Extending mixtures of factor models using the restricted multivariate skew-normal distribution

The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through its factor-analytic representation of the component covariance matrices. This paper extends the MFA model to incorporate a restricted versio...

Full description

Saved in:
Bibliographic Details
Published inJournal of multivariate analysis Vol. 143; pp. 398 - 413
Main Authors Lin, Tsung-I, McLachlan, Geoffrey J., Lee, Sharon X.
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 01.01.2016
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0047-259X
1095-7243
DOI10.1016/j.jmva.2015.09.025

Cover

Abstract The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through its factor-analytic representation of the component covariance matrices. This paper extends the MFA model to incorporate a restricted version of the multivariate skew-normal distribution for the latent component factors, called mixtures of skew-normal factor analyzers (MSNFA). The proposed MSNFA model allows us to relax the need of the normality assumption for the latent factors in order to accommodate skewness in the observed data. The MSNFA model thus provides an approach to model-based density estimation and clustering of high-dimensional data exhibiting asymmetric characteristics. A computationally feasible Expectation Conditional Maximization (ECM) algorithm is developed for computing the maximum likelihood estimates of model parameters. The potential of the proposed methodology is exemplified using both real and simulated data.
AbstractList The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through its factor-analytic representation of the component covariance matrices. This paper extends the MFA model to incorporate a restricted version of the multivariate skew-normal distribution for the latent component factors, called mixtures of skew-normal factor analyzers (MSNFA). The proposed MSNFA model allows us to relax the need of the normality assumption for the latent factors in order to accommodate skewness in the observed data. The MSNFA model thus provides an approach to model-based density estimation and clustering of high-dimensional data exhibiting asymmetric characteristics. A computationally feasible Expectation Conditional Maximization (ECM) algorithm is developed for computing the maximum likelihood estimates of model parameters. The potential of the proposed methodology is exemplified using both real and simulated data.
Author Lin, Tsung-I
McLachlan, Geoffrey J.
Lee, Sharon X.
Author_xml – sequence: 1
  givenname: Tsung-I
  surname: Lin
  fullname: Lin, Tsung-I
  email: tilin@nchu.edu.tw
  organization: Institute of Statistics, National Chung Hsing University, Taichung 402, Taiwan
– sequence: 2
  givenname: Geoffrey J.
  surname: McLachlan
  fullname: McLachlan, Geoffrey J.
  organization: Department of Mathematics, University of Queensland, St Lucia, 4072, Australia
– sequence: 3
  givenname: Sharon X.
  surname: Lee
  fullname: Lee, Sharon X.
  organization: Department of Mathematics, University of Queensland, St Lucia, 4072, Australia
BookMark eNp9kE1L7TAQhoMoePz4A64CrlsnbdI24EZE7xUENwquDGkyR1PbRpP0qP_eluPKhYthFvM-M8NzQHZHPyIhJwxyBqw66_Ju2Oi8ACZykDkUYoesGEiR1QUvd8kKgNdZIeTjPjmIsQNgTNR8RZ6uPhOO1o3PdHCfaQoYqV_TtTbJBzp4i32kU1zm6QXpPE7BmYSWDlOf3EYHpxPS-Iof2ejDoHtq3ZJpp-T8eET21rqPePzTD8nD9dX95f_s9u7fzeXFbWbKokkZb6G0NQjTQN0Ijrpp5ypkayqt0WotWdlaXunGWMnrtjJCIuetxgLBIi8Pyel271vw79P8pOr8FMb5pGI1b4QUFbA51WxTJvgYA66VcUkvf6agXa8YqMWm6tRiUy02FUg125zR4hf6Ftygw9ff0PkWmiXixmFQ0TgcDVoX0CRlvfsL_wYZl5O9
CODEN JMVAAI
CitedBy_id crossref_primary_10_1109_TPAMI_2018_2885760
crossref_primary_10_1007_s11749_018_0585_3
crossref_primary_10_1007_s00357_016_9211_9
crossref_primary_10_1007_s11634_022_00532_4
crossref_primary_10_1007_s40995_020_01020_0
crossref_primary_10_1016_j_csda_2020_107162
crossref_primary_10_1007_s00357_019_09351_3
crossref_primary_10_1016_j_jkss_2018_12_001
crossref_primary_10_1007_s11634_020_00420_9
crossref_primary_10_1007_s00357_018_9280_z
crossref_primary_10_1007_s00180_019_00870_6
crossref_primary_10_1007_s00357_019_9309_y
crossref_primary_10_1111_insr_12274
crossref_primary_10_1002_sta4_372
crossref_primary_10_1007_s11634_015_0221_y
crossref_primary_10_1002_sam_11555
crossref_primary_10_1002_sta4_177
crossref_primary_10_1016_j_csda_2019_06_001
crossref_primary_10_3389_feduc_2020_589965
crossref_primary_10_1016_j_neucom_2017_02_028
crossref_primary_10_1007_s00180_022_01270_z
crossref_primary_10_1007_s10260_022_00674_x
crossref_primary_10_1007_s11749_018_0612_4
crossref_primary_10_1007_s11634_018_0317_2
crossref_primary_10_1016_j_ecosta_2017_05_001
crossref_primary_10_1016_j_spl_2020_108935
crossref_primary_10_1016_j_jmva_2021_104853
crossref_primary_10_1007_s11749_021_00766_y
crossref_primary_10_1080_02664763_2019_1709054
crossref_primary_10_3390_sym12010118
crossref_primary_10_1080_03610918_2019_1622718
crossref_primary_10_1177_1471082X17718119
crossref_primary_10_1111_sjos_12377
crossref_primary_10_3934_math_2024765
crossref_primary_10_1016_j_comnet_2018_02_010
crossref_primary_10_1007_s10479_021_04045_9
crossref_primary_10_1016_j_trb_2016_10_014
crossref_primary_10_1016_j_spl_2022_109681
crossref_primary_10_1109_TNNLS_2018_2805317
crossref_primary_10_1146_annurev_statistics_031017_100325
crossref_primary_10_1007_s11634_021_00453_8
crossref_primary_10_1007_s00184_022_00873_2
crossref_primary_10_1007_s00357_022_09415_x
crossref_primary_10_1016_j_jmva_2018_11_015
crossref_primary_10_1007_s11634_018_0308_3
crossref_primary_10_1016_j_trb_2025_103186
crossref_primary_10_1214_21_AOAS1478
crossref_primary_10_1002_bimj_70042
Cites_doi 10.1007/BF01908075
10.1093/biomet/85.4.755
10.18637/jss.v055.i12
10.1093/jjfinec/nbj006
10.1080/00273171.2012.658339
10.1007/s11222-008-9056-0
10.1080/01621459.1991.10475130
10.1111/j.1469-1809.1936.tb02137.x
10.1111/j.1467-9469.2005.00426.x
10.1198/jcgs.2010.08111
10.1109/TCBB.2007.70244
10.1016/j.csda.2006.09.015
10.1002/sta4.43
10.1016/j.csda.2012.05.011
10.2307/3316064
10.1016/S0167-9473(02)00163-9
10.1093/biomet/83.4.715
10.1214/aos/1176346060
10.1023/A:1020297828025
10.1016/S0167-9473(02)00177-9
10.1007/s11222-012-9362-4
10.1016/j.csda.2011.11.002
10.1007/s11222-013-9386-4
10.1016/j.jmva.2004.10.002
10.1111/1467-9868.00282
10.1093/bioinformatics/18.3.413
10.1016/j.jmva.2013.02.003
10.1111/1467-9868.00194
10.1016/j.jmva.2013.07.014
10.1214/aos/1176344136
10.18637/jss.v051.i12
10.1093/biomet/80.2.267
10.1007/s00180-012-0327-z
10.1111/j.2517-6161.1977.tb01600.x
10.1007/s11634-013-0132-8
10.1111/1467-9868.00391
10.1073/pnas.0903028106
10.1016/j.jmva.2008.04.010
10.1111/j.2517-6161.1982.tb01203.x
10.1093/biomet/65.3.457
10.1162/08997660151134299
10.1137/S1064827596311451
10.1198/jcgs.2009.08054
10.1111/j.1467-9469.2006.00503.x
10.1080/02664760902736737
10.1214/07-AOS571
10.1016/j.csda.2014.03.012
10.1080/01621459.1963.10500845
10.1016/S0167-9473(02)00183-4
10.1109/TNN.2008.2003467
10.1016/j.csda.2014.10.007
10.1093/bioinformatics/btr112
10.1109/34.865189
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright Taylor & Francis Group Jan 2016
Copyright_xml – notice: 2015 Elsevier Inc.
– notice: Copyright Taylor & Francis Group Jan 2016
DBID AAYXX
CITATION
JQ2
DOI 10.1016/j.jmva.2015.09.025
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1095-7243
EndPage 413
ExternalDocumentID 3894135811
10_1016_j_jmva_2015_09_025
S0047259X15002523
Genre Feature
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
9JO
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEFU
ABFNM
ABIVO
ABJNI
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
UHS
WUQ
XFK
XOL
XPP
YHZ
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
JQ2
ID FETCH-LOGICAL-c328t-4b03d705c807854ea8bea829bc6aaedaa913bd46a8cd947b6c59e44bae2e0de43
IEDL.DBID .~1
ISSN 0047-259X
IngestDate Wed Aug 13 09:32:17 EDT 2025
Wed Oct 01 02:04:32 EDT 2025
Thu Apr 24 22:54:35 EDT 2025
Fri Feb 23 02:27:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Skewness
62H30
ECM algorithm
Factor analyzer
rMSN distribution
65C60
Clustering
Data reduction
62H25
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-4b03d705c807854ea8bea829bc6aaedaa913bd46a8cd947b6c59e44bae2e0de43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 1748595601
PQPubID 27957
PageCount 16
ParticipantIDs proquest_journals_1748595601
crossref_citationtrail_10_1016_j_jmva_2015_09_025
crossref_primary_10_1016_j_jmva_2015_09_025
elsevier_sciencedirect_doi_10_1016_j_jmva_2015_09_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
2016-01-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of multivariate analysis
PublicationYear 2016
Publisher Elsevier Inc
Taylor & Francis LLC
Publisher_xml – name: Elsevier Inc
– name: Taylor & Francis LLC
References Azzalini, Capitanio (br000030) 2003; 65
Efron, Hinkley (br000090) 1978; 65
Biernacki, Celeux, Govaert (br000065) 2000; 22
Lin, Ho, Lee (br000195) 2014; 24
Frühwirth-Schnatter (br000130) 2006
Lee, McLachlan (br000175) 2013; 55
distributions, 2009.
Wang, Lin (br000375) 2013; 8
Ward (br000380) 1963; 58
Murray, Browne, McNicholas (br000305) 2014; 77
Murray, McNicholas, Browne (br000315) 2014; 3
Utsugi, Kumagai (br000350) 2001; 13
Dempster, Laird, Rubin (br000080) 1977; 39
McLachlan, Peel (br000250) 2000
Pyne, Hu, Wang, Rossin, Lin, Maier, Baecher-Allan, McLachlan, Tamayo, Hafler, De Jager, Mesirov (br000325) 2009; 106
Lee, McLachlan (br000165) 2013; 7
Maitra, Melnykov (br000225) 2010; 19
Karlis, Xekalaki (br000155) 2003; 41
Everitt, Hand (br000095) 1981
Meng, Rubin (br000295) 1991; 86
C. Tortora, P.D. McNicholas, R. Browne, A mixture of generalized hyperbolic factor analyzers, 2013
Mengersen, Robert, Titterington (br000285) 2011
Schwarz (br000335) 1978; 6
Wang (br000360) 2013; 117
P. Murray, R. Browne, P.D. McNicholas, Mixtures of ‘unrestricted’ skew-
Titterington, Smith, Markov (br000340) 1985
McLachlan, Basford (br000230) 1988
Louis (br000215) 1982; 44
Lindsay (br000190) 1995; vol. 5
Lopes, West (br000210) 2004; 4
.
Azzalini (br000020) 2005; 32
Ghahramani, Beal (br000135) 2000; vol. 12
A. Frank, A. Asuncion, UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science, 2010.
Wang (br000365) 2015; 83
Böhning (br000070) 1999
McLachlan, Bean, Peel (br000240) 2002; 18
Sahu, Dey, Branco (br000330) 2003; 31
Wall, Guo, Amemiya (br000355) 2012; 47
Azzalini, Capitanio (br000025) 1999; 61
McLachlan, Peel, Bean (br000260) 2003; 41
Baudry, Raftery, Celeux, Lo, Gottardo (br000055) 2010; 9
McNicholas, Murphy (br000265) 2008; 18
Drton (br000085) 2009; 37
McLachlan, Krishnan (br000245) 2008
Aas, Haff (br000005) 2005; 4
Wu (br000385) 1983; 11
Hubert, Arabie (br000145) 1985; 2
Charytanowicz, Niewczas, Kulczycki, Kowalski, Lukasik, Zak (br000075) 2010
K. Wang, EMMIX-skew (R package version 1.0-12): EM algorithm for mixture of multivariate skew Normal
Fisher (br000100) 1936; 7
Lin, Lee, Yen (br000200) 2007; 17
Azzalini, Dalla Valle (br000035) 1996; 83
Lee, McLachlan (br000170) 2014; 24
Melnykov, Melnykov (br000280) 2012; 56
O’Hagan, Murphy, Gormley (br000320) 2012; 56
McLachlan, Peel (br000255) 2000
B.C. Franczak, P.D. McNicholas, R.P. Browne, P.M. Murray, Parsimonious shifted asymmetric Laplace mixtures, 2013, Preprint
Arellano-Valle, Genton (br000015) 2005; 96
McLachlan, Bean, Jones (br000235) 2007; 51
Fraley (br000110) 1998; 20
Arellano-Valle, Azzalini (br000010) 2006; 33
Y.W. Lee, S.H. Poon, Systemic and systematic factors for loan portfolio loss distribution, in: Econometrics and Applied Economics Workshops, School of Social Science, University of Manchester, 2011, pp. 1–61.
Fraley, Raftery, Murphy, Scrucca (br000115) 2012
Ghahramani, Hinton (br000140) 1997
Baek, McLachlan (br000040) 2011; 27
Fokoué, Titterington (br000105) 2003; 50
Barndorff-Nielsen, Shephard (br000050) 2001; 63
Jamshidian (br000150) 1997
factor analyzers, 2013, Preprint
Baek, McLachlan, Flack (br000045) 2010; 32
Meng, Rubin (br000290) 1993; 80
Biernacki, Celeux, Govaert (br000060) 2003; 41
Liu, Rubin, Wu (br000205) 1998; 85
Maitra (br000220) 2009; 6
Melnykov, Chen, Maitra (br000275) 2012; 51
Melnykov (br000270) 2013; 122
Montanari, Viroli (br000300) 2010; 37
Lin (br000185) 2009; 100
Lachos, Ghosh, Arellano-Valle (br000160) 2010; 20
Zhao, Yu (br000390) 2008; 19
Maitra (10.1016/j.jmva.2015.09.025_br000225) 2010; 19
Biernacki (10.1016/j.jmva.2015.09.025_br000060) 2003; 41
Lachos (10.1016/j.jmva.2015.09.025_br000160) 2010; 20
Lin (10.1016/j.jmva.2015.09.025_br000195) 2014; 24
Fisher (10.1016/j.jmva.2015.09.025_br000100) 1936; 7
Hubert (10.1016/j.jmva.2015.09.025_br000145) 1985; 2
Sahu (10.1016/j.jmva.2015.09.025_br000330) 2003; 31
Utsugi (10.1016/j.jmva.2015.09.025_br000350) 2001; 13
O’Hagan (10.1016/j.jmva.2015.09.025_br000320) 2012; 56
Zhao (10.1016/j.jmva.2015.09.025_br000390) 2008; 19
McLachlan (10.1016/j.jmva.2015.09.025_br000235) 2007; 51
Melnykov (10.1016/j.jmva.2015.09.025_br000280) 2012; 56
10.1016/j.jmva.2015.09.025_br000370
Murray (10.1016/j.jmva.2015.09.025_br000315) 2014; 3
Lopes (10.1016/j.jmva.2015.09.025_br000210) 2004; 4
McLachlan (10.1016/j.jmva.2015.09.025_br000245) 2008
Ward (10.1016/j.jmva.2015.09.025_br000380) 1963; 58
Barndorff-Nielsen (10.1016/j.jmva.2015.09.025_br000050) 2001; 63
Efron (10.1016/j.jmva.2015.09.025_br000090) 1978; 65
Baek (10.1016/j.jmva.2015.09.025_br000040) 2011; 27
Montanari (10.1016/j.jmva.2015.09.025_br000300) 2010; 37
Meng (10.1016/j.jmva.2015.09.025_br000290) 1993; 80
Maitra (10.1016/j.jmva.2015.09.025_br000220) 2009; 6
McLachlan (10.1016/j.jmva.2015.09.025_br000255) 2000
Böhning (10.1016/j.jmva.2015.09.025_br000070) 1999
10.1016/j.jmva.2015.09.025_br000180
Ghahramani (10.1016/j.jmva.2015.09.025_br000140) 1997
Aas (10.1016/j.jmva.2015.09.025_br000005) 2005; 4
McLachlan (10.1016/j.jmva.2015.09.025_br000240) 2002; 18
Wang (10.1016/j.jmva.2015.09.025_br000375) 2013; 8
Baudry (10.1016/j.jmva.2015.09.025_br000055) 2010; 9
10.1016/j.jmva.2015.09.025_br000345
Drton (10.1016/j.jmva.2015.09.025_br000085) 2009; 37
Lin (10.1016/j.jmva.2015.09.025_br000185) 2009; 100
Liu (10.1016/j.jmva.2015.09.025_br000205) 1998; 85
Azzalini (10.1016/j.jmva.2015.09.025_br000020) 2005; 32
Lee (10.1016/j.jmva.2015.09.025_br000165) 2013; 7
McNicholas (10.1016/j.jmva.2015.09.025_br000265) 2008; 18
Melnykov (10.1016/j.jmva.2015.09.025_br000270) 2013; 122
McLachlan (10.1016/j.jmva.2015.09.025_br000260) 2003; 41
Lee (10.1016/j.jmva.2015.09.025_br000170) 2014; 24
Fraley (10.1016/j.jmva.2015.09.025_br000110) 1998; 20
Arellano-Valle (10.1016/j.jmva.2015.09.025_br000010) 2006; 33
Fraley (10.1016/j.jmva.2015.09.025_br000115) 2012
Azzalini (10.1016/j.jmva.2015.09.025_br000035) 1996; 83
10.1016/j.jmva.2015.09.025_br000310
Titterington (10.1016/j.jmva.2015.09.025_br000340) 1985
Arellano-Valle (10.1016/j.jmva.2015.09.025_br000015) 2005; 96
Meng (10.1016/j.jmva.2015.09.025_br000295) 1991; 86
Karlis (10.1016/j.jmva.2015.09.025_br000155) 2003; 41
Ghahramani (10.1016/j.jmva.2015.09.025_br000135) 2000; vol. 12
Biernacki (10.1016/j.jmva.2015.09.025_br000065) 2000; 22
Azzalini (10.1016/j.jmva.2015.09.025_br000025) 1999; 61
Wu (10.1016/j.jmva.2015.09.025_br000385) 1983; 11
Lindsay (10.1016/j.jmva.2015.09.025_br000190) 1995; vol. 5
Lin (10.1016/j.jmva.2015.09.025_br000200) 2007; 17
Azzalini (10.1016/j.jmva.2015.09.025_br000030) 2003; 65
Murray (10.1016/j.jmva.2015.09.025_br000305) 2014; 77
Dempster (10.1016/j.jmva.2015.09.025_br000080) 1977; 39
McLachlan (10.1016/j.jmva.2015.09.025_br000250) 2000
Everitt (10.1016/j.jmva.2015.09.025_br000095) 1981
Baek (10.1016/j.jmva.2015.09.025_br000045) 2010; 32
Jamshidian (10.1016/j.jmva.2015.09.025_br000150) 1997
Fokoué (10.1016/j.jmva.2015.09.025_br000105) 2003; 50
Wang (10.1016/j.jmva.2015.09.025_br000360) 2013; 117
Wang (10.1016/j.jmva.2015.09.025_br000365) 2015; 83
Charytanowicz (10.1016/j.jmva.2015.09.025_br000075) 2010
Pyne (10.1016/j.jmva.2015.09.025_br000325) 2009; 106
10.1016/j.jmva.2015.09.025_br000120
Louis (10.1016/j.jmva.2015.09.025_br000215) 1982; 44
Frühwirth-Schnatter (10.1016/j.jmva.2015.09.025_br000130) 2006
Schwarz (10.1016/j.jmva.2015.09.025_br000335) 1978; 6
Melnykov (10.1016/j.jmva.2015.09.025_br000275) 2012; 51
Lee (10.1016/j.jmva.2015.09.025_br000175) 2013; 55
10.1016/j.jmva.2015.09.025_br000125
McLachlan (10.1016/j.jmva.2015.09.025_br000230) 1988
Wall (10.1016/j.jmva.2015.09.025_br000355) 2012; 47
Mengersen (10.1016/j.jmva.2015.09.025_br000285) 2011
References_xml – volume: 4
  start-page: 275
  year: 2005
  end-page: 309
  ident: br000005
  article-title: The generalized hyperbolic skew Student’s
  publication-title: J. Financ. Econom.
– volume: 56
  start-page: 3843
  year: 2012
  end-page: 3864
  ident: br000320
  article-title: Computational aspects of fitting mixture models via the expectation–maximization algorithm
  publication-title: Comput. Statist. Data Anal.
– volume: 20
  start-page: 303
  year: 2010
  end-page: 322
  ident: br000160
  article-title: Likelihood based inference for skew-normal/independent linear mixed model
  publication-title: Stat. Sin.
– volume: 61
  start-page: 579
  year: 1999
  end-page: 602
  ident: br000025
  article-title: Statistical applications of the multivariate skew normal distribution
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 80
  start-page: 267
  year: 1993
  end-page: 278
  ident: br000290
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
– volume: 37
  start-page: 979
  year: 2009
  end-page: 1012
  ident: br000085
  article-title: Likelihood ratio tests and singularities
  publication-title: Ann. Statist.
– volume: 7
  start-page: 241
  year: 2013
  end-page: 266
  ident: br000165
  article-title: On mixtures of skew normal and skew
  publication-title: Adv. Data Anal. Classif.
– volume: 8
  start-page: 751
  year: 2013
  end-page: 769
  ident: br000375
  article-title: An efficient ECM algorithm for maximum likelihood estimation in mixtures of
  publication-title: Comput. Statist.
– volume: 32
  start-page: 1
  year: 2010
  end-page: 13
  ident: br000045
  article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 20
  start-page: 270
  year: 1998
  end-page: 281
  ident: br000110
  article-title: Algorithms for model-based Gaussian hierarchical clustering
  publication-title: SIAM J. Sci. Comput.
– volume: 3
  start-page: 68
  year: 2014
  end-page: 82
  ident: br000315
  article-title: Mixtures of common skew-
  publication-title: Stat
– volume: 41
  start-page: 577
  year: 2003
  end-page: 590
  ident: br000155
  article-title: Choosing initial values for the EM algorithm for finite mixtures
  publication-title: Comput. Statist. Data Anal.
– volume: vol. 5
  year: 1995
  ident: br000190
  publication-title: Mixture Models: Theory, Geometry, and Applications
– volume: 19
  start-page: 354
  year: 2010
  end-page: 376
  ident: br000225
  article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms
  publication-title: J. Comput. Graph. Stat.
– year: 2000
  ident: br000250
  article-title: Finite Mixture Models
– volume: 96
  start-page: 93
  year: 2005
  end-page: 116
  ident: br000015
  article-title: On fundamental skew distributions
  publication-title: J. Multivariate Anal.
– volume: 32
  start-page: 159
  year: 2005
  end-page: 188
  ident: br000020
  article-title: The skew-normal distribution and related multivariate families
  publication-title: Scand. J. Stat.
– year: 1988
  ident: br000230
  article-title: Mixture Models: Inference and Application to Clustering
– year: 2011
  ident: br000285
  article-title: Mixtures: Estimation and Applications
– volume: 6
  start-page: 461
  year: 1978
  end-page: 464
  ident: br000335
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
– volume: 33
  start-page: 561
  year: 2006
  end-page: 574
  ident: br000010
  article-title: On the unification of families of skew-normal distributions
  publication-title: Scand. J. Stat.
– volume: 55
  year: 2013
  ident: br000175
  article-title: EMMIX-uskew: an R package for fitting mixtures of multivariate skew
  publication-title: J. Statist. Software
– volume: vol. 12
  start-page: 449
  year: 2000
  end-page: 455
  ident: br000135
  article-title: Variational inference for Bayesian mixture of factor analysers
  publication-title: Adv. Neur. Info. Proc. Sys.
– volume: 50
  start-page: 73
  year: 2003
  end-page: 94
  ident: br000105
  article-title: Mixtures of factor analyzers. Bayesian estimation and inference by stochastic simulation
  publication-title: Mach. Learn.
– reference: K. Wang, EMMIX-skew (R package version 1.0-12): EM algorithm for mixture of multivariate skew Normal/
– year: 1999
  ident: br000070
  article-title: Computer-Assisted Analysis of Mixtures and Applications: Meta-Analysis, Disease Mapping and Others
– volume: 51
  start-page: 1
  year: 2012
  end-page: 25
  ident: br000275
  article-title: MixSim: an R package for simulating data to study performance of clustering algorithms
  publication-title: J. Stat. Softw.
– volume: 19
  start-page: 1956
  year: 2008
  end-page: 1961
  ident: br000390
  article-title: Fast ML estimation for the mixture of factor analyzers via an ECM algorithm
  publication-title: IEEE. Trans. Neural Netw.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 38
  ident: br000080
  article-title: Maximum likelihood from incomplete data via the EM algorithm (with discussion)
  publication-title: J. Roy. Statist. Soc. B
– volume: 77
  start-page: 326
  year: 2014
  end-page: 335
  ident: br000305
  article-title: Mixtures of skew-
  publication-title: Comput. Statist. Data Anal.
– reference: P. Murray, R. Browne, P.D. McNicholas, Mixtures of ‘unrestricted’ skew-
– year: 1985
  ident: br000340
  article-title: Statistical Analysis of Finite Mixture Distributions
– volume: 117
  start-page: 120
  year: 2013
  end-page: 133
  ident: br000360
  article-title: Mixtures of common factor analyzers for high-dimensional data with missing information
  publication-title: J. Multivariate Anal.
– reference: distributions, 2009.
– volume: 9
  start-page: 332
  year: 2010
  end-page: 353
  ident: br000055
  article-title: Combining mixture components for clustering
  publication-title: J. Comput. Graph. Stat.
– volume: 17
  start-page: 909
  year: 2007
  end-page: 927
  ident: br000200
  article-title: Finite mixture modelling using the skew normal distribution
  publication-title: Stat. Sin.
– reference: factor analyzers, 2013, Preprint
– volume: 56
  start-page: 1381
  year: 2012
  end-page: 1395
  ident: br000280
  article-title: Initializing the EM algorithm in Gaussian mixture models with an unknown number of components
  publication-title: Comput. Statist. Data Anal.
– volume: 44
  start-page: 226
  year: 1982
  end-page: 232
  ident: br000215
  article-title: Finding the observed information when using the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 83
  start-page: 715
  year: 1996
  end-page: 726
  ident: br000035
  article-title: The multivariate skew-normal distribution
  publication-title: Biometrika
– year: 1981
  ident: br000095
  article-title: Finite Mixture Distributions
– reference: B.C. Franczak, P.D. McNicholas, R.P. Browne, P.M. Murray, Parsimonious shifted asymmetric Laplace mixtures, 2013, Preprint
– volume: 85
  start-page: 755
  year: 1998
  end-page: 770
  ident: br000205
  article-title: Parameter expansion to accelerate EM: the PX-EM algorithm
  publication-title: Biometrika
– start-page: 599
  year: 2000
  end-page: 606
  ident: br000255
  article-title: Mixtures of factor analyzers
  publication-title: Proceedings of the Seventeenth International Conference on Machine Learning
– volume: 31
  start-page: 129
  year: 2003
  end-page: 150
  ident: br000330
  article-title: A new class of multivariate skew distributions with application to Bayesian regression models
  publication-title: Canad. J. Statist.
– volume: 51
  start-page: 5327
  year: 2007
  end-page: 5338
  ident: br000235
  article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate
  publication-title: Comput. Statist. Data Anal.
– volume: 24
  start-page: 531
  year: 2014
  end-page: 546
  ident: br000195
  article-title: Flexible mixture modelling using the multivariate skew-
  publication-title: Statist. Comput.
– volume: 41
  start-page: 379
  year: 2003
  end-page: 388
  ident: br000260
  article-title: Modelling high-dimensional data by mixtures of factor analyzers
  publication-title: Comput. Statist. Data Anal.
– volume: 37
  start-page: 473
  year: 2010
  end-page: 487
  ident: br000300
  article-title: A skew-normal factor model for the analysis of student satisfaction towards university courses
  publication-title: J. Appl. Statist.
– year: 1997
  ident: br000140
  article-title: The EM Algorithm for Mixtures of Factor Analyzers, Technical Report No. CRG-TR-96-1
– volume: 65
  start-page: 457
  year: 1978
  end-page: 482
  ident: br000090
  article-title: Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information
  publication-title: Biometrika
– volume: 18
  start-page: 285
  year: 2008
  end-page: 296
  ident: br000265
  article-title: Parsimonious Gaussian mixture models
  publication-title: Statist. Comput.
– volume: 7
  start-page: 179
  year: 1936
  end-page: 188
  ident: br000100
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugenics
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: br000145
  article-title: Comparing partitions
  publication-title: J. Classification
– volume: 22
  start-page: 719
  year: 2000
  end-page: 725
  ident: br000065
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 122
  start-page: 175
  year: 2013
  end-page: 189
  ident: br000270
  article-title: On the distribution of posterior probabilities in finite mixture models with application in clustering
  publication-title: J. Multivariate Anal.
– volume: 27
  start-page: 1269
  year: 2011
  end-page: 1276
  ident: br000040
  article-title: Mixtures of common
  publication-title: Bioinformatics
– reference: C. Tortora, P.D. McNicholas, R. Browne, A mixture of generalized hyperbolic factor analyzers, 2013,
– volume: 6
  start-page: 144
  year: 2009
  end-page: 157
  ident: br000220
  article-title: Initializing partition-optimization algorithms
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinformatics
– volume: 65
  start-page: 367
  year: 2003
  end-page: 389
  ident: br000030
  article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 13
  start-page: 993
  year: 2001
  end-page: 1002
  ident: br000350
  article-title: Bayesian analysis of mixtures of factor analyzers
  publication-title: Neural Comp.
– volume: 83
  start-page: 223
  year: 2015
  end-page: 235
  ident: br000365
  article-title: Mixtures of common
  publication-title: Comput. Statist. Data Anal.
– volume: 63
  start-page: 167
  year: 2001
  end-page: 241
  ident: br000050
  article-title: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 11
  start-page: 95
  year: 1983
  end-page: 103
  ident: br000385
  article-title: On the convergence properties of the EM algorithm
  publication-title: Ann. Stat.
– volume: 4
  start-page: 41
  year: 2004
  end-page: 67
  ident: br000210
  article-title: Bayesian model assessment in factor analysis
  publication-title: Stat. Sin.
– volume: 86
  start-page: 899
  year: 1991
  end-page: 909
  ident: br000295
  article-title: Using EM to obtain asymptotic variance–covariance matrices: The SEM algorithm
  publication-title: J. Amer. Statist. Assoc.
– reference: A. Frank, A. Asuncion, UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science, 2010.
– volume: 24
  start-page: 181
  year: 2014
  end-page: 202
  ident: br000170
  article-title: Finite mixtures of multivariate skew
  publication-title: Statist. Comput.
– reference: .
– year: 2008
  ident: br000245
  article-title: The EM Algorithm and Extensions
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  ident: br000380
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Amer. Statist. Assoc.
– reference: Y.W. Lee, S.H. Poon, Systemic and systematic factors for loan portfolio loss distribution, in: Econometrics and Applied Economics Workshops, School of Social Science, University of Manchester, 2011, pp. 1–61.
– volume: 41
  start-page: 561
  year: 2003
  end-page: 575
  ident: br000060
  article-title: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
  publication-title: Comput. Statist. Data Anal.
– year: 2006
  ident: br000130
  article-title: Finite Mixture and Markov Switching Models
– volume: 106
  start-page: 8519
  year: 2009
  end-page: 8524
  ident: br000325
  article-title: Automated high- dimensional flow cytometric data analysis
  publication-title: Proc. Natl. Acad. Sci USA
– start-page: 15
  year: 2010
  end-page: 24
  ident: br000075
  article-title: A complete gradient clustering algorithm for features analysis of X-ray images
  publication-title: Information Technologies in Biomedicine
– volume: 18
  start-page: 413
  year: 2002
  end-page: 422
  ident: br000240
  article-title: A mixture model-based approach to the clustering of microarray expression data
  publication-title: Bioinformatics
– year: 2012
  ident: br000115
  article-title: MCLUST Version 4 for R: Normal Mixture Modeling and Model-Based Clustering, Technical Report 597
– start-page: 247
  year: 1997
  end-page: 258
  ident: br000150
  article-title: An EM algorithm for ML factor analysis with missing data
  publication-title: Latent Variable Modeling and Applications to Causality
– volume: 47
  start-page: 276
  year: 2012
  end-page: 313
  ident: br000355
  article-title: Mixture factor analysis for approximating a non-normally distributed continuous latent factor with continuous and dichotomous observed variables
  publication-title: Multivar. Behav. Res.
– volume: 100
  start-page: 257
  year: 2009
  end-page: 265
  ident: br000185
  article-title: Maximum likelihood estimation for multivariate skew normal mixture models
  publication-title: J. Multivariate Anal.
– ident: 10.1016/j.jmva.2015.09.025_br000125
– volume: 2
  start-page: 193
  year: 1985
  ident: 10.1016/j.jmva.2015.09.025_br000145
  article-title: Comparing partitions
  publication-title: J. Classification
  doi: 10.1007/BF01908075
– volume: vol. 5
  year: 1995
  ident: 10.1016/j.jmva.2015.09.025_br000190
– volume: 85
  start-page: 755
  year: 1998
  ident: 10.1016/j.jmva.2015.09.025_br000205
  article-title: Parameter expansion to accelerate EM: the PX-EM algorithm
  publication-title: Biometrika
  doi: 10.1093/biomet/85.4.755
– volume: 55
  issue: 12
  year: 2013
  ident: 10.1016/j.jmva.2015.09.025_br000175
  article-title: EMMIX-uskew: an R package for fitting mixtures of multivariate skew t-distributions via the EM algorithm
  publication-title: J. Statist. Software
  doi: 10.18637/jss.v055.i12
– volume: 17
  start-page: 909
  year: 2007
  ident: 10.1016/j.jmva.2015.09.025_br000200
  article-title: Finite mixture modelling using the skew normal distribution
  publication-title: Stat. Sin.
– ident: 10.1016/j.jmva.2015.09.025_br000310
– volume: 4
  start-page: 275
  year: 2005
  ident: 10.1016/j.jmva.2015.09.025_br000005
  article-title: The generalized hyperbolic skew Student’s t-distribution
  publication-title: J. Financ. Econom.
  doi: 10.1093/jjfinec/nbj006
– volume: 47
  start-page: 276
  year: 2012
  ident: 10.1016/j.jmva.2015.09.025_br000355
  article-title: Mixture factor analysis for approximating a non-normally distributed continuous latent factor with continuous and dichotomous observed variables
  publication-title: Multivar. Behav. Res.
  doi: 10.1080/00273171.2012.658339
– year: 1999
  ident: 10.1016/j.jmva.2015.09.025_br000070
– volume: 18
  start-page: 285
  year: 2008
  ident: 10.1016/j.jmva.2015.09.025_br000265
  article-title: Parsimonious Gaussian mixture models
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-008-9056-0
– volume: 86
  start-page: 899
  year: 1991
  ident: 10.1016/j.jmva.2015.09.025_br000295
  article-title: Using EM to obtain asymptotic variance–covariance matrices: The SEM algorithm
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1991.10475130
– volume: 7
  start-page: 179
  year: 1936
  ident: 10.1016/j.jmva.2015.09.025_br000100
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– year: 2000
  ident: 10.1016/j.jmva.2015.09.025_br000250
– year: 1997
  ident: 10.1016/j.jmva.2015.09.025_br000140
– start-page: 15
  year: 2010
  ident: 10.1016/j.jmva.2015.09.025_br000075
  article-title: A complete gradient clustering algorithm for features analysis of X-ray images
– year: 2006
  ident: 10.1016/j.jmva.2015.09.025_br000130
– year: 1985
  ident: 10.1016/j.jmva.2015.09.025_br000340
– volume: 32
  start-page: 159
  year: 2005
  ident: 10.1016/j.jmva.2015.09.025_br000020
  article-title: The skew-normal distribution and related multivariate families
  publication-title: Scand. J. Stat.
  doi: 10.1111/j.1467-9469.2005.00426.x
– volume: 9
  start-page: 332
  year: 2010
  ident: 10.1016/j.jmva.2015.09.025_br000055
  article-title: Combining mixture components for clustering
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/jcgs.2010.08111
– volume: 6
  start-page: 144
  year: 2009
  ident: 10.1016/j.jmva.2015.09.025_br000220
  article-title: Initializing partition-optimization algorithms
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinformatics
  doi: 10.1109/TCBB.2007.70244
– start-page: 599
  year: 2000
  ident: 10.1016/j.jmva.2015.09.025_br000255
  article-title: Mixtures of factor analyzers
– volume: 51
  start-page: 5327
  year: 2007
  ident: 10.1016/j.jmva.2015.09.025_br000235
  article-title: Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2006.09.015
– volume: 3
  start-page: 68
  year: 2014
  ident: 10.1016/j.jmva.2015.09.025_br000315
  article-title: Mixtures of common skew-t factor analyzers
  publication-title: Stat
  doi: 10.1002/sta4.43
– year: 1988
  ident: 10.1016/j.jmva.2015.09.025_br000230
– volume: 56
  start-page: 3843
  year: 2012
  ident: 10.1016/j.jmva.2015.09.025_br000320
  article-title: Computational aspects of fitting mixture models via the expectation–maximization algorithm
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2012.05.011
– ident: 10.1016/j.jmva.2015.09.025_br000180
– volume: 31
  start-page: 129
  year: 2003
  ident: 10.1016/j.jmva.2015.09.025_br000330
  article-title: A new class of multivariate skew distributions with application to Bayesian regression models
  publication-title: Canad. J. Statist.
  doi: 10.2307/3316064
– volume: 41
  start-page: 561
  year: 2003
  ident: 10.1016/j.jmva.2015.09.025_br000060
  article-title: Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(02)00163-9
– volume: 83
  start-page: 715
  year: 1996
  ident: 10.1016/j.jmva.2015.09.025_br000035
  article-title: The multivariate skew-normal distribution
  publication-title: Biometrika
  doi: 10.1093/biomet/83.4.715
– volume: 11
  start-page: 95
  year: 1983
  ident: 10.1016/j.jmva.2015.09.025_br000385
  article-title: On the convergence properties of the EM algorithm
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176346060
– year: 1981
  ident: 10.1016/j.jmva.2015.09.025_br000095
– volume: 50
  start-page: 73
  year: 2003
  ident: 10.1016/j.jmva.2015.09.025_br000105
  article-title: Mixtures of factor analyzers. Bayesian estimation and inference by stochastic simulation
  publication-title: Mach. Learn.
  doi: 10.1023/A:1020297828025
– volume: 41
  start-page: 577
  year: 2003
  ident: 10.1016/j.jmva.2015.09.025_br000155
  article-title: Choosing initial values for the EM algorithm for finite mixtures
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(02)00177-9
– volume: 24
  start-page: 181
  year: 2014
  ident: 10.1016/j.jmva.2015.09.025_br000170
  article-title: Finite mixtures of multivariate skew t-distributions: some recent and new results
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-012-9362-4
– volume: 56
  start-page: 1381
  year: 2012
  ident: 10.1016/j.jmva.2015.09.025_br000280
  article-title: Initializing the EM algorithm in Gaussian mixture models with an unknown number of components
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2011.11.002
– volume: 24
  start-page: 531
  year: 2014
  ident: 10.1016/j.jmva.2015.09.025_br000195
  article-title: Flexible mixture modelling using the multivariate skew-t-normal distribution
  publication-title: Statist. Comput.
  doi: 10.1007/s11222-013-9386-4
– volume: 96
  start-page: 93
  year: 2005
  ident: 10.1016/j.jmva.2015.09.025_br000015
  article-title: On fundamental skew distributions
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2004.10.002
– volume: 63
  start-page: 167
  year: 2001
  ident: 10.1016/j.jmva.2015.09.025_br000050
  article-title: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/1467-9868.00282
– volume: 18
  start-page: 413
  year: 2002
  ident: 10.1016/j.jmva.2015.09.025_br000240
  article-title: A mixture model-based approach to the clustering of microarray expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.3.413
– volume: 117
  start-page: 120
  year: 2013
  ident: 10.1016/j.jmva.2015.09.025_br000360
  article-title: Mixtures of common factor analyzers for high-dimensional data with missing information
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2013.02.003
– volume: 61
  start-page: 579
  year: 1999
  ident: 10.1016/j.jmva.2015.09.025_br000025
  article-title: Statistical applications of the multivariate skew normal distribution
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/1467-9868.00194
– year: 2008
  ident: 10.1016/j.jmva.2015.09.025_br000245
– volume: 122
  start-page: 175
  year: 2013
  ident: 10.1016/j.jmva.2015.09.025_br000270
  article-title: On the distribution of posterior probabilities in finite mixture models with application in clustering
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2013.07.014
– volume: 6
  start-page: 461
  year: 1978
  ident: 10.1016/j.jmva.2015.09.025_br000335
  article-title: Estimating the dimension of a model
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176344136
– volume: 20
  start-page: 303
  year: 2010
  ident: 10.1016/j.jmva.2015.09.025_br000160
  article-title: Likelihood based inference for skew-normal/independent linear mixed model
  publication-title: Stat. Sin.
– year: 2011
  ident: 10.1016/j.jmva.2015.09.025_br000285
– volume: 51
  start-page: 1
  year: 2012
  ident: 10.1016/j.jmva.2015.09.025_br000275
  article-title: MixSim: an R package for simulating data to study performance of clustering algorithms
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v051.i12
– volume: 80
  start-page: 267
  year: 1993
  ident: 10.1016/j.jmva.2015.09.025_br000290
  article-title: Maximum likelihood estimation via the ECM algorithm: a general framework
  publication-title: Biometrika
  doi: 10.1093/biomet/80.2.267
– volume: 8
  start-page: 751
  year: 2013
  ident: 10.1016/j.jmva.2015.09.025_br000375
  article-title: An efficient ECM algorithm for maximum likelihood estimation in mixtures of t-factor analyzers
  publication-title: Comput. Statist.
  doi: 10.1007/s00180-012-0327-z
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1016/j.jmva.2015.09.025_br000080
  article-title: Maximum likelihood from incomplete data via the EM algorithm (with discussion)
  publication-title: J. Roy. Statist. Soc. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 7
  start-page: 241
  year: 2013
  ident: 10.1016/j.jmva.2015.09.025_br000165
  article-title: On mixtures of skew normal and skew t-distributions
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-013-0132-8
– year: 2012
  ident: 10.1016/j.jmva.2015.09.025_br000115
– volume: 65
  start-page: 367
  year: 2003
  ident: 10.1016/j.jmva.2015.09.025_br000030
  article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/1467-9868.00391
– ident: 10.1016/j.jmva.2015.09.025_br000370
– volume: 106
  start-page: 8519
  year: 2009
  ident: 10.1016/j.jmva.2015.09.025_br000325
  article-title: Automated high- dimensional flow cytometric data analysis
  publication-title: Proc. Natl. Acad. Sci USA
  doi: 10.1073/pnas.0903028106
– volume: 100
  start-page: 257
  year: 2009
  ident: 10.1016/j.jmva.2015.09.025_br000185
  article-title: Maximum likelihood estimation for multivariate skew normal mixture models
  publication-title: J. Multivariate Anal.
  doi: 10.1016/j.jmva.2008.04.010
– volume: 44
  start-page: 226
  year: 1982
  ident: 10.1016/j.jmva.2015.09.025_br000215
  article-title: Finding the observed information when using the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 4
  start-page: 41
  year: 2004
  ident: 10.1016/j.jmva.2015.09.025_br000210
  article-title: Bayesian model assessment in factor analysis
  publication-title: Stat. Sin.
– volume: 32
  start-page: 1
  year: 2010
  ident: 10.1016/j.jmva.2015.09.025_br000045
  article-title: Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualization of high-dimensional data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 10.1016/j.jmva.2015.09.025_br000120
– volume: 65
  start-page: 457
  year: 1978
  ident: 10.1016/j.jmva.2015.09.025_br000090
  article-title: Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information
  publication-title: Biometrika
  doi: 10.1093/biomet/65.3.457
– volume: 13
  start-page: 993
  year: 2001
  ident: 10.1016/j.jmva.2015.09.025_br000350
  article-title: Bayesian analysis of mixtures of factor analyzers
  publication-title: Neural Comp.
  doi: 10.1162/08997660151134299
– volume: 20
  start-page: 270
  year: 1998
  ident: 10.1016/j.jmva.2015.09.025_br000110
  article-title: Algorithms for model-based Gaussian hierarchical clustering
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827596311451
– volume: 19
  start-page: 354
  year: 2010
  ident: 10.1016/j.jmva.2015.09.025_br000225
  article-title: Simulating data to study performance of finite mixture modeling and clustering algorithms
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/jcgs.2009.08054
– volume: 33
  start-page: 561
  year: 2006
  ident: 10.1016/j.jmva.2015.09.025_br000010
  article-title: On the unification of families of skew-normal distributions
  publication-title: Scand. J. Stat.
  doi: 10.1111/j.1467-9469.2006.00503.x
– start-page: 247
  year: 1997
  ident: 10.1016/j.jmva.2015.09.025_br000150
  article-title: An EM algorithm for ML factor analysis with missing data
– volume: vol. 12
  start-page: 449
  year: 2000
  ident: 10.1016/j.jmva.2015.09.025_br000135
  article-title: Variational inference for Bayesian mixture of factor analysers
– volume: 37
  start-page: 473
  year: 2010
  ident: 10.1016/j.jmva.2015.09.025_br000300
  article-title: A skew-normal factor model for the analysis of student satisfaction towards university courses
  publication-title: J. Appl. Statist.
  doi: 10.1080/02664760902736737
– volume: 37
  start-page: 979
  year: 2009
  ident: 10.1016/j.jmva.2015.09.025_br000085
  article-title: Likelihood ratio tests and singularities
  publication-title: Ann. Statist.
  doi: 10.1214/07-AOS571
– volume: 77
  start-page: 326
  year: 2014
  ident: 10.1016/j.jmva.2015.09.025_br000305
  article-title: Mixtures of skew-t factor analyzers
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2014.03.012
– volume: 58
  start-page: 236
  year: 1963
  ident: 10.1016/j.jmva.2015.09.025_br000380
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1963.10500845
– volume: 41
  start-page: 379
  year: 2003
  ident: 10.1016/j.jmva.2015.09.025_br000260
  article-title: Modelling high-dimensional data by mixtures of factor analyzers
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(02)00183-4
– volume: 19
  start-page: 1956
  year: 2008
  ident: 10.1016/j.jmva.2015.09.025_br000390
  article-title: Fast ML estimation for the mixture of factor analyzers via an ECM algorithm
  publication-title: IEEE. Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2003467
– volume: 83
  start-page: 223
  year: 2015
  ident: 10.1016/j.jmva.2015.09.025_br000365
  article-title: Mixtures of common t-factor analyzers for modeling high-dimensional data with missing values
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/j.csda.2014.10.007
– ident: 10.1016/j.jmva.2015.09.025_br000345
– volume: 27
  start-page: 1269
  year: 2011
  ident: 10.1016/j.jmva.2015.09.025_br000040
  article-title: Mixtures of common t-factor analyzers for clustering high-dimensional microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr112
– volume: 22
  start-page: 719
  year: 2000
  ident: 10.1016/j.jmva.2015.09.025_br000065
  article-title: Assessing a mixture model for clustering with the integrated completed likelihood
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.865189
SSID ssj0011574
Score 2.3735137
Snippet The mixture of factor analyzers (MFA) model provides a powerful tool for analyzing high-dimensional data as it can reduce the number of free parameters through...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 398
SubjectTerms Algorithms
Clustering
Data reduction
Discriminant analysis
ECM algorithm
Factor analyzer
Mathematical models
Maximum likelihood method
Multivariate analysis
Normal distribution
rMSN distribution
Skewness
Studies
Title Extending mixtures of factor models using the restricted multivariate skew-normal distribution
URI https://dx.doi.org/10.1016/j.jmva.2015.09.025
https://www.proquest.com/docview/1748595601
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-7243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011574
  issn: 0047-259X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1095-7243
  dateEnd: 20210930
  omitProxy: true
  ssIdentifier: ssj0011574
  issn: 0047-259X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-7243
  dateEnd: 20210930
  omitProxy: true
  ssIdentifier: ssj0011574
  issn: 0047-259X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-7243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011574
  issn: 0047-259X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1095-7243
  dateEnd: 20211102
  omitProxy: true
  ssIdentifier: ssj0011574
  issn: 0047-259X
  databaseCode: IXB
  dateStart: 19710401
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-7243
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011574
  issn: 0047-259X
  databaseCode: AKRWK
  dateStart: 19710401
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYQLDAgnuJZeWBDgTqxk3gEBCqgdgIpE5YdO6ilL5HymPjt3CVOJRDqwJDBVhxFZ-fuu8vdd4SchLZgSY4hsJRLLMnRgQyZDiKw1nlY2EKkWI3c7cWdR36XiWyJXDW1MJhW6XV_rdMrbe1nzr00z6f9Ptb48gTAewaQBgx3iIyfHGbgTJ99zdM8kEumZmKuGAlk5gtn6hyvwegduYeYqLhOsV3238bpl5qubM_NBln3oJFe1O-1SZbceIusdeeMq-U2ebquotlgiOio_4m_BUo6KWjdTodW_W5KiknuzxRWUezIARoQ4CatUgrfwWUG1EnLF_cRjBHHDqlFTl3fDmuHPN5cP1x1At87IcijMJ0F3LQjm7RFjnzygjudGrhCafJYa2e1liwylsc6za3kiYlzIR3nRrvQta3j0S5ZHk_Gbo9QUZhYgBQTocF3KrRJdMqY45I5nQCE2CesEZrKPbE49rcYqiaDbKBQ0AoFrdpSgaD3yel8zbSm1Vh4t2j2Qv04HAr0_sJ1R83GKf9plgpcMOR0A0f04J-PPSSrMPKBmCOyPHt9c8cATWamVZ29Flm5uL3v9GB0m11-A3XH5iw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELUKDMCA-BTl0wMbCm0SO4lHVBUVaDsVKROWnTioBQIipTDx27lLnEog1IEhSxJH0dm5e-fcvUfImZdmbpjgFljEBLbkKEd4rnJ8iNaJl6UZj7AbeTAMenfsJuZxg3TqXhgsq7S-v_Lppbe2Z1rWmq3X8Rh7fFkI4D0GSAOB2_OXyArjXogZ2MXXvM4DyWQqKuaSkkDEtnOmKvKaPM-QfMjlJdkp6mX_HZ1--eky-Fxtkg2LGull9WJbpGHybbI-mFOuFjvkvltuZ0Mkos_jT_wvUNCXjFZ6OrQUvCkoVrk_UBhFUZIDXCDgTVrWFM4gZwbYSYtH8-HkCGSfaIqkulYPa5fcXXVHnZ5jxROcxPeiqcN020_DNk-QUJ4zoyINhyd0EihlUqWE6-uUBSpKUsFCHSRcGMa0Mp5pp4b5e2Q5f8nNPqE80wEHK4ZcQfKUKR2qyHUNE65RIWCIJnFro8nEMoujwMWTrEvIJhINLdHQsi0kGLpJzudjXitejYV383ou5I_VIcHxLxx3VE-ctN9mISEHQ1I3yEQP_vnYU7LaGw36sn89vD0ka3DF7sockeXp27s5Bpwy1SflOvwGc__mvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extending+mixtures+of+factor+models+using+the+restricted+multivariate+skew-normal+distribution&rft.jtitle=Journal+of+multivariate+analysis&rft.au=Lin%2C+Tsung-I&rft.au=McLachlan%2C+Geoffrey+J.&rft.au=Lee%2C+Sharon+X.&rft.date=2016-01-01&rft.issn=0047-259X&rft.volume=143&rft.spage=398&rft.epage=413&rft_id=info:doi/10.1016%2Fj.jmva.2015.09.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jmva_2015_09_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-259X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-259X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-259X&client=summon