Optimal design and analysis of mechanical draft cooling tower using improved Jaya algorithm
•Improved Jaya algorithm is proposed for design of mechanical draft cooling tower.•Results of the proposed algorithm are comparatively much better.•The algorithm's performance is superior in terms of time and convergence. A cooling tower is an imperative component of industrial plants. The mini...
Saved in:
| Published in | International journal of refrigeration Vol. 82; pp. 312 - 324 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Paris
Elsevier Ltd
01.10.2017
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-7007 1879-2081 |
| DOI | 10.1016/j.ijrefrig.2017.06.024 |
Cover
| Abstract | •Improved Jaya algorithm is proposed for design of mechanical draft cooling tower.•Results of the proposed algorithm are comparatively much better.•The algorithm's performance is superior in terms of time and convergence.
A cooling tower is an imperative component of industrial plants. The minimization of energy related expenses is critical for conservation of resources and energy savings. Hence, the present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of cooling tower from economic facets. In this work, six different examples are considered in the design optimization of mechanical draft cooling tower. Various researchers have attempted the same mathematical models by using different methods like Merkel method, Poppe method and artificial bee colony (ABC) algorithm. The results achieved by using the proposed self-adaptive Jaya algorithm are compared with the results achieved by using the Merkel method, Poppe method, ABC algorithm and basic Jaya algorithm. The proposed self-adaptive Jaya algorithm determines the population size automatically and the user need not tune the population size. The proposed self-adaptive Jaya algorithm is proved better as compared to the other optimization methods with respect to achieving the optimal value of the objective function at less computational effort. |
|---|---|
| AbstractList | •Improved Jaya algorithm is proposed for design of mechanical draft cooling tower.•Results of the proposed algorithm are comparatively much better.•The algorithm's performance is superior in terms of time and convergence.
A cooling tower is an imperative component of industrial plants. The minimization of energy related expenses is critical for conservation of resources and energy savings. Hence, the present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of cooling tower from economic facets. In this work, six different examples are considered in the design optimization of mechanical draft cooling tower. Various researchers have attempted the same mathematical models by using different methods like Merkel method, Poppe method and artificial bee colony (ABC) algorithm. The results achieved by using the proposed self-adaptive Jaya algorithm are compared with the results achieved by using the Merkel method, Poppe method, ABC algorithm and basic Jaya algorithm. The proposed self-adaptive Jaya algorithm determines the population size automatically and the user need not tune the population size. The proposed self-adaptive Jaya algorithm is proved better as compared to the other optimization methods with respect to achieving the optimal value of the objective function at less computational effort. A cooling tower is an imperative component of industrial plants. The minimization of energy related expenses is critical for conservation of resources and energy savings. Hence, the present study explores the use of an improved Jaya algorithm called self-adaptive Jaya algorithm for optimal design of cooling tower from economic facets. In this work, six different examples are considered in the design optimization of the mechanical draft cooling tower. Various researchers have attempted the same mathematical models by using different methods like Merkel method, Poppe method and artificial bee colony (ABC) algorithm. The results achieved by using the proposed self-adaptive Jaya algorithm are compared with the results achieved by using the Merkel method, Poppe method, ABC algorithm and basic Jaya algorithm. The proposed self-adaptive Jaya algorithm determines the population size automatically and the user need not tune the population size. The proposed self-adaptive Jaya algorithm is proved better as compared to the other optimization methods with respect to achieving the optimal value of the objective function at less computational effort. |
| Author | More, K.C. Rao, R.V. |
| Author_xml | – sequence: 1 givenname: R.V. surname: Rao fullname: Rao, R.V. email: ravipudirao@gmail.com organization: Dept. of Mech. Engg., BITS Pilani, Dubai Campus, Dubai 345055, United Arab Emirates – sequence: 2 givenname: K.C. orcidid: 0000-0002-8127-6695 surname: More fullname: More, K.C. organization: Dept. of Mech. Engg., S.V. National Institute of Technology, Surat 395007, India |
| BookMark | eNqFkMFqGzEQhkVJoI6TVyiCnnc70mq1K-ihJTRNisGX5pSDUKVZW8t65Upyit8-Mk4uveQwzBz-b5j5rsjFHGYk5BODmgGTX8bajxGH6Dc1B9bVIGvg4gNZsL5TFYeeXZAFMAFVB9B9JFcpjVCC0PYL8rTeZ78zE3WY_GamZnalzHRMPtEw0B3arZm9PSWiGTK1IUx-3tAc_mGkh3Sa_W4fwzM6-sscDTXTJkSft7trcjmYKeHNa1-Sx7sfv2_vq9X658Pt91VlG97nqkHXO9WBAWOGRv0RYBwXVnADUvUtWtkKKVTXN6yzrcLWonVSSaca27iCLMnn895yxd8DpqzHcIjliaQ5CAm8U4KX1NdzysaQUhGmrc8m-zDnaPykGeiTTj3qN536pFOD1EVnweV_-D4WcfH4PvjtDGJR8Owx6mQ9zhadj2izdsG_t-IF4bSXCA |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2022_09_028 crossref_primary_10_1088_1755_1315_170_3_032020 crossref_primary_10_1016_j_icheatmasstransfer_2023_106653 crossref_primary_10_1155_2018_3198184 crossref_primary_10_1088_1755_1315_227_4_042052 crossref_primary_10_1007_s00231_023_03342_2 crossref_primary_10_1007_s00366_019_00706_3 crossref_primary_10_1007_s00521_018_3552_8 crossref_primary_10_1016_j_ijrefrig_2019_11_019 crossref_primary_10_20914_2310_1202_2024_1_31_37 crossref_primary_10_1007_s13369_021_05688_3 crossref_primary_10_3390_e20040254 crossref_primary_10_3390_en13236174 crossref_primary_10_1002_er_4263 crossref_primary_10_1016_j_applthermaleng_2018_08_076 crossref_primary_10_1016_j_asoc_2018_07_036 crossref_primary_10_1016_j_ijthermalsci_2022_108007 crossref_primary_10_3390_math10020183 crossref_primary_10_1007_s00500_023_09393_1 crossref_primary_10_1108_COMPEL_08_2019_0319 crossref_primary_10_3390_en14175294 crossref_primary_10_1016_j_applthermaleng_2018_07_057 crossref_primary_10_1007_s00366_020_00946_8 crossref_primary_10_3233_JIFS_213471 crossref_primary_10_1016_j_applthermaleng_2019_114202 crossref_primary_10_1016_j_jobe_2024_110947 crossref_primary_10_1007_s00500_020_04965_x crossref_primary_10_1016_j_tsep_2023_102178 crossref_primary_10_1007_s11831_021_09585_8 crossref_primary_10_1155_2021_5595180 crossref_primary_10_1016_j_applthermaleng_2022_119818 crossref_primary_10_1016_j_applthermaleng_2019_01_097 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122589 crossref_primary_10_1016_j_ijrefrig_2017_11_031 crossref_primary_10_1016_j_aeue_2018_05_022 |
| Cites_doi | 10.1016/j.enbuild.2015.04.034 10.1063/1.4987149 10.1016/j.enconman.2011.02.010 10.1016/j.enconman.2015.11.006 10.1016/j.cherd.2009.09.016 10.1016/j.applthermaleng.2016.03.030 10.1007/s00500-005-0537-1 10.1016/S0196-8904(00)00148-5 10.1016/j.compchemeng.2009.07.006 10.1016/j.ijrefrig.2010.07.026 10.1016/j.enconman.2013.08.053 10.3923/jas.2009.561.566 10.1007/s10898-007-9149-x 10.1016/j.applthermaleng.2011.07.029 10.1016/0045-7949(75)90039-5 10.1016/j.applthermaleng.2015.11.063 10.1016/j.enconman.2017.02.068 10.1016/j.applthermaleng.2010.05.021 10.1016/S1359-4311(97)00020-3 10.1080/03052150410001696179 10.1007/s001580050127 10.1016/j.applthermaleng.2016.04.135 10.1016/j.enconman.2015.12.080 10.1007/BF00933410 10.1016/j.energy.2016.08.069 10.1016/j.ijheatmasstransfer.2015.02.048 10.1016/j.applthermaleng.2016.12.002 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd and IIR Copyright Elsevier Science Ltd. Oct 2017 |
| Copyright_xml | – notice: 2017 Elsevier Ltd and IIR – notice: Copyright Elsevier Science Ltd. Oct 2017 |
| DBID | AAYXX CITATION 7TB 8FD FR3 |
| DOI | 10.1016/j.ijrefrig.2017.06.024 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Conception optimale et analyse d’une tour de refroidissement à convection mécanique grâce à un algorithme Jaya amélioré |
| EISSN | 1879-2081 |
| EndPage | 324 |
| ExternalDocumentID | 10_1016_j_ijrefrig_2017_06_024 S014070071730258X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSA SST SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AGCQF AGRNS FR3 SSH |
| ID | FETCH-LOGICAL-c328t-3ed8d970a0aaf39b40ad24c42a06985ec65464978317c59e5cecd696d93c3daf3 |
| IEDL.DBID | .~1 |
| ISSN | 0140-7007 |
| IngestDate | Mon Jul 14 08:51:20 EDT 2025 Wed Oct 01 03:27:25 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 Fri Feb 23 02:18:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Méthode Merkel Algorithme de colonie d'abeille artificielle Algorithme Jaya auto-adaptif Jaya algorithm Optimisation du coût Algorithme Jaya Poppe method Self-adaptive Jaya algorithm Tour de refroidissement Artificial bee colony algorithm Méthode Poppe Merkel method Cost optimization Cooling tower |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-3ed8d970a0aaf39b40ad24c42a06985ec65464978317c59e5cecd696d93c3daf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8127-6695 |
| PQID | 2046027942 |
| PQPubID | 2047558 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2046027942 crossref_citationtrail_10_1016_j_ijrefrig_2017_06_024 crossref_primary_10_1016_j_ijrefrig_2017_06_024 elsevier_sciencedirect_doi_10_1016_j_ijrefrig_2017_06_024 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-01 |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Paris |
| PublicationPlace_xml | – name: Paris |
| PublicationTitle | International journal of refrigeration |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Kloppers, Kröger (bib0060) 2004; 36 Singh, Das (bib0135) 2016; 111 Zou, Guan, Gurgenci (bib0165) 2013; 76 Ponce-Ortega, Serna-Gonzáleza, Jiménez-Gutiérrezb (bib0090) 2010; 34 Karaboga, Basturk (bib0055) 2003; 39 Kröger (bib0065) 1998 Rao, More, Coelho, Mariani (bib9005) 2017; 9 Pieczara (bib0085) 2000; 19 Cui, Zhou, Liu (bib0030) 2015; 99 Hongfang, Haijun, Yuqian, Jianan (bib0045) 2016; 108 Rao (bib0100) 2016; 7 Singla, Singh, Das (bib0150) 2016; 96 Rao, More (bib9000) 2017; 140 Howell (bib0050) 1998 Chang, Fui, Bin, Azizan (bib0020) 2013; 6 Ecker, Wiebking (bib0035) 1978; 26 Singh, Das (bib0140) 2016; 105 Poppe, Rögener (bib0095) 1991 Atai, Panjeshahi, Gharaie (bib0010) 2009; 9 Singh, Das (bib0145) 2017; 114 Rao, Patel (bib0105) 2011; 52 Teo (bib0160) 2006; 10 Soylemez (bib0155) 2001; 42 Mondal, Mukherjee, Kundu, Wongwises (bib0075) 2015; 85 Reinschmidp, Narayanan (bib0115) 1975; 5 Serna-Gonzáleza, Ponce-Ortegaa, Jiménez-Gutiérrez (bib0130) 2010; 88 Eusiel, Medardo, José, Miguel (bib0040) 2011; 31 Bornman, Dirker, Arndt, Meyer (bib0015) 2016; 114 Conradie, Buyst, Kroger (bib0025) 1998; 18 Rao, More, Taler, Oclon (bib0110) 2016; 103 Omid, Shahram, Iraj (bib0080) 2017 Merkel (bib0070) 1925; 70 Rubio-Castro, Serna-González, Ponce-Ortega (bib0120) 2011; 30 Sayyaadi, Nejatolahi (bib0125) 2011; 34 Rao (10.1016/j.ijrefrig.2017.06.024_bib9005) 2017; 9 Eusiel (10.1016/j.ijrefrig.2017.06.024_bib0040) 2011; 31 Atai (10.1016/j.ijrefrig.2017.06.024_bib0010) 2009; 9 Cui (10.1016/j.ijrefrig.2017.06.024_bib0030) 2015; 99 Singh (10.1016/j.ijrefrig.2017.06.024_bib0140) 2016; 105 Rubio-Castro (10.1016/j.ijrefrig.2017.06.024_bib0120) 2011; 30 Sayyaadi (10.1016/j.ijrefrig.2017.06.024_bib0125) 2011; 34 Chang (10.1016/j.ijrefrig.2017.06.024_bib0020) 2013; 6 Conradie (10.1016/j.ijrefrig.2017.06.024_bib0025) 1998; 18 Rao (10.1016/j.ijrefrig.2017.06.024_bib0100) 2016; 7 Pieczara (10.1016/j.ijrefrig.2017.06.024_bib0085) 2000; 19 Kloppers (10.1016/j.ijrefrig.2017.06.024_bib0060) 2004; 36 Hongfang (10.1016/j.ijrefrig.2017.06.024_bib0045) 2016; 108 Mondal (10.1016/j.ijrefrig.2017.06.024_bib0075) 2015; 85 Singh (10.1016/j.ijrefrig.2017.06.024_bib0135) 2016; 111 Ponce-Ortega (10.1016/j.ijrefrig.2017.06.024_bib0090) 2010; 34 Zou (10.1016/j.ijrefrig.2017.06.024_bib0165) 2013; 76 Rao (10.1016/j.ijrefrig.2017.06.024_bib0110) 2016; 103 Soylemez (10.1016/j.ijrefrig.2017.06.024_bib0155) 2001; 42 Bornman (10.1016/j.ijrefrig.2017.06.024_bib0015) 2016; 114 Howell (10.1016/j.ijrefrig.2017.06.024_bib0050) 1998 Teo (10.1016/j.ijrefrig.2017.06.024_bib0160) 2006; 10 Poppe (10.1016/j.ijrefrig.2017.06.024_bib0095) 1991 Reinschmidp (10.1016/j.ijrefrig.2017.06.024_bib0115) 1975; 5 Kröger (10.1016/j.ijrefrig.2017.06.024_bib0065) 1998 Karaboga (10.1016/j.ijrefrig.2017.06.024_bib0055) 2003; 39 Merkel (10.1016/j.ijrefrig.2017.06.024_bib0070) 1925; 70 Rao (10.1016/j.ijrefrig.2017.06.024_bib0105) 2011; 52 Omid (10.1016/j.ijrefrig.2017.06.024_bib0080) Rao (10.1016/j.ijrefrig.2017.06.024_bib9000) 2017; 140 Serna-Gonzáleza (10.1016/j.ijrefrig.2017.06.024_bib0130) 2010; 88 Ecker (10.1016/j.ijrefrig.2017.06.024_bib0035) 1978; 26 Singh (10.1016/j.ijrefrig.2017.06.024_bib0145) 2017; 114 Singla (10.1016/j.ijrefrig.2017.06.024_bib0150) 2016; 96 |
| References_xml | – year: 2017 ident: bib0080 article-title: Energic, exergic, exergo-economic investigation and optimization of auxiliary cooling system (ACS) equipped with compression refrigerating system (CRS) – volume: 105 start-page: 519 year: 2016 end-page: 530 ident: bib0140 article-title: Feedback model to predict parameters for controlling the performance of a mechanical draft cooling tower publication-title: Appl. Therm. Eng – volume: 31 start-page: 3615 year: 2011 end-page: 3628 ident: bib0040 article-title: Optimization of mechanical draft counter flow wet-cooling towers using a rigorous model publication-title: Appl. Therm. Eng – volume: 76 start-page: 945 year: 2013 end-page: 955 ident: bib0165 article-title: Optimization design of solar enhanced natural draft dry cooling tower publication-title: Energy Convers. Manag – volume: 26 start-page: 310 year: 1978 end-page: 320 ident: bib0035 article-title: Optimal design of a dry-type natural-draft cooling tower by geometric programming publication-title: J. Optim. Theory Appl – volume: 34 start-page: 177 year: 2010 end-page: 195 ident: bib0090 article-title: Optimization model for re-circulating cooling water systems publication-title: Comput. Chem. Eng – year: 1998 ident: bib0065 article-title: Air-cooled heat exchanger and cooling tower – volume: 9 start-page: 561 year: 2009 end-page: 566 ident: bib0010 article-title: A new algorithm for design of mechanical draft wet cooling tower publication-title: J. Appl. Sci – volume: 99 start-page: 253 year: 2015 end-page: 262 ident: bib0030 article-title: Optimization of design and operation parameters for hybrid ground-source heat pump assisted with cooling tower publication-title: Energy Build – volume: 140 start-page: 24 year: 2017 end-page: 35 ident: bib9000 article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm publication-title: Energy Convers. Manag – volume: 19 start-page: 311 year: 2000 end-page: 316 ident: bib0085 article-title: Optimization of cooling tower shells using a simple genetic algorithm publication-title: Struct. Multidiscipl. Optim – volume: 111 start-page: 417 year: 2016 end-page: 430 ident: bib0135 article-title: An experimental and multi-objective optimization study of a forced draft cooling tower with different fills publication-title: Energy Convers. Manag – volume: 36 start-page: 575 year: 2004 end-page: 584 ident: bib0060 article-title: Cost optimization of cooling tower geometry publication-title: Eng. Optim – volume: 70 start-page: 123 year: 1925 end-page: 128 ident: bib0070 article-title: Verdunstungskühlung publication-title: VDI-Zeitchrift – volume: 7 start-page: 19 year: 2016 end-page: 34 ident: bib0100 article-title: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: I. J. Ind. Eng. Comput – volume: 52 start-page: 2611 year: 2011 end-page: 2622 ident: bib0105 article-title: Optimization of mechanical draft counter flow wet cooling tower using artificial bee colony algorithm publication-title: Energy Convers. Manag – volume: 5 start-page: 321 year: 1975 end-page: 325 ident: bib0115 article-title: The optimum shape of cooling towers publication-title: Comput. Struct – volume: 85 start-page: 1049 year: 2015 end-page: 1057 ident: bib0075 article-title: Investigation of the crosswind-influenced thermal performance of a natural draft counter flow cooling tower publication-title: Int. J. Heat Mass Transf – volume: 18 start-page: 25 year: 1998 end-page: 45 ident: bib0025 article-title: Performance optimization of dry-cooling systems for power plants through SQP methods publication-title: Appl. Therm. Eng – volume: 39 start-page: 459 year: 2003 end-page: 471 ident: bib0055 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim – volume: 34 start-page: 243 year: 2011 end-page: 256 ident: bib0125 article-title: Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system publication-title: Int. J. Refrigeration – volume: 96 start-page: 240 year: 2016 end-page: 249 ident: bib0150 article-title: Tower characteristics correlation and parameter retrieval in wet cooling tower with expanded wire mesh packing publication-title: Appl. Therm. Eng – volume: 9 start-page: 033703 year: 2017 ident: bib9005 article-title: Multi-objective optimization of the Stirling heat engine through self-adaptive Jaya algorithm publication-title: J. Renew. Sustain. Energy – volume: 108 start-page: 43 year: 2016 end-page: 49 ident: bib0045 article-title: A numerical study on the mechanism and optimization of wind-break structures for indirect air-cooling towers publication-title: Energy Convers. Manag – volume: 114 start-page: 573 year: 2017 end-page: 582 ident: bib0145 article-title: An improved constrained inverse optimization method for mechanical draft cooling towers publication-title: Appl. Therm. Eng – volume: 10 start-page: 673 year: 2006 end-page: 686 ident: bib0160 article-title: Exploring dynamic self-adaptive populations in differential evolution publication-title: Soft. Comput – volume: 88 start-page: 614 year: 2010 end-page: 625 ident: bib0130 article-title: MINLP optimization of mechanical draft counter flow wet-cooling towers publication-title: Chem. Eng. Res. Des – start-page: 1 year: 1991 end-page: 15 ident: bib0095 article-title: Berechnung von Rückkühlwerken – volume: 30 start-page: 2116 year: 2011 end-page: 2126 ident: bib0120 article-title: Optimal design of effluent-cooling systems using amathematical programming model publication-title: Appl. Therm. Eng – volume: 6 start-page: 337 year: 2013 end-page: 355 ident: bib0020 article-title: Comparison of air-cooled chiller, water-cooled chiller and hybrid evaporative air-cooled chiller in Malaysia – a review publication-title: Int. J. Arts Sci – volume: 103 start-page: 572 year: 2016 end-page: 582 ident: bib0110 article-title: Dimensional optimization of a micro-channel heat sink using Jaya algorithm publication-title: Appl. Therm. Eng – volume: 114 start-page: 995 year: 2016 end-page: 1006 ident: bib0015 article-title: Operational energy minimisation for forced draft, direct-contact bulk air cooling tower through a combination of forward and first-principle modelling, coupled with an optimisation platform publication-title: Energy – year: 1998 ident: bib0050 article-title: Chilled water plant optimization based on part-load cooling tower performance – volume: 42 start-page: 783 year: 2001 end-page: 789 ident: bib0155 article-title: On the optimum sizing of cooling towers publication-title: Energy Convers. Manag – volume: 99 start-page: 253 year: 2015 ident: 10.1016/j.ijrefrig.2017.06.024_bib0030 article-title: Optimization of design and operation parameters for hybrid ground-source heat pump assisted with cooling tower publication-title: Energy Build doi: 10.1016/j.enbuild.2015.04.034 – volume: 9 start-page: 033703 year: 2017 ident: 10.1016/j.ijrefrig.2017.06.024_bib9005 article-title: Multi-objective optimization of the Stirling heat engine through self-adaptive Jaya algorithm publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4987149 – year: 1998 ident: 10.1016/j.ijrefrig.2017.06.024_bib0050 – volume: 52 start-page: 2611 year: 2011 ident: 10.1016/j.ijrefrig.2017.06.024_bib0105 article-title: Optimization of mechanical draft counter flow wet cooling tower using artificial bee colony algorithm publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2011.02.010 – volume: 108 start-page: 43 year: 2016 ident: 10.1016/j.ijrefrig.2017.06.024_bib0045 article-title: A numerical study on the mechanism and optimization of wind-break structures for indirect air-cooling towers publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2015.11.006 – volume: 88 start-page: 614 year: 2010 ident: 10.1016/j.ijrefrig.2017.06.024_bib0130 article-title: MINLP optimization of mechanical draft counter flow wet-cooling towers publication-title: Chem. Eng. Res. Des doi: 10.1016/j.cherd.2009.09.016 – volume: 105 start-page: 519 year: 2016 ident: 10.1016/j.ijrefrig.2017.06.024_bib0140 article-title: Feedback model to predict parameters for controlling the performance of a mechanical draft cooling tower publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2016.03.030 – volume: 70 start-page: 123 year: 1925 ident: 10.1016/j.ijrefrig.2017.06.024_bib0070 article-title: Verdunstungskühlung publication-title: VDI-Zeitchrift – volume: 10 start-page: 673 year: 2006 ident: 10.1016/j.ijrefrig.2017.06.024_bib0160 article-title: Exploring dynamic self-adaptive populations in differential evolution publication-title: Soft. Comput doi: 10.1007/s00500-005-0537-1 – volume: 42 start-page: 783 year: 2001 ident: 10.1016/j.ijrefrig.2017.06.024_bib0155 article-title: On the optimum sizing of cooling towers publication-title: Energy Convers. Manag doi: 10.1016/S0196-8904(00)00148-5 – start-page: 1 year: 1991 ident: 10.1016/j.ijrefrig.2017.06.024_bib0095 – volume: 34 start-page: 177 year: 2010 ident: 10.1016/j.ijrefrig.2017.06.024_bib0090 article-title: Optimization model for re-circulating cooling water systems publication-title: Comput. Chem. Eng doi: 10.1016/j.compchemeng.2009.07.006 – volume: 7 start-page: 19 issue: 1 year: 2016 ident: 10.1016/j.ijrefrig.2017.06.024_bib0100 article-title: Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems publication-title: I. J. Ind. Eng. Comput – volume: 34 start-page: 243 issue: 1 year: 2011 ident: 10.1016/j.ijrefrig.2017.06.024_bib0125 article-title: Multi-objective optimization of a cooling tower assisted vapor compression refrigeration system publication-title: Int. J. Refrigeration doi: 10.1016/j.ijrefrig.2010.07.026 – volume: 76 start-page: 945 year: 2013 ident: 10.1016/j.ijrefrig.2017.06.024_bib0165 article-title: Optimization design of solar enhanced natural draft dry cooling tower publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2013.08.053 – year: 1998 ident: 10.1016/j.ijrefrig.2017.06.024_bib0065 – volume: 9 start-page: 561 issue: 3 year: 2009 ident: 10.1016/j.ijrefrig.2017.06.024_bib0010 article-title: A new algorithm for design of mechanical draft wet cooling tower publication-title: J. Appl. Sci doi: 10.3923/jas.2009.561.566 – volume: 39 start-page: 459 year: 2003 ident: 10.1016/j.ijrefrig.2017.06.024_bib0055 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim doi: 10.1007/s10898-007-9149-x – ident: 10.1016/j.ijrefrig.2017.06.024_bib0080 – volume: 31 start-page: 3615 year: 2011 ident: 10.1016/j.ijrefrig.2017.06.024_bib0040 article-title: Optimization of mechanical draft counter flow wet-cooling towers using a rigorous model publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2011.07.029 – volume: 5 start-page: 321 year: 1975 ident: 10.1016/j.ijrefrig.2017.06.024_bib0115 article-title: The optimum shape of cooling towers publication-title: Comput. Struct doi: 10.1016/0045-7949(75)90039-5 – volume: 6 start-page: 337 issue: 1 year: 2013 ident: 10.1016/j.ijrefrig.2017.06.024_bib0020 article-title: Comparison of air-cooled chiller, water-cooled chiller and hybrid evaporative air-cooled chiller in Malaysia – a review publication-title: Int. J. Arts Sci – volume: 96 start-page: 240 year: 2016 ident: 10.1016/j.ijrefrig.2017.06.024_bib0150 article-title: Tower characteristics correlation and parameter retrieval in wet cooling tower with expanded wire mesh packing publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2015.11.063 – volume: 140 start-page: 24 year: 2017 ident: 10.1016/j.ijrefrig.2017.06.024_bib9000 article-title: Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2017.02.068 – volume: 30 start-page: 2116 year: 2011 ident: 10.1016/j.ijrefrig.2017.06.024_bib0120 article-title: Optimal design of effluent-cooling systems using amathematical programming model publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2010.05.021 – volume: 18 start-page: 25 issue: 1–2 year: 1998 ident: 10.1016/j.ijrefrig.2017.06.024_bib0025 article-title: Performance optimization of dry-cooling systems for power plants through SQP methods publication-title: Appl. Therm. Eng doi: 10.1016/S1359-4311(97)00020-3 – volume: 36 start-page: 575 issue: 5 year: 2004 ident: 10.1016/j.ijrefrig.2017.06.024_bib0060 article-title: Cost optimization of cooling tower geometry publication-title: Eng. Optim doi: 10.1080/03052150410001696179 – volume: 19 start-page: 311 year: 2000 ident: 10.1016/j.ijrefrig.2017.06.024_bib0085 article-title: Optimization of cooling tower shells using a simple genetic algorithm publication-title: Struct. Multidiscipl. Optim doi: 10.1007/s001580050127 – volume: 103 start-page: 572 year: 2016 ident: 10.1016/j.ijrefrig.2017.06.024_bib0110 article-title: Dimensional optimization of a micro-channel heat sink using Jaya algorithm publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2016.04.135 – volume: 111 start-page: 417 year: 2016 ident: 10.1016/j.ijrefrig.2017.06.024_bib0135 article-title: An experimental and multi-objective optimization study of a forced draft cooling tower with different fills publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2015.12.080 – volume: 26 start-page: 310 issue: 2 year: 1978 ident: 10.1016/j.ijrefrig.2017.06.024_bib0035 article-title: Optimal design of a dry-type natural-draft cooling tower by geometric programming publication-title: J. Optim. Theory Appl doi: 10.1007/BF00933410 – volume: 114 start-page: 995 year: 2016 ident: 10.1016/j.ijrefrig.2017.06.024_bib0015 article-title: Operational energy minimisation for forced draft, direct-contact bulk air cooling tower through a combination of forward and first-principle modelling, coupled with an optimisation platform publication-title: Energy doi: 10.1016/j.energy.2016.08.069 – volume: 85 start-page: 1049 year: 2015 ident: 10.1016/j.ijrefrig.2017.06.024_bib0075 article-title: Investigation of the crosswind-influenced thermal performance of a natural draft counter flow cooling tower publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.02.048 – volume: 114 start-page: 573 year: 2017 ident: 10.1016/j.ijrefrig.2017.06.024_bib0145 article-title: An improved constrained inverse optimization method for mechanical draft cooling towers publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2016.12.002 |
| SSID | ssj0017058 |
| Score | 2.3557959 |
| Snippet | •Improved Jaya algorithm is proposed for design of mechanical draft cooling tower.•Results of the proposed algorithm are comparatively much better.•The... A cooling tower is an imperative component of industrial plants. The minimization of energy related expenses is critical for conservation of resources and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 312 |
| SubjectTerms | Adaptive algorithms Algorithme de colonie d'abeille artificielle Algorithme Jaya Algorithme Jaya auto-adaptif Artificial bee colony algorithm Computational mathematics Cooling Cooling tower Cooling towers Cost optimization Costs Design optimization Energy conservation Industrial engineering Industrial plants Jaya algorithm Manufacturing engineering Mathematical models Merkel method Méthode Merkel Méthode Poppe Optimisation du coût Optimization algorithms Poppe method Population density Resource conservation Self-adaptive Jaya algorithm Swarm intelligence Tour de refroidissement |
| Title | Optimal design and analysis of mechanical draft cooling tower using improved Jaya algorithm |
| URI | https://dx.doi.org/10.1016/j.ijrefrig.2017.06.024 https://www.proquest.com/docview/2046027942 |
| Volume | 82 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: AKRWK dateStart: 19780501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpCQR5YQ4rtPDwiRFVAwEKlSgyRYzslVZtWJQws_HbunAQVJNSBIVIevii6s-8Rf3dHyDlXXFrGhSdi5lqYGU-mcAbxUKjBfvIgxR3dh8dwMBR3o2DUItdNLgzCKmvdX-l0p63rO37NTX-R576DJUXVNjIY7niEGewiwi4GF5_fMA-sFhM3MEYcvZIlPLnIJ2CGIApGiFfk6ngy8ZeB-qWqnf3p75Dt2nGkV9W37ZKWLfbI1ko5wX3y8gTrfwaDjINlUFUYOKqiI3Se0ZnFNF-UCjVLlZVUz7Flz5i6VmkUIfBjmru_DNbQO_WhqJqO58u8fJ0dkGH_5vl64NXNEzzNWVx63JrYyKinekplXKaipwwTWjDVC2UcWI1ZTNheDhwIHUgbaKtNKEMjueYGSA5Ju5gX9ohQ8Gw5yy5tgPGUCFMVsZTHMCoWKsys6ZCg4Vii68ri2OBimjQQsknScDpBTieIpWOiQ_xvukVVW2MthWwEkvyYJQkYgLW03UaCSb1O3-C5CCEwl4Id_-PVJ2QTryqMX5e0y-W7PQVfpUzP3GQ8IxtXt_eDxy_57Om0 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKDMCAeIpHAQ-saYvtPDyiiqq8F5AqMViO7ZRUtEUlDCz8du6cBAES6sAQKYp9UXTn3MP-7o6QE665dIyLQCTMtzCzgUzhDuKhyID95GGKJ7o3t1H_QVwOwkGDdOtcGIRVVrq_1OleW1dP2hU32y953vawpLg8RgbDnQwWyJIIWYwRWOvjC-eB5WKSGseI07-lCY9a-QjsEITBiPGKfSFPJv6yUL90tTdAvXWyVnmO9Kz8uA3ScJNNsvqtnuAWebwDBTCGSdbjMqieWLjKqiN0mtGxwzxfFAu1M50V1EyxZ8-Q-l5pFDHwQ5r7bQZn6aV-11Q_D6ezvHgab5OH3vl9tx9U3RMCw1lSBNzZxMq4oztaZ1ymoqMtE0Yw3YlkEjqDaUzYXw48CBNKFxpnbCQjK7nhFkh2yOJkOnG7hIJry1l26kIMqESU6pilPIFZidBR5uweCWuOKVOVFscOF8-qxpCNVM1phZxWCKZjYo-0v-heyuIacylkLRD1Y5kosABzaZu1BFX1o77CuIggMpeC7f_j1cdkuX9_c62uL26vDsgKjpSAvyZZLGZv7hAclyI98gvzE28860k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+and+analysis+of+mechanical+draft+cooling+tower+using+improved+Jaya+algorithm&rft.jtitle=International+journal+of+refrigeration&rft.au=Rao%2C+R.V.&rft.au=More%2C+K.C.&rft.date=2017-10-01&rft.issn=0140-7007&rft.volume=82&rft.spage=312&rft.epage=324&rft_id=info:doi/10.1016%2Fj.ijrefrig.2017.06.024&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrefrig_2017_06_024 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7007&client=summon |