Optimal design and analysis of mechanical draft cooling tower using improved Jaya algorithm

•Improved Jaya algorithm is proposed for design of mechanical draft cooling tower.•Results of the proposed algorithm are comparatively much better.•The algorithm's performance is superior in terms of time and convergence. A cooling tower is an imperative component of industrial plants. The mini...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of refrigeration Vol. 82; pp. 312 - 324
Main Authors Rao, R.V., More, K.C.
Format Journal Article
LanguageEnglish
Published Paris Elsevier Ltd 01.10.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0140-7007
1879-2081
DOI10.1016/j.ijrefrig.2017.06.024

Cover

Abstract •Improved Jaya algorithm is proposed for design of mechanical draft cooling tower.•Results of the proposed algorithm are comparatively much better.•The algorithm's performance is superior in terms of time and convergence. A cooling tower is an imperative component of industrial plants. The minimization of energy related expenses is critical for conservation of resources and energy savings. Hence, the present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of cooling tower from economic facets. In this work, six different examples are considered in the design optimization of mechanical draft cooling tower. Various researchers have attempted the same mathematical models by using different methods like Merkel method, Poppe method and artificial bee colony (ABC) algorithm. The results achieved by using the proposed self-adaptive Jaya algorithm are compared with the results achieved by using the Merkel method, Poppe method, ABC algorithm and basic Jaya algorithm. The proposed self-adaptive Jaya algorithm determines the population size automatically and the user need not tune the population size. The proposed self-adaptive Jaya algorithm is proved better as compared to the other optimization methods with respect to achieving the optimal value of the objective function at less computational effort.
AbstractList •Improved Jaya algorithm is proposed for design of mechanical draft cooling tower.•Results of the proposed algorithm are comparatively much better.•The algorithm's performance is superior in terms of time and convergence. A cooling tower is an imperative component of industrial plants. The minimization of energy related expenses is critical for conservation of resources and energy savings. Hence, the present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of cooling tower from economic facets. In this work, six different examples are considered in the design optimization of mechanical draft cooling tower. Various researchers have attempted the same mathematical models by using different methods like Merkel method, Poppe method and artificial bee colony (ABC) algorithm. The results achieved by using the proposed self-adaptive Jaya algorithm are compared with the results achieved by using the Merkel method, Poppe method, ABC algorithm and basic Jaya algorithm. The proposed self-adaptive Jaya algorithm determines the population size automatically and the user need not tune the population size. The proposed self-adaptive Jaya algorithm is proved better as compared to the other optimization methods with respect to achieving the optimal value of the objective function at less computational effort.
A cooling tower is an imperative component of industrial plants. The minimization of energy related expenses is critical for conservation of resources and energy savings. Hence, the present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of cooling tower from economic facets. In this work, six different examples are considered in the design optimization of the mechanical draft cooling tower. Various researchers have attempted the same mathematical models by using different methods like Merkel method, Poppe method and artificial bee colony (ABC) algorithm. The results achieved by using the proposed self-adaptive Jaya algorithm are compared with the results achieved by using the Merkel method, Poppe method, ABC algorithm and basic Jaya algorithm. The proposed self-adaptive Jaya algorithm determines the population size automatically and the user need not tune the population size. The proposed self-adaptive Jaya algorithm is proved better as compared to the other optimization methods with respect to achieving the optimal value of the objective function at less computational effort.
Author More, K.C.
Rao, R.V.
Author_xml – sequence: 1
  givenname: R.V.
  surname: Rao
  fullname: Rao, R.V.
  email: ravipudirao@gmail.com
  organization: Dept. of Mech. Engg., BITS Pilani, Dubai Campus, Dubai 345055, United Arab Emirates
– sequence: 2
  givenname: K.C.
  orcidid: 0000-0002-8127-6695
  surname: More
  fullname: More, K.C.
  organization: Dept. of Mech. Engg., S.V. National Institute of Technology, Surat 395007, India
BookMark eNqFkMFqGzEQhkVJoI6TVyiCnnc70mq1K-ihJTRNisGX5pSDUKVZW8t65Upyit8-Mk4uveQwzBz-b5j5rsjFHGYk5BODmgGTX8bajxGH6Dc1B9bVIGvg4gNZsL5TFYeeXZAFMAFVB9B9JFcpjVCC0PYL8rTeZ78zE3WY_GamZnalzHRMPtEw0B3arZm9PSWiGTK1IUx-3tAc_mGkh3Sa_W4fwzM6-sscDTXTJkSft7trcjmYKeHNa1-Sx7sfv2_vq9X658Pt91VlG97nqkHXO9WBAWOGRv0RYBwXVnADUvUtWtkKKVTXN6yzrcLWonVSSaca27iCLMnn895yxd8DpqzHcIjliaQ5CAm8U4KX1NdzysaQUhGmrc8m-zDnaPykGeiTTj3qN536pFOD1EVnweV_-D4WcfH4PvjtDGJR8Owx6mQ9zhadj2izdsG_t-IF4bSXCA
CitedBy_id crossref_primary_10_1016_j_egyr_2022_09_028
crossref_primary_10_1088_1755_1315_170_3_032020
crossref_primary_10_1016_j_icheatmasstransfer_2023_106653
crossref_primary_10_1155_2018_3198184
crossref_primary_10_1088_1755_1315_227_4_042052
crossref_primary_10_1007_s00231_023_03342_2
crossref_primary_10_1007_s00366_019_00706_3
crossref_primary_10_1007_s00521_018_3552_8
crossref_primary_10_1016_j_ijrefrig_2019_11_019
crossref_primary_10_20914_2310_1202_2024_1_31_37
crossref_primary_10_1007_s13369_021_05688_3
crossref_primary_10_3390_e20040254
crossref_primary_10_3390_en13236174
crossref_primary_10_1002_er_4263
crossref_primary_10_1016_j_applthermaleng_2018_08_076
crossref_primary_10_1016_j_asoc_2018_07_036
crossref_primary_10_1016_j_ijthermalsci_2022_108007
crossref_primary_10_3390_math10020183
crossref_primary_10_1007_s00500_023_09393_1
crossref_primary_10_1108_COMPEL_08_2019_0319
crossref_primary_10_3390_en14175294
crossref_primary_10_1016_j_applthermaleng_2018_07_057
crossref_primary_10_1007_s00366_020_00946_8
crossref_primary_10_3233_JIFS_213471
crossref_primary_10_1016_j_applthermaleng_2019_114202
crossref_primary_10_1016_j_jobe_2024_110947
crossref_primary_10_1007_s00500_020_04965_x
crossref_primary_10_1016_j_tsep_2023_102178
crossref_primary_10_1007_s11831_021_09585_8
crossref_primary_10_1155_2021_5595180
crossref_primary_10_1016_j_applthermaleng_2022_119818
crossref_primary_10_1016_j_applthermaleng_2019_01_097
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122589
crossref_primary_10_1016_j_ijrefrig_2017_11_031
crossref_primary_10_1016_j_aeue_2018_05_022
Cites_doi 10.1016/j.enbuild.2015.04.034
10.1063/1.4987149
10.1016/j.enconman.2011.02.010
10.1016/j.enconman.2015.11.006
10.1016/j.cherd.2009.09.016
10.1016/j.applthermaleng.2016.03.030
10.1007/s00500-005-0537-1
10.1016/S0196-8904(00)00148-5
10.1016/j.compchemeng.2009.07.006
10.1016/j.ijrefrig.2010.07.026
10.1016/j.enconman.2013.08.053
10.3923/jas.2009.561.566
10.1007/s10898-007-9149-x
10.1016/j.applthermaleng.2011.07.029
10.1016/0045-7949(75)90039-5
10.1016/j.applthermaleng.2015.11.063
10.1016/j.enconman.2017.02.068
10.1016/j.applthermaleng.2010.05.021
10.1016/S1359-4311(97)00020-3
10.1080/03052150410001696179
10.1007/s001580050127
10.1016/j.applthermaleng.2016.04.135
10.1016/j.enconman.2015.12.080
10.1007/BF00933410
10.1016/j.energy.2016.08.069
10.1016/j.ijheatmasstransfer.2015.02.048
10.1016/j.applthermaleng.2016.12.002
ContentType Journal Article
Copyright 2017 Elsevier Ltd and IIR
Copyright Elsevier Science Ltd. Oct 2017
Copyright_xml – notice: 2017 Elsevier Ltd and IIR
– notice: Copyright Elsevier Science Ltd. Oct 2017
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1016/j.ijrefrig.2017.06.024
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Conception optimale et analyse d’une tour de refroidissement à convection mécanique grâce à un algorithme Jaya amélioré
EISSN 1879-2081
EndPage 324
ExternalDocumentID 10_1016_j_ijrefrig_2017_06_024
S014070071730258X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSA
SST
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AGCQF
AGRNS
FR3
SSH
ID FETCH-LOGICAL-c328t-3ed8d970a0aaf39b40ad24c42a06985ec65464978317c59e5cecd696d93c3daf3
IEDL.DBID .~1
ISSN 0140-7007
IngestDate Mon Jul 14 08:51:20 EDT 2025
Wed Oct 01 03:27:25 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Fri Feb 23 02:18:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Méthode Merkel
Algorithme de colonie d'abeille artificielle
Algorithme Jaya auto-adaptif
Jaya algorithm
Optimisation du coût
Algorithme Jaya
Poppe method
Self-adaptive Jaya algorithm
Tour de refroidissement
Artificial bee colony algorithm
Méthode Poppe
Merkel method
Cost optimization
Cooling tower
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-3ed8d970a0aaf39b40ad24c42a06985ec65464978317c59e5cecd696d93c3daf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8127-6695
PQID 2046027942
PQPubID 2047558
PageCount 13
ParticipantIDs proquest_journals_2046027942
crossref_citationtrail_10_1016_j_ijrefrig_2017_06_024
crossref_primary_10_1016_j_ijrefrig_2017_06_024
elsevier_sciencedirect_doi_10_1016_j_ijrefrig_2017_06_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-01
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Paris
PublicationPlace_xml – name: Paris
PublicationTitle International journal of refrigeration
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Kloppers, Kröger (bib0060) 2004; 36
Singh, Das (bib0135) 2016; 111
Zou, Guan, Gurgenci (bib0165) 2013; 76
Ponce-Ortega, Serna-Gonzáleza, Jiménez-Gutiérrezb (bib0090) 2010; 34
Karaboga, Basturk (bib0055) 2003; 39
Kröger (bib0065) 1998
Rao, More, Coelho, Mariani (bib9005) 2017; 9
Pieczara (bib0085) 2000; 19
Cui, Zhou, Liu (bib0030) 2015; 99
Hongfang, Haijun, Yuqian, Jianan (bib0045) 2016; 108
Rao (bib0100) 2016; 7
Singla, Singh, Das (bib0150) 2016; 96
Rao, More (bib9000) 2017; 140
Howell (bib0050) 1998
Chang, Fui, Bin, Azizan (bib0020) 2013; 6
Ecker, Wiebking (bib0035) 1978; 26
Singh, Das (bib0140) 2016; 105
Poppe, Rögener (bib0095) 1991
Atai, Panjeshahi, Gharaie (bib0010) 2009; 9
Singh, Das (bib0145) 2017; 114
Rao, Patel (bib0105) 2011; 52
Teo (bib0160) 2006; 10
Soylemez (bib0155) 2001; 42
Mondal, Mukherjee, Kundu, Wongwises (bib0075) 2015; 85
Reinschmidp, Narayanan (bib0115) 1975; 5
Serna-Gonzáleza, Ponce-Ortegaa, Jiménez-Gutiérrez (bib0130) 2010; 88
Eusiel, Medardo, José, Miguel (bib0040) 2011; 31
Bornman, Dirker, Arndt, Meyer (bib0015) 2016; 114
Conradie, Buyst, Kroger (bib0025) 1998; 18
Rao, More, Taler, Oclon (bib0110) 2016; 103
Omid, Shahram, Iraj (bib0080) 2017
Merkel (bib0070) 1925; 70
Rubio-Castro, Serna-González, Ponce-Ortega (bib0120) 2011; 30
Sayyaadi, Nejatolahi (bib0125) 2011; 34
Rao (10.1016/j.ijrefrig.2017.06.024_bib9005) 2017; 9
Eusiel (10.1016/j.ijrefrig.2017.06.024_bib0040) 2011; 31
Atai (10.1016/j.ijrefrig.2017.06.024_bib0010) 2009; 9
Cui (10.1016/j.ijrefrig.2017.06.024_bib0030) 2015; 99
Singh (10.1016/j.ijrefrig.2017.06.024_bib0140) 2016; 105
Rubio-Castro (10.1016/j.ijrefrig.2017.06.024_bib0120) 2011; 30
Sayyaadi (10.1016/j.ijrefrig.2017.06.024_bib0125) 2011; 34
Chang (10.1016/j.ijrefrig.2017.06.024_bib0020) 2013; 6
Conradie (10.1016/j.ijrefrig.2017.06.024_bib0025) 1998; 18
Rao (10.1016/j.ijrefrig.2017.06.024_bib0100) 2016; 7
Pieczara (10.1016/j.ijrefrig.2017.06.024_bib0085) 2000; 19
Kloppers (10.1016/j.ijrefrig.2017.06.024_bib0060) 2004; 36
Hongfang (10.1016/j.ijrefrig.2017.06.024_bib0045) 2016; 108
Mondal (10.1016/j.ijrefrig.2017.06.024_bib0075) 2015; 85
Singh (10.1016/j.ijrefrig.2017.06.024_bib0135) 2016; 111
Ponce-Ortega (10.1016/j.ijrefrig.2017.06.024_bib0090) 2010; 34
Zou (10.1016/j.ijrefrig.2017.06.024_bib0165) 2013; 76
Rao (10.1016/j.ijrefrig.2017.06.024_bib0110) 2016; 103
Soylemez (10.1016/j.ijrefrig.2017.06.024_bib0155) 2001; 42
Bornman (10.1016/j.ijrefrig.2017.06.024_bib0015) 2016; 114
Howell (10.1016/j.ijrefrig.2017.06.024_bib0050) 1998
Teo (10.1016/j.ijrefrig.2017.06.024_bib0160) 2006; 10
Poppe (10.1016/j.ijrefrig.2017.06.024_bib0095) 1991
Reinschmidp (10.1016/j.ijrefrig.2017.06.024_bib0115) 1975; 5
Kröger (10.1016/j.ijrefrig.2017.06.024_bib0065) 1998
Karaboga (10.1016/j.ijrefrig.2017.06.024_bib0055) 2003; 39
Merkel (10.1016/j.ijrefrig.2017.06.024_bib0070) 1925; 70
Rao (10.1016/j.ijrefrig.2017.06.024_bib0105) 2011; 52
Omid (10.1016/j.ijrefrig.2017.06.024_bib0080)
Rao (10.1016/j.ijrefrig.2017.06.024_bib9000) 2017; 140
Serna-Gonzáleza (10.1016/j.ijrefrig.2017.06.024_bib0130) 2010; 88
Ecker (10.1016/j.ijrefrig.2017.06.024_bib0035) 1978; 26
Singh (10.1016/j.ijrefrig.2017.06.024_bib0145) 2017; 114
Singla (10.1016/j.ijrefrig.2017.06.024_bib0150) 2016; 96
References_xml – year: 2017
  ident: bib0080
  article-title: Energic, exergic, exergo-economic investigation and optimization of auxiliary cooling system (ACS) equipped with compression refrigerating system (CRS)
– volume: 105
  start-page: 519
  year: 2016
  end-page: 530
  ident: bib0140
  article-title: Feedback model to predict parameters for controlling the performance of a mechanical draft cooling tower
  publication-title: Appl. Therm. Eng
– volume: 31
  start-page: 3615
  year: 2011
  end-page: 3628
  ident: bib0040
  article-title: Optimization of mechanical draft counter flow wet-cooling towers using a rigorous model
  publication-title: Appl. Therm. Eng
– volume: 76
  start-page: 945
  year: 2013
  end-page: 955
  ident: bib0165
  article-title: Optimization design of solar enhanced natural draft dry cooling tower
  publication-title: Energy Convers. Manag
– volume: 26
  start-page: 310
  year: 1978
  end-page: 320
  ident: bib0035
  article-title: Optimal design of a dry-type natural-draft cooling tower by geometric programming
  publication-title: J. Optim. Theory Appl
– volume: 34
  start-page: 177
  year: 2010
  end-page: 195
  ident: bib0090
  article-title: Optimization model for re-circulating cooling water systems
  publication-title: Comput. Chem. Eng
– year: 1998
  ident: bib0065
  article-title: Air-cooled heat exchanger and cooling tower
– volume: 9
  start-page: 561
  year: 2009
  end-page: 566
  ident: bib0010
  article-title: A new algorithm for design of mechanical draft wet cooling tower
  publication-title: J. Appl. Sci
– volume: 99
  start-page: 253
  year: 2015
  end-page: 262
  ident: bib0030
  article-title: Optimization of design and operation parameters for hybrid ground-source heat pump assisted with cooling tower
  publication-title: Energy Build
– volume: 140
  start-page: 24
  year: 2017
  end-page: 35
  ident: bib9000
  article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm
  publication-title: Energy Convers. Manag
– volume: 19
  start-page: 311
  year: 2000
  end-page: 316
  ident: bib0085
  article-title: Optimization of cooling tower shells using a simple genetic algorithm
  publication-title: Struct. Multidiscipl. Optim
– volume: 111
  start-page: 417
  year: 2016
  end-page: 430
  ident: bib0135
  article-title: An experimental and multi-objective optimization study of a forced draft cooling tower with different fills
  publication-title: Energy Convers. Manag
– volume: 36
  start-page: 575
  year: 2004
  end-page: 584
  ident: bib0060
  article-title: Cost optimization of cooling tower geometry
  publication-title: Eng. Optim
– volume: 70
  start-page: 123
  year: 1925
  end-page: 128
  ident: bib0070
  article-title: Verdunstungskühlung
  publication-title: VDI-Zeitchrift
– volume: 7
  start-page: 19
  year: 2016
  end-page: 34
  ident: bib0100
  article-title: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: I. J. Ind. Eng. Comput
– volume: 52
  start-page: 2611
  year: 2011
  end-page: 2622
  ident: bib0105
  article-title: Optimization of mechanical draft counter flow wet cooling tower using artificial bee colony algorithm
  publication-title: Energy Convers. Manag
– volume: 5
  start-page: 321
  year: 1975
  end-page: 325
  ident: bib0115
  article-title: The optimum shape of cooling towers
  publication-title: Comput. Struct
– volume: 85
  start-page: 1049
  year: 2015
  end-page: 1057
  ident: bib0075
  article-title: Investigation of the crosswind-influenced thermal performance of a natural draft counter flow cooling tower
  publication-title: Int. J. Heat Mass Transf
– volume: 18
  start-page: 25
  year: 1998
  end-page: 45
  ident: bib0025
  article-title: Performance optimization of dry-cooling systems for power plants through SQP methods
  publication-title: Appl. Therm. Eng
– volume: 39
  start-page: 459
  year: 2003
  end-page: 471
  ident: bib0055
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim
– volume: 34
  start-page: 243
  year: 2011
  end-page: 256
  ident: bib0125
  article-title: Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system
  publication-title: Int. J. Refrigeration
– volume: 96
  start-page: 240
  year: 2016
  end-page: 249
  ident: bib0150
  article-title: Tower characteristics correlation and parameter retrieval in wet cooling tower with expanded wire mesh packing
  publication-title: Appl. Therm. Eng
– volume: 9
  start-page: 033703
  year: 2017
  ident: bib9005
  article-title: Multi-objective optimization of the Stirling heat engine through self-adaptive Jaya algorithm
  publication-title: J. Renew. Sustain. Energy
– volume: 108
  start-page: 43
  year: 2016
  end-page: 49
  ident: bib0045
  article-title: A numerical study on the mechanism and optimization of wind-break structures for indirect air-cooling towers
  publication-title: Energy Convers. Manag
– volume: 114
  start-page: 573
  year: 2017
  end-page: 582
  ident: bib0145
  article-title: An improved constrained inverse optimization method for mechanical draft cooling towers
  publication-title: Appl. Therm. Eng
– volume: 10
  start-page: 673
  year: 2006
  end-page: 686
  ident: bib0160
  article-title: Exploring dynamic self-adaptive populations in differential evolution
  publication-title: Soft. Comput
– volume: 88
  start-page: 614
  year: 2010
  end-page: 625
  ident: bib0130
  article-title: MINLP optimization of mechanical draft counter flow wet-cooling towers
  publication-title: Chem. Eng. Res. Des
– start-page: 1
  year: 1991
  end-page: 15
  ident: bib0095
  article-title: Berechnung von Rückkühlwerken
– volume: 30
  start-page: 2116
  year: 2011
  end-page: 2126
  ident: bib0120
  article-title: Optimal design of effluent-cooling systems using amathematical programming model
  publication-title: Appl. Therm. Eng
– volume: 6
  start-page: 337
  year: 2013
  end-page: 355
  ident: bib0020
  article-title: Comparison of air-cooled chiller, water-cooled chiller and hybrid evaporative air-cooled chiller in Malaysia – a review
  publication-title: Int. J. Arts Sci
– volume: 103
  start-page: 572
  year: 2016
  end-page: 582
  ident: bib0110
  article-title: Dimensional optimization of a micro-channel heat sink using Jaya algorithm
  publication-title: Appl. Therm. Eng
– volume: 114
  start-page: 995
  year: 2016
  end-page: 1006
  ident: bib0015
  article-title: Operational energy minimisation for forced draft, direct-contact bulk air cooling tower through a combination of forward and first-principle modelling, coupled with an optimisation platform
  publication-title: Energy
– year: 1998
  ident: bib0050
  article-title: Chilled water plant optimization based on part-load cooling tower performance
– volume: 42
  start-page: 783
  year: 2001
  end-page: 789
  ident: bib0155
  article-title: On the optimum sizing of cooling towers
  publication-title: Energy Convers. Manag
– volume: 99
  start-page: 253
  year: 2015
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0030
  article-title: Optimization of design and operation parameters for hybrid ground-source heat pump assisted with cooling tower
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.04.034
– volume: 9
  start-page: 033703
  year: 2017
  ident: 10.1016/j.ijrefrig.2017.06.024_bib9005
  article-title: Multi-objective optimization of the Stirling heat engine through self-adaptive Jaya algorithm
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4987149
– year: 1998
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0050
– volume: 52
  start-page: 2611
  year: 2011
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0105
  article-title: Optimization of mechanical draft counter flow wet cooling tower using artificial bee colony algorithm
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2011.02.010
– volume: 108
  start-page: 43
  year: 2016
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0045
  article-title: A numerical study on the mechanism and optimization of wind-break structures for indirect air-cooling towers
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2015.11.006
– volume: 88
  start-page: 614
  year: 2010
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0130
  article-title: MINLP optimization of mechanical draft counter flow wet-cooling towers
  publication-title: Chem. Eng. Res. Des
  doi: 10.1016/j.cherd.2009.09.016
– volume: 105
  start-page: 519
  year: 2016
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0140
  article-title: Feedback model to predict parameters for controlling the performance of a mechanical draft cooling tower
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2016.03.030
– volume: 70
  start-page: 123
  year: 1925
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0070
  article-title: Verdunstungskühlung
  publication-title: VDI-Zeitchrift
– volume: 10
  start-page: 673
  year: 2006
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0160
  article-title: Exploring dynamic self-adaptive populations in differential evolution
  publication-title: Soft. Comput
  doi: 10.1007/s00500-005-0537-1
– volume: 42
  start-page: 783
  year: 2001
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0155
  article-title: On the optimum sizing of cooling towers
  publication-title: Energy Convers. Manag
  doi: 10.1016/S0196-8904(00)00148-5
– start-page: 1
  year: 1991
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0095
– volume: 34
  start-page: 177
  year: 2010
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0090
  article-title: Optimization model for re-circulating cooling water systems
  publication-title: Comput. Chem. Eng
  doi: 10.1016/j.compchemeng.2009.07.006
– volume: 7
  start-page: 19
  issue: 1
  year: 2016
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0100
  article-title: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems
  publication-title: I. J. Ind. Eng. Comput
– volume: 34
  start-page: 243
  issue: 1
  year: 2011
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0125
  article-title: Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system
  publication-title: Int. J. Refrigeration
  doi: 10.1016/j.ijrefrig.2010.07.026
– volume: 76
  start-page: 945
  year: 2013
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0165
  article-title: Optimization design of solar enhanced natural draft dry cooling tower
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2013.08.053
– year: 1998
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0065
– volume: 9
  start-page: 561
  issue: 3
  year: 2009
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0010
  article-title: A new algorithm for design of mechanical draft wet cooling tower
  publication-title: J. Appl. Sci
  doi: 10.3923/jas.2009.561.566
– volume: 39
  start-page: 459
  year: 2003
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0055
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim
  doi: 10.1007/s10898-007-9149-x
– ident: 10.1016/j.ijrefrig.2017.06.024_bib0080
– volume: 31
  start-page: 3615
  year: 2011
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0040
  article-title: Optimization of mechanical draft counter flow wet-cooling towers using a rigorous model
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2011.07.029
– volume: 5
  start-page: 321
  year: 1975
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0115
  article-title: The optimum shape of cooling towers
  publication-title: Comput. Struct
  doi: 10.1016/0045-7949(75)90039-5
– volume: 6
  start-page: 337
  issue: 1
  year: 2013
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0020
  article-title: Comparison of air-cooled chiller, water-cooled chiller and hybrid evaporative air-cooled chiller in Malaysia – a review
  publication-title: Int. J. Arts Sci
– volume: 96
  start-page: 240
  year: 2016
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0150
  article-title: Tower characteristics correlation and parameter retrieval in wet cooling tower with expanded wire mesh packing
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2015.11.063
– volume: 140
  start-page: 24
  year: 2017
  ident: 10.1016/j.ijrefrig.2017.06.024_bib9000
  article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2017.02.068
– volume: 30
  start-page: 2116
  year: 2011
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0120
  article-title: Optimal design of effluent-cooling systems using amathematical programming model
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2010.05.021
– volume: 18
  start-page: 25
  issue: 1–2
  year: 1998
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0025
  article-title: Performance optimization of dry-cooling systems for power plants through SQP methods
  publication-title: Appl. Therm. Eng
  doi: 10.1016/S1359-4311(97)00020-3
– volume: 36
  start-page: 575
  issue: 5
  year: 2004
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0060
  article-title: Cost optimization of cooling tower geometry
  publication-title: Eng. Optim
  doi: 10.1080/03052150410001696179
– volume: 19
  start-page: 311
  year: 2000
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0085
  article-title: Optimization of cooling tower shells using a simple genetic algorithm
  publication-title: Struct. Multidiscipl. Optim
  doi: 10.1007/s001580050127
– volume: 103
  start-page: 572
  year: 2016
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0110
  article-title: Dimensional optimization of a micro-channel heat sink using Jaya algorithm
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2016.04.135
– volume: 111
  start-page: 417
  year: 2016
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0135
  article-title: An experimental and multi-objective optimization study of a forced draft cooling tower with different fills
  publication-title: Energy Convers. Manag
  doi: 10.1016/j.enconman.2015.12.080
– volume: 26
  start-page: 310
  issue: 2
  year: 1978
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0035
  article-title: Optimal design of a dry-type natural-draft cooling tower by geometric programming
  publication-title: J. Optim. Theory Appl
  doi: 10.1007/BF00933410
– volume: 114
  start-page: 995
  year: 2016
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0015
  article-title: Operational energy minimisation for forced draft, direct-contact bulk air cooling tower through a combination of forward and first-principle modelling, coupled with an optimisation platform
  publication-title: Energy
  doi: 10.1016/j.energy.2016.08.069
– volume: 85
  start-page: 1049
  year: 2015
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0075
  article-title: Investigation of the crosswind-influenced thermal performance of a natural draft counter flow cooling tower
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.02.048
– volume: 114
  start-page: 573
  year: 2017
  ident: 10.1016/j.ijrefrig.2017.06.024_bib0145
  article-title: An improved constrained inverse optimization method for mechanical draft cooling towers
  publication-title: Appl. Therm. Eng
  doi: 10.1016/j.applthermaleng.2016.12.002
SSID ssj0017058
Score 2.3557959
Snippet •Improved Jaya algorithm is proposed for design of mechanical draft cooling tower.•Results of the proposed algorithm are comparatively much better.•The...
A cooling tower is an imperative component of industrial plants. The minimization of energy related expenses is critical for conservation of resources and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 312
SubjectTerms Adaptive algorithms
Algorithme de colonie d'abeille artificielle
Algorithme Jaya
Algorithme Jaya auto-adaptif
Artificial bee colony algorithm
Computational mathematics
Cooling
Cooling tower
Cooling towers
Cost optimization
Costs
Design optimization
Energy conservation
Industrial engineering
Industrial plants
Jaya algorithm
Manufacturing engineering
Mathematical models
Merkel method
Méthode Merkel
Méthode Poppe
Optimisation du coût
Optimization algorithms
Poppe method
Population density
Resource conservation
Self-adaptive Jaya algorithm
Swarm intelligence
Tour de refroidissement
Title Optimal design and analysis of mechanical draft cooling tower using improved Jaya algorithm
URI https://dx.doi.org/10.1016/j.ijrefrig.2017.06.024
https://www.proquest.com/docview/2046027942
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: AKRWK
  dateStart: 19780501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCQR5YQ4rtPDwiRFVAwEKlSgyRYzslVZtWJQws_HbunAQVJNSBIVIevii6s-8Rf3dHyDlXXFrGhSdi5lqYGU-mcAbxUKjBfvIgxR3dh8dwMBR3o2DUItdNLgzCKmvdX-l0p63rO37NTX-R576DJUXVNjIY7niEGewiwi4GF5_fMA-sFhM3MEYcvZIlPLnIJ2CGIApGiFfk6ngy8ZeB-qWqnf3p75Dt2nGkV9W37ZKWLfbI1ko5wX3y8gTrfwaDjINlUFUYOKqiI3Se0ZnFNF-UCjVLlZVUz7Flz5i6VmkUIfBjmru_DNbQO_WhqJqO58u8fJ0dkGH_5vl64NXNEzzNWVx63JrYyKinekplXKaipwwTWjDVC2UcWI1ZTNheDhwIHUgbaKtNKEMjueYGSA5Ju5gX9ohQ8Gw5yy5tgPGUCFMVsZTHMCoWKsys6ZCg4Vii68ri2OBimjQQsknScDpBTieIpWOiQ_xvukVVW2MthWwEkvyYJQkYgLW03UaCSb1O3-C5CCEwl4Id_-PVJ2QTryqMX5e0y-W7PQVfpUzP3GQ8IxtXt_eDxy_57Om0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKDMCAeIpHAQ-saYvtPDyiiqq8F5AqMViO7ZRUtEUlDCz8du6cBAES6sAQKYp9UXTn3MP-7o6QE665dIyLQCTMtzCzgUzhDuKhyID95GGKJ7o3t1H_QVwOwkGDdOtcGIRVVrq_1OleW1dP2hU32y953vawpLg8RgbDnQwWyJIIWYwRWOvjC-eB5WKSGseI07-lCY9a-QjsEITBiPGKfSFPJv6yUL90tTdAvXWyVnmO9Kz8uA3ScJNNsvqtnuAWebwDBTCGSdbjMqieWLjKqiN0mtGxwzxfFAu1M50V1EyxZ8-Q-l5pFDHwQ5r7bQZn6aV-11Q_D6ezvHgab5OH3vl9tx9U3RMCw1lSBNzZxMq4oztaZ1ymoqMtE0Yw3YlkEjqDaUzYXw48CBNKFxpnbCQjK7nhFkh2yOJkOnG7hIJry1l26kIMqESU6pilPIFZidBR5uweCWuOKVOVFscOF8-qxpCNVM1phZxWCKZjYo-0v-heyuIacylkLRD1Y5kosABzaZu1BFX1o77CuIggMpeC7f_j1cdkuX9_c62uL26vDsgKjpSAvyZZLGZv7hAclyI98gvzE28860k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+and+analysis+of+mechanical+draft+cooling+tower+using+improved+Jaya+algorithm&rft.jtitle=International+journal+of+refrigeration&rft.au=Rao%2C+R.V.&rft.au=More%2C+K.C.&rft.date=2017-10-01&rft.issn=0140-7007&rft.volume=82&rft.spage=312&rft.epage=324&rft_id=info:doi/10.1016%2Fj.ijrefrig.2017.06.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrefrig_2017_06_024
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7007&client=summon