyJXDW1MJhW6XV_rdMrbe1nzr00z6f9Ptb48gTAewaQBgx3iIyfHGbgTJ99zdM8kEumZmKuGAlk5gtn6hyvwegduYeYqLhOsV3238bpl5qubM_NBln3oJFe1O-1SZbceIusdeeMq-U2ebquotlgiOio_4m_BUo6KWjdTodW_W5KiknuzxRWUezIARoQ4CatUgrfwWUG1EnLF_cRjBHHDqlFTl3fDmuHPN5cP1x1At87IcijMJ0F3LQjm7RFjnzygjudGrhCafJYa2e1liwylsc6za3kiYlzIR3nRrvQta3j0S5ZHk_Gbo9QUZhYgBQTocF3KrRJdMqY45I5nQCE2CesEZrKPbE49rcYqiaDbKBQ0AoFrdpSgaD3yel8zbSm1Vh4t2j2Qv04HAr0_sJ1R83GKf9plgpcMOR0A0f04J-PPSSrMPKBmCOyPHt9c8cATWamVZ29Flm5uL3v9GB0m11-A3XH5iw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUKDMCA-BTl0wMbCm0SO4lHVBUVaDsVKROWnTioBQIipTDx27lLnEog1IEhSxJH0dm5e-fcvUfImZdmbpjgFljEBLbkKEd4rnJ8iNaJl6UZj7AbeTAMenfsJuZxg3TqXhgsq7S-v_Lppbe2Z1rWmq3X8Rh7fFkI4D0GSAOB2_OXyArjXogZ2MXXvM4DyWQqKuaSkkDEtnOmKvKaPM-QfMjlJdkp6mX_HZ1--eky-Fxtkg2LGull9WJbpGHybbI-mFOuFjvkvltuZ0Mkos_jT_wvUNCXjFZ6OrQUvCkoVrk_UBhFUZIDXCDgTVrWFM4gZwbYSYtH8-HkCGSfaIqkulYPa5fcXXVHnZ5jxROcxPeiqcN020_DNk-QUJ4zoyINhyd0EihlUqWE6-uUBSpKUsFCHSRcGMa0Mp5pp4b5e2Q5f8nNPqE80wEHK4ZcQfKUKR2qyHUNE65RIWCIJnFro8nEMoujwMWTrEvIJhINLdHQsi0kGLpJzudjXitejYV383ou5I_VIcHxLxx3VE-ctN9mISEHQ1I3yEQP_vnYU7LaGw36sn89vD0ka3DF7sockeXp27s5Bpwy1SflOvwGc__mvQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+mixtures+of+factor+models+using+the+restricted+multivariate+skew-normal+distribution&rft.jtitle=Journal+of+multivariate+analysis&rft.au=Lin%2C+Tsung-I&rft.au=McLachlan%2C+Geoffrey+J.&rft.au=Lee%2C+Sharon+X.&rft.date=2016-01-01&rft.issn=0047-259X&rft.volume=143&rft.spage=398&rft.epage=413&rft_id=info:doi/10.1016%2Fj.jmva.2015.09.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmva_2015_09_025 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon |