Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations

•BUS-SSAK, a deep integration of adaptive Kriging-based subset simulation and Bayesian updating with structural reliability (BUS), is proposed.•Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are introduced.•CARC and DLF facilitate precise identification of intermediate...

Full description

Saved in:
Bibliographic Details
Published inReliability engineering & system safety Vol. 230; p. 108901
Main Authors Wang, Zeyu, Shafieezadeh, Abdollah
Format Journal Article
LanguageEnglish
Published Barking Elsevier Ltd 01.02.2023
Elsevier BV
Subjects
Online AccessGet full text
ISSN0951-8320
1879-0836
DOI10.1016/j.ress.2022.108901

Cover

Abstract •BUS-SSAK, a deep integration of adaptive Kriging-based subset simulation and Bayesian updating with structural reliability (BUS), is proposed.•Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are introduced.•CARC and DLF facilitate precise identification of intermediate failure thresholds in subset simulation with limited realizations.•BUS-SSAK enables Bayesian updating of complex, computationally demanding models. The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian updating problems into structural reliability to address challenges of updating with equality information and improve computational efficiency. However, as the number of observations increases, the resulting failure probability or acceptance ratio becomes exceedingly small, requiring a formidable number of evaluations of the likelihood function. To overcome this limitation especially for complex computational models, this paper presents a new approach where the probability estimation problem of the very rare event associated with updating is decomposed into a set of sub-reliability problems with uncertain failure thresholds. Two concepts of Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are proposed to enable precise identification of the intermediate failure thresholds and to train Kriging surrogate models for the established limit state functions. Two benchmark numerical examples and a practical corrosion problem in marine environments are investigated to analyze the efficiency of the proposed method relative to BUS and other state-of-the-art methods. Results indicate that the proposed method can reduce computational costs by about an order of magnitude while maintaining high accuracy; therefore, enabling Bayesian updating of complex computational models.
AbstractList The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian updating problems into structural reliability to address challenges of updating with equality information and improve computational efficiency. However, as the number of observations increases, the resulting failure probability or acceptance ratio becomes exceedingly small, requiring a formidable number of evaluations of the likelihood function. To overcome this limitation especially for complex computational models, this paper presents a new approach where the probability estimation problem of the very rare event associated with updating is decomposed into a set of sub-reliability problems with uncertain failure thresholds. Two concepts of Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are proposed to enable precise identification of the intermediate failure thresholds and to train Kriging surrogate models for the established limit state functions. Two benchmark numerical examples and a practical corrosion problem in marine environments are investigated to analyze the efficiency of the proposed method relative to BUS and other state-of-the-art methods. Results indicate that the proposed method can reduce computational costs by about an order of magnitude while maintaining high accuracy; therefore, enabling Bayesian updating of complex computational models.
•BUS-SSAK, a deep integration of adaptive Kriging-based subset simulation and Bayesian updating with structural reliability (BUS), is proposed.•Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are introduced.•CARC and DLF facilitate precise identification of intermediate failure thresholds in subset simulation with limited realizations.•BUS-SSAK enables Bayesian updating of complex, computationally demanding models. The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian updating problems into structural reliability to address challenges of updating with equality information and improve computational efficiency. However, as the number of observations increases, the resulting failure probability or acceptance ratio becomes exceedingly small, requiring a formidable number of evaluations of the likelihood function. To overcome this limitation especially for complex computational models, this paper presents a new approach where the probability estimation problem of the very rare event associated with updating is decomposed into a set of sub-reliability problems with uncertain failure thresholds. Two concepts of Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are proposed to enable precise identification of the intermediate failure thresholds and to train Kriging surrogate models for the established limit state functions. Two benchmark numerical examples and a practical corrosion problem in marine environments are investigated to analyze the efficiency of the proposed method relative to BUS and other state-of-the-art methods. Results indicate that the proposed method can reduce computational costs by about an order of magnitude while maintaining high accuracy; therefore, enabling Bayesian updating of complex computational models.
ArticleNumber 108901
Author Shafieezadeh, Abdollah
Wang, Zeyu
Author_xml – sequence: 1
  givenname: Zeyu
  orcidid: 0000-0001-9557-7707
  surname: Wang
  fullname: Wang, Zeyu
  organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China
– sequence: 2
  givenname: Abdollah
  orcidid: 0000-0001-6768-8522
  surname: Shafieezadeh
  fullname: Shafieezadeh, Abdollah
  email: shafieezadeh.1@osu.edu
  organization: Risk Assessment and Management of Structural and Infrastructure Systems (RAMSIS) lab, Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA 43210
BookMark eNp9kD1v2zAQhonCBWq7_QOdBHSNHH6YFBVkaY02LhCgSzsTNHVKzpAphaQcGP3zoaNMHjIdcHif-3gWZOZ7D4R8ZXTFKFPX-1WAGFeccp4buqbsA5kzXdUl1ULNyJzWkpVacPqJLGLcU0rXtazm5P8Pe4KI1hfj0NiE_qF4xvRY2MYOCY9wVYzeQUgWfTqV6Ns-HKAp4riLkIqIh7HLVO_jTbHFh8eyxQY6TKeLcTmWcOig6DMXjhPymXxsbRfhy1tdkn-_fv7dbMv7P3e_N9_vSye4TiWXUjWs4q2wjjMBSlaVoJoqzVUlqRStdU5qqKRWvGZ6rRsrmGrlbl1rq6VYkm_T3CH0TyPEZPb9GHxeaXilqNZrpVhO6SnlQh9jgNY4TK-HpmCxM4yas2qzN2fV5qzaTKozyi_QIeDBhtP70O0EQX79iBBMdAhZdoMBXDJNj-_hL6wRm8s
CitedBy_id crossref_primary_10_1016_j_ress_2025_111012
crossref_primary_10_1016_j_physd_2023_133957
crossref_primary_10_1016_j_probengmech_2024_103694
crossref_primary_10_1016_j_compgeo_2025_107184
crossref_primary_10_1016_j_ress_2023_109729
crossref_primary_10_1016_j_ress_2024_110083
crossref_primary_10_1016_j_compgeo_2024_106641
crossref_primary_10_1016_j_ress_2023_109665
crossref_primary_10_1016_j_ymssp_2025_112547
crossref_primary_10_1038_s41598_024_82816_7
crossref_primary_10_1016_j_ress_2023_109541
crossref_primary_10_1016_j_cscm_2023_e02301
crossref_primary_10_23919_JSEE_2024_000055
crossref_primary_10_1016_j_engappai_2023_106073
crossref_primary_10_1016_j_ress_2025_110901
crossref_primary_10_1002_qre_3403
crossref_primary_10_1016_j_strusafe_2024_102536
crossref_primary_10_1016_j_cma_2024_117377
crossref_primary_10_26599_RSM_2024_9435485
crossref_primary_10_1115_1_4064702
crossref_primary_10_1016_j_ymssp_2024_111825
crossref_primary_10_1016_j_ress_2023_109233
crossref_primary_10_1016_j_tws_2024_111680
crossref_primary_10_1016_j_ress_2023_109097
crossref_primary_10_1016_j_ress_2023_109294
crossref_primary_10_1016_j_ress_2024_110319
crossref_primary_10_62836_jcmea_v3i1_030108
Cites_doi 10.1137/1.9780898717921
10.1016/j.ymssp.2016.02.024
10.1002/stc.144
10.1016/j.probengmech.2014.03.011
10.1007/s00158-021-02864-9
10.1016/j.ress.2013.10.010
10.1016/j.ress.2016.01.023
10.1016/j.ress.2021.107662
10.1016/j.ress.2022.108621
10.1016/j.ress.2020.107323
10.1016/j.ress.2019.106735
10.1016/j.cma.2017.11.021
10.1016/j.ress.2022.108634
10.1016/j.probengmech.2009.10.003
10.1016/j.probengmech.2013.02.002
10.1016/S0266-8920(01)00019-4
10.1007/s00158-022-03260-7
10.1061/(ASCE)ST.1943-541X.0003332
10.1016/j.strusafe.2021.102141
10.1002/stc.2972
10.1016/j.measurement.2022.110993
10.1016/j.cma.2022.114578
10.1007/s00158-018-2150-9
10.1016/j.ress.2018.10.004
10.1016/j.ress.2018.12.014
10.1016/j.jcp.2016.03.018
10.1016/j.strusafe.2016.09.002
10.1007/s00158-011-0653-8
10.1016/j.strusafe.2021.102172
10.1016/j.ress.2022.108781
10.1016/j.strusafe.2004.09.001
10.1016/j.strusafe.2022.102230
10.1016/j.ress.2022.108516
10.1016/j.strusafe.2011.01.002
10.1016/j.ress.2017.06.028
10.1016/j.ress.2021.107998
10.1016/j.strusafe.2019.101915
10.1016/j.cma.2017.02.025
10.1016/j.ress.2022.108716
10.1016/j.ress.2020.107341
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Feb 2023
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 2023
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
SOI
DOI 10.1016/j.ress.2022.108901
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Environment Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0836
ExternalDocumentID 10_1016_j_ress_2022_108901
S0951832022005166
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
SOI
ID FETCH-LOGICAL-c328t-2556d172f3ac213e65773080682675053facc58e7586291848da316f5b498a853
IEDL.DBID .~1
ISSN 0951-8320
IngestDate Wed Aug 13 04:40:27 EDT 2025
Sat Oct 25 05:46:56 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Fri Feb 23 02:39:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bayesian updating
Subset simulation
Reliability Analysis
Bayesian Inference
Markov Chain Monte Carlo
Calibration
Kriging
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-2556d172f3ac213e65773080682675053facc58e7586291848da316f5b498a853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9557-7707
0000-0001-6768-8522
PQID 2760884661
PQPubID 2045406
ParticipantIDs proquest_journals_2760884661
crossref_citationtrail_10_1016_j_ress_2022_108901
crossref_primary_10_1016_j_ress_2022_108901
elsevier_sciencedirect_doi_10_1016_j_ress_2022_108901
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Reliability engineering & system safety
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wang, Shafieezadeh (bib0013) 2021
Zhao, Hu, Song, Wang (bib0028) May 2022; 194
(bib0050) 2017
Z. Wang and A. Shafieezadeh, “Confidence intervals for failure probability estimates in adaptive kriging-based reliability analysis,”
Shuto, Amemiya (bib0020) 2022; 224
Wang, Sun, Yang, Li (bib0044) 2017; 167
D. Li and J. Zhang, “Stochastic finite element model updating through Bayesian approach with unscented transform,”
Pang, Si, Hu, Du, Pei (bib0023) 2021; 208
Beck, Katafygiotis (bib0003) 1998; 124
Daniel, Iason (bib0006) 2015; 141
Dubourg, Sudret, Deheeger (bib0045) 2013; 33
Blatman, Sudret (bib0032) 2010; 25
Bourinet (bib0033) 2016; 150
Giovanis, Papaioannou, Straub, Papadopoulos (bib0005) 2017; 319
Rahrovani, Au, Abrahamsson (bib0018) 2016; 3
Lophaven, Nielsen, Søndergaard (bib0057) 2002
Fauriat, Gayton (bib0037) 2014; 123
.
Wang, Shafieezadeh (bib0053) 2019; 59
Zhang, Song, Shafieezadeh (bib0056) 2022; 94
Xiao, Li, Wang (bib0026) 2022; 97
Au, Beck (bib0010) 2001; 16
Wang, Shafieezadeh (bib0055) 2020; 195
vol. n/a, no. n/a, p. e2972, doi
Kim, Lee, Park, Park, Lee (bib0022) 2021; 216
Zhao, Wang (bib0012) 2022; 65
Kaymaz (bib0038) 2005; 27
Betz, Papaioannou, Beck, Straub (bib0007) 2018; 331
Wang, Shafieezadeh (bib0040) 2019; 182
Wolfgang, Iason, Daniel (bib0009) 2016; 142
Vakilzadeh, Huang, Beck, Abrahamsson (bib0042) 2017; 84
Betz, Papaioannou, Straub (bib0048) 2014
Au, Beck (bib0011) 2003; 129
Song, Shafieezadeh, Xiao (bib0034) 2022; 148
Wang, Shafieezadeh, Xiao, Wang, Li (bib0001) 2022
Straub, Papaioannou, Betz (bib0014) 2016; 314
Jensen, Jerez (bib0019) 2019; 185
Beck James, Siu-Kui (bib0004) 2002; 128
Echard, Gayton, Lemaire (bib0036) 2011; 33
Dang, Wei, Faes, Valdebenito, Beer (bib0016) 2022; 225
Jerez, Jensen, Beer (bib0015) 2022
Wang, Shafieezadeh (bib0024) 2020; 84
Lophaven, Nielsen, Søndergaard (bib0047) 2002
Liu, Li, Zhao (bib0025) 2022; 95
Song, Wang, Shafieezadeh, Xiao (bib0027) 2022; 391
Jianye, Yi-Chu (bib0008) 2007; 133
Zhang, Shafieezadeh (bib0035) 2022; 226
Gaspar, Teixeira, Soares (bib0039) 2014; 37
Dubourg, Sudret, Bourinet (bib0052) 2011; 44
Yuen, Beck, Katafygiotis (bib0049) 2006; 13
Tarantola (bib0041) 2005
Zhang, Wang, Shafieezadeh (bib0054) 2021; 207
M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal, “Sparse Spectrum Gaussian Process Regression,” p. 17.
(bib0051) 2017
Zhao, Gao, Smidts (bib0021) 2021; 214
Lophaven, Nielsen, Søndergaard (bib0058) 2002
Schneider, Thöns, Straub (bib0017) 2017; 64
Dubourg (10.1016/j.ress.2022.108901_bib0052) 2011; 44
Bourinet (10.1016/j.ress.2022.108901_bib0033) 2016; 150
Wang (10.1016/j.ress.2022.108901_bib0040) 2019; 182
Lophaven (10.1016/j.ress.2022.108901_bib0047) 2002
Beck (10.1016/j.ress.2022.108901_bib0003) 1998; 124
Lophaven (10.1016/j.ress.2022.108901_bib0057) 2002
Wang (10.1016/j.ress.2022.108901_bib0001) 2022
(10.1016/j.ress.2022.108901_sbref0051) 2017
Liu (10.1016/j.ress.2022.108901_bib0025) 2022; 95
Echard (10.1016/j.ress.2022.108901_bib0036) 2011; 33
Betz (10.1016/j.ress.2022.108901_bib0007) 2018; 331
Jensen (10.1016/j.ress.2022.108901_bib0019) 2019; 185
Tarantola (10.1016/j.ress.2022.108901_bib0041) 2005
Kim (10.1016/j.ress.2022.108901_bib0022) 2021; 216
Au (10.1016/j.ress.2022.108901_bib0011) 2003; 129
Xiao (10.1016/j.ress.2022.108901_bib0026) 2022; 97
Song (10.1016/j.ress.2022.108901_bib0027) 2022; 391
Lophaven (10.1016/j.ress.2022.108901_bib0058) 2002
Beck James (10.1016/j.ress.2022.108901_bib0004) 2002; 128
Wang (10.1016/j.ress.2022.108901_bib0055) 2020; 195
Zhao (10.1016/j.ress.2022.108901_bib0028) 2022; 194
Yuen (10.1016/j.ress.2022.108901_bib0049) 2006; 13
Zhao (10.1016/j.ress.2022.108901_bib0012) 2022; 65
Gaspar (10.1016/j.ress.2022.108901_bib0039) 2014; 37
Wang (10.1016/j.ress.2022.108901_bib0013) 2021
Giovanis (10.1016/j.ress.2022.108901_bib0005) 2017; 319
Zhao (10.1016/j.ress.2022.108901_bib0021) 2021; 214
Betz (10.1016/j.ress.2022.108901_bib0048) 2014
(10.1016/j.ress.2022.108901_sbref0050) 2017
Dang (10.1016/j.ress.2022.108901_bib0016) 2022; 225
Song (10.1016/j.ress.2022.108901_bib0034) 2022; 148
Wang (10.1016/j.ress.2022.108901_bib0024) 2020; 84
Zhang (10.1016/j.ress.2022.108901_bib0056) 2022; 94
Daniel (10.1016/j.ress.2022.108901_bib0006) 2015; 141
Kaymaz (10.1016/j.ress.2022.108901_bib0038) 2005; 27
Wang (10.1016/j.ress.2022.108901_bib0053) 2019; 59
Shuto (10.1016/j.ress.2022.108901_bib0020) 2022; 224
Rahrovani (10.1016/j.ress.2022.108901_bib0018) 2016; 3
Schneider (10.1016/j.ress.2022.108901_bib0017) 2017; 64
Dubourg (10.1016/j.ress.2022.108901_bib0045) 2013; 33
Jerez (10.1016/j.ress.2022.108901_bib0015) 2022
Fauriat (10.1016/j.ress.2022.108901_bib0037) 2014; 123
Zhang (10.1016/j.ress.2022.108901_bib0054) 2021; 207
10.1016/j.ress.2022.108901_bib0043
Wang (10.1016/j.ress.2022.108901_bib0044) 2017; 167
Straub (10.1016/j.ress.2022.108901_bib0014) 2016; 314
10.1016/j.ress.2022.108901_bib0002
Pang (10.1016/j.ress.2022.108901_bib0023) 2021; 208
Blatman (10.1016/j.ress.2022.108901_bib0032) 2010; 25
10.1016/j.ress.2022.108901_bib0046
Wolfgang (10.1016/j.ress.2022.108901_bib0009) 2016; 142
Jianye (10.1016/j.ress.2022.108901_bib0008) 2007; 133
Zhang (10.1016/j.ress.2022.108901_bib0035) 2022; 226
Vakilzadeh (10.1016/j.ress.2022.108901_bib0042) 2017; 84
Au (10.1016/j.ress.2022.108901_bib0010) 2001; 16
References_xml – year: 2002
  ident: bib0058
  article-title: Aspects of the matlab toolbox DACE
  publication-title: Informatics and Mathematical Modelling
– year: 2017
  ident: bib0050
  article-title: UQLab, the Framework for Uncertainty Quantification
– reference: D. Li and J. Zhang, “Stochastic finite element model updating through Bayesian approach with unscented transform,”
– volume: 129
  start-page: 901
  year: 2003
  end-page: 917
  ident: bib0011
  article-title: Subset simulation and its application to seismic risk based on dynamic analysis
  publication-title: J Eng Mech
– volume: 224
  year: 2022
  ident: bib0020
  article-title: Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation
  publication-title: Reliab Eng Syst Saf
– volume: 97
  year: 2022
  ident: bib0026
  article-title: A novel adaptive importance sampling algorithm for Bayesian model updating
  publication-title: Struct Saf
– volume: 208
  year: 2021
  ident: bib0023
  article-title: A Bayesian inference for remaining useful life estimation by fusing accelerated degradation data and condition monitoring data
  publication-title: Reliab Eng Syst Saf
– volume: 64
  start-page: 20
  year: 2017
  end-page: 36
  ident: bib0017
  article-title: Reliability analysis and updating of deteriorating systems with subset simulation
  publication-title: Struct Saf
– volume: 142
  year: 2016
  ident: bib0009
  article-title: Transitional Markov Chain Monte Carlo: observations and improvements
  publication-title: J Eng Mech
– volume: 225
  year: 2022
  ident: bib0016
  article-title: Parallel adaptive Bayesian quadrature for rare event estimation
  publication-title: Reliab Eng Syst Saf
– volume: 150
  start-page: 210
  year: 2016
  end-page: 221
  ident: bib0033
  article-title: Rare-event probability estimation with adaptive support vector regression surrogates
  publication-title: Reliab Eng Syst Saf
– year: 2022
  ident: bib0001
  article-title: Optimal monitoring location for tracking evolving risks to infrastructure systems: theory and application to tunneling excavation risk
  publication-title: Reliab Eng Syst Saf
– reference: , vol. n/a, no. n/a, p. e2972, doi:
– volume: 84
  year: 2020
  ident: bib0024
  article-title: Highly efficient Bayesian updating using metamodels: an adaptive Kriging-based approach
  publication-title: Struct Saf
– volume: 123
  start-page: 137
  year: 2014
  end-page: 144
  ident: bib0037
  article-title: AK-SYS: An adaptation of the AK-MCS method for system reliability
  publication-title: Reliab Eng Syst Saf
– volume: 207
  year: 2021
  ident: bib0054
  article-title: Error quantification and control for adaptive kriging-based reliability updating with equality information
  publication-title: Reliab Eng Syst Saf
– volume: 128
  start-page: 380
  year: 2002
  end-page: 391
  ident: bib0004
  article-title: Bayesian Updating of structural models and reliability using Markov chain Monte Carlo simulation
  publication-title: J Eng Mech
– volume: 216
  year: 2021
  ident: bib0022
  article-title: Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference
  publication-title: Reliab Eng Syst Saf
– volume: 226
  year: 2022
  ident: bib0035
  article-title: Simulation-free reliability analysis with active learning and physics-informed neural network
  publication-title: Reliab Eng Syst Saf
– volume: 59
  year: 2019
  ident: bib0053
  article-title: ESC: an efficient error-based stopping criterion for kriging-based reliability analysis methods
  publication-title: Struct Multidiscip Optim
– year: 2022
  ident: bib0015
  article-title: An effective implementation of reliability methods for Bayesian model updating of structural dynamic models with multiple uncertain parameters
  publication-title: Reliab Eng Syst Saf
– volume: 167
  start-page: 494
  year: 2017
  end-page: 505
  ident: bib0044
  article-title: Two accuracy measures of the Kriging model for structural reliability analysis
  publication-title: Reliab Eng Syst Saf
– volume: 44
  year: 2011
  ident: bib0052
  article-title: Reliability-based design optimization using kriging surrogates and subset simulation
  publication-title: Struct Multidiscip Optim
– volume: 195
  year: 2020
  ident: bib0055
  article-title: Real-time high-fidelity reliability updating with equality information using adaptive Kriging
  publication-title: Reliab Eng Syst Saf
– volume: 37
  start-page: 24
  year: 2014
  end-page: 34
  ident: bib0039
  article-title: Assessment of the efficiency of Kriging surrogate models for structural reliability analysis
  publication-title: Probabilistic Eng Mech
– volume: 16
  start-page: 263
  year: 2001
  end-page: 277
  ident: bib0010
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probabilistic Eng Mech
– year: 2002
  ident: bib0047
  article-title: Aspects of the matlab toolbox DACE
  publication-title: Informatics and Mathematical Modelling
– volume: 13
  start-page: 91
  year: 2006
  end-page: 107
  ident: bib0049
  article-title: Efficient model updating and health monitoring methodology using incomplete modal data without mode matching
  publication-title: Struct Control Health Monit
– volume: 84
  start-page: 2
  year: 2017
  end-page: 20
  ident: bib0042
  article-title: Approximate Bayesian computation by subset simulation using hierarchical state-space models
  publication-title: Mech Syst Signal Process
– volume: 141
  year: 2015
  ident: bib0006
  article-title: Bayesian updating with structural reliability methods
  publication-title: J Eng Mech
– volume: 391
  year: 2022
  ident: bib0027
  article-title: BUAK-AIS: efficient bayesian updating with active learning kriging-based adaptive importance sampling
  publication-title: Comput Methods Appl Mech Eng
– volume: 124
  start-page: 455
  year: 1998
  end-page: 461
  ident: bib0003
  article-title: Updating models and their uncertainties. I: Bayesian statistical framework
  publication-title: J Eng Mech
– reference: Z. Wang and A. Shafieezadeh, “Confidence intervals for failure probability estimates in adaptive kriging-based reliability analysis,”
– volume: 95
  year: 2022
  ident: bib0025
  article-title: Efficient Bayesian updating with two-step adaptive Kriging
  publication-title: Struct Saf
– volume: 185
  start-page: 100
  year: 2019
  end-page: 112
  ident: bib0019
  article-title: A Bayesian model updating approach for detection-related problems in water distribution networks
  publication-title: Reliab Eng Syst Saf
– volume: 25
  start-page: 183
  year: 2010
  end-page: 197
  ident: bib0032
  article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
  publication-title: Probabilistic Eng. Mech.
– volume: 214
  year: 2021
  ident: bib0021
  article-title: Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation
  publication-title: Reliab Eng Syst Saf
– year: 2002
  ident: bib0057
  article-title: DACE-A Matlab Kriging Toolbox, version 2.0
– year: 2014
  ident: bib0048
  article-title: Adaptive Variant of the BUS Approach to Bayesian Updating
– volume: 194
  year: May 2022
  ident: bib0028
  article-title: Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network
  publication-title: Measurement
– volume: 3
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib0018
  article-title: Bayesian treatment of spatially-varying parameter estimation problems via canonical BUS
  publication-title: Model Validation and Uncertainty Quantification
– volume: 94
  year: 2022
  ident: bib0056
  article-title: Adaptive reliability analysis for multi-fidelity models using a collective learning strategy
  publication-title: Struct Saf
– year: 2017
  ident: bib0051
  article-title: UQLab, the Framework for Uncertainty Quantification
– volume: 314
  start-page: 538
  year: 2016
  end-page: 556
  ident: bib0014
  article-title: Bayesian analysis of rare events
  publication-title: J Comput Phys
– year: 2021
  ident: bib0013
  article-title: Metamodel-based subset simulation adaptable to target computational capacities: the case for high-dimensional and rare event reliability analysis
  publication-title: Struct Multidiscip Optim
– volume: 65
  start-page: 172
  year: 2022
  ident: bib0012
  article-title: Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach
  publication-title: Struct Multidiscip Optim
– reference: .
– volume: 331
  start-page: 72
  year: 2018
  end-page: 93
  ident: bib0007
  article-title: Bayesian inference with Subset Simulation: strategies and improvements
  publication-title: Comput Methods Appl Mech Eng
– volume: 133
  start-page: 816
  year: 2007
  end-page: 832
  ident: bib0008
  article-title: Transitional Markov chain Monte Carlo method for bayesian model updating, model class selection, and model averaging
  publication-title: J Eng Mech
– volume: 148
  year: 2022
  ident: bib0034
  article-title: High-dimensional reliability analysis with error-guided active-learning probabilistic support vector machine: application to wind-reliability analysis of transmission towers
  publication-title: J Struct Eng
– volume: 319
  start-page: 124
  year: 2017
  end-page: 145
  ident: bib0005
  article-title: Bayesian updating with subset simulation using artificial neural networks
  publication-title: Comput Methods Appl Mech Eng
– volume: 27
  start-page: 133
  year: 2005
  end-page: 151
  ident: bib0038
  article-title: Application of kriging method to structural reliability problems
  publication-title: Struct Saf
– reference: M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal, “Sparse Spectrum Gaussian Process Regression,” p. 17.
– volume: 33
  start-page: 145
  year: 2011
  end-page: 154
  ident: bib0036
  article-title: AK-MCS: an active learning reliability method combining kriging and Monte Carlo simulation
  publication-title: Struct Saf
– volume: 182
  start-page: 33
  year: 2019
  end-page: 45
  ident: bib0040
  article-title: REAK: Reliability analysis through Error rate-based Adaptive Kriging
  publication-title: Reliab Eng Syst Saf
– year: 2005
  ident: bib0041
  publication-title: Inverse Problem Theory and Methods for Model Parameter Estimation
– volume: 33
  start-page: 47
  year: 2013
  end-page: 57
  ident: bib0045
  article-title: Metamodel-based importance sampling for structural reliability analysis
  publication-title: Probabilistic Eng Mech
– year: 2005
  ident: 10.1016/j.ress.2022.108901_bib0041
  publication-title: Inverse Problem Theory and Methods for Model Parameter Estimation
  doi: 10.1137/1.9780898717921
– volume: 84
  start-page: 2
  year: 2017
  ident: 10.1016/j.ress.2022.108901_bib0042
  article-title: Approximate Bayesian computation by subset simulation using hierarchical state-space models
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2016.02.024
– year: 2002
  ident: 10.1016/j.ress.2022.108901_bib0047
  article-title: Aspects of the matlab toolbox DACE
– volume: 141
  issue: 3
  year: 2015
  ident: 10.1016/j.ress.2022.108901_bib0006
  article-title: Bayesian updating with structural reliability methods
  publication-title: J Eng Mech
– ident: 10.1016/j.ress.2022.108901_bib0046
– volume: 13
  start-page: 91
  issue: 1
  year: 2006
  ident: 10.1016/j.ress.2022.108901_bib0049
  article-title: Efficient model updating and health monitoring methodology using incomplete modal data without mode matching
  publication-title: Struct Control Health Monit
  doi: 10.1002/stc.144
– volume: 37
  start-page: 24
  year: 2014
  ident: 10.1016/j.ress.2022.108901_bib0039
  article-title: Assessment of the efficiency of Kriging surrogate models for structural reliability analysis
  publication-title: Probabilistic Eng Mech
  doi: 10.1016/j.probengmech.2014.03.011
– year: 2014
  ident: 10.1016/j.ress.2022.108901_bib0048
– year: 2021
  ident: 10.1016/j.ress.2022.108901_bib0013
  article-title: Metamodel-based subset simulation adaptable to target computational capacities: the case for high-dimensional and rare event reliability analysis
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-021-02864-9
– volume: 123
  start-page: 137
  year: 2014
  ident: 10.1016/j.ress.2022.108901_bib0037
  article-title: AK-SYS: An adaptation of the AK-MCS method for system reliability
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2013.10.010
– volume: 128
  start-page: 380
  issue: 4
  year: 2002
  ident: 10.1016/j.ress.2022.108901_bib0004
  article-title: Bayesian Updating of structural models and reliability using Markov chain Monte Carlo simulation
  publication-title: J Eng Mech
– volume: 142
  issue: 5
  year: 2016
  ident: 10.1016/j.ress.2022.108901_bib0009
  article-title: Transitional Markov Chain Monte Carlo: observations and improvements
  publication-title: J Eng Mech
– volume: 150
  start-page: 210
  year: 2016
  ident: 10.1016/j.ress.2022.108901_bib0033
  article-title: Rare-event probability estimation with adaptive support vector regression surrogates
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2016.01.023
– volume: 214
  year: 2021
  ident: 10.1016/j.ress.2022.108901_bib0021
  article-title: Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107662
– volume: 225
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0016
  article-title: Parallel adaptive Bayesian quadrature for rare event estimation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108621
– volume: 207
  year: 2021
  ident: 10.1016/j.ress.2022.108901_bib0054
  article-title: Error quantification and control for adaptive kriging-based reliability updating with equality information
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107323
– volume: 195
  year: 2020
  ident: 10.1016/j.ress.2022.108901_bib0055
  article-title: Real-time high-fidelity reliability updating with equality information using adaptive Kriging
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2019.106735
– volume: 331
  start-page: 72
  year: 2018
  ident: 10.1016/j.ress.2022.108901_bib0007
  article-title: Bayesian inference with Subset Simulation: strategies and improvements
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.11.021
– year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0015
  article-title: An effective implementation of reliability methods for Bayesian model updating of structural dynamic models with multiple uncertain parameters
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108634
– volume: 25
  start-page: 183
  issue: 2
  year: 2010
  ident: 10.1016/j.ress.2022.108901_bib0032
  article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
  publication-title: Probabilistic Eng. Mech.
  doi: 10.1016/j.probengmech.2009.10.003
– volume: 33
  start-page: 47
  year: 2013
  ident: 10.1016/j.ress.2022.108901_bib0045
  article-title: Metamodel-based importance sampling for structural reliability analysis
  publication-title: Probabilistic Eng Mech
  doi: 10.1016/j.probengmech.2013.02.002
– volume: 16
  start-page: 263
  issue: 4
  year: 2001
  ident: 10.1016/j.ress.2022.108901_bib0010
  article-title: Estimation of small failure probabilities in high dimensions by subset simulation
  publication-title: Probabilistic Eng Mech
  doi: 10.1016/S0266-8920(01)00019-4
– volume: 133
  start-page: 816
  issue: 7
  year: 2007
  ident: 10.1016/j.ress.2022.108901_bib0008
  article-title: Transitional Markov chain Monte Carlo method for bayesian model updating, model class selection, and model averaging
  publication-title: J Eng Mech
– volume: 65
  start-page: 172
  issue: 6
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0012
  article-title: Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-022-03260-7
– volume: 148
  issue: 5
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0034
  article-title: High-dimensional reliability analysis with error-guided active-learning probabilistic support vector machine: application to wind-reliability analysis of transmission towers
  publication-title: J Struct Eng
  doi: 10.1061/(ASCE)ST.1943-541X.0003332
– volume: 94
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0056
  article-title: Adaptive reliability analysis for multi-fidelity models using a collective learning strategy
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2021.102141
– volume: 3
  start-page: 1
  year: 2016
  ident: 10.1016/j.ress.2022.108901_bib0018
  article-title: Bayesian treatment of spatially-varying parameter estimation problems via canonical BUS
– ident: 10.1016/j.ress.2022.108901_bib0002
  doi: 10.1002/stc.2972
– volume: 194
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0028
  article-title: Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.110993
– volume: 391
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0027
  article-title: BUAK-AIS: efficient bayesian updating with active learning kriging-based adaptive importance sampling
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114578
– year: 2002
  ident: 10.1016/j.ress.2022.108901_bib0057
– volume: 59
  issue: 5
  year: 2019
  ident: 10.1016/j.ress.2022.108901_bib0053
  article-title: ESC: an efficient error-based stopping criterion for kriging-based reliability analysis methods
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-018-2150-9
– volume: 182
  start-page: 33
  year: 2019
  ident: 10.1016/j.ress.2022.108901_bib0040
  article-title: REAK: Reliability analysis through Error rate-based Adaptive Kriging
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.10.004
– volume: 185
  start-page: 100
  year: 2019
  ident: 10.1016/j.ress.2022.108901_bib0019
  article-title: A Bayesian model updating approach for detection-related problems in water distribution networks
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2018.12.014
– volume: 129
  start-page: 901
  issue: 8
  year: 2003
  ident: 10.1016/j.ress.2022.108901_bib0011
  article-title: Subset simulation and its application to seismic risk based on dynamic analysis
  publication-title: J Eng Mech
– volume: 124
  start-page: 455
  issue: 4
  year: 1998
  ident: 10.1016/j.ress.2022.108901_bib0003
  article-title: Updating models and their uncertainties. I: Bayesian statistical framework
  publication-title: J Eng Mech
– volume: 314
  start-page: 538
  year: 2016
  ident: 10.1016/j.ress.2022.108901_bib0014
  article-title: Bayesian analysis of rare events
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.03.018
– volume: 64
  start-page: 20
  year: 2017
  ident: 10.1016/j.ress.2022.108901_bib0017
  article-title: Reliability analysis and updating of deteriorating systems with subset simulation
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2016.09.002
– volume: 44
  issue: 5
  year: 2011
  ident: 10.1016/j.ress.2022.108901_bib0052
  article-title: Reliability-based design optimization using kriging surrogates and subset simulation
  publication-title: Struct Multidiscip Optim
  doi: 10.1007/s00158-011-0653-8
– volume: 95
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0025
  article-title: Efficient Bayesian updating with two-step adaptive Kriging
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2021.102172
– year: 2017
  ident: 10.1016/j.ress.2022.108901_sbref0050
– year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0001
  article-title: Optimal monitoring location for tracking evolving risks to infrastructure systems: theory and application to tunneling excavation risk
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108781
– volume: 27
  start-page: 133
  issue: 2
  year: 2005
  ident: 10.1016/j.ress.2022.108901_bib0038
  article-title: Application of kriging method to structural reliability problems
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2004.09.001
– ident: 10.1016/j.ress.2022.108901_bib0043
– volume: 97
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0026
  article-title: A novel adaptive importance sampling algorithm for Bayesian model updating
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2022.102230
– year: 2002
  ident: 10.1016/j.ress.2022.108901_bib0058
  article-title: Aspects of the matlab toolbox DACE
– volume: 224
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0020
  article-title: Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108516
– volume: 33
  start-page: 145
  issue: 2
  year: 2011
  ident: 10.1016/j.ress.2022.108901_bib0036
  article-title: AK-MCS: an active learning reliability method combining kriging and Monte Carlo simulation
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2011.01.002
– year: 2017
  ident: 10.1016/j.ress.2022.108901_sbref0051
– volume: 167
  start-page: 494
  year: 2017
  ident: 10.1016/j.ress.2022.108901_bib0044
  article-title: Two accuracy measures of the Kriging model for structural reliability analysis
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2017.06.028
– volume: 216
  year: 2021
  ident: 10.1016/j.ress.2022.108901_bib0022
  article-title: Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.107998
– volume: 84
  year: 2020
  ident: 10.1016/j.ress.2022.108901_bib0024
  article-title: Highly efficient Bayesian updating using metamodels: an adaptive Kriging-based approach
  publication-title: Struct Saf
  doi: 10.1016/j.strusafe.2019.101915
– volume: 319
  start-page: 124
  year: 2017
  ident: 10.1016/j.ress.2022.108901_bib0005
  article-title: Bayesian updating with subset simulation using artificial neural networks
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.02.025
– volume: 226
  year: 2022
  ident: 10.1016/j.ress.2022.108901_bib0035
  article-title: Simulation-free reliability analysis with active learning and physics-informed neural network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2022.108716
– volume: 208
  year: 2021
  ident: 10.1016/j.ress.2022.108901_bib0023
  article-title: A Bayesian inference for remaining useful life estimation by fusing accelerated degradation data and condition monitoring data
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2020.107341
SSID ssj0004957
Score 2.5248861
Snippet •BUS-SSAK, a deep integration of adaptive Kriging-based subset simulation and Bayesian updating with structural reliability (BUS), is proposed.•Conditional...
The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian updating problems into structural reliability to address...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108901
SubjectTerms Algorithms
Bayesian analysis
Bayesian Inference
Bayesian updating
Calibration
Computer applications
Computing costs
Failure
Kriging
Limit states
Marine environment
Markov Chain Monte Carlo
Mathematical models
Reliability Analysis
Reliability aspects
Reliability engineering
Structural reliability
Subset simulation
Thresholds
Title Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations
URI https://dx.doi.org/10.1016/j.ress.2022.108901
https://www.proquest.com/docview/2760884661
Volume 230
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0836
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004957
  issn: 0951-8320
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BSFUnlgg7RJnQ-HrVRUBUQXqNQtcmIHFUEakXSokPjt3NVOgQoxsCa2FfmSu3fO3XuEnDE7TFkglCU8m1luqFwrTh0wiJOGccxQKwkbnO9H_nDs3k68SY30q14YLKs0vl_79KW3Nlc6Zjc7-XTaeUBwwFH-Gw9GHB9pt103QBWD9sdXmQckAEElJ4-jTeOMrvHCjLaNK2CpXWiEYX4JTmtuehl7Bjtk24BG2tPPtUtqKtsjW9-oBPfJ-5VYKGyIpPMcOxayJ4pHrFRIkaNHu6AQwPTv_3JhabpUJWkBfkOVtJi-Ghmv4pJi6YeVIv0VIPS15ar6QzqLV8e5xQEZD64f-0PLCCtYCevy0kLaMQnIJWUi6TpM-V4AHzq3fcg1AEF4LBVJ4nEFuYTfDSEH5FKg0bzYDbmAAH9I6tksU0eE8oCnABqVnSCrj7R5LFUsnEAq5qZdLhvEqXY0SgzrOIpfvERVedlzhFaI0AqRtkKDnK_m5Jpz48_RXmWo6MebE0FQ-HNes7JqZL5buB_44HZdAC3H_1z2hGyiIr0u7G6Sevk2V6eAW8q4tXwxW2Sjd3M3HH0CZfftpQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0gHtSD8TOiqHvwpoW224-tNyUSVOAiJNw223ZrMFqIlAMx8bc7Q7eoxHDw2u5ump125s32zTxCLpgZJMyXypCuyQwnUI4RJhYYxEqCMGSolYQFzp2u1-o7DwN3UCKNohYGaZXa9-c-fe6t9ZW63s36eDisPyE44Cj_jQcjluetkXXHtX3MwGqf3zwPyAD8Qk8eh-vKmZzkhSltDZdArl2glWH-iE5LfnoefJo7ZFujRnqTP9guKal0j2z96CW4Tz5u5UxhRSSdjrFkIX2meMZKZSzH6NKuKESw_P9_NjPyfqkqphNwHCqjk-Gb1vGaXFPkfhgJ9r8CiL60XEFApKNwcZ47OSD95l2v0TK0soIRMZtnBvYdiwG6JExGtsWU5_rwpXPTg2QDIITLEhlFLleQTHh2AEkgjyVazQ2dgEuI8IeknI5SdUQo93kCqFGZEbb1iU0exiqUlh8r5iQ2jyvEKnZURLrtOKpfvIqCX_Yi0AoCrSByK1TI5WLOOG-6sXK0WxhK_Hp1BESFlfOqhVWF_nDhvu-B33UAtRz_c9lzstHqddqifd99PCGbKE-fs7yrpJy9T9UpgJgsPJu_pF_ue-86
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+updating+with+adaptive%2C+uncertainty-informed+subset+simulations%3A+High-fidelity+updating+with+multiple+observations&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Wang%2C+Zeyu&rft.au=Shafieezadeh%2C+Abdollah&rft.date=2023-02-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=230&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108901&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon