Image Super-Resolution using Generative Adversarial Networks with EfficientNetV2

The image super-resolution is utilized for the image transformation from low resolution to higher resolution to obtain more detailed information to identify the targets. The super-resolution has potential applications in various domains, such as medical image processing, crime investigation, remote...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced computer science & applications Vol. 14; no. 2
Main Authors AlTakrouri, Saleh, Noor, Norliza Mohd, Ahmad, Norulhusna, Justinia, Taghreed, Usman, Sahnius
Format Journal Article
LanguageEnglish
Published West Yorkshire Science and Information (SAI) Organization Limited 2023
Subjects
Online AccessGet full text
ISSN2158-107X
2156-5570
DOI10.14569/IJACSA.2023.01402100

Cover

Abstract The image super-resolution is utilized for the image transformation from low resolution to higher resolution to obtain more detailed information to identify the targets. The super-resolution has potential applications in various domains, such as medical image processing, crime investigation, remote sensing, and other image-processing application domains. The goal of the super-resolution is to obtain the image with minimal mean square error with improved perceptual quality. Therefore, this study introduces the perceptual loss minimization technique through efficient learning criteria. The proposed image reconstruction technique uses the image super-resolution generative adversarial network (ISRGAN), in which the learning of the discriminator in the ISRGAN is performed using the EfficientNet-v2 to obtain a better image quality. The proposed ISRGAN with the EfficientNet-v2 achieved a minimal loss of 0.02, 0.1, and 0.015 at the generator, discriminator, and self-supervised learning, respectively, with a batch size of 32. The minimal mean square error and mean absolute error are 0.001025 and 0.00225, and the maximal peak signal-to-noise ratio and structural similarity index measure obtained are 45.56985 and 0.9997, respectively.
AbstractList The image super-resolution is utilized for the image transformation from low resolution to higher resolution to obtain more detailed information to identify the targets. The super-resolution has potential applications in various domains, such as medical image processing, crime investigation, remote sensing, and other image-processing application domains. The goal of the super-resolution is to obtain the image with minimal mean square error with improved perceptual quality. Therefore, this study introduces the perceptual loss minimization technique through efficient learning criteria. The proposed image reconstruction technique uses the image super-resolution generative adversarial network (ISRGAN), in which the learning of the discriminator in the ISRGAN is performed using the EfficientNet-v2 to obtain a better image quality. The proposed ISRGAN with the EfficientNet-v2 achieved a minimal loss of 0.02, 0.1, and 0.015 at the generator, discriminator, and self-supervised learning, respectively, with a batch size of 32. The minimal mean square error and mean absolute error are 0.001025 and 0.00225, and the maximal peak signal-to-noise ratio and structural similarity index measure obtained are 45.56985 and 0.9997, respectively.
Author Usman, Sahnius
Ahmad, Norulhusna
Justinia, Taghreed
Noor, Norliza Mohd
AlTakrouri, Saleh
Author_xml – sequence: 1
  givenname: Saleh
  surname: AlTakrouri
  fullname: AlTakrouri, Saleh
– sequence: 2
  givenname: Norliza Mohd
  surname: Noor
  fullname: Noor, Norliza Mohd
– sequence: 3
  givenname: Norulhusna
  surname: Ahmad
  fullname: Ahmad, Norulhusna
– sequence: 4
  givenname: Taghreed
  surname: Justinia
  fullname: Justinia, Taghreed
– sequence: 5
  givenname: Sahnius
  surname: Usman
  fullname: Usman, Sahnius
BookMark eNqFkFFLwzAQx4MoOOc-glDwuTOXNG2DT2XMORkqTsW3kLbpzOzSmaQbfnu7TV988V7uOP6_O_idoWPTGIXQBeAhRCzmV9O7bDTPhgQTOsQQYQIYH6EeARaHjCX4eD-nIeDk7RQNnFvirigncUp76HG6kgsVzNu1suGTck3det2YoHXaLIKJMspKrzcqyMqNsk5aLevgXvltYz9csNX-PRhXlS60Mr5bv5JzdFLJ2qnBT--jl5vx8-g2nD1MpqNsFhaUpD4kjAPmBJIcY2AVQBTJVJZFFAOTUqk8xnnFS5nLMk8xzRMAYJzFCaWEkpzRPro83F3b5rNVzotl01rTvRQk4ZCkcRTxLsUOqcI2zllVibXVK2m_BGCx9ycO_sTOn_j113HXf7hCe7kz463U9T_0NwjndwM
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3472654
ContentType Journal Article
Copyright 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2023.01402100
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2023_01402100
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c328t-259109217b0015f1144a8adc4615aaeeb60bf9dabadb803b71115956733232b53
IEDL.DBID 8FG
ISSN 2158-107X
IngestDate Mon Jul 14 07:34:39 EDT 2025
Thu Apr 24 23:09:43 EDT 2025
Tue Jul 01 01:10:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-259109217b0015f1144a8adc4615aaeeb60bf9dabadb803b71115956733232b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2791786449?pq-origsite=%requestingapplication%
PQID 2791786449
PQPubID 5444811
ParticipantIDs proquest_journals_2791786449
crossref_primary_10_14569_IJACSA_2023_01402100
crossref_citationtrail_10_14569_IJACSA_2023_01402100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2023
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2094245
Snippet The image super-resolution is utilized for the image transformation from low resolution to higher resolution to obtain more detailed information to identify...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Discriminators
Domains
Generative adversarial networks
Image processing
Image quality
Image reconstruction
Image resolution
Mean square errors
Medical imaging
Remote sensing
Signal to noise ratio
Target recognition
Title Image Super-Resolution using Generative Adversarial Networks with EfficientNetV2
URI https://www.proquest.com/docview/2791786449
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1NU8IwEM0oXLz47Ygik4PXQpukXycHGRCYkWFEHG6dpE29KCCF_-9umuJ40Ws7yWG72bdvu9lHyD3TQcoiKZwc-3EQMZzYz4Xju5pz7gMiGo2l50kwnIvxwl_Yglth2yqrmGgCdbZKsUbeYSEQiwjQO35YfzmoGoV_V62ExiGpeww8CW-KD572NRYXwD8wkzgB2HCKabiwl3ggbYg7o3G3N-u2UUC8jUQD2I_7G55-R2cDOYNTcmxzRdotP-4ZOdDLc3JS6TBQeywvyHT0CVGBznZrvXGwHl96E8We9ndaDpbGqEaN-nIh0efopOz_LihWYmnfTJIAAILHb-ySzAf9197QsUoJTspZtHWAw3huDOzC5EA5cBwhI5mlAvIVKbVWgavyOJNKZipyuQohwvnAjELOIaNSPr8iteVqqa8JDXUMgMW0z10plNDSizJPhX4Wu4qlOm8QURkoSe0YcVSz-EiQTqBdk9KuCdo1qezaIO39snU5R-O_Bc3K-ok9VkXy4wQ3f7--JUe4W1kraZLadrPTd5A9bFXLuEiL1B_7k-nLN3_rv40
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEN4QPejFtxFF3YMeC2W7fR2MIQhSXjEBDLe62269KCCFGP-Uv9GZPjBc9MS1zTbpdHa-b6az8xFyw5QVMEdwLcJ-HEQMzTUjrpm6MgzDBERMNJZ6fas14u2xOS6Q7_wsDLZV5jExCdThNMAaeYXZkFg4gN7u_exDQ9Uo_LuaS2ikbtFRX5-QssV33gN831vGmo1hvaVlqgJaYDBnoQHfr-ouMPGEL0SQD3DhiDDggO1CKCUtXUZuKKQIpaMb0oZoYEIWYRsGsA-JKhEQ8rc5vArO6neaj6uajg5kw0omfwKQ4tRUe5wdGgKa4la8dq0-qJVRsLyMiQ1kW_o6HK6jQQJxzQOyl3FTWkud6ZAU1OSI7Oe6DzQLA8fkyXuHKEQHy5maa1j_T72XYg_9K00HWWMUpYnacyzQx2k_7TePKVZ-aSOZXAGAB5ef2QkZbcSGp2RrMp2oM0Jt5QJAMmUauuCSK1F1wqq0zdDVJQtUVCQ8N5AfZGPLUT3jzcf0Be3qp3b10a5-btciKa-WzdK5Hf8tKOXW97NtHPu_Tnf-9-1rstMa9rp-1-t3LsguPjmt05TI1mK-VJfAXBbyKnEXSl427Z8_RW75Jw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Super-Resolution+using+Generative+Adversarial+Networks+with+EfficientNetV2&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Saleh+AlTakrouri&rft.au=Norliza+Mohd+Noor&rft.au=Norulhusna+Ahmad&rft.au=Justinia%2C+Taghreed&rft.date=2023&rft.pub=Science+and+Information+%28SAI%29+Organization+Limited&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=14&rft.issue=2&rft_id=info:doi/10.14569%2FIJACSA.2023.01402100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon