Image Super-Resolution using Generative Adversarial Networks with EfficientNetV2
The image super-resolution is utilized for the image transformation from low resolution to higher resolution to obtain more detailed information to identify the targets. The super-resolution has potential applications in various domains, such as medical image processing, crime investigation, remote...
Saved in:
Published in | International journal of advanced computer science & applications Vol. 14; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
West Yorkshire
Science and Information (SAI) Organization Limited
2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2158-107X 2156-5570 |
DOI | 10.14569/IJACSA.2023.01402100 |
Cover
Abstract | The image super-resolution is utilized for the image transformation from low resolution to higher resolution to obtain more detailed information to identify the targets. The super-resolution has potential applications in various domains, such as medical image processing, crime investigation, remote sensing, and other image-processing application domains. The goal of the super-resolution is to obtain the image with minimal mean square error with improved perceptual quality. Therefore, this study introduces the perceptual loss minimization technique through efficient learning criteria. The proposed image reconstruction technique uses the image super-resolution generative adversarial network (ISRGAN), in which the learning of the discriminator in the ISRGAN is performed using the EfficientNet-v2 to obtain a better image quality. The proposed ISRGAN with the EfficientNet-v2 achieved a minimal loss of 0.02, 0.1, and 0.015 at the generator, discriminator, and self-supervised learning, respectively, with a batch size of 32. The minimal mean square error and mean absolute error are 0.001025 and 0.00225, and the maximal peak signal-to-noise ratio and structural similarity index measure obtained are 45.56985 and 0.9997, respectively. |
---|---|
AbstractList | The image super-resolution is utilized for the image transformation from low resolution to higher resolution to obtain more detailed information to identify the targets. The super-resolution has potential applications in various domains, such as medical image processing, crime investigation, remote sensing, and other image-processing application domains. The goal of the super-resolution is to obtain the image with minimal mean square error with improved perceptual quality. Therefore, this study introduces the perceptual loss minimization technique through efficient learning criteria. The proposed image reconstruction technique uses the image super-resolution generative adversarial network (ISRGAN), in which the learning of the discriminator in the ISRGAN is performed using the EfficientNet-v2 to obtain a better image quality. The proposed ISRGAN with the EfficientNet-v2 achieved a minimal loss of 0.02, 0.1, and 0.015 at the generator, discriminator, and self-supervised learning, respectively, with a batch size of 32. The minimal mean square error and mean absolute error are 0.001025 and 0.00225, and the maximal peak signal-to-noise ratio and structural similarity index measure obtained are 45.56985 and 0.9997, respectively. |
Author | Usman, Sahnius Ahmad, Norulhusna Justinia, Taghreed Noor, Norliza Mohd AlTakrouri, Saleh |
Author_xml | – sequence: 1 givenname: Saleh surname: AlTakrouri fullname: AlTakrouri, Saleh – sequence: 2 givenname: Norliza Mohd surname: Noor fullname: Noor, Norliza Mohd – sequence: 3 givenname: Norulhusna surname: Ahmad fullname: Ahmad, Norulhusna – sequence: 4 givenname: Taghreed surname: Justinia fullname: Justinia, Taghreed – sequence: 5 givenname: Sahnius surname: Usman fullname: Usman, Sahnius |
BookMark | eNqFkFFLwzAQx4MoOOc-glDwuTOXNG2DT2XMORkqTsW3kLbpzOzSmaQbfnu7TV988V7uOP6_O_idoWPTGIXQBeAhRCzmV9O7bDTPhgQTOsQQYQIYH6EeARaHjCX4eD-nIeDk7RQNnFvirigncUp76HG6kgsVzNu1suGTck3det2YoHXaLIKJMspKrzcqyMqNsk5aLevgXvltYz9csNX-PRhXlS60Mr5bv5JzdFLJ2qnBT--jl5vx8-g2nD1MpqNsFhaUpD4kjAPmBJIcY2AVQBTJVJZFFAOTUqk8xnnFS5nLMk8xzRMAYJzFCaWEkpzRPro83F3b5rNVzotl01rTvRQk4ZCkcRTxLsUOqcI2zllVibXVK2m_BGCx9ycO_sTOn_j113HXf7hCe7kz463U9T_0NwjndwM |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3472654 |
ContentType | Journal Article |
Copyright | 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.14569/IJACSA.2023.01402100 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2156-5570 |
ExternalDocumentID | 10_14569_IJACSA_2023_01402100 |
GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c328t-259109217b0015f1144a8adc4615aaeeb60bf9dabadb803b71115956733232b53 |
IEDL.DBID | 8FG |
ISSN | 2158-107X |
IngestDate | Mon Jul 14 07:34:39 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Tue Jul 01 01:10:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c328t-259109217b0015f1144a8adc4615aaeeb60bf9dabadb803b71115956733232b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2791786449?pq-origsite=%requestingapplication% |
PQID | 2791786449 |
PQPubID | 5444811 |
ParticipantIDs | proquest_journals_2791786449 crossref_primary_10_14569_IJACSA_2023_01402100 crossref_citationtrail_10_14569_IJACSA_2023_01402100 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-00-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023-00-00 |
PublicationDecade | 2020 |
PublicationPlace | West Yorkshire |
PublicationPlace_xml | – name: West Yorkshire |
PublicationTitle | International journal of advanced computer science & applications |
PublicationYear | 2023 |
Publisher | Science and Information (SAI) Organization Limited |
Publisher_xml | – name: Science and Information (SAI) Organization Limited |
SSID | ssj0000392683 |
Score | 2.2094245 |
Snippet | The image super-resolution is utilized for the image transformation from low resolution to higher resolution to obtain more detailed information to identify... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Discriminators Domains Generative adversarial networks Image processing Image quality Image reconstruction Image resolution Mean square errors Medical imaging Remote sensing Signal to noise ratio Target recognition |
Title | Image Super-Resolution using Generative Adversarial Networks with EfficientNetV2 |
URI | https://www.proquest.com/docview/2791786449 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2156-5570 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NU8IwEM0oXLz47Ygik4PXQpukXycHGRCYkWFEHG6dpE29KCCF_-9umuJ40Ws7yWG72bdvu9lHyD3TQcoiKZwc-3EQMZzYz4Xju5pz7gMiGo2l50kwnIvxwl_Yglth2yqrmGgCdbZKsUbeYSEQiwjQO35YfzmoGoV_V62ExiGpeww8CW-KD572NRYXwD8wkzgB2HCKabiwl3ggbYg7o3G3N-u2UUC8jUQD2I_7G55-R2cDOYNTcmxzRdotP-4ZOdDLc3JS6TBQeywvyHT0CVGBznZrvXGwHl96E8We9ndaDpbGqEaN-nIh0efopOz_LihWYmnfTJIAAILHb-ySzAf9197QsUoJTspZtHWAw3huDOzC5EA5cBwhI5mlAvIVKbVWgavyOJNKZipyuQohwvnAjELOIaNSPr8iteVqqa8JDXUMgMW0z10plNDSizJPhX4Wu4qlOm8QURkoSe0YcVSz-EiQTqBdk9KuCdo1qezaIO39snU5R-O_Bc3K-ok9VkXy4wQ3f7--JUe4W1kraZLadrPTd5A9bFXLuEiL1B_7k-nLN3_rv40 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QPejFtxFF3YMeC2W7fR2MIQhSXjEBDLe62269KCCFGP-Uv9GZPjBc9MS1zTbpdHa-b6az8xFyw5QVMEdwLcJ-HEQMzTUjrpm6MgzDBERMNJZ6fas14u2xOS6Q7_wsDLZV5jExCdThNMAaeYXZkFg4gN7u_exDQ9Uo_LuaS2ikbtFRX5-QssV33gN831vGmo1hvaVlqgJaYDBnoQHfr-ouMPGEL0SQD3DhiDDggO1CKCUtXUZuKKQIpaMb0oZoYEIWYRsGsA-JKhEQ8rc5vArO6neaj6uajg5kw0omfwKQ4tRUe5wdGgKa4la8dq0-qJVRsLyMiQ1kW_o6HK6jQQJxzQOyl3FTWkud6ZAU1OSI7Oe6DzQLA8fkyXuHKEQHy5maa1j_T72XYg_9K00HWWMUpYnacyzQx2k_7TePKVZ-aSOZXAGAB5ef2QkZbcSGp2RrMp2oM0Jt5QJAMmUauuCSK1F1wqq0zdDVJQtUVCQ8N5AfZGPLUT3jzcf0Be3qp3b10a5-btciKa-WzdK5Hf8tKOXW97NtHPu_Tnf-9-1rstMa9rp-1-t3LsguPjmt05TI1mK-VJfAXBbyKnEXSl427Z8_RW75Jw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Super-Resolution+using+Generative+Adversarial+Networks+with+EfficientNetV2&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Saleh+AlTakrouri&rft.au=Norliza+Mohd+Noor&rft.au=Norulhusna+Ahmad&rft.au=Justinia%2C+Taghreed&rft.date=2023&rft.pub=Science+and+Information+%28SAI%29+Organization+Limited&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=14&rft.issue=2&rft_id=info:doi/10.14569%2FIJACSA.2023.01402100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |