Automatic design of specialized algorithms for the binary knapsack problem
•Complex optimization problems arise in many artificial intelligence fields.•Algorithms are automatically designed for a complex optimization problem.•The automatic design produces several algorithms for the same problem.•The algorithms are specialized for set of instances.•The novel algorithms that...
Saved in:
| Published in | Expert systems with applications Vol. 141; p. 112908 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Elsevier Ltd
01.03.2020
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2019.112908 |
Cover
| Abstract | •Complex optimization problems arise in many artificial intelligence fields.•Algorithms are automatically designed for a complex optimization problem.•The automatic design produces several algorithms for the same problem.•The algorithms are specialized for set of instances.•The novel algorithms that emerge are computationally effective.
Not all problem instances of a difficult combinatorial optimization problem have the same degree of difficulty for a given algorithm. Surprisingly, apparently similar problem instances may require notably different computational efforts to be solved. Few studies have explored the case that the algorithm that solves a combinatorial optimization problem is automatically designed. In consequence, the generation of the best algorithms may produce specialized algorithms according to the problem instances used during the constructive step. Following a constructive process based on genetic programming that combines heuristic components with an exact method, new algorithms for the binary knapsack problem are produced. We found that most of the automatically designed algorithms have better performance when solving instances of the same type used during construction, although the algorithms also perform well with other types of similar instances. The rest of the algorithms are partially specialized. We also found that the exact method that only solves a small knapsack problem has a key role in such results. When the algorithms are produced without considering such a method, the errors are higher. We observed this fact when the algorithms were constructed with a combination of instances from different types. These results suggest that the better the pre-classification of the instances of an optimization problem, the more specific and more efficient are the algorithms produced by the automatic generation of algorithms. Consequently, the method described in this article accelerates the search for efficient methods for NP-hard optimization problems. |
|---|---|
| AbstractList | Not all problem instances of a difficult combinatorial optimization problem have the same degree of difficulty for a given algorithm. Surprisingly, apparently similar problem instances may require notably different computational efforts to be solved. Few studies have explored the case that the algorithm that solves a combinatorial optimization problem is automatically designed. In consequence, the generation of the best algorithms may produce specialized algorithms according to the problem instances used during the constructive step. Following a constructive process based on genetic programming that combines heuristic components with an exact method, new algorithms for the binary knapsack problem are produced. We found that most of the automatically designed algorithms have better performance when solving instances of the same type used during construction, although the algorithms also perform well with other types of similar instances. The rest of the algorithms are partially specialized. We also found that the exact method that only solves a small knapsack problem has a key role in such results. When the algorithms are produced without considering such a method, the errors are higher. We observed this fact when the algorithms were constructed with a combination of instances from different types. These results suggest that the better the pre-classification of the instances of an optimization problem, the more specific and more efficient are the algorithms produced by the automatic generation of algorithms. Consequently, the method described in this article accelerates the search for efficient methods for NP-hard optimization problems. •Complex optimization problems arise in many artificial intelligence fields.•Algorithms are automatically designed for a complex optimization problem.•The automatic design produces several algorithms for the same problem.•The algorithms are specialized for set of instances.•The novel algorithms that emerge are computationally effective. Not all problem instances of a difficult combinatorial optimization problem have the same degree of difficulty for a given algorithm. Surprisingly, apparently similar problem instances may require notably different computational efforts to be solved. Few studies have explored the case that the algorithm that solves a combinatorial optimization problem is automatically designed. In consequence, the generation of the best algorithms may produce specialized algorithms according to the problem instances used during the constructive step. Following a constructive process based on genetic programming that combines heuristic components with an exact method, new algorithms for the binary knapsack problem are produced. We found that most of the automatically designed algorithms have better performance when solving instances of the same type used during construction, although the algorithms also perform well with other types of similar instances. The rest of the algorithms are partially specialized. We also found that the exact method that only solves a small knapsack problem has a key role in such results. When the algorithms are produced without considering such a method, the errors are higher. We observed this fact when the algorithms were constructed with a combination of instances from different types. These results suggest that the better the pre-classification of the instances of an optimization problem, the more specific and more efficient are the algorithms produced by the automatic generation of algorithms. Consequently, the method described in this article accelerates the search for efficient methods for NP-hard optimization problems. |
| ArticleNumber | 112908 |
| Author | Parada, Victor Acevedo, Nicolás Rey, Carlos Contreras-Bolton, Carlos |
| Author_xml | – sequence: 1 givenname: Nicolás surname: Acevedo fullname: Acevedo, Nicolás email: nicolas.acevedou@usach.cl organization: Department of Informatics Engineering, University of Santiago of Chile, 3659 Ecuador Ave., Estación Central, Santiago, Chile – sequence: 2 givenname: Carlos surname: Rey fullname: Rey, Carlos email: carlos.rey2@unibo.it organization: Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi'”, University of Bologna, Viale del Risorgimento 2, Bologna, Italy – sequence: 3 givenname: Carlos orcidid: 0000-0001-9549-4143 surname: Contreras-Bolton fullname: Contreras-Bolton, Carlos email: carlos.contrerasbolton@unibo.it organization: Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi'”, University of Bologna, Viale del Risorgimento 2, Bologna, Italy – sequence: 4 givenname: Victor orcidid: 0000-0002-8649-5694 surname: Parada fullname: Parada, Victor email: victor.parada@usach.cl organization: Department of Informatics Engineering, University of Santiago of Chile, 3659 Ecuador Ave., Estación Central, Santiago, Chile |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU8Bz1snyXazAS-l-EnBi55DNjvbpt1uapIq-uvdUk8eehoY5pl35hmRQec7JOSawYQBK27XE4xfZsKBqQljXEF5RoaslCIrpBIDMgQ1lVnOZH5BRjGuAZgEkEPyMtsnvzXJWVpjdMuO-obGHVpnWveDNTXt0geXVttIGx9oWiGtXGfCN910ZheN3dBd8FWL20ty3pg24tVfHZP3h_u3-VO2eH18ns8WmRW8TBnntiqgEgqZ4QZyowpVW8al4ABVk_dNXtYW0FbCFoUocyXzQkxrKac1GCbG5Oa4t8_92GNMeu33oesjNRdM5RIKlvdT_Dhlg48xYKN3wW37uzUDfXCm1_rgTB-c6aOzHir_QdalXo7vUjCuPY3eHVHsX_90GHS0DjuLtQtok669O4X_AhgEiTM |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3529317 crossref_primary_10_1016_j_asoc_2023_110474 crossref_primary_10_1016_j_swevo_2020_100791 crossref_primary_10_1109_TNSM_2021_3064974 crossref_primary_10_23939_mmc2021_04_736 crossref_primary_10_1108_EC_04_2021_0251 crossref_primary_10_1109_ACCESS_2021_3066323 |
| Cites_doi | 10.1007/s10898-018-0611-8 10.1016/j.cor.2013.11.015 10.1371/journal.pone.0213652 10.1016/j.cor.2004.03.002 10.1287/mnsc.45.3.414 10.1038/nature03602 10.1016/j.cor.2011.07.006 10.1103/PhysRevE.69.066703 10.1209/0295-5075/113/30004 10.1613/jair.1389 10.1109/TEVC.2011.2163638 10.1109/4235.585893 10.1080/23311916.2016.1255165 10.1016/j.amc.2006.09.020 10.1016/j.eswa.2015.10.006 10.1007/s11047-015-9483-8 10.1016/j.orl.2007.09.003 10.1016/j.swevo.2011.02.002 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright Elsevier BV Mar 1, 2020 |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright Elsevier BV Mar 1, 2020 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2019.112908 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 10_1016_j_eswa_2019_112908 S0957417419306268 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c328t-22cb60b39e1a2a04a969dc1273200bf4a2a28dc0ecb3c66384974635d775d0a13 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Mon Jul 14 08:12:59 EDT 2025 Sat Oct 25 05:09:51 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Fri Feb 23 02:49:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Generative design of algorithms Automatic generation of algorithms Binary knapsack problem Genetic programming Hyperheuristic |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-22cb60b39e1a2a04a969dc1273200bf4a2a28dc0ecb3c66384974635d775d0a13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9549-4143 0000-0002-8649-5694 |
| PQID | 2319470614 |
| PQPubID | 2045477 |
| ParticipantIDs | proquest_journals_2319470614 crossref_primary_10_1016_j_eswa_2019_112908 crossref_citationtrail_10_1016_j_eswa_2019_112908 elsevier_sciencedirect_doi_10_1016_j_eswa_2019_112908 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Koza (bib0008) 2003 Smith-Miles, Baatar, Wreford, Lewis (bib0021) 2014; 45 Parada, Herrera, Sepúlveda, Parada (bib0015) 2015; 15 Luke, Sean (bib0010) 2017 Schawe, Hartmann (bib0020) 2016; 113 Bienstock (bib0002) 2008; 36 Martello, Pisinger, Toth (bib0011) 1999; 45 Published via http://lulu.com and freely available at Achlioptas, Naor, Peres (bib0001) 2005; 435 Pruegel-Bennett, Tayarani-Najaran (bib0018) 2012; 16 Martin, Hokama, Morabito, Munari (bib0013) 2019 Derrac, García, Molina, Herrera (bib0005) 2011; 1 Poli, R., Langdon, W.B., .& McPhee, N.F. (.2008). (With contributions by J.R. Koza). Zhang (bib0026) 2004; 21 Wolpert, Macready (bib0025) 1997; 1 Martello, Toth (bib0012) 1990 Kellerer, Pferschy, Pisinger (bib0007) 2004 Ryser-Welch, Miller, Asta (bib0019) 2015 Wedashwara, Mabu, Obayashi, Kuremoto (bib0024) 2016; 46 Vaezi, Sadjadi, Makui (bib0023) 2019; 14 Boettcher, Percus (bib0003) 2004; 69 Darehmiraki, Mishmast Nehi (bib0004) 2007; 187 Eiben, Michalewicz, Schoenauer, Smith (bib0006) 2007 Pisinger (bib0016) 2005; 32 Mitsos, Najman, Kevrekidis (bib0014) 2018; 71 Smith-Miles, Lopes (bib0022) 2012; 39 Loyola, Sepulveda, Solar, Lopez, Parada (bib0009) 2016; 3 Smith-Miles (10.1016/j.eswa.2019.112908_bib0022) 2012; 39 Schawe (10.1016/j.eswa.2019.112908_bib0020) 2016; 113 Wedashwara (10.1016/j.eswa.2019.112908_bib0024) 2016; 46 Martin (10.1016/j.eswa.2019.112908_bib0013) 2019 Achlioptas (10.1016/j.eswa.2019.112908_bib0001) 2005; 435 Darehmiraki (10.1016/j.eswa.2019.112908_bib0004) 2007; 187 Kellerer (10.1016/j.eswa.2019.112908_bib0007) 2004 Zhang (10.1016/j.eswa.2019.112908_bib0026) 2004; 21 Pisinger (10.1016/j.eswa.2019.112908_bib0016) 2005; 32 Luke (10.1016/j.eswa.2019.112908_bib0010) 2017 Derrac (10.1016/j.eswa.2019.112908_bib0005) 2011; 1 Martello (10.1016/j.eswa.2019.112908_bib0012) 1990 Smith-Miles (10.1016/j.eswa.2019.112908_bib0021) 2014; 45 Mitsos (10.1016/j.eswa.2019.112908_bib0014) 2018; 71 Eiben (10.1016/j.eswa.2019.112908_bib0006) 2007 Boettcher (10.1016/j.eswa.2019.112908_bib0003) 2004; 69 Pruegel-Bennett (10.1016/j.eswa.2019.112908_bib0018) 2012; 16 Wolpert (10.1016/j.eswa.2019.112908_bib0025) 1997; 1 Parada (10.1016/j.eswa.2019.112908_bib0015) 2015; 15 Ryser-Welch (10.1016/j.eswa.2019.112908_bib0019) 2015 Vaezi (10.1016/j.eswa.2019.112908_bib0023) 2019; 14 Koza (10.1016/j.eswa.2019.112908_bib0008) 2003 10.1016/j.eswa.2019.112908_bib0017 Loyola (10.1016/j.eswa.2019.112908_bib0009) 2016; 3 Bienstock (10.1016/j.eswa.2019.112908_bib0002) 2008; 36 Martello (10.1016/j.eswa.2019.112908_bib0011) 1999; 45 |
| References_xml | – volume: 3 year: 2016 ident: bib0009 article-title: Automatic design of algorithms for the traveling salesman problem publication-title: Cogent Engineering – volume: 46 start-page: 15 year: 2016 end-page: 23 ident: bib0024 article-title: Combination of genetic network programming and knapsack problem to support record clustering on distributed databases publication-title: Expert Systems with Applications – volume: 45 start-page: 414 year: 1999 end-page: 424 ident: bib0011 article-title: Dynamic programming and strong bounds for the 0-1 knapsack problem publication-title: Management Science – volume: 14 year: 2019 ident: bib0023 article-title: A portfolio selection model based on the knapsack problem under uncertainty publication-title: PloS One – volume: 16 start-page: 319 year: 2012 end-page: 338 ident: bib0018 article-title: Maximum satisfiability: Anatomy of the fitness landscape for a hard combinatorial optimization problem publication-title: IEEE Transactions on Evolutionary Computation – volume: 69 year: 2004 ident: bib0003 article-title: Extremal optimization at the phase transition of the three-coloring problem publication-title: Physical Review E – start-page: 1067 year: 2015 end-page: 1074 ident: bib0019 article-title: Generating human-readable algorithms for the travelling salesman problem using hyper-heuristics publication-title: Proceedings of the companion publication of the 2015 annual conference on genetic and evolutionary computation – volume: 187 start-page: 1033 year: 2007 end-page: 1037 ident: bib0004 article-title: Molecular solution to the 0–1 knapsack problem based on DNA computing publication-title: Applied Mathematics and Computation – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0025 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 113 start-page: 30004 year: 2016 ident: bib0020 article-title: Phase transitions of raveling salesperson problems solved with linear programming and cutting planes publication-title: EPL (Europhysics Letters) – year: 2004 ident: bib0007 article-title: Knapsack problems – volume: 39 start-page: 875 year: 2012 end-page: 889 ident: bib0022 article-title: Measuring instance difficulty for combinatorial optimization problems publication-title: Computers & Operations Research – reference: . Published via http://lulu.com and freely available at – year: 1990 ident: bib0012 article-title: Knapsack problems: Algorithms and computer implementations – volume: 32 start-page: 2271 year: 2005 end-page: 2284 ident: bib0016 article-title: Where are the hard knapsack problems? publication-title: Computers & Operations Research – volume: 45 start-page: 12 year: 2014 end-page: 24 ident: bib0021 article-title: Towards objective measures of algorithm performance across instance space publication-title: Computers & Operations Research – volume: 15 start-page: 181 year: 2015 end-page: 193 ident: bib0015 article-title: Evolution of new algorithms for the binary knapsack problem publication-title: Natural Computing – start-page: 1 year: 2019 end-page: 18 ident: bib0013 article-title: The constrained two-dimensional guillotine cutting problem with defects: An ILP formulation, a Benders decomposition and a CP-based algorithm publication-title: International Journal of Production Research – volume: 71 start-page: 891 year: 2018 end-page: 913 ident: bib0014 article-title: Optimal deterministic algorithm generation publication-title: Journal of Global Optimization – volume: 1 start-page: 3 year: 2011 end-page: 18 ident: bib0005 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation – reference: (With contributions by J.R. Koza). – year: 2003 ident: bib0008 article-title: Genetic programming IV: Routine human-competitive machine intelligence – start-page: 19 year: 2007 end-page: 46 ident: bib0006 article-title: Parameter control in evolutionary algorithms publication-title: Parameter setting in evolutionary algorithms – volume: 21 start-page: 471 year: 2004 end-page: 497 ident: bib0026 article-title: Phase transitions and backbones of the asymmetric traveling salesman problem publication-title: Journal of Artificial Intelligence Research – start-page: 1223 year: 2017 end-page: 1230 ident: bib0010 article-title: ECJ then and now publication-title: Proceedings of the genetic and evolutionary computation conference companion - GECCO ’17 – volume: 435 start-page: 759 year: 2005 end-page: 764 ident: bib0001 article-title: Rigorous location of phase transitions in hard optimization problems publication-title: Nature – volume: 36 start-page: 317 year: 2008 end-page: 320 ident: bib0002 article-title: Approximate formulations for 0-1 knapsack sets publication-title: Operations Research Letters – reference: Poli, R., Langdon, W.B., .& McPhee, N.F. (.2008). – volume: 71 start-page: 891 issue: 4 year: 2018 ident: 10.1016/j.eswa.2019.112908_bib0014 article-title: Optimal deterministic algorithm generation publication-title: Journal of Global Optimization doi: 10.1007/s10898-018-0611-8 – start-page: 19 year: 2007 ident: 10.1016/j.eswa.2019.112908_bib0006 article-title: Parameter control in evolutionary algorithms – volume: 45 start-page: 12 year: 2014 ident: 10.1016/j.eswa.2019.112908_bib0021 article-title: Towards objective measures of algorithm performance across instance space publication-title: Computers & Operations Research doi: 10.1016/j.cor.2013.11.015 – volume: 14 issue: 5 year: 2019 ident: 10.1016/j.eswa.2019.112908_bib0023 article-title: A portfolio selection model based on the knapsack problem under uncertainty publication-title: PloS One doi: 10.1371/journal.pone.0213652 – volume: 32 start-page: 2271 issue: 9 year: 2005 ident: 10.1016/j.eswa.2019.112908_bib0016 article-title: Where are the hard knapsack problems? publication-title: Computers & Operations Research doi: 10.1016/j.cor.2004.03.002 – volume: 45 start-page: 414 issue: 3 year: 1999 ident: 10.1016/j.eswa.2019.112908_bib0011 article-title: Dynamic programming and strong bounds for the 0-1 knapsack problem publication-title: Management Science doi: 10.1287/mnsc.45.3.414 – volume: 435 start-page: 759 issue: 7043 year: 2005 ident: 10.1016/j.eswa.2019.112908_bib0001 article-title: Rigorous location of phase transitions in hard optimization problems publication-title: Nature doi: 10.1038/nature03602 – start-page: 1223 year: 2017 ident: 10.1016/j.eswa.2019.112908_bib0010 article-title: ECJ then and now – volume: 39 start-page: 875 issue: 5 year: 2012 ident: 10.1016/j.eswa.2019.112908_bib0022 article-title: Measuring instance difficulty for combinatorial optimization problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2011.07.006 – volume: 69 issue: 6 year: 2004 ident: 10.1016/j.eswa.2019.112908_bib0003 article-title: Extremal optimization at the phase transition of the three-coloring problem publication-title: Physical Review E doi: 10.1103/PhysRevE.69.066703 – year: 1990 ident: 10.1016/j.eswa.2019.112908_bib0012 – year: 2004 ident: 10.1016/j.eswa.2019.112908_bib0007 – volume: 113 start-page: 30004 issue: 3 year: 2016 ident: 10.1016/j.eswa.2019.112908_bib0020 article-title: Phase transitions of raveling salesperson problems solved with linear programming and cutting planes publication-title: EPL (Europhysics Letters) doi: 10.1209/0295-5075/113/30004 – year: 2003 ident: 10.1016/j.eswa.2019.112908_bib0008 – volume: 21 start-page: 471 year: 2004 ident: 10.1016/j.eswa.2019.112908_bib0026 article-title: Phase transitions and backbones of the asymmetric traveling salesman problem publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1389 – ident: 10.1016/j.eswa.2019.112908_bib0017 – volume: 16 start-page: 319 issue: 3 year: 2012 ident: 10.1016/j.eswa.2019.112908_bib0018 article-title: Maximum satisfiability: Anatomy of the fitness landscape for a hard combinatorial optimization problem publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2011.2163638 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2019.112908_bib0025 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.eswa.2019.112908_bib0009 article-title: Automatic design of algorithms for the traveling salesman problem publication-title: Cogent Engineering doi: 10.1080/23311916.2016.1255165 – volume: 187 start-page: 1033 issue: 2 year: 2007 ident: 10.1016/j.eswa.2019.112908_bib0004 article-title: Molecular solution to the 0–1 knapsack problem based on DNA computing publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.09.020 – volume: 46 start-page: 15 year: 2016 ident: 10.1016/j.eswa.2019.112908_bib0024 article-title: Combination of genetic network programming and knapsack problem to support record clustering on distributed databases publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.10.006 – volume: 15 start-page: 181 issue: 1 year: 2015 ident: 10.1016/j.eswa.2019.112908_bib0015 article-title: Evolution of new algorithms for the binary knapsack problem publication-title: Natural Computing doi: 10.1007/s11047-015-9483-8 – volume: 36 start-page: 317 issue: 3 year: 2008 ident: 10.1016/j.eswa.2019.112908_bib0002 article-title: Approximate formulations for 0-1 knapsack sets publication-title: Operations Research Letters doi: 10.1016/j.orl.2007.09.003 – volume: 1 start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.eswa.2019.112908_bib0005 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2011.02.002 – start-page: 1 year: 2019 ident: 10.1016/j.eswa.2019.112908_bib0013 article-title: The constrained two-dimensional guillotine cutting problem with defects: An ILP formulation, a Benders decomposition and a CP-based algorithm publication-title: International Journal of Production Research – start-page: 1067 year: 2015 ident: 10.1016/j.eswa.2019.112908_bib0019 article-title: Generating human-readable algorithms for the travelling salesman problem using hyper-heuristics |
| SSID | ssj0017007 |
| Score | 2.3556454 |
| Snippet | •Complex optimization problems arise in many artificial intelligence fields.•Algorithms are automatically designed for a complex optimization problem.•The... Not all problem instances of a difficult combinatorial optimization problem have the same degree of difficulty for a given algorithm. Surprisingly, apparently... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112908 |
| SubjectTerms | Algorithms Automatic generation of algorithms Binary knapsack problem Combinatorial analysis Generative design of algorithms Genetic algorithms Genetic programming Hyperheuristic Knapsack problem Optimization |
| Title | Automatic design of specialized algorithms for the binary knapsack problem |
| URI | https://dx.doi.org/10.1016/j.eswa.2019.112908 https://www.proquest.com/docview/2319470614 |
| Volume | 141 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yL178Fqdz5OBN6pqPtc1xDMdU9KLCbiFpUp0f27AVwYN_uy9pKiiyg9BTSEp5yXv5vfJ774fQMS0U4cqIiLKC-b9VUdbXNIqFTQvFY514uber62R8xy8m_ckKGja1MI5WGWJ_HdN9tA4jvWDN3mI67d0AOIDrEB4BsJcmruCX89SpGJx-ftM8XPu5tO63l0ZudiicqTletnx3vYeIcJU0wklM_n05_QrT_u4ZbaL1ABrxoP6uLbRiZ9tooxFkwME_d9DF4K2a-x6s2HhmBp4XuKwV5qcf1mD1fD9_nVYPLyUGsIoB_GHtC3Lx00wtSpU_4aAws4vuRme3w3EUxBKinNGsiijNdRJrJixRVMVciUSYnAA6AT_QBYdBmpk8trlmOcCMjEMmAWjDpGnfxIqwPdSazWd2H2FLrGUGcjHNXPqXKhMzRkiRZUlWAIBpI9JYSeahk7gTtHiWDWXsUTrLSmdZWVu2jU6-1yzqPhpLZ_cb48sfp0FCoF-6rtPslAy-WEpAsIKnLvM9-OdrD9EadWm2p551UKt6fbNHgEUq3fWHrYtWB-eX4-svEljb7A |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjXjjgQ2FxnZeHisEKqVlASQ2y44dKIW2IkFIDPx2zo6DBEIMSJksO4rOvvN30Xf3IXREC0kiqXlAWcHc36ogixUNQm7SQkahSpzc2_Aq6d1G_bv4roVOm1oYS6v0sb-O6S5a-5GOt2ZnNhp1rgEcwHUIDwfYS5NsDs1HMU1tBnby8cXzsP3n0rrhXhrY6b5ypiZ5mfLNNh8i3JbScKsx-fvt9CNOu8vnfAUtedSIu_WHraKWmayh5UaRAXsHXUf97ms1dU1YsXbUDDwtcFlLzI_ejcby6X76MqoenksMaBUD-sPKVeTi8UTOSpmPsZeY2UC352c3p73AqyUEOaNZFVCaqyRUjBsiqQwjyROucwLwBBxBFREM0kznockVywFnZBGkEgA3dJrGOpSEbaL2ZDoxWwgbYgzTkIwpZvO_VOqQMUKKLEuyAhDMNiKNlUTuW4lbRYsn0XDGHoW1rLCWFbVlt9Hx15pZ3Ujjz9lxY3zx7TgIiPR_rttrdkp4ZywFQFgepTb13fnnaw_RQu9mOBCDi6vLXbRIbc7teGh7qF29vJp9ACaVOnAH7xNKI92B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+design+of+specialized+algorithms+for+the+binary+knapsack+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Acevedo%2C+Nicol%C3%A1s&rft.au=Rey%2C+Carlos&rft.au=Contreras-Bolton%2C+Carlos&rft.au=Parada%2C+Victor&rft.date=2020-03-01&rft.issn=0957-4174&rft.volume=141&rft.spage=112908&rft_id=info:doi/10.1016%2Fj.eswa.2019.112908&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2019_112908 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |