Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations
•BUS-SSAK, a deep integration of adaptive Kriging-based subset simulation and Bayesian updating with structural reliability (BUS), is proposed.•Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are introduced.•CARC and DLF facilitate precise identification of intermediate...
Saved in:
| Published in | Reliability engineering & system safety Vol. 230; p. 108901 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Barking
Elsevier Ltd
01.02.2023
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0951-8320 1879-0836 |
| DOI | 10.1016/j.ress.2022.108901 |
Cover
| Abstract | •BUS-SSAK, a deep integration of adaptive Kriging-based subset simulation and Bayesian updating with structural reliability (BUS), is proposed.•Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are introduced.•CARC and DLF facilitate precise identification of intermediate failure thresholds in subset simulation with limited realizations.•BUS-SSAK enables Bayesian updating of complex, computationally demanding models.
The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian updating problems into structural reliability to address challenges of updating with equality information and improve computational efficiency. However, as the number of observations increases, the resulting failure probability or acceptance ratio becomes exceedingly small, requiring a formidable number of evaluations of the likelihood function. To overcome this limitation especially for complex computational models, this paper presents a new approach where the probability estimation problem of the very rare event associated with updating is decomposed into a set of sub-reliability problems with uncertain failure thresholds. Two concepts of Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are proposed to enable precise identification of the intermediate failure thresholds and to train Kriging surrogate models for the established limit state functions. Two benchmark numerical examples and a practical corrosion problem in marine environments are investigated to analyze the efficiency of the proposed method relative to BUS and other state-of-the-art methods. Results indicate that the proposed method can reduce computational costs by about an order of magnitude while maintaining high accuracy; therefore, enabling Bayesian updating of complex computational models. |
|---|---|
| AbstractList | The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian updating problems into structural reliability to address challenges of updating with equality information and improve computational efficiency. However, as the number of observations increases, the resulting failure probability or acceptance ratio becomes exceedingly small, requiring a formidable number of evaluations of the likelihood function. To overcome this limitation especially for complex computational models, this paper presents a new approach where the probability estimation problem of the very rare event associated with updating is decomposed into a set of sub-reliability problems with uncertain failure thresholds. Two concepts of Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are proposed to enable precise identification of the intermediate failure thresholds and to train Kriging surrogate models for the established limit state functions. Two benchmark numerical examples and a practical corrosion problem in marine environments are investigated to analyze the efficiency of the proposed method relative to BUS and other state-of-the-art methods. Results indicate that the proposed method can reduce computational costs by about an order of magnitude while maintaining high accuracy; therefore, enabling Bayesian updating of complex computational models. •BUS-SSAK, a deep integration of adaptive Kriging-based subset simulation and Bayesian updating with structural reliability (BUS), is proposed.•Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are introduced.•CARC and DLF facilitate precise identification of intermediate failure thresholds in subset simulation with limited realizations.•BUS-SSAK enables Bayesian updating of complex, computationally demanding models. The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian updating problems into structural reliability to address challenges of updating with equality information and improve computational efficiency. However, as the number of observations increases, the resulting failure probability or acceptance ratio becomes exceedingly small, requiring a formidable number of evaluations of the likelihood function. To overcome this limitation especially for complex computational models, this paper presents a new approach where the probability estimation problem of the very rare event associated with updating is decomposed into a set of sub-reliability problems with uncertain failure thresholds. Two concepts of Conditional Acceptance Rate Curve (CARC) and Dynamic Learning Function (DLF) are proposed to enable precise identification of the intermediate failure thresholds and to train Kriging surrogate models for the established limit state functions. Two benchmark numerical examples and a practical corrosion problem in marine environments are investigated to analyze the efficiency of the proposed method relative to BUS and other state-of-the-art methods. Results indicate that the proposed method can reduce computational costs by about an order of magnitude while maintaining high accuracy; therefore, enabling Bayesian updating of complex computational models. |
| ArticleNumber | 108901 |
| Author | Shafieezadeh, Abdollah Wang, Zeyu |
| Author_xml | – sequence: 1 givenname: Zeyu orcidid: 0000-0001-9557-7707 surname: Wang fullname: Wang, Zeyu organization: School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China – sequence: 2 givenname: Abdollah orcidid: 0000-0001-6768-8522 surname: Shafieezadeh fullname: Shafieezadeh, Abdollah email: shafieezadeh.1@osu.edu organization: Risk Assessment and Management of Structural and Infrastructure Systems (RAMSIS) lab, Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA 43210 |
| BookMark | eNp9kD1v2zAQhonCBWq7_QOdBHSNHH6YFBVkaY02LhCgSzsTNHVKzpAphaQcGP3zoaNMHjIdcHif-3gWZOZ7D4R8ZXTFKFPX-1WAGFeccp4buqbsA5kzXdUl1ULNyJzWkpVacPqJLGLcU0rXtazm5P8Pe4KI1hfj0NiE_qF4xvRY2MYOCY9wVYzeQUgWfTqV6Ns-HKAp4riLkIqIh7HLVO_jTbHFh8eyxQY6TKeLcTmWcOig6DMXjhPymXxsbRfhy1tdkn-_fv7dbMv7P3e_N9_vSye4TiWXUjWs4q2wjjMBSlaVoJoqzVUlqRStdU5qqKRWvGZ6rRsrmGrlbl1rq6VYkm_T3CH0TyPEZPb9GHxeaXilqNZrpVhO6SnlQh9jgNY4TK-HpmCxM4yas2qzN2fV5qzaTKozyi_QIeDBhtP70O0EQX79iBBMdAhZdoMBXDJNj-_hL6wRm8s |
| CitedBy_id | crossref_primary_10_1016_j_ress_2025_111012 crossref_primary_10_1016_j_physd_2023_133957 crossref_primary_10_1016_j_probengmech_2024_103694 crossref_primary_10_1016_j_compgeo_2025_107184 crossref_primary_10_1016_j_ress_2023_109729 crossref_primary_10_1016_j_ress_2024_110083 crossref_primary_10_1016_j_compgeo_2024_106641 crossref_primary_10_1016_j_ress_2023_109665 crossref_primary_10_1016_j_ymssp_2025_112547 crossref_primary_10_1038_s41598_024_82816_7 crossref_primary_10_1016_j_ress_2023_109541 crossref_primary_10_1016_j_cscm_2023_e02301 crossref_primary_10_23919_JSEE_2024_000055 crossref_primary_10_1016_j_engappai_2023_106073 crossref_primary_10_1016_j_ress_2025_110901 crossref_primary_10_1002_qre_3403 crossref_primary_10_1016_j_strusafe_2024_102536 crossref_primary_10_1016_j_cma_2024_117377 crossref_primary_10_26599_RSM_2024_9435485 crossref_primary_10_1115_1_4064702 crossref_primary_10_1016_j_ymssp_2024_111825 crossref_primary_10_1016_j_ress_2023_109233 crossref_primary_10_1016_j_tws_2024_111680 crossref_primary_10_1016_j_ress_2023_109097 crossref_primary_10_1016_j_ress_2023_109294 crossref_primary_10_1016_j_ress_2024_110319 crossref_primary_10_62836_jcmea_v3i1_030108 |
| Cites_doi | 10.1137/1.9780898717921 10.1016/j.ymssp.2016.02.024 10.1002/stc.144 10.1016/j.probengmech.2014.03.011 10.1007/s00158-021-02864-9 10.1016/j.ress.2013.10.010 10.1016/j.ress.2016.01.023 10.1016/j.ress.2021.107662 10.1016/j.ress.2022.108621 10.1016/j.ress.2020.107323 10.1016/j.ress.2019.106735 10.1016/j.cma.2017.11.021 10.1016/j.ress.2022.108634 10.1016/j.probengmech.2009.10.003 10.1016/j.probengmech.2013.02.002 10.1016/S0266-8920(01)00019-4 10.1007/s00158-022-03260-7 10.1061/(ASCE)ST.1943-541X.0003332 10.1016/j.strusafe.2021.102141 10.1002/stc.2972 10.1016/j.measurement.2022.110993 10.1016/j.cma.2022.114578 10.1007/s00158-018-2150-9 10.1016/j.ress.2018.10.004 10.1016/j.ress.2018.12.014 10.1016/j.jcp.2016.03.018 10.1016/j.strusafe.2016.09.002 10.1007/s00158-011-0653-8 10.1016/j.strusafe.2021.102172 10.1016/j.ress.2022.108781 10.1016/j.strusafe.2004.09.001 10.1016/j.strusafe.2022.102230 10.1016/j.ress.2022.108516 10.1016/j.strusafe.2011.01.002 10.1016/j.ress.2017.06.028 10.1016/j.ress.2021.107998 10.1016/j.strusafe.2019.101915 10.1016/j.cma.2017.02.025 10.1016/j.ress.2022.108716 10.1016/j.ress.2020.107341 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Feb 2023 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Feb 2023 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 SOI |
| DOI | 10.1016/j.ress.2022.108901 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environment Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10_1016_j_ress_2022_108901 S0951832022005166 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TB 8FD AGCQF C1K FR3 SOI |
| ID | FETCH-LOGICAL-c328t-2556d172f3ac213e65773080682675053facc58e7586291848da316f5b498a853 |
| IEDL.DBID | .~1 |
| ISSN | 0951-8320 |
| IngestDate | Wed Aug 13 04:40:27 EDT 2025 Sat Oct 25 05:46:56 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Fri Feb 23 02:39:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bayesian updating Subset simulation Reliability Analysis Bayesian Inference Markov Chain Monte Carlo Calibration Kriging |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-2556d172f3ac213e65773080682675053facc58e7586291848da316f5b498a853 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9557-7707 0000-0001-6768-8522 |
| PQID | 2760884661 |
| PQPubID | 2045406 |
| ParticipantIDs | proquest_journals_2760884661 crossref_citationtrail_10_1016_j_ress_2022_108901 crossref_primary_10_1016_j_ress_2022_108901 elsevier_sciencedirect_doi_10_1016_j_ress_2022_108901 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Wang, Shafieezadeh (bib0013) 2021 Zhao, Hu, Song, Wang (bib0028) May 2022; 194 (bib0050) 2017 Z. Wang and A. Shafieezadeh, “Confidence intervals for failure probability estimates in adaptive kriging-based reliability analysis,” Shuto, Amemiya (bib0020) 2022; 224 Wang, Sun, Yang, Li (bib0044) 2017; 167 D. Li and J. Zhang, “Stochastic finite element model updating through Bayesian approach with unscented transform,” Pang, Si, Hu, Du, Pei (bib0023) 2021; 208 Beck, Katafygiotis (bib0003) 1998; 124 Daniel, Iason (bib0006) 2015; 141 Dubourg, Sudret, Deheeger (bib0045) 2013; 33 Blatman, Sudret (bib0032) 2010; 25 Bourinet (bib0033) 2016; 150 Giovanis, Papaioannou, Straub, Papadopoulos (bib0005) 2017; 319 Rahrovani, Au, Abrahamsson (bib0018) 2016; 3 Lophaven, Nielsen, Søndergaard (bib0057) 2002 Fauriat, Gayton (bib0037) 2014; 123 . Wang, Shafieezadeh (bib0053) 2019; 59 Zhang, Song, Shafieezadeh (bib0056) 2022; 94 Xiao, Li, Wang (bib0026) 2022; 97 Au, Beck (bib0010) 2001; 16 Wang, Shafieezadeh (bib0055) 2020; 195 vol. n/a, no. n/a, p. e2972, doi Kim, Lee, Park, Park, Lee (bib0022) 2021; 216 Zhao, Wang (bib0012) 2022; 65 Kaymaz (bib0038) 2005; 27 Betz, Papaioannou, Beck, Straub (bib0007) 2018; 331 Wang, Shafieezadeh (bib0040) 2019; 182 Wolfgang, Iason, Daniel (bib0009) 2016; 142 Vakilzadeh, Huang, Beck, Abrahamsson (bib0042) 2017; 84 Betz, Papaioannou, Straub (bib0048) 2014 Au, Beck (bib0011) 2003; 129 Song, Shafieezadeh, Xiao (bib0034) 2022; 148 Wang, Shafieezadeh, Xiao, Wang, Li (bib0001) 2022 Straub, Papaioannou, Betz (bib0014) 2016; 314 Jensen, Jerez (bib0019) 2019; 185 Beck James, Siu-Kui (bib0004) 2002; 128 Echard, Gayton, Lemaire (bib0036) 2011; 33 Dang, Wei, Faes, Valdebenito, Beer (bib0016) 2022; 225 Jerez, Jensen, Beer (bib0015) 2022 Wang, Shafieezadeh (bib0024) 2020; 84 Lophaven, Nielsen, Søndergaard (bib0047) 2002 Liu, Li, Zhao (bib0025) 2022; 95 Song, Wang, Shafieezadeh, Xiao (bib0027) 2022; 391 Jianye, Yi-Chu (bib0008) 2007; 133 Zhang, Shafieezadeh (bib0035) 2022; 226 Gaspar, Teixeira, Soares (bib0039) 2014; 37 Dubourg, Sudret, Bourinet (bib0052) 2011; 44 Yuen, Beck, Katafygiotis (bib0049) 2006; 13 Tarantola (bib0041) 2005 Zhang, Wang, Shafieezadeh (bib0054) 2021; 207 M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal, “Sparse Spectrum Gaussian Process Regression,” p. 17. (bib0051) 2017 Zhao, Gao, Smidts (bib0021) 2021; 214 Lophaven, Nielsen, Søndergaard (bib0058) 2002 Schneider, Thöns, Straub (bib0017) 2017; 64 Dubourg (10.1016/j.ress.2022.108901_bib0052) 2011; 44 Bourinet (10.1016/j.ress.2022.108901_bib0033) 2016; 150 Wang (10.1016/j.ress.2022.108901_bib0040) 2019; 182 Lophaven (10.1016/j.ress.2022.108901_bib0047) 2002 Beck (10.1016/j.ress.2022.108901_bib0003) 1998; 124 Lophaven (10.1016/j.ress.2022.108901_bib0057) 2002 Wang (10.1016/j.ress.2022.108901_bib0001) 2022 (10.1016/j.ress.2022.108901_sbref0051) 2017 Liu (10.1016/j.ress.2022.108901_bib0025) 2022; 95 Echard (10.1016/j.ress.2022.108901_bib0036) 2011; 33 Betz (10.1016/j.ress.2022.108901_bib0007) 2018; 331 Jensen (10.1016/j.ress.2022.108901_bib0019) 2019; 185 Tarantola (10.1016/j.ress.2022.108901_bib0041) 2005 Kim (10.1016/j.ress.2022.108901_bib0022) 2021; 216 Au (10.1016/j.ress.2022.108901_bib0011) 2003; 129 Xiao (10.1016/j.ress.2022.108901_bib0026) 2022; 97 Song (10.1016/j.ress.2022.108901_bib0027) 2022; 391 Lophaven (10.1016/j.ress.2022.108901_bib0058) 2002 Beck James (10.1016/j.ress.2022.108901_bib0004) 2002; 128 Wang (10.1016/j.ress.2022.108901_bib0055) 2020; 195 Zhao (10.1016/j.ress.2022.108901_bib0028) 2022; 194 Yuen (10.1016/j.ress.2022.108901_bib0049) 2006; 13 Zhao (10.1016/j.ress.2022.108901_bib0012) 2022; 65 Gaspar (10.1016/j.ress.2022.108901_bib0039) 2014; 37 Wang (10.1016/j.ress.2022.108901_bib0013) 2021 Giovanis (10.1016/j.ress.2022.108901_bib0005) 2017; 319 Zhao (10.1016/j.ress.2022.108901_bib0021) 2021; 214 Betz (10.1016/j.ress.2022.108901_bib0048) 2014 (10.1016/j.ress.2022.108901_sbref0050) 2017 Dang (10.1016/j.ress.2022.108901_bib0016) 2022; 225 Song (10.1016/j.ress.2022.108901_bib0034) 2022; 148 Wang (10.1016/j.ress.2022.108901_bib0024) 2020; 84 Zhang (10.1016/j.ress.2022.108901_bib0056) 2022; 94 Daniel (10.1016/j.ress.2022.108901_bib0006) 2015; 141 Kaymaz (10.1016/j.ress.2022.108901_bib0038) 2005; 27 Wang (10.1016/j.ress.2022.108901_bib0053) 2019; 59 Shuto (10.1016/j.ress.2022.108901_bib0020) 2022; 224 Rahrovani (10.1016/j.ress.2022.108901_bib0018) 2016; 3 Schneider (10.1016/j.ress.2022.108901_bib0017) 2017; 64 Dubourg (10.1016/j.ress.2022.108901_bib0045) 2013; 33 Jerez (10.1016/j.ress.2022.108901_bib0015) 2022 Fauriat (10.1016/j.ress.2022.108901_bib0037) 2014; 123 Zhang (10.1016/j.ress.2022.108901_bib0054) 2021; 207 10.1016/j.ress.2022.108901_bib0043 Wang (10.1016/j.ress.2022.108901_bib0044) 2017; 167 Straub (10.1016/j.ress.2022.108901_bib0014) 2016; 314 10.1016/j.ress.2022.108901_bib0002 Pang (10.1016/j.ress.2022.108901_bib0023) 2021; 208 Blatman (10.1016/j.ress.2022.108901_bib0032) 2010; 25 10.1016/j.ress.2022.108901_bib0046 Wolfgang (10.1016/j.ress.2022.108901_bib0009) 2016; 142 Jianye (10.1016/j.ress.2022.108901_bib0008) 2007; 133 Zhang (10.1016/j.ress.2022.108901_bib0035) 2022; 226 Vakilzadeh (10.1016/j.ress.2022.108901_bib0042) 2017; 84 Au (10.1016/j.ress.2022.108901_bib0010) 2001; 16 |
| References_xml | – year: 2002 ident: bib0058 article-title: Aspects of the matlab toolbox DACE publication-title: Informatics and Mathematical Modelling – year: 2017 ident: bib0050 article-title: UQLab, the Framework for Uncertainty Quantification – reference: D. Li and J. Zhang, “Stochastic finite element model updating through Bayesian approach with unscented transform,” – volume: 129 start-page: 901 year: 2003 end-page: 917 ident: bib0011 article-title: Subset simulation and its application to seismic risk based on dynamic analysis publication-title: J Eng Mech – volume: 224 year: 2022 ident: bib0020 article-title: Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation publication-title: Reliab Eng Syst Saf – volume: 97 year: 2022 ident: bib0026 article-title: A novel adaptive importance sampling algorithm for Bayesian model updating publication-title: Struct Saf – volume: 208 year: 2021 ident: bib0023 article-title: A Bayesian inference for remaining useful life estimation by fusing accelerated degradation data and condition monitoring data publication-title: Reliab Eng Syst Saf – volume: 64 start-page: 20 year: 2017 end-page: 36 ident: bib0017 article-title: Reliability analysis and updating of deteriorating systems with subset simulation publication-title: Struct Saf – volume: 142 year: 2016 ident: bib0009 article-title: Transitional Markov Chain Monte Carlo: observations and improvements publication-title: J Eng Mech – volume: 225 year: 2022 ident: bib0016 article-title: Parallel adaptive Bayesian quadrature for rare event estimation publication-title: Reliab Eng Syst Saf – volume: 150 start-page: 210 year: 2016 end-page: 221 ident: bib0033 article-title: Rare-event probability estimation with adaptive support vector regression surrogates publication-title: Reliab Eng Syst Saf – year: 2022 ident: bib0001 article-title: Optimal monitoring location for tracking evolving risks to infrastructure systems: theory and application to tunneling excavation risk publication-title: Reliab Eng Syst Saf – reference: , vol. n/a, no. n/a, p. e2972, doi: – volume: 84 year: 2020 ident: bib0024 article-title: Highly efficient Bayesian updating using metamodels: an adaptive Kriging-based approach publication-title: Struct Saf – volume: 123 start-page: 137 year: 2014 end-page: 144 ident: bib0037 article-title: AK-SYS: An adaptation of the AK-MCS method for system reliability publication-title: Reliab Eng Syst Saf – volume: 207 year: 2021 ident: bib0054 article-title: Error quantification and control for adaptive kriging-based reliability updating with equality information publication-title: Reliab Eng Syst Saf – volume: 128 start-page: 380 year: 2002 end-page: 391 ident: bib0004 article-title: Bayesian Updating of structural models and reliability using Markov chain Monte Carlo simulation publication-title: J Eng Mech – volume: 216 year: 2021 ident: bib0022 article-title: Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference publication-title: Reliab Eng Syst Saf – volume: 226 year: 2022 ident: bib0035 article-title: Simulation-free reliability analysis with active learning and physics-informed neural network publication-title: Reliab Eng Syst Saf – volume: 59 year: 2019 ident: bib0053 article-title: ESC: an efficient error-based stopping criterion for kriging-based reliability analysis methods publication-title: Struct Multidiscip Optim – year: 2022 ident: bib0015 article-title: An effective implementation of reliability methods for Bayesian model updating of structural dynamic models with multiple uncertain parameters publication-title: Reliab Eng Syst Saf – volume: 167 start-page: 494 year: 2017 end-page: 505 ident: bib0044 article-title: Two accuracy measures of the Kriging model for structural reliability analysis publication-title: Reliab Eng Syst Saf – volume: 44 year: 2011 ident: bib0052 article-title: Reliability-based design optimization using kriging surrogates and subset simulation publication-title: Struct Multidiscip Optim – volume: 195 year: 2020 ident: bib0055 article-title: Real-time high-fidelity reliability updating with equality information using adaptive Kriging publication-title: Reliab Eng Syst Saf – volume: 37 start-page: 24 year: 2014 end-page: 34 ident: bib0039 article-title: Assessment of the efficiency of Kriging surrogate models for structural reliability analysis publication-title: Probabilistic Eng Mech – volume: 16 start-page: 263 year: 2001 end-page: 277 ident: bib0010 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probabilistic Eng Mech – year: 2002 ident: bib0047 article-title: Aspects of the matlab toolbox DACE publication-title: Informatics and Mathematical Modelling – volume: 13 start-page: 91 year: 2006 end-page: 107 ident: bib0049 article-title: Efficient model updating and health monitoring methodology using incomplete modal data without mode matching publication-title: Struct Control Health Monit – volume: 84 start-page: 2 year: 2017 end-page: 20 ident: bib0042 article-title: Approximate Bayesian computation by subset simulation using hierarchical state-space models publication-title: Mech Syst Signal Process – volume: 141 year: 2015 ident: bib0006 article-title: Bayesian updating with structural reliability methods publication-title: J Eng Mech – volume: 391 year: 2022 ident: bib0027 article-title: BUAK-AIS: efficient bayesian updating with active learning kriging-based adaptive importance sampling publication-title: Comput Methods Appl Mech Eng – volume: 124 start-page: 455 year: 1998 end-page: 461 ident: bib0003 article-title: Updating models and their uncertainties. I: Bayesian statistical framework publication-title: J Eng Mech – reference: Z. Wang and A. Shafieezadeh, “Confidence intervals for failure probability estimates in adaptive kriging-based reliability analysis,” – volume: 95 year: 2022 ident: bib0025 article-title: Efficient Bayesian updating with two-step adaptive Kriging publication-title: Struct Saf – volume: 185 start-page: 100 year: 2019 end-page: 112 ident: bib0019 article-title: A Bayesian model updating approach for detection-related problems in water distribution networks publication-title: Reliab Eng Syst Saf – volume: 25 start-page: 183 year: 2010 end-page: 197 ident: bib0032 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probabilistic Eng. Mech. – volume: 214 year: 2021 ident: bib0021 article-title: Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation publication-title: Reliab Eng Syst Saf – year: 2002 ident: bib0057 article-title: DACE-A Matlab Kriging Toolbox, version 2.0 – year: 2014 ident: bib0048 article-title: Adaptive Variant of the BUS Approach to Bayesian Updating – volume: 194 year: May 2022 ident: bib0028 article-title: Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network publication-title: Measurement – volume: 3 start-page: 1 year: 2016 end-page: 13 ident: bib0018 article-title: Bayesian treatment of spatially-varying parameter estimation problems via canonical BUS publication-title: Model Validation and Uncertainty Quantification – volume: 94 year: 2022 ident: bib0056 article-title: Adaptive reliability analysis for multi-fidelity models using a collective learning strategy publication-title: Struct Saf – year: 2017 ident: bib0051 article-title: UQLab, the Framework for Uncertainty Quantification – volume: 314 start-page: 538 year: 2016 end-page: 556 ident: bib0014 article-title: Bayesian analysis of rare events publication-title: J Comput Phys – year: 2021 ident: bib0013 article-title: Metamodel-based subset simulation adaptable to target computational capacities: the case for high-dimensional and rare event reliability analysis publication-title: Struct Multidiscip Optim – volume: 65 start-page: 172 year: 2022 ident: bib0012 article-title: Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach publication-title: Struct Multidiscip Optim – reference: . – volume: 331 start-page: 72 year: 2018 end-page: 93 ident: bib0007 article-title: Bayesian inference with Subset Simulation: strategies and improvements publication-title: Comput Methods Appl Mech Eng – volume: 133 start-page: 816 year: 2007 end-page: 832 ident: bib0008 article-title: Transitional Markov chain Monte Carlo method for bayesian model updating, model class selection, and model averaging publication-title: J Eng Mech – volume: 148 year: 2022 ident: bib0034 article-title: High-dimensional reliability analysis with error-guided active-learning probabilistic support vector machine: application to wind-reliability analysis of transmission towers publication-title: J Struct Eng – volume: 319 start-page: 124 year: 2017 end-page: 145 ident: bib0005 article-title: Bayesian updating with subset simulation using artificial neural networks publication-title: Comput Methods Appl Mech Eng – volume: 27 start-page: 133 year: 2005 end-page: 151 ident: bib0038 article-title: Application of kriging method to structural reliability problems publication-title: Struct Saf – reference: M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal, “Sparse Spectrum Gaussian Process Regression,” p. 17. – volume: 33 start-page: 145 year: 2011 end-page: 154 ident: bib0036 article-title: AK-MCS: an active learning reliability method combining kriging and Monte Carlo simulation publication-title: Struct Saf – volume: 182 start-page: 33 year: 2019 end-page: 45 ident: bib0040 article-title: REAK: Reliability analysis through Error rate-based Adaptive Kriging publication-title: Reliab Eng Syst Saf – year: 2005 ident: bib0041 publication-title: Inverse Problem Theory and Methods for Model Parameter Estimation – volume: 33 start-page: 47 year: 2013 end-page: 57 ident: bib0045 article-title: Metamodel-based importance sampling for structural reliability analysis publication-title: Probabilistic Eng Mech – year: 2005 ident: 10.1016/j.ress.2022.108901_bib0041 publication-title: Inverse Problem Theory and Methods for Model Parameter Estimation doi: 10.1137/1.9780898717921 – volume: 84 start-page: 2 year: 2017 ident: 10.1016/j.ress.2022.108901_bib0042 article-title: Approximate Bayesian computation by subset simulation using hierarchical state-space models publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2016.02.024 – year: 2002 ident: 10.1016/j.ress.2022.108901_bib0047 article-title: Aspects of the matlab toolbox DACE – volume: 141 issue: 3 year: 2015 ident: 10.1016/j.ress.2022.108901_bib0006 article-title: Bayesian updating with structural reliability methods publication-title: J Eng Mech – ident: 10.1016/j.ress.2022.108901_bib0046 – volume: 13 start-page: 91 issue: 1 year: 2006 ident: 10.1016/j.ress.2022.108901_bib0049 article-title: Efficient model updating and health monitoring methodology using incomplete modal data without mode matching publication-title: Struct Control Health Monit doi: 10.1002/stc.144 – volume: 37 start-page: 24 year: 2014 ident: 10.1016/j.ress.2022.108901_bib0039 article-title: Assessment of the efficiency of Kriging surrogate models for structural reliability analysis publication-title: Probabilistic Eng Mech doi: 10.1016/j.probengmech.2014.03.011 – year: 2014 ident: 10.1016/j.ress.2022.108901_bib0048 – year: 2021 ident: 10.1016/j.ress.2022.108901_bib0013 article-title: Metamodel-based subset simulation adaptable to target computational capacities: the case for high-dimensional and rare event reliability analysis publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-021-02864-9 – volume: 123 start-page: 137 year: 2014 ident: 10.1016/j.ress.2022.108901_bib0037 article-title: AK-SYS: An adaptation of the AK-MCS method for system reliability publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2013.10.010 – volume: 128 start-page: 380 issue: 4 year: 2002 ident: 10.1016/j.ress.2022.108901_bib0004 article-title: Bayesian Updating of structural models and reliability using Markov chain Monte Carlo simulation publication-title: J Eng Mech – volume: 142 issue: 5 year: 2016 ident: 10.1016/j.ress.2022.108901_bib0009 article-title: Transitional Markov Chain Monte Carlo: observations and improvements publication-title: J Eng Mech – volume: 150 start-page: 210 year: 2016 ident: 10.1016/j.ress.2022.108901_bib0033 article-title: Rare-event probability estimation with adaptive support vector regression surrogates publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2016.01.023 – volume: 214 year: 2021 ident: 10.1016/j.ress.2022.108901_bib0021 article-title: Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107662 – volume: 225 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0016 article-title: Parallel adaptive Bayesian quadrature for rare event estimation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108621 – volume: 207 year: 2021 ident: 10.1016/j.ress.2022.108901_bib0054 article-title: Error quantification and control for adaptive kriging-based reliability updating with equality information publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107323 – volume: 195 year: 2020 ident: 10.1016/j.ress.2022.108901_bib0055 article-title: Real-time high-fidelity reliability updating with equality information using adaptive Kriging publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2019.106735 – volume: 331 start-page: 72 year: 2018 ident: 10.1016/j.ress.2022.108901_bib0007 article-title: Bayesian inference with Subset Simulation: strategies and improvements publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.11.021 – year: 2022 ident: 10.1016/j.ress.2022.108901_bib0015 article-title: An effective implementation of reliability methods for Bayesian model updating of structural dynamic models with multiple uncertain parameters publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108634 – volume: 25 start-page: 183 issue: 2 year: 2010 ident: 10.1016/j.ress.2022.108901_bib0032 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probabilistic Eng. Mech. doi: 10.1016/j.probengmech.2009.10.003 – volume: 33 start-page: 47 year: 2013 ident: 10.1016/j.ress.2022.108901_bib0045 article-title: Metamodel-based importance sampling for structural reliability analysis publication-title: Probabilistic Eng Mech doi: 10.1016/j.probengmech.2013.02.002 – volume: 16 start-page: 263 issue: 4 year: 2001 ident: 10.1016/j.ress.2022.108901_bib0010 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probabilistic Eng Mech doi: 10.1016/S0266-8920(01)00019-4 – volume: 133 start-page: 816 issue: 7 year: 2007 ident: 10.1016/j.ress.2022.108901_bib0008 article-title: Transitional Markov chain Monte Carlo method for bayesian model updating, model class selection, and model averaging publication-title: J Eng Mech – volume: 65 start-page: 172 issue: 6 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0012 article-title: Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-022-03260-7 – volume: 148 issue: 5 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0034 article-title: High-dimensional reliability analysis with error-guided active-learning probabilistic support vector machine: application to wind-reliability analysis of transmission towers publication-title: J Struct Eng doi: 10.1061/(ASCE)ST.1943-541X.0003332 – volume: 94 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0056 article-title: Adaptive reliability analysis for multi-fidelity models using a collective learning strategy publication-title: Struct Saf doi: 10.1016/j.strusafe.2021.102141 – volume: 3 start-page: 1 year: 2016 ident: 10.1016/j.ress.2022.108901_bib0018 article-title: Bayesian treatment of spatially-varying parameter estimation problems via canonical BUS – ident: 10.1016/j.ress.2022.108901_bib0002 doi: 10.1002/stc.2972 – volume: 194 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0028 article-title: Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network publication-title: Measurement doi: 10.1016/j.measurement.2022.110993 – volume: 391 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0027 article-title: BUAK-AIS: efficient bayesian updating with active learning kriging-based adaptive importance sampling publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114578 – year: 2002 ident: 10.1016/j.ress.2022.108901_bib0057 – volume: 59 issue: 5 year: 2019 ident: 10.1016/j.ress.2022.108901_bib0053 article-title: ESC: an efficient error-based stopping criterion for kriging-based reliability analysis methods publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-018-2150-9 – volume: 182 start-page: 33 year: 2019 ident: 10.1016/j.ress.2022.108901_bib0040 article-title: REAK: Reliability analysis through Error rate-based Adaptive Kriging publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.10.004 – volume: 185 start-page: 100 year: 2019 ident: 10.1016/j.ress.2022.108901_bib0019 article-title: A Bayesian model updating approach for detection-related problems in water distribution networks publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2018.12.014 – volume: 129 start-page: 901 issue: 8 year: 2003 ident: 10.1016/j.ress.2022.108901_bib0011 article-title: Subset simulation and its application to seismic risk based on dynamic analysis publication-title: J Eng Mech – volume: 124 start-page: 455 issue: 4 year: 1998 ident: 10.1016/j.ress.2022.108901_bib0003 article-title: Updating models and their uncertainties. I: Bayesian statistical framework publication-title: J Eng Mech – volume: 314 start-page: 538 year: 2016 ident: 10.1016/j.ress.2022.108901_bib0014 article-title: Bayesian analysis of rare events publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.03.018 – volume: 64 start-page: 20 year: 2017 ident: 10.1016/j.ress.2022.108901_bib0017 article-title: Reliability analysis and updating of deteriorating systems with subset simulation publication-title: Struct Saf doi: 10.1016/j.strusafe.2016.09.002 – volume: 44 issue: 5 year: 2011 ident: 10.1016/j.ress.2022.108901_bib0052 article-title: Reliability-based design optimization using kriging surrogates and subset simulation publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-011-0653-8 – volume: 95 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0025 article-title: Efficient Bayesian updating with two-step adaptive Kriging publication-title: Struct Saf doi: 10.1016/j.strusafe.2021.102172 – year: 2017 ident: 10.1016/j.ress.2022.108901_sbref0050 – year: 2022 ident: 10.1016/j.ress.2022.108901_bib0001 article-title: Optimal monitoring location for tracking evolving risks to infrastructure systems: theory and application to tunneling excavation risk publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108781 – volume: 27 start-page: 133 issue: 2 year: 2005 ident: 10.1016/j.ress.2022.108901_bib0038 article-title: Application of kriging method to structural reliability problems publication-title: Struct Saf doi: 10.1016/j.strusafe.2004.09.001 – ident: 10.1016/j.ress.2022.108901_bib0043 – volume: 97 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0026 article-title: A novel adaptive importance sampling algorithm for Bayesian model updating publication-title: Struct Saf doi: 10.1016/j.strusafe.2022.102230 – year: 2002 ident: 10.1016/j.ress.2022.108901_bib0058 article-title: Aspects of the matlab toolbox DACE – volume: 224 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0020 article-title: Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108516 – volume: 33 start-page: 145 issue: 2 year: 2011 ident: 10.1016/j.ress.2022.108901_bib0036 article-title: AK-MCS: an active learning reliability method combining kriging and Monte Carlo simulation publication-title: Struct Saf doi: 10.1016/j.strusafe.2011.01.002 – year: 2017 ident: 10.1016/j.ress.2022.108901_sbref0051 – volume: 167 start-page: 494 year: 2017 ident: 10.1016/j.ress.2022.108901_bib0044 article-title: Two accuracy measures of the Kriging model for structural reliability analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2017.06.028 – volume: 216 year: 2021 ident: 10.1016/j.ress.2022.108901_bib0022 article-title: Adaptive approach for estimation of pipeline corrosion defects via Bayesian inference publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107998 – volume: 84 year: 2020 ident: 10.1016/j.ress.2022.108901_bib0024 article-title: Highly efficient Bayesian updating using metamodels: an adaptive Kriging-based approach publication-title: Struct Saf doi: 10.1016/j.strusafe.2019.101915 – volume: 319 start-page: 124 year: 2017 ident: 10.1016/j.ress.2022.108901_bib0005 article-title: Bayesian updating with subset simulation using artificial neural networks publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.02.025 – volume: 226 year: 2022 ident: 10.1016/j.ress.2022.108901_bib0035 article-title: Simulation-free reliability analysis with active learning and physics-informed neural network publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2022.108716 – volume: 208 year: 2021 ident: 10.1016/j.ress.2022.108901_bib0023 article-title: A Bayesian inference for remaining useful life estimation by fusing accelerated degradation data and condition monitoring data publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107341 |
| SSID | ssj0004957 |
| Score | 2.5248861 |
| Snippet | •BUS-SSAK, a deep integration of adaptive Kriging-based subset simulation and Bayesian updating with structural reliability (BUS), is proposed.•Conditional... The well-known BUS algorithm (i.e., Bayesian Updating with Structural reliability) transforms Bayesian updating problems into structural reliability to address... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108901 |
| SubjectTerms | Algorithms Bayesian analysis Bayesian Inference Bayesian updating Calibration Computer applications Computing costs Failure Kriging Limit states Marine environment Markov Chain Monte Carlo Mathematical models Reliability Analysis Reliability aspects Reliability engineering Structural reliability Subset simulation Thresholds |
| Title | Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations |
| URI | https://dx.doi.org/10.1016/j.ress.2022.108901 https://www.proquest.com/docview/2760884661 |
| Volume | 230 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 0951-8320 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWqssCA-BSFUnlgg7RJnQ-HrVRUBUQXqNQtcmIHFUEakXSokPjt3NVOgQoxsCa2FfmSu3fO3XuEnDE7TFkglCU8m1luqFwrTh0wiJOGccxQKwkbnO9H_nDs3k68SY30q14YLKs0vl_79KW3Nlc6Zjc7-XTaeUBwwFH-Gw9GHB9pt103QBWD9sdXmQckAEElJ4-jTeOMrvHCjLaNK2CpXWiEYX4JTmtuehl7Bjtk24BG2tPPtUtqKtsjW9-oBPfJ-5VYKGyIpPMcOxayJ4pHrFRIkaNHu6AQwPTv_3JhabpUJWkBfkOVtJi-Ghmv4pJi6YeVIv0VIPS15ar6QzqLV8e5xQEZD64f-0PLCCtYCevy0kLaMQnIJWUi6TpM-V4AHzq3fcg1AEF4LBVJ4nEFuYTfDSEH5FKg0bzYDbmAAH9I6tksU0eE8oCnABqVnSCrj7R5LFUsnEAq5qZdLhvEqXY0SgzrOIpfvERVedlzhFaI0AqRtkKDnK_m5Jpz48_RXmWo6MebE0FQ-HNes7JqZL5buB_44HZdAC3H_1z2hGyiIr0u7G6Sevk2V6eAW8q4tXwxW2Sjd3M3HH0CZfftpQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0gHtSD8TOiqHvwpoW224-tNyUSVOAiJNw223ZrMFqIlAMx8bc7Q7eoxHDw2u5ump125s32zTxCLpgZJMyXypCuyQwnUI4RJhYYxEqCMGSolYQFzp2u1-o7DwN3UCKNohYGaZXa9-c-fe6t9ZW63s36eDisPyE44Cj_jQcjluetkXXHtX3MwGqf3zwPyAD8Qk8eh-vKmZzkhSltDZdArl2glWH-iE5LfnoefJo7ZFujRnqTP9guKal0j2z96CW4Tz5u5UxhRSSdjrFkIX2meMZKZSzH6NKuKESw_P9_NjPyfqkqphNwHCqjk-Gb1vGaXFPkfhgJ9r8CiL60XEFApKNwcZ47OSD95l2v0TK0soIRMZtnBvYdiwG6JExGtsWU5_rwpXPTg2QDIITLEhlFLleQTHh2AEkgjyVazQ2dgEuI8IeknI5SdUQo93kCqFGZEbb1iU0exiqUlh8r5iQ2jyvEKnZURLrtOKpfvIqCX_Yi0AoCrSByK1TI5WLOOG-6sXK0WxhK_Hp1BESFlfOqhVWF_nDhvu-B33UAtRz_c9lzstHqddqifd99PCGbKE-fs7yrpJy9T9UpgJgsPJu_pF_ue-86 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+updating+with+adaptive%2C+uncertainty-informed+subset+simulations%3A+High-fidelity+updating+with+multiple+observations&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Wang%2C+Zeyu&rft.au=Shafieezadeh%2C+Abdollah&rft.date=2023-02-01&rft.pub=Elsevier+BV&rft.issn=0951-8320&rft.eissn=1879-0836&rft.volume=230&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ress.2022.108901&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |