Automatic design of specialized algorithms for the binary knapsack problem

•Complex optimization problems arise in many artificial intelligence fields.•Algorithms are automatically designed for a complex optimization problem.•The automatic design produces several algorithms for the same problem.•The algorithms are specialized for set of instances.•The novel algorithms that...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 141; p. 112908
Main Authors Acevedo, Nicolás, Rey, Carlos, Contreras-Bolton, Carlos, Parada, Victor
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.03.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2019.112908

Cover

Abstract •Complex optimization problems arise in many artificial intelligence fields.•Algorithms are automatically designed for a complex optimization problem.•The automatic design produces several algorithms for the same problem.•The algorithms are specialized for set of instances.•The novel algorithms that emerge are computationally effective. Not all problem instances of a difficult combinatorial optimization problem have the same degree of difficulty for a given algorithm. Surprisingly, apparently similar problem instances may require notably different computational efforts to be solved. Few studies have explored the case that the algorithm that solves a combinatorial optimization problem is automatically designed. In consequence, the generation of the best algorithms may produce specialized algorithms according to the problem instances used during the constructive step. Following a constructive process based on genetic programming that combines heuristic components with an exact method, new algorithms for the binary knapsack problem are produced. We found that most of the automatically designed algorithms have better performance when solving instances of the same type used during construction, although the algorithms also perform well with other types of similar instances. The rest of the algorithms are partially specialized. We also found that the exact method that only solves a small knapsack problem has a key role in such results. When the algorithms are produced without considering such a method, the errors are higher. We observed this fact when the algorithms were constructed with a combination of instances from different types. These results suggest that the better the pre-classification of the instances of an optimization problem, the more specific and more efficient are the algorithms produced by the automatic generation of algorithms. Consequently, the method described in this article accelerates the search for efficient methods for NP-hard optimization problems.
AbstractList Not all problem instances of a difficult combinatorial optimization problem have the same degree of difficulty for a given algorithm. Surprisingly, apparently similar problem instances may require notably different computational efforts to be solved. Few studies have explored the case that the algorithm that solves a combinatorial optimization problem is automatically designed. In consequence, the generation of the best algorithms may produce specialized algorithms according to the problem instances used during the constructive step. Following a constructive process based on genetic programming that combines heuristic components with an exact method, new algorithms for the binary knapsack problem are produced. We found that most of the automatically designed algorithms have better performance when solving instances of the same type used during construction, although the algorithms also perform well with other types of similar instances. The rest of the algorithms are partially specialized. We also found that the exact method that only solves a small knapsack problem has a key role in such results. When the algorithms are produced without considering such a method, the errors are higher. We observed this fact when the algorithms were constructed with a combination of instances from different types. These results suggest that the better the pre-classification of the instances of an optimization problem, the more specific and more efficient are the algorithms produced by the automatic generation of algorithms. Consequently, the method described in this article accelerates the search for efficient methods for NP-hard optimization problems.
•Complex optimization problems arise in many artificial intelligence fields.•Algorithms are automatically designed for a complex optimization problem.•The automatic design produces several algorithms for the same problem.•The algorithms are specialized for set of instances.•The novel algorithms that emerge are computationally effective. Not all problem instances of a difficult combinatorial optimization problem have the same degree of difficulty for a given algorithm. Surprisingly, apparently similar problem instances may require notably different computational efforts to be solved. Few studies have explored the case that the algorithm that solves a combinatorial optimization problem is automatically designed. In consequence, the generation of the best algorithms may produce specialized algorithms according to the problem instances used during the constructive step. Following a constructive process based on genetic programming that combines heuristic components with an exact method, new algorithms for the binary knapsack problem are produced. We found that most of the automatically designed algorithms have better performance when solving instances of the same type used during construction, although the algorithms also perform well with other types of similar instances. The rest of the algorithms are partially specialized. We also found that the exact method that only solves a small knapsack problem has a key role in such results. When the algorithms are produced without considering such a method, the errors are higher. We observed this fact when the algorithms were constructed with a combination of instances from different types. These results suggest that the better the pre-classification of the instances of an optimization problem, the more specific and more efficient are the algorithms produced by the automatic generation of algorithms. Consequently, the method described in this article accelerates the search for efficient methods for NP-hard optimization problems.
ArticleNumber 112908
Author Parada, Victor
Acevedo, Nicolás
Rey, Carlos
Contreras-Bolton, Carlos
Author_xml – sequence: 1
  givenname: Nicolás
  surname: Acevedo
  fullname: Acevedo, Nicolás
  email: nicolas.acevedou@usach.cl
  organization: Department of Informatics Engineering, University of Santiago of Chile, 3659 Ecuador Ave., Estación Central, Santiago, Chile
– sequence: 2
  givenname: Carlos
  surname: Rey
  fullname: Rey, Carlos
  email: carlos.rey2@unibo.it
  organization: Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi'”, University of Bologna, Viale del Risorgimento 2, Bologna, Italy
– sequence: 3
  givenname: Carlos
  orcidid: 0000-0001-9549-4143
  surname: Contreras-Bolton
  fullname: Contreras-Bolton, Carlos
  email: carlos.contrerasbolton@unibo.it
  organization: Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi'”, University of Bologna, Viale del Risorgimento 2, Bologna, Italy
– sequence: 4
  givenname: Victor
  orcidid: 0000-0002-8649-5694
  surname: Parada
  fullname: Parada, Victor
  email: victor.parada@usach.cl
  organization: Department of Informatics Engineering, University of Santiago of Chile, 3659 Ecuador Ave., Estación Central, Santiago, Chile
BookMark eNp9kE1LAzEQhoNUsK3-AU8Bz1snyXazAS-l-EnBi55DNjvbpt1uapIq-uvdUk8eehoY5pl35hmRQec7JOSawYQBK27XE4xfZsKBqQljXEF5RoaslCIrpBIDMgQ1lVnOZH5BRjGuAZgEkEPyMtsnvzXJWVpjdMuO-obGHVpnWveDNTXt0geXVttIGx9oWiGtXGfCN910ZheN3dBd8FWL20ty3pg24tVfHZP3h_u3-VO2eH18ns8WmRW8TBnntiqgEgqZ4QZyowpVW8al4ABVk_dNXtYW0FbCFoUocyXzQkxrKac1GCbG5Oa4t8_92GNMeu33oesjNRdM5RIKlvdT_Dhlg48xYKN3wW37uzUDfXCm1_rgTB-c6aOzHir_QdalXo7vUjCuPY3eHVHsX_90GHS0DjuLtQtok669O4X_AhgEiTM
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3529317
crossref_primary_10_1016_j_asoc_2023_110474
crossref_primary_10_1016_j_swevo_2020_100791
crossref_primary_10_1109_TNSM_2021_3064974
crossref_primary_10_23939_mmc2021_04_736
crossref_primary_10_1108_EC_04_2021_0251
crossref_primary_10_1109_ACCESS_2021_3066323
Cites_doi 10.1007/s10898-018-0611-8
10.1016/j.cor.2013.11.015
10.1371/journal.pone.0213652
10.1016/j.cor.2004.03.002
10.1287/mnsc.45.3.414
10.1038/nature03602
10.1016/j.cor.2011.07.006
10.1103/PhysRevE.69.066703
10.1209/0295-5075/113/30004
10.1613/jair.1389
10.1109/TEVC.2011.2163638
10.1109/4235.585893
10.1080/23311916.2016.1255165
10.1016/j.amc.2006.09.020
10.1016/j.eswa.2015.10.006
10.1007/s11047-015-9483-8
10.1016/j.orl.2007.09.003
10.1016/j.swevo.2011.02.002
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Mar 1, 2020
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 1, 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2019.112908
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 10_1016_j_eswa_2019_112908
S0957417419306268
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c328t-22cb60b39e1a2a04a969dc1273200bf4a2a28dc0ecb3c66384974635d775d0a13
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Jul 14 08:12:59 EDT 2025
Sat Oct 25 05:09:51 EDT 2025
Thu Apr 24 22:54:32 EDT 2025
Fri Feb 23 02:49:14 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Generative design of algorithms
Automatic generation of algorithms
Binary knapsack problem
Genetic programming
Hyperheuristic
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-22cb60b39e1a2a04a969dc1273200bf4a2a28dc0ecb3c66384974635d775d0a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9549-4143
0000-0002-8649-5694
PQID 2319470614
PQPubID 2045477
ParticipantIDs proquest_journals_2319470614
crossref_primary_10_1016_j_eswa_2019_112908
crossref_citationtrail_10_1016_j_eswa_2019_112908
elsevier_sciencedirect_doi_10_1016_j_eswa_2019_112908
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Koza (bib0008) 2003
Smith-Miles, Baatar, Wreford, Lewis (bib0021) 2014; 45
Parada, Herrera, Sepúlveda, Parada (bib0015) 2015; 15
Luke, Sean (bib0010) 2017
Schawe, Hartmann (bib0020) 2016; 113
Bienstock (bib0002) 2008; 36
Martello, Pisinger, Toth (bib0011) 1999; 45
Published via http://lulu.com and freely available at
Achlioptas, Naor, Peres (bib0001) 2005; 435
Pruegel-Bennett, Tayarani-Najaran (bib0018) 2012; 16
Martin, Hokama, Morabito, Munari (bib0013) 2019
Derrac, García, Molina, Herrera (bib0005) 2011; 1
Poli, R., Langdon, W.B., .& McPhee, N.F. (.2008).
(With contributions by J.R. Koza).
Zhang (bib0026) 2004; 21
Wolpert, Macready (bib0025) 1997; 1
Martello, Toth (bib0012) 1990
Kellerer, Pferschy, Pisinger (bib0007) 2004
Ryser-Welch, Miller, Asta (bib0019) 2015
Wedashwara, Mabu, Obayashi, Kuremoto (bib0024) 2016; 46
Vaezi, Sadjadi, Makui (bib0023) 2019; 14
Boettcher, Percus (bib0003) 2004; 69
Darehmiraki, Mishmast Nehi (bib0004) 2007; 187
Eiben, Michalewicz, Schoenauer, Smith (bib0006) 2007
Pisinger (bib0016) 2005; 32
Mitsos, Najman, Kevrekidis (bib0014) 2018; 71
Smith-Miles, Lopes (bib0022) 2012; 39
Loyola, Sepulveda, Solar, Lopez, Parada (bib0009) 2016; 3
Smith-Miles (10.1016/j.eswa.2019.112908_bib0022) 2012; 39
Schawe (10.1016/j.eswa.2019.112908_bib0020) 2016; 113
Wedashwara (10.1016/j.eswa.2019.112908_bib0024) 2016; 46
Martin (10.1016/j.eswa.2019.112908_bib0013) 2019
Achlioptas (10.1016/j.eswa.2019.112908_bib0001) 2005; 435
Darehmiraki (10.1016/j.eswa.2019.112908_bib0004) 2007; 187
Kellerer (10.1016/j.eswa.2019.112908_bib0007) 2004
Zhang (10.1016/j.eswa.2019.112908_bib0026) 2004; 21
Pisinger (10.1016/j.eswa.2019.112908_bib0016) 2005; 32
Luke (10.1016/j.eswa.2019.112908_bib0010) 2017
Derrac (10.1016/j.eswa.2019.112908_bib0005) 2011; 1
Martello (10.1016/j.eswa.2019.112908_bib0012) 1990
Smith-Miles (10.1016/j.eswa.2019.112908_bib0021) 2014; 45
Mitsos (10.1016/j.eswa.2019.112908_bib0014) 2018; 71
Eiben (10.1016/j.eswa.2019.112908_bib0006) 2007
Boettcher (10.1016/j.eswa.2019.112908_bib0003) 2004; 69
Pruegel-Bennett (10.1016/j.eswa.2019.112908_bib0018) 2012; 16
Wolpert (10.1016/j.eswa.2019.112908_bib0025) 1997; 1
Parada (10.1016/j.eswa.2019.112908_bib0015) 2015; 15
Ryser-Welch (10.1016/j.eswa.2019.112908_bib0019) 2015
Vaezi (10.1016/j.eswa.2019.112908_bib0023) 2019; 14
Koza (10.1016/j.eswa.2019.112908_bib0008) 2003
10.1016/j.eswa.2019.112908_bib0017
Loyola (10.1016/j.eswa.2019.112908_bib0009) 2016; 3
Bienstock (10.1016/j.eswa.2019.112908_bib0002) 2008; 36
Martello (10.1016/j.eswa.2019.112908_bib0011) 1999; 45
References_xml – volume: 3
  year: 2016
  ident: bib0009
  article-title: Automatic design of algorithms for the traveling salesman problem
  publication-title: Cogent Engineering
– volume: 46
  start-page: 15
  year: 2016
  end-page: 23
  ident: bib0024
  article-title: Combination of genetic network programming and knapsack problem to support record clustering on distributed databases
  publication-title: Expert Systems with Applications
– volume: 45
  start-page: 414
  year: 1999
  end-page: 424
  ident: bib0011
  article-title: Dynamic programming and strong bounds for the 0-1 knapsack problem
  publication-title: Management Science
– volume: 14
  year: 2019
  ident: bib0023
  article-title: A portfolio selection model based on the knapsack problem under uncertainty
  publication-title: PloS One
– volume: 16
  start-page: 319
  year: 2012
  end-page: 338
  ident: bib0018
  article-title: Maximum satisfiability: Anatomy of the fitness landscape for a hard combinatorial optimization problem
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 69
  year: 2004
  ident: bib0003
  article-title: Extremal optimization at the phase transition of the three-coloring problem
  publication-title: Physical Review E
– start-page: 1067
  year: 2015
  end-page: 1074
  ident: bib0019
  article-title: Generating human-readable algorithms for the travelling salesman problem using hyper-heuristics
  publication-title: Proceedings of the companion publication of the 2015 annual conference on genetic and evolutionary computation
– volume: 187
  start-page: 1033
  year: 2007
  end-page: 1037
  ident: bib0004
  article-title: Molecular solution to the 0–1 knapsack problem based on DNA computing
  publication-title: Applied Mathematics and Computation
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0025
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 113
  start-page: 30004
  year: 2016
  ident: bib0020
  article-title: Phase transitions of raveling salesperson problems solved with linear programming and cutting planes
  publication-title: EPL (Europhysics Letters)
– year: 2004
  ident: bib0007
  article-title: Knapsack problems
– volume: 39
  start-page: 875
  year: 2012
  end-page: 889
  ident: bib0022
  article-title: Measuring instance difficulty for combinatorial optimization problems
  publication-title: Computers & Operations Research
– reference: . Published via http://lulu.com and freely available at
– year: 1990
  ident: bib0012
  article-title: Knapsack problems: Algorithms and computer implementations
– volume: 32
  start-page: 2271
  year: 2005
  end-page: 2284
  ident: bib0016
  article-title: Where are the hard knapsack problems?
  publication-title: Computers & Operations Research
– volume: 45
  start-page: 12
  year: 2014
  end-page: 24
  ident: bib0021
  article-title: Towards objective measures of algorithm performance across instance space
  publication-title: Computers & Operations Research
– volume: 15
  start-page: 181
  year: 2015
  end-page: 193
  ident: bib0015
  article-title: Evolution of new algorithms for the binary knapsack problem
  publication-title: Natural Computing
– start-page: 1
  year: 2019
  end-page: 18
  ident: bib0013
  article-title: The constrained two-dimensional guillotine cutting problem with defects: An ILP formulation, a Benders decomposition and a CP-based algorithm
  publication-title: International Journal of Production Research
– volume: 71
  start-page: 891
  year: 2018
  end-page: 913
  ident: bib0014
  article-title: Optimal deterministic algorithm generation
  publication-title: Journal of Global Optimization
– volume: 1
  start-page: 3
  year: 2011
  end-page: 18
  ident: bib0005
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
– reference: (With contributions by J.R. Koza).
– year: 2003
  ident: bib0008
  article-title: Genetic programming IV: Routine human-competitive machine intelligence
– start-page: 19
  year: 2007
  end-page: 46
  ident: bib0006
  article-title: Parameter control in evolutionary algorithms
  publication-title: Parameter setting in evolutionary algorithms
– volume: 21
  start-page: 471
  year: 2004
  end-page: 497
  ident: bib0026
  article-title: Phase transitions and backbones of the asymmetric traveling salesman problem
  publication-title: Journal of Artificial Intelligence Research
– start-page: 1223
  year: 2017
  end-page: 1230
  ident: bib0010
  article-title: ECJ then and now
  publication-title: Proceedings of the genetic and evolutionary computation conference companion - GECCO ’17
– volume: 435
  start-page: 759
  year: 2005
  end-page: 764
  ident: bib0001
  article-title: Rigorous location of phase transitions in hard optimization problems
  publication-title: Nature
– volume: 36
  start-page: 317
  year: 2008
  end-page: 320
  ident: bib0002
  article-title: Approximate formulations for 0-1 knapsack sets
  publication-title: Operations Research Letters
– reference: Poli, R., Langdon, W.B., .& McPhee, N.F. (.2008).
– volume: 71
  start-page: 891
  issue: 4
  year: 2018
  ident: 10.1016/j.eswa.2019.112908_bib0014
  article-title: Optimal deterministic algorithm generation
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-018-0611-8
– start-page: 19
  year: 2007
  ident: 10.1016/j.eswa.2019.112908_bib0006
  article-title: Parameter control in evolutionary algorithms
– volume: 45
  start-page: 12
  year: 2014
  ident: 10.1016/j.eswa.2019.112908_bib0021
  article-title: Towards objective measures of algorithm performance across instance space
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2013.11.015
– volume: 14
  issue: 5
  year: 2019
  ident: 10.1016/j.eswa.2019.112908_bib0023
  article-title: A portfolio selection model based on the knapsack problem under uncertainty
  publication-title: PloS One
  doi: 10.1371/journal.pone.0213652
– volume: 32
  start-page: 2271
  issue: 9
  year: 2005
  ident: 10.1016/j.eswa.2019.112908_bib0016
  article-title: Where are the hard knapsack problems?
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2004.03.002
– volume: 45
  start-page: 414
  issue: 3
  year: 1999
  ident: 10.1016/j.eswa.2019.112908_bib0011
  article-title: Dynamic programming and strong bounds for the 0-1 knapsack problem
  publication-title: Management Science
  doi: 10.1287/mnsc.45.3.414
– volume: 435
  start-page: 759
  issue: 7043
  year: 2005
  ident: 10.1016/j.eswa.2019.112908_bib0001
  article-title: Rigorous location of phase transitions in hard optimization problems
  publication-title: Nature
  doi: 10.1038/nature03602
– start-page: 1223
  year: 2017
  ident: 10.1016/j.eswa.2019.112908_bib0010
  article-title: ECJ then and now
– volume: 39
  start-page: 875
  issue: 5
  year: 2012
  ident: 10.1016/j.eswa.2019.112908_bib0022
  article-title: Measuring instance difficulty for combinatorial optimization problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.07.006
– volume: 69
  issue: 6
  year: 2004
  ident: 10.1016/j.eswa.2019.112908_bib0003
  article-title: Extremal optimization at the phase transition of the three-coloring problem
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.69.066703
– year: 1990
  ident: 10.1016/j.eswa.2019.112908_bib0012
– year: 2004
  ident: 10.1016/j.eswa.2019.112908_bib0007
– volume: 113
  start-page: 30004
  issue: 3
  year: 2016
  ident: 10.1016/j.eswa.2019.112908_bib0020
  article-title: Phase transitions of raveling salesperson problems solved with linear programming and cutting planes
  publication-title: EPL (Europhysics Letters)
  doi: 10.1209/0295-5075/113/30004
– year: 2003
  ident: 10.1016/j.eswa.2019.112908_bib0008
– volume: 21
  start-page: 471
  year: 2004
  ident: 10.1016/j.eswa.2019.112908_bib0026
  article-title: Phase transitions and backbones of the asymmetric traveling salesman problem
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1389
– ident: 10.1016/j.eswa.2019.112908_bib0017
– volume: 16
  start-page: 319
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2019.112908_bib0018
  article-title: Maximum satisfiability: Anatomy of the fitness landscape for a hard combinatorial optimization problem
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2011.2163638
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2019.112908_bib0025
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.eswa.2019.112908_bib0009
  article-title: Automatic design of algorithms for the traveling salesman problem
  publication-title: Cogent Engineering
  doi: 10.1080/23311916.2016.1255165
– volume: 187
  start-page: 1033
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2019.112908_bib0004
  article-title: Molecular solution to the 0–1 knapsack problem based on DNA computing
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.09.020
– volume: 46
  start-page: 15
  year: 2016
  ident: 10.1016/j.eswa.2019.112908_bib0024
  article-title: Combination of genetic network programming and knapsack problem to support record clustering on distributed databases
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.10.006
– volume: 15
  start-page: 181
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2019.112908_bib0015
  article-title: Evolution of new algorithms for the binary knapsack problem
  publication-title: Natural Computing
  doi: 10.1007/s11047-015-9483-8
– volume: 36
  start-page: 317
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2019.112908_bib0002
  article-title: Approximate formulations for 0-1 knapsack sets
  publication-title: Operations Research Letters
  doi: 10.1016/j.orl.2007.09.003
– volume: 1
  start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2019.112908_bib0005
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2011.02.002
– start-page: 1
  year: 2019
  ident: 10.1016/j.eswa.2019.112908_bib0013
  article-title: The constrained two-dimensional guillotine cutting problem with defects: An ILP formulation, a Benders decomposition and a CP-based algorithm
  publication-title: International Journal of Production Research
– start-page: 1067
  year: 2015
  ident: 10.1016/j.eswa.2019.112908_bib0019
  article-title: Generating human-readable algorithms for the travelling salesman problem using hyper-heuristics
SSID ssj0017007
Score 2.3556454
Snippet •Complex optimization problems arise in many artificial intelligence fields.•Algorithms are automatically designed for a complex optimization problem.•The...
Not all problem instances of a difficult combinatorial optimization problem have the same degree of difficulty for a given algorithm. Surprisingly, apparently...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112908
SubjectTerms Algorithms
Automatic generation of algorithms
Binary knapsack problem
Combinatorial analysis
Generative design of algorithms
Genetic algorithms
Genetic programming
Hyperheuristic
Knapsack problem
Optimization
Title Automatic design of specialized algorithms for the binary knapsack problem
URI https://dx.doi.org/10.1016/j.eswa.2019.112908
https://www.proquest.com/docview/2319470614
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yL178Fqdz5OBN6pqPtc1xDMdU9KLCbiFpUp0f27AVwYN_uy9pKiiyg9BTSEp5yXv5vfJ774fQMS0U4cqIiLKC-b9VUdbXNIqFTQvFY514uber62R8xy8m_ckKGja1MI5WGWJ_HdN9tA4jvWDN3mI67d0AOIDrEB4BsJcmruCX89SpGJx-ftM8XPu5tO63l0ZudiicqTletnx3vYeIcJU0wklM_n05_QrT_u4ZbaL1ABrxoP6uLbRiZ9tooxFkwME_d9DF4K2a-x6s2HhmBp4XuKwV5qcf1mD1fD9_nVYPLyUGsIoB_GHtC3Lx00wtSpU_4aAws4vuRme3w3EUxBKinNGsiijNdRJrJixRVMVciUSYnAA6AT_QBYdBmpk8trlmOcCMjEMmAWjDpGnfxIqwPdSazWd2H2FLrGUGcjHNXPqXKhMzRkiRZUlWAIBpI9JYSeahk7gTtHiWDWXsUTrLSmdZWVu2jU6-1yzqPhpLZ_cb48sfp0FCoF-6rtPslAy-WEpAsIKnLvM9-OdrD9EadWm2p551UKt6fbNHgEUq3fWHrYtWB-eX4-svEljb7A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjXjjgQ2FxnZeHisEKqVlASQ2y44dKIW2IkFIDPx2zo6DBEIMSJksO4rOvvN30Xf3IXREC0kiqXlAWcHc36ogixUNQm7SQkahSpzc2_Aq6d1G_bv4roVOm1oYS6v0sb-O6S5a-5GOt2ZnNhp1rgEcwHUIDwfYS5NsDs1HMU1tBnby8cXzsP3n0rrhXhrY6b5ypiZ5mfLNNh8i3JbScKsx-fvt9CNOu8vnfAUtedSIu_WHraKWmayh5UaRAXsHXUf97ms1dU1YsXbUDDwtcFlLzI_ejcby6X76MqoenksMaBUD-sPKVeTi8UTOSpmPsZeY2UC352c3p73AqyUEOaNZFVCaqyRUjBsiqQwjyROucwLwBBxBFREM0kznockVywFnZBGkEgA3dJrGOpSEbaL2ZDoxWwgbYgzTkIwpZvO_VOqQMUKKLEuyAhDMNiKNlUTuW4lbRYsn0XDGHoW1rLCWFbVlt9Hx15pZ3Ujjz9lxY3zx7TgIiPR_rttrdkp4ZywFQFgepTb13fnnaw_RQu9mOBCDi6vLXbRIbc7teGh7qF29vJp9ACaVOnAH7xNKI92B
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+design+of+specialized+algorithms+for+the+binary+knapsack+problem&rft.jtitle=Expert+systems+with+applications&rft.au=Acevedo%2C+Nicol%C3%A1s&rft.au=Rey%2C+Carlos&rft.au=Contreras-Bolton%2C+Carlos&rft.au=Parada%2C+Victor&rft.date=2020-03-01&rft.issn=0957-4174&rft.volume=141&rft.spage=112908&rft_id=info:doi/10.1016%2Fj.eswa.2019.112908&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2019_112908
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon