Three-dimensional modelling of plasma structure with generating algorithm of optimal starting points for magnetic field line tracing

The magnetic fields confining plasma in fusion reactors are analyzed using Poincaré plots, which show intersections of magnetic field lines on a poloidal crosssection. Traditional methods for designing vacuum vessels and related structures involve slicing the reactor vertically and analyzing these p...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Simulation in Science and Engineering Vol. 12; no. 1; pp. 249 - 266
Main Authors Hu, Kunqi, Koyamada, Koji, Ohtani, Hiroaki
Format Journal Article
LanguageEnglish
Published Japan Society for Simulation Technology 01.01.2025
Subjects
Online AccessGet full text
ISSN2188-5303
2188-5303
DOI10.15748/jasse.12.249

Cover

Abstract The magnetic fields confining plasma in fusion reactors are analyzed using Poincaré plots, which show intersections of magnetic field lines on a poloidal crosssection. Traditional methods for designing vacuum vessels and related structures involve slicing the reactor vertically and analyzing these plots, but this approach is inefficient for understanding plasma shapes globally. Key challenges include the computational cost of magnetic field line tracing and the difficulty in constructing continuous surfaces for the divertor legs due to the limited number of magnetic field lines reaching this area. To address these issues, a new and automatic method has been proposed to increase the number of magnetic field lines constituting the divertor legs by predicting optimal starting points for tracing. The proposed method involves placing starting points on orthogonal lines through the magnetic axis, resulting in a better representation of divertor legs. This new algorithm enhances the efficiency of generating Poincaré plots that depict divertor leg regions more clearly than previous methods. Neural Networks predict voxel data representing the shape of magnetic field lines. Considering the Larmor radius, we calculate an envelope surface that encompasses the region where plasma exists and create 3D modeling data.
AbstractList The magnetic fields confining plasma in fusion reactors are analyzed using Poincaré plots, which show intersections of magnetic field lines on a poloidal crosssection. Traditional methods for designing vacuum vessels and related structures involve slicing the reactor vertically and analyzing these plots, but this approach is inefficient for understanding plasma shapes globally. Key challenges include the computational cost of magnetic field line tracing and the difficulty in constructing continuous surfaces for the divertor legs due to the limited number of magnetic field lines reaching this area. To address these issues, a new and automatic method has been proposed to increase the number of magnetic field lines constituting the divertor legs by predicting optimal starting points for tracing. The proposed method involves placing starting points on orthogonal lines through the magnetic axis, resulting in a better representation of divertor legs. This new algorithm enhances the efficiency of generating Poincaré plots that depict divertor leg regions more clearly than previous methods. Neural Networks predict voxel data representing the shape of magnetic field lines. Considering the Larmor radius, we calculate an envelope surface that encompasses the region where plasma exists and create 3D modeling data.
Author Koyamada, Koji
Hu, Kunqi
Ohtani, Hiroaki
Author_xml – sequence: 1
  fullname: Hu, Kunqi
  organization: Graduate School of Human and Environmental Studies, Kyoto University
– sequence: 1
  fullname: Koyamada, Koji
  organization: Faculty of Data Science, Osaka Seikei University
– sequence: 1
  fullname: Ohtani, Hiroaki
  organization: Fusion Science Program, The Graduate University for Advanced Studies, SOKENDAI
BookMark eNpNkMtqwzAQRUVJoWmaZff6Aad62I68KiX0BYFusjeyPHIUZClICqX7fniVpKRdzTD3zOveoonzDhC6p2RBq2UpHnYyRlhQtmBlc4WmjApRVJzwyb_8Bs1j3BFCOCc149UUfW-2AaDozQguGu-kxaPvwVrjBuw13lsZR4ljCgeVDgHwp0lbPICDINORkXbwIdfGI-33yYx5REwynNS9Ny5FrH3AoxwcJKOwNmB7nBcATkGqjN2hay1thPlvnKHNy_Nm9VasP17fV0_rQnEmUlFyWeue1Y0gvKOiV6wiQgHX0EEDQCtJqVg2jeK6gwqaShIJumN1ydiy7_gMFeexKvgYA-h2H_K54aulpD2Z2J5MbClrs4mZfzzzu_zPABf6-Juy8AfT346LorYytOD4D0cCg2U
Cites_doi 10.1007/s12650-021-00768-w
10.13182/FST10-A10803
10.1585/pfr.6.2406027
10.15748/jasse.7.151
10.1585/pfr.8.2403072
10.1016/j.fusengdes.2012.01.030
10.1088/0029-5515/46/2/013
10.1585/pfr.14.1405163
10.1016/j.fusengdes.2013.02.124
10.1143/JPSJ.71.1684
10.1016/0010-4655(86)90058-5
10.1007/978-3-540-88606-8_11
10.1088/1741-4326/ab15c3
10.1016/j.nme.2016.12.020
10.1585/pfr.8.1402134
10.1063/1.864116
10.1016/j.cag.2006.07.021
10.1088/0741-3335/53/10/105007
10.1109/TPS.2011.2157174
ContentType Journal Article
Copyright 2025 Japan Society for Simulation Technology
Copyright_xml – notice: 2025 Japan Society for Simulation Technology
DBID AAYXX
CITATION
DOI 10.15748/jasse.12.249
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2188-5303
EndPage 266
ExternalDocumentID 10_15748_jasse_12_249
article_jasse_12_1_12_249_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
AAYXX
CITATION
ID FETCH-LOGICAL-c328t-43a6fd269803b18dc2508ce3febe9ee15a118799c3fbe5e95a0aefb264227db3
ISSN 2188-5303
IngestDate Wed Oct 01 06:02:58 EDT 2025
Wed Sep 03 06:30:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c328t-43a6fd269803b18dc2508ce3febe9ee15a118799c3fbe5e95a0aefb264227db3
OpenAccessLink https://www.jstage.jst.go.jp/article/jasse/12/1/12_249/_article/-char/en
PageCount 18
ParticipantIDs crossref_primary_10_15748_jasse_12_249
jstage_primary_article_jasse_12_1_12_249_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Advanced Simulation in Science and Engineering
PublicationTitleAlternate JASSE
PublicationYear 2025
Publisher Japan Society for Simulation Technology
Publisher_xml – name: Japan Society for Simulation Technology
References [11] H. Ohtani, A. Kageyama, Y. Tamura, S. Ishiguro, M. Shohji: Integrated Visualization of Simulation Results and Experimental Devices in Virtual-Reality Space, Plasma and Fusion Research, 6 (2011), 2406027.
[18] Project webpage: https://github.com/yasuhiro-suzuki/MGTRC, last accessed 2024/05/14.
[9] A. G. Chiariello, A. Formisano, R. Martone: Fast magnetic field computation in fusion technology using gpu technology, Fusion Engineering and Design, 88:9-10 (2013), 1635-1639.
[23] T. Watanabe: Alpha-particle confinement control of the geodesic winding of lhd-type fusion reactors, Plasma and Fusion Research, 8 (2013), 2403072.
[19] Y. Matsumoto, S. Oikawa, T. Watanabe.: Field line and particle orbit analysis in the periphery of the Large Helical Device, Journal of the Physical Society of Japan, 71:7 (2002), 1684-1693.
[7] R. Peikert, F. Sadlo: Flow topology beyond skeletons: Visualization of features in recirculating flow, Topology-Based Methods in Visualization II, Kloster Nimbschen, 2009, 145-160.
[8] H. Tanaka, G. Kawamura, S. Masuzaki, M. Kobayashi, T. Akiyama, B.J. Peterson, K. Mukai, R. Sano, S.Y. Dai, R. Sakamoto, T. Morisaki, N. Ohno, LHD Experiment Group: Toroidally symmetric/asymmetric effect on the divertor flux due to neon/nitrogen seeding in LHD, Nuclear Materials and Energy, 12 (2017), 241-246.
[10] T. Watanabe, M. Yoshida, S. Masuzaki, M. Emoto and Y. Nagayama: How to use the numerical system. 'LHD LINES OF FORCE.EXE' for the visualization of lines of force in the Large Helical Device (NIFS-TECH-14), NIFS-TECH, National Institute for Fusion Science, Toki, 2006. (in Japanese)
[13] K. Hu, Q. Wang, K. Koyamada, H. Ohtani, T. Goto, J. Miyazawa: Visualization of the plasma shape in a force free helical reactor, FFHR, Journal of Advanced Simulation in Science and Engineering, 7:1 (2020), 151-167.
[24] A. Y. Chang: A survey of geometric data structures for ray tracing, Department of Computer and Information Science, Polytechnic University, Ph.D thesis (2001).
[4] M. Itagaki, T. Maeda, T. Ishimaru, G. Okubo, K. Watanabe, R. Seki, Y. Suzuki: Three-dimensional cauchy-condition surface method to identify the shape of the last closed magnetic surface in the large helical device, Plasma Physics and Controlled Fusion, 53:10 (2011), 105007.
[6] R. Peikert, F. Sadlo: Visualization methods for vortex rings and vortex breakdown bubbles, in Proceedings of the 9th Joint Eurographics/IEEE VGTC conference on Visualization (EuroVis07), Norrköping, 2007, 211-218.
[5] M. Itagaki, K. Ishimaru, Y. Matsumoto,K. Watanabe, R. Seki, Y. Suzuki: Improved three-dimensional ccs method analysis for the reconstruction of the peripheral magnetic field structure in a finite beta helical plasma, Plasma and Fusion Research, 8 (2013), 1402134.
[22] K. Y. Watanabe, Y. Suzuki, S. Sakakibara, T. Yamaguchi, Y. Narushima, Y. Nakamura, K. Ida, N. Nakajima, H. Yamada, LHD Experiment Group: Characteristics of mhd equilibrium and related issues on LHD, Fusion Science and Technology, 58:1 (2010), 160-175.
[17] S. P. Hirshman, W.I. van RIJ, P. Merkel: Three-dimensional free boundary calculations using a spectral Green's function method, Computer Physics Communications, 43:1 (1986), 143-155.
[2] T. Goto, J. Miyazawa, H. Tamura, T. Tanaka, R. Sakamoto, C. Suzuki, R. Seki, S. Satake, M. Nunami, M. Yokoyama, N. Yanagi, A. Sagara and the FFHR Design Group: Conceptual design of a compact helical fusion reactor FFHR-c1 for the early demonstration of year-long electric power generation, Nuclear Fusion, 59:7 (2019), 076030.
[25] S. Timothy, Y. Hong: A survey of the marching cubes algorithm. Computers & Graphics, 30:5 (2006), 854–879.
[14] K. Hu, K. Koyamada, H. Ohtani, T. Goto, J. Miyazawa: Visualization of plasma shape in the LHD-type helical fusion reactor, FFHR, by a deep learning technique, Journal of Visualization, 24:6 (2021), 1141-1154.
[21] T. Watanabe, Y. Matsumoto, M. Hishiki, S. Oikawa, H. Hojo, M. Shoji, S. Masuzaki, R. Kumazawa, K. Saito, T. Seki, T. Mutoh, A. Komori and LHD Experimental Group: Magnetic field structure and confinement of energetic particles in the LHD, Nuclear Fusion, 46:2 (2006), 291.
[1] J. Miyazawa, H. Tamura, T. Tanaka, Y. Hamaji, M. Kobayashi, T. Murase, S. Nakagawa, T. Goto, N. Yanagi, A. Sagara, the FFHR Design Group: Improved design of a cartridge-type helical blanket system for the helical fusion reactor FFHR-b1, Plasma and Fusion Research, 14 (2019), 1405163.
[16] S. P. Hirshman, J. C. Whitson: Steepest-descent moment method for threedimensional magnetohydrodynamic equilibria, Physics of Fluids, 26:12 (1983), 3553-3568.
[20] T. Goto: private communication.
[12] H. Ohtani, Y. Tamura, A. Kageyama, S. Ishiguro: Scientific visualization of plasma simulation results and device data in virtual-reality space, IEEE Transactions on Plasma Science, 39:11 (2011), 2472-2473.
[3] A. Sagara, T. Goto, J. Miyazawa, N. Yanagi, T. Tanaka, H. Tamura, R. Sakamoto, M. Tanaka, K. Tsumori, O. Mitarai, S. Imagawa, T. Muroga, The FFHR design group: Design activities on helical demo reactor FFHR-d1, Fusion Engineering and Design, 87:5-6 (2012), 594-602.
[15] K. Hu: Improving efficiency and quality on modeling 3D plasma shape in FFHR by introducing Neural Networks. Kyoto University, Ph.D thesis (2024).
22
23
24
25
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: [3] A. Sagara, T. Goto, J. Miyazawa, N. Yanagi, T. Tanaka, H. Tamura, R. Sakamoto, M. Tanaka, K. Tsumori, O. Mitarai, S. Imagawa, T. Muroga, The FFHR design group: Design activities on helical demo reactor FFHR-d1, Fusion Engineering and Design, 87:5-6 (2012), 594-602.
– reference: [9] A. G. Chiariello, A. Formisano, R. Martone: Fast magnetic field computation in fusion technology using gpu technology, Fusion Engineering and Design, 88:9-10 (2013), 1635-1639.
– reference: [13] K. Hu, Q. Wang, K. Koyamada, H. Ohtani, T. Goto, J. Miyazawa: Visualization of the plasma shape in a force free helical reactor, FFHR, Journal of Advanced Simulation in Science and Engineering, 7:1 (2020), 151-167.
– reference: [24] A. Y. Chang: A survey of geometric data structures for ray tracing, Department of Computer and Information Science, Polytechnic University, Ph.D thesis (2001).
– reference: [22] K. Y. Watanabe, Y. Suzuki, S. Sakakibara, T. Yamaguchi, Y. Narushima, Y. Nakamura, K. Ida, N. Nakajima, H. Yamada, LHD Experiment Group: Characteristics of mhd equilibrium and related issues on LHD, Fusion Science and Technology, 58:1 (2010), 160-175.
– reference: [16] S. P. Hirshman, J. C. Whitson: Steepest-descent moment method for threedimensional magnetohydrodynamic equilibria, Physics of Fluids, 26:12 (1983), 3553-3568.
– reference: [15] K. Hu: Improving efficiency and quality on modeling 3D plasma shape in FFHR by introducing Neural Networks. Kyoto University, Ph.D thesis (2024).
– reference: [8] H. Tanaka, G. Kawamura, S. Masuzaki, M. Kobayashi, T. Akiyama, B.J. Peterson, K. Mukai, R. Sano, S.Y. Dai, R. Sakamoto, T. Morisaki, N. Ohno, LHD Experiment Group: Toroidally symmetric/asymmetric effect on the divertor flux due to neon/nitrogen seeding in LHD, Nuclear Materials and Energy, 12 (2017), 241-246.
– reference: [12] H. Ohtani, Y. Tamura, A. Kageyama, S. Ishiguro: Scientific visualization of plasma simulation results and device data in virtual-reality space, IEEE Transactions on Plasma Science, 39:11 (2011), 2472-2473.
– reference: [20] T. Goto: private communication.
– reference: [21] T. Watanabe, Y. Matsumoto, M. Hishiki, S. Oikawa, H. Hojo, M. Shoji, S. Masuzaki, R. Kumazawa, K. Saito, T. Seki, T. Mutoh, A. Komori and LHD Experimental Group: Magnetic field structure and confinement of energetic particles in the LHD, Nuclear Fusion, 46:2 (2006), 291.
– reference: [10] T. Watanabe, M. Yoshida, S. Masuzaki, M. Emoto and Y. Nagayama: How to use the numerical system. 'LHD LINES OF FORCE.EXE' for the visualization of lines of force in the Large Helical Device (NIFS-TECH-14), NIFS-TECH, National Institute for Fusion Science, Toki, 2006. (in Japanese)
– reference: [14] K. Hu, K. Koyamada, H. Ohtani, T. Goto, J. Miyazawa: Visualization of plasma shape in the LHD-type helical fusion reactor, FFHR, by a deep learning technique, Journal of Visualization, 24:6 (2021), 1141-1154.
– reference: [1] J. Miyazawa, H. Tamura, T. Tanaka, Y. Hamaji, M. Kobayashi, T. Murase, S. Nakagawa, T. Goto, N. Yanagi, A. Sagara, the FFHR Design Group: Improved design of a cartridge-type helical blanket system for the helical fusion reactor FFHR-b1, Plasma and Fusion Research, 14 (2019), 1405163.
– reference: [4] M. Itagaki, T. Maeda, T. Ishimaru, G. Okubo, K. Watanabe, R. Seki, Y. Suzuki: Three-dimensional cauchy-condition surface method to identify the shape of the last closed magnetic surface in the large helical device, Plasma Physics and Controlled Fusion, 53:10 (2011), 105007.
– reference: [7] R. Peikert, F. Sadlo: Flow topology beyond skeletons: Visualization of features in recirculating flow, Topology-Based Methods in Visualization II, Kloster Nimbschen, 2009, 145-160.
– reference: [17] S. P. Hirshman, W.I. van RIJ, P. Merkel: Three-dimensional free boundary calculations using a spectral Green's function method, Computer Physics Communications, 43:1 (1986), 143-155.
– reference: [23] T. Watanabe: Alpha-particle confinement control of the geodesic winding of lhd-type fusion reactors, Plasma and Fusion Research, 8 (2013), 2403072.
– reference: [25] S. Timothy, Y. Hong: A survey of the marching cubes algorithm. Computers & Graphics, 30:5 (2006), 854–879.
– reference: [5] M. Itagaki, K. Ishimaru, Y. Matsumoto,K. Watanabe, R. Seki, Y. Suzuki: Improved three-dimensional ccs method analysis for the reconstruction of the peripheral magnetic field structure in a finite beta helical plasma, Plasma and Fusion Research, 8 (2013), 1402134.
– reference: [11] H. Ohtani, A. Kageyama, Y. Tamura, S. Ishiguro, M. Shohji: Integrated Visualization of Simulation Results and Experimental Devices in Virtual-Reality Space, Plasma and Fusion Research, 6 (2011), 2406027.
– reference: [6] R. Peikert, F. Sadlo: Visualization methods for vortex rings and vortex breakdown bubbles, in Proceedings of the 9th Joint Eurographics/IEEE VGTC conference on Visualization (EuroVis07), Norrköping, 2007, 211-218.
– reference: [19] Y. Matsumoto, S. Oikawa, T. Watanabe.: Field line and particle orbit analysis in the periphery of the Large Helical Device, Journal of the Physical Society of Japan, 71:7 (2002), 1684-1693.
– reference: [2] T. Goto, J. Miyazawa, H. Tamura, T. Tanaka, R. Sakamoto, C. Suzuki, R. Seki, S. Satake, M. Nunami, M. Yokoyama, N. Yanagi, A. Sagara and the FFHR Design Group: Conceptual design of a compact helical fusion reactor FFHR-c1 for the early demonstration of year-long electric power generation, Nuclear Fusion, 59:7 (2019), 076030.
– reference: [18] Project webpage: https://github.com/yasuhiro-suzuki/MGTRC, last accessed 2024/05/14.
– ident: 14
  doi: 10.1007/s12650-021-00768-w
– ident: 18
– ident: 22
  doi: 10.13182/FST10-A10803
– ident: 11
  doi: 10.1585/pfr.6.2406027
– ident: 13
  doi: 10.15748/jasse.7.151
– ident: 23
  doi: 10.1585/pfr.8.2403072
– ident: 3
  doi: 10.1016/j.fusengdes.2012.01.030
– ident: 21
  doi: 10.1088/0029-5515/46/2/013
– ident: 10
– ident: 1
  doi: 10.1585/pfr.14.1405163
– ident: 9
  doi: 10.1016/j.fusengdes.2013.02.124
– ident: 19
  doi: 10.1143/JPSJ.71.1684
– ident: 24
– ident: 17
  doi: 10.1016/0010-4655(86)90058-5
– ident: 7
  doi: 10.1007/978-3-540-88606-8_11
– ident: 20
– ident: 2
  doi: 10.1088/1741-4326/ab15c3
– ident: 8
  doi: 10.1016/j.nme.2016.12.020
– ident: 5
  doi: 10.1585/pfr.8.1402134
– ident: 16
  doi: 10.1063/1.864116
– ident: 25
  doi: 10.1016/j.cag.2006.07.021
– ident: 4
  doi: 10.1088/0741-3335/53/10/105007
– ident: 12
  doi: 10.1109/TPS.2011.2157174
– ident: 15
– ident: 6
SSID ssj0003306235
Score 2.2822578
Snippet The magnetic fields confining plasma in fusion reactors are analyzed using Poincaré plots, which show intersections of magnetic field lines on a poloidal...
SourceID crossref
jstage
SourceType Index Database
Publisher
StartPage 249
SubjectTerms Divertor legs
Magnetic field line tracing
Magnetically confined plasma
Poincaré plots
three-dimensional model
Title Three-dimensional modelling of plasma structure with generating algorithm of optimal starting points for magnetic field line tracing
URI https://www.jstage.jst.go.jp/article/jasse/12/1/12_249/_article/-char/en
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Simulation in Science and Engineering, 2025, Vol.12(1), pp.249-266
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2188-5303
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003306235
  issn: 2188-5303
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELWWwoELAgGiBSofEJcokNhO4hwRoloVAUIsUm-R7TjLVk1StukBznwf38SMnWSz3R5KL9HK66xXfk_jyWTmDSGvIm0jk5o8zEzFsYVZHOpIyzDLwT1RrBSVU-f_9DmdfxfHJ8nJbPZ3krV02ek35ve1dSW3QRXGAFeskv0PZMcfhQH4DPjCFRCG6w0xXlsblijQ78U1fGObsyGTGTzjWgVeIhZfFLig69IJTbtsZ3W2bNcwVuPsFoxH7apHnLLAMjhvV5gjg3mItVo2WO0YuIS3wLmm3VqZ4dy7xrsdcgu-req-QxiGVgZTguH6iRTihlzO8Fw2P1fjSdD-UrUqfeVaezqOf_nR-XZUwXy1bsEPnsYvWHIlfnEMPkGzlaI6-V9XXi9YZxfBKZFhwiO-ZcTZDll7i-wVUfvDnfkWLzvnRpIJ6RoWXFxYDA-Pd21JcfdAF25aEbMixgvMLYZvsFQOmHmH3GVZmmJHjY9f5Rjz4_B8xnjSS73imm-nK265RvdOAe4hs9A5O4uH5EGPI33n13tEZrZ5TP7s0I2OdKNtRT3d6Eg3inSjG7rRkW44u6cbHehGPd0oYEMHulFHN4p0oz3dnpDF0YfF-3nYN_EIDWeyCwVXaVWyNJcR17EsDfjc0lhegfXIrY0T5Rre54ZX2iY2T1SkbKXBT2csKzV_SvaatrHPCC2FMqJUWay1EXGVKqlQa0onwmpR2nifvB62rzj3Ui0FPuLiPm8gg33eJ9Jv7jjtxsAe3P7W5-T-hv4vyB6AYV-CQ9vpQ8eSf-Nnt3k
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three-dimensional+modelling+of+plasma+structure+with+generating+algorithm+of+optimal+starting+points+for+magnetic+field+line+tracing&rft.jtitle=Journal+of+Advanced+Simulation+in+Science+and+Engineering&rft.au=Hu%2C+Kunqi&rft.au=Koyamada%2C+Koji&rft.au=Ohtani%2C+Hiroaki&rft.date=2025-01-01&rft.pub=Japan+Society+for+Simulation+Technology&rft.eissn=2188-5303&rft.volume=12&rft.issue=1&rft.spage=249&rft.epage=266&rft_id=info:doi/10.15748%2Fjasse.12.249&rft.externalDocID=article_jasse_12_1_12_249_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2188-5303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2188-5303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2188-5303&client=summon