Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm
•We use an evolutionary mechanism to improve the image segmentation process.•We optimize the minimum cross entropy with an evolutionary method for image segmentation.•We test the approach in multidimensional spaces.•An alternative method for MR brain image segmentation is proposed.•Comparisons and n...
        Saved in:
      
    
          | Published in | Expert systems with applications Vol. 79; pp. 164 - 180 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Ltd
    
        15.08.2017
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0957-4174 1873-6793  | 
| DOI | 10.1016/j.eswa.2017.02.042 | 
Cover
| Abstract | •We use an evolutionary mechanism to improve the image segmentation process.•We optimize the minimum cross entropy with an evolutionary method for image segmentation.•We test the approach in multidimensional spaces.•An alternative method for MR brain image segmentation is proposed.•Comparisons and non-parametric test support the experimental results.
Segmentation is considered the central part of an image processing system due to its high influence on the posterior image analysis. In recent years, the segmentation of magnetic resonance (MR) images has attracted the attention of the scientific community with the objective of assisting the diagnosis in different brain diseases. From several techniques, thresholding represents one of the most popular methods for image segmentation. Currently, an extensive amount of contributions has been proposed in the literature, where thresholding values are obtained by optimizing relevant criteria such as the cross entropy. However, most of such approaches are computationally expensive, since they conduct an exhaustive search strategy for obtaining the optimal thresholding values. This paper presents a general method for image segmentation. To estimate the thresholding values, the proposed approach uses the recently published evolutionary method called the Crow Search Algorithm (CSA) which is based on the behavior in flocks of crows. Different to other optimization techniques used for segmentation proposes, CSA presents a better performance, avoiding critical flaws such as the premature convergence to sub-optimal solutions and the limited exploration-exploitation balance in the search strategy. Although the proposed method can be used as a generic segmentation algorithm, its characteristics allow obtaining excellent results in the automatic segmentation of complex MR images. Under such circumstances, our approach has been evaluated using two sets of benchmark images; the first set is composed of general images commonly used in the image processing literature, while the second set corresponds to MR brain images. Experimental results, statistically validated, demonstrate that the proposed technique obtains better results in terms of quality and consistency. | 
    
|---|---|
| AbstractList | Segmentation is considered the central part of an image processing system due to its high influence on the posterior image analysis. In recent years, the segmentation of magnetic resonance (MR) images has attracted the attention of the scientific community with the objective of assisting the diagnosis in different brain diseases. From several techniques, thresholding represents one of the most popular methods for image segmentation. Currently, an extensive amount of contributions has been proposed in the literature, where thresholding values are obtained by optimizing relevant criteria such as the cross entropy. However, most of such approaches are computationally expensive, since they conduct an exhaustive search strategy for obtaining the optimal thresholding values. This paper presents a general method for image segmentation. To estimate the thresholding values, the proposed approach uses the recently published evolutionary method called the Crow Search Algorithm (CSA) which is based on the behavior in flocks of crows. Different to other optimization techniques used for segmentation proposes, CSA presents a better performance, avoiding critical flaws such as the premature convergence to sub-optimal solutions and the limited exploration-exploitation balance in the search strategy. Although the proposed method can be used as a generic segmentation algorithm, its characteristics allow obtaining excellent results in the automatic segmentation of complex MR images. Under such circumstances, our approach has been evaluated using two sets of benchmark images; the first set is composed of general images commonly used in the image processing literature, while the second set corresponds to MR brain images. Experimental results, statistically validated, demonstrate that the proposed technique obtains better results in terms of quality and consistency. •We use an evolutionary mechanism to improve the image segmentation process.•We optimize the minimum cross entropy with an evolutionary method for image segmentation.•We test the approach in multidimensional spaces.•An alternative method for MR brain image segmentation is proposed.•Comparisons and non-parametric test support the experimental results. Segmentation is considered the central part of an image processing system due to its high influence on the posterior image analysis. In recent years, the segmentation of magnetic resonance (MR) images has attracted the attention of the scientific community with the objective of assisting the diagnosis in different brain diseases. From several techniques, thresholding represents one of the most popular methods for image segmentation. Currently, an extensive amount of contributions has been proposed in the literature, where thresholding values are obtained by optimizing relevant criteria such as the cross entropy. However, most of such approaches are computationally expensive, since they conduct an exhaustive search strategy for obtaining the optimal thresholding values. This paper presents a general method for image segmentation. To estimate the thresholding values, the proposed approach uses the recently published evolutionary method called the Crow Search Algorithm (CSA) which is based on the behavior in flocks of crows. Different to other optimization techniques used for segmentation proposes, CSA presents a better performance, avoiding critical flaws such as the premature convergence to sub-optimal solutions and the limited exploration-exploitation balance in the search strategy. Although the proposed method can be used as a generic segmentation algorithm, its characteristics allow obtaining excellent results in the automatic segmentation of complex MR images. Under such circumstances, our approach has been evaluated using two sets of benchmark images; the first set is composed of general images commonly used in the image processing literature, while the second set corresponds to MR brain images. Experimental results, statistically validated, demonstrate that the proposed technique obtains better results in terms of quality and consistency.  | 
    
| Author | Cuevas, Erik Avalos, Omar Oliva, Diego Gálvez, Jorge Hinojosa, Salvador Pajares, Gonzalo  | 
    
| Author_xml | – sequence: 1 givenname: Diego surname: Oliva fullname: Oliva, Diego email: diego.oliva@itesm.mx, diego.oliva@cucei.udg.mx organization: Departamento de Ciencias Computacionales, Tecnológico de Monterrey, Campus Guadalajara, Av. Gral. Ramón Corona 2514, Zapopan, Jal, México – sequence: 2 givenname: Salvador surname: Hinojosa fullname: Hinojosa, Salvador email: salvahin@ucm.es, salvador.hinojosa@cutonala.udg.mx organization: Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain – sequence: 3 givenname: Erik surname: Cuevas fullname: Cuevas, Erik email: erik.cuevas@cucei.udg.mx organization: Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, México – sequence: 4 givenname: Gonzalo surname: Pajares fullname: Pajares, Gonzalo email: pajares@ucm.es organization: Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain – sequence: 5 givenname: Omar surname: Avalos fullname: Avalos, Omar email: omar.avalos@cutonala.udg.mx organization: Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, México – sequence: 6 givenname: Jorge surname: Gálvez fullname: Gálvez, Jorge email: jorge.galvez@cutonala.udg.mx organization: Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, México  | 
    
| BookMark | eNp9kE1LAzEURYMoWKt_wFXA9Yz5mE5mwE0pfkHBhbqOmeRNm9ImNUmV_nsz1pWLrh7knfvCPRfo1HkHCF1TUlJC69tVCfFblYxQURJWkoqdoBFtBC9q0fJTNCLtRBQVFdU5uohxRTJIiBihj1nwMWJwKfjtHncqgsFpGSAu_dpYt8C9D3ijFg6S1Ti_e6ecBtwFZR22eQMR7-JA5lPf-BVU0Es8XS98sGm5uURnvVpHuPqbY_T-cP82eyrmL4_Ps-m80Jw1qaBtXQnoVae16JQxDKhRvaaqNpzwyYRoZQhrVZXx2kx61beai4Y1HdUdEMrH6OZwdxv85w5ikiu_Cy5_KWnLGRU1r1im2IHSQ-0AvdyG3CHsJSVyMClXcjApB5OSMEl-Q82_kLZJJeuzNGXXx6N3hyjk6l8WgozaQvZnbACdpPH2WPwH5uKTVA | 
    
| CitedBy_id | crossref_primary_10_1016_j_knosys_2022_108610 crossref_primary_10_1080_03772063_2021_1906765 crossref_primary_10_1016_j_eswa_2019_01_047 crossref_primary_10_1016_j_eswa_2017_06_021 crossref_primary_10_1109_ACCESS_2020_3040177 crossref_primary_10_1080_01430750_2021_1909130 crossref_primary_10_3390_en14040857 crossref_primary_10_1016_j_eswa_2018_10_009 crossref_primary_10_1007_s11042_022_13288_y crossref_primary_10_1002_er_8444 crossref_primary_10_1016_j_bbe_2022_09_001 crossref_primary_10_3390_rs11080942 crossref_primary_10_1007_s11063_021_10471_4 crossref_primary_10_1007_s00521_022_08167_4 crossref_primary_10_1142_S0219467822500127 crossref_primary_10_1007_s11042_023_15647_9 crossref_primary_10_1016_j_eswa_2018_02_018 crossref_primary_10_1016_j_bspc_2020_102259 crossref_primary_10_3390_sym13122388 crossref_primary_10_1016_j_bbe_2019_06_009 crossref_primary_10_1007_s00521_021_05771_8 crossref_primary_10_1007_s10462_018_09676_2 crossref_primary_10_1109_ACCESS_2021_3055507 crossref_primary_10_1007_s11042_021_11813_z crossref_primary_10_1016_j_apenergy_2022_119253 crossref_primary_10_1016_j_eswa_2017_03_034 crossref_primary_10_4018_IJAMC_2019070105 crossref_primary_10_1016_j_eswa_2020_113428 crossref_primary_10_1155_2021_1048879 crossref_primary_10_1007_s12065_021_00628_4 crossref_primary_10_1007_s10489_021_02701_y crossref_primary_10_1007_s42235_022_00228_7 crossref_primary_10_4018_IJAEC_2020040103 crossref_primary_10_1007_s00500_020_04946_0 crossref_primary_10_1016_j_ijleo_2022_169443 crossref_primary_10_3390_electronics10232975 crossref_primary_10_3390_math10111929 crossref_primary_10_1007_s00521_020_05013_3 crossref_primary_10_1016_j_jwpe_2023_103957 crossref_primary_10_1007_s00521_020_05368_7 crossref_primary_10_17780_ksujes_1414212 crossref_primary_10_3390_fermentation10010012 crossref_primary_10_1007_s13198_024_02422_8 crossref_primary_10_1016_j_eswa_2018_08_045 crossref_primary_10_1007_s42235_023_00387_1 crossref_primary_10_1002_ima_22589 crossref_primary_10_1016_j_ins_2018_07_012 crossref_primary_10_1002_jnm_2660 crossref_primary_10_1016_j_compeleceng_2024_109200 crossref_primary_10_1109_ACCESS_2020_3031599 crossref_primary_10_3390_app9112280 crossref_primary_10_3390_math9182335 crossref_primary_10_1109_ACCESS_2020_2990893 crossref_primary_10_1007_s10462_021_10086_0 crossref_primary_10_1007_s10462_020_09911_9 crossref_primary_10_1109_ACCESS_2019_2942064 crossref_primary_10_1007_s11227_023_05227_x crossref_primary_10_1007_s11042_019_08596_9 crossref_primary_10_1007_s00500_019_04640_w crossref_primary_10_1016_j_ecolind_2021_108354 crossref_primary_10_1016_j_eswa_2020_113201 crossref_primary_10_1016_j_eswa_2021_115106 crossref_primary_10_1007_s11831_019_09334_y crossref_primary_10_1016_j_ijepes_2018_06_044 crossref_primary_10_3390_rs11121421 crossref_primary_10_1007_s00500_017_2794_1 crossref_primary_10_1109_ACCESS_2020_3021693 crossref_primary_10_3390_e21030318 crossref_primary_10_1007_s13369_019_04142_9 crossref_primary_10_1016_j_jobe_2020_102142 crossref_primary_10_3233_JIFS_233286 crossref_primary_10_3390_rs11091134 crossref_primary_10_1007_s10044_022_01121_z crossref_primary_10_1007_s11042_023_16494_4 crossref_primary_10_1016_j_asoc_2021_107196 crossref_primary_10_1016_j_scs_2022_103727 crossref_primary_10_1007_s12065_018_0160_6 crossref_primary_10_1016_j_vlsi_2022_11_011 crossref_primary_10_1007_s11554_017_0717_0 crossref_primary_10_1016_j_eswa_2024_125673 crossref_primary_10_1007_s41870_023_01606_y crossref_primary_10_1007_s11042_019_08566_1 crossref_primary_10_1016_j_asoc_2020_106642 crossref_primary_10_1016_j_asoc_2021_107915 crossref_primary_10_1016_j_infrared_2019_03_010 crossref_primary_10_1145_3656583 crossref_primary_10_1002_nme_6338 crossref_primary_10_1016_j_eswa_2020_114426 crossref_primary_10_1007_s00521_019_04381_9 crossref_primary_10_1016_j_eswa_2021_115579 crossref_primary_10_3390_computers11010009 crossref_primary_10_1142_S0219686722500305 crossref_primary_10_1016_j_jocs_2017_10_001 crossref_primary_10_3390_math10071014 crossref_primary_10_1007_s11042_023_16300_1 crossref_primary_10_1109_ACCESS_2019_2897325 crossref_primary_10_1007_s00521_018_3801_x crossref_primary_10_1007_s11042_017_5243_3 crossref_primary_10_3390_en11030571 crossref_primary_10_1007_s10462_022_10157_w crossref_primary_10_1016_j_jksuci_2021_11_016 crossref_primary_10_1016_j_knosys_2021_107468 crossref_primary_10_1007_s11042_018_6066_6 crossref_primary_10_1007_s12652_020_02143_3 crossref_primary_10_1007_s11042_018_7034_x crossref_primary_10_1109_ACCESS_2020_3024108 crossref_primary_10_1002_ima_22713 crossref_primary_10_1007_s11042_019_08229_1 crossref_primary_10_1007_s00366_021_01578_2 crossref_primary_10_1109_ACCESS_2019_2911629 crossref_primary_10_1007_s11042_019_7506_7 crossref_primary_10_1007_s11042_018_6269_x crossref_primary_10_1016_j_asoc_2020_106588 crossref_primary_10_1002_cpe_4962 crossref_primary_10_1007_s11042_024_19461_9 crossref_primary_10_1007_s00521_021_06858_y crossref_primary_10_1007_s00500_018_3618_7 crossref_primary_10_3390_electronics12143123 crossref_primary_10_1016_j_eswa_2021_116470 crossref_primary_10_1016_j_eswa_2020_114288 crossref_primary_10_1016_j_jclepro_2020_122640 crossref_primary_10_3390_en11123321 crossref_primary_10_1007_s00500_021_06418_5 crossref_primary_10_1007_s11042_018_5815_x crossref_primary_10_1109_ACCESS_2019_2959325 crossref_primary_10_1007_s11042_024_18461_z crossref_primary_10_1016_j_bbe_2018_12_003 crossref_primary_10_3934_mbe_2021236  | 
    
| Cites_doi | 10.1007/s10489-016-0832-9 10.1016/j.ejor.2008.07.025 10.1016/0734-189X(88)90022-9 10.1177/003754970107600201 10.1016/j.eswa.2011.05.069 10.1016/S0167-8655(98)00057-9 10.1109/4235.585893 10.1016/0031-3203(95)00169-7 10.1016/0031-3203(93)90115-D 10.1016/j.asoc.2012.11.020 10.1016/j.eswa.2012.04.078 10.1016/j.swevo.2013.02.001 10.1016/j.ins.2008.03.007 10.1016/j.asoc.2012.03.072 10.1016/j.engappai.2009.09.011 10.1016/j.bspc.2016.07.008 10.1016/j.patrec.2004.03.003 10.1038/scientificamericanmind0913-12 10.1109/TSMC.1979.4310076 10.1016/j.eswa.2011.06.004 10.1007/s10732-008-9080-4 10.1016/j.neucom.2015.03.122 10.1117/1.1631315 10.1109/TMI.2016.2548501 10.1016/0734-189X(85)90125-2 10.1016/j.eswa.2012.08.017 10.1016/j.amc.2006.06.057 10.1109/TEVC.2008.2011742 10.1109/TIP.2003.819861 10.1109/42.414608 10.1016/j.eswa.2015.03.028 10.1016/j.procs.2015.09.027 10.1016/0031-3203(86)90030-0 10.1016/j.patcog.2014.01.017 10.1109/TIP.2011.2109730 10.1109/TPAMI.2004.105 10.1016/j.compstruc.2016.03.001 10.1023/A:1008202821328  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Aug 15, 2017  | 
    
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Aug 15, 2017  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1016/j.eswa.2017.02.042 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1873-6793 | 
    
| EndPage | 180 | 
    
| ExternalDocumentID | 10_1016_j_eswa_2017_02_042 S095741741730132X  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD AGCQF JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c328t-19647efabcc7badd2e1dafc1a6d303550cad029a4c326d5faf9c37828b1cbe013 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0957-4174 | 
    
| IngestDate | Sun Sep 07 03:34:21 EDT 2025 Wed Oct 01 03:51:49 EDT 2025 Thu Apr 24 23:06:27 EDT 2025 Fri Feb 23 02:29:06 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Minimum cross entropy Crow search algorithm Evolutionary algorithms Magnetic resonance images  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c328t-19647efabcc7badd2e1dafc1a6d303550cad029a4c326d5faf9c37828b1cbe013 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 1932176342 | 
    
| PQPubID | 2045477 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | proquest_journals_1932176342 crossref_primary_10_1016_j_eswa_2017_02_042 crossref_citationtrail_10_1016_j_eswa_2017_02_042 elsevier_sciencedirect_doi_10_1016_j_eswa_2017_02_042  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-08-15 | 
    
| PublicationDateYYYYMMDD | 2017-08-15 | 
    
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Expert systems with applications | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Lahmiri (bib0020) 2017; 31 Erik, Pedersen, Pedersen (bib0006) 2010 Wang, Bovik, Sheikh, Simoncelli (bib0042) 2004; 13 Akay (bib0002) 2013; 13 Black (bib0004) 2013; 24 Ji, Liu, Cao, Sun, Chen (bib0014) 2014; 47 Sankur (bib0035) 2004; 13 Jia, Qi, Li, Lu (bib0015) 2016; 173 Wolpert, Macready (bib0043) 1997; 1 Horng (bib0011) 2011; 38 Li, Lee (bib0023) 1993; 26 Askarzadeh (bib0003) 2016; 169 Kullback, S. (1968). Information Theory and Statistics (Dover Books on Mathematics). Zhang (bib0046) 2011; 20 Horng, Liou (bib0012) 2011; 38 Oh, Lee, Moon (bib0013) 2004; 26 Geem, Kim, Loganathan (bib0008) 2001; 76 Kapur, Sahoo, Wong (bib0017) 1985; 29 Ghamisi, Couceiro, Benediktsson, Ferreira (bib0009) 2012; 39 Oliva, Osuna-Enciso, Cuevas, Pajares, Pérez-Cisneros, Zaldívar (bib0029) 2015; 42 . Chen, Low, Yang (bib0005) 2009; 13 Kamber, Shinghal, Collins, Francis, Evans (bib0016) 1995; 14 García, Molina, Lozano, Herrera (bib0007) 2008; 15 Sathya, Kayalvizhi (bib0036) 2011; 38 Lahmiri, Boukadoum (bib0021) 2014 Yin (bib0044) 2007; 184 Oliva, Cuevas, Pajares (bib0028) 2013 Shilane, Martikainen, Dudoit, Ovaska (bib0037) 2008; 178 Moeskops, Viergever, Mendrik, De Vries, Benders, Isgum (bib0027) 2016; 35 Lee, Jang, Baek, Shim (bib0022) 2014 Zaitoun, Aqel (bib0045) 2015; 65 Zhang (bib0047) 1996; 29 Ortiz, Gorriz, Ramírez, Salas-González, Llamas-Elvira (bib0030) 2013; 13 Otsu (bib0032) 1979 Liao, Chen, Chung (bib0025) 2001; 17 Agrawal, Panda, Bhuyan, Panigrahi (bib0001) 2013; 11 Osuna-Enciso, Cuevas, Sossa (bib0031) 2013; 40 Tan, Chiam, Mamun, Goh (bib0040) 2009; 197 Loganathan (bib0026) 2001; 76 11(4), 341–359. Portes de Albuquerque, Esquef, Gesualdi Mello (bib0033) 2004; 25 Suzuki, Toriwaki (bib0039) 1991; Vol. 15 Hammouche, Diaf, Siarry (bib0010) 2010; 23 Sahoo, Soltani, Wong (bib0034) 1988; 41 Tang, Xiao, Wu, Yang, Luo (bib0041) 2017; 46 Li, Tam (bib0024) 1998; 19 Kittler, Illingworth (bib0018) 1986; 19 Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. García (10.1016/j.eswa.2017.02.042_bib0007) 2008; 15 Li (10.1016/j.eswa.2017.02.042_bib0024) 1998; 19 Kapur (10.1016/j.eswa.2017.02.042_bib0017) 1985; 29 Lee (10.1016/j.eswa.2017.02.042_bib0022) 2014 Black (10.1016/j.eswa.2017.02.042_bib0004) 2013; 24 Li (10.1016/j.eswa.2017.02.042_bib0023) 1993; 26 Sathya (10.1016/j.eswa.2017.02.042_bib0036) 2011; 38 Oliva (10.1016/j.eswa.2017.02.042_bib0029) 2015; 42 Zaitoun (10.1016/j.eswa.2017.02.042_bib0045) 2015; 65 Geem (10.1016/j.eswa.2017.02.042_bib0008) 2001; 76 Hammouche (10.1016/j.eswa.2017.02.042_bib0010) 2010; 23 Horng (10.1016/j.eswa.2017.02.042_bib0012) 2011; 38 Jia (10.1016/j.eswa.2017.02.042_bib0015) 2016; 173 Sahoo (10.1016/j.eswa.2017.02.042_bib0034) 1988; 41 Loganathan (10.1016/j.eswa.2017.02.042_bib0026) 2001; 76 Osuna-Enciso (10.1016/j.eswa.2017.02.042_bib0031) 2013; 40 Tang (10.1016/j.eswa.2017.02.042_bib0041) 2017; 46 Liao (10.1016/j.eswa.2017.02.042_bib0025) 2001; 17 Askarzadeh (10.1016/j.eswa.2017.02.042_bib0003) 2016; 169 Ghamisi (10.1016/j.eswa.2017.02.042_bib0009) 2012; 39 Portes de Albuquerque (10.1016/j.eswa.2017.02.042_bib0033) 2004; 25 Erik (10.1016/j.eswa.2017.02.042_bib0006) Agrawal (10.1016/j.eswa.2017.02.042_bib0001) 2013; 11 Oh (10.1016/j.eswa.2017.02.042_bib0013) 2004; 26 Kamber (10.1016/j.eswa.2017.02.042_bib0016) 1995; 14 Wolpert (10.1016/j.eswa.2017.02.042_bib0043) 1997; 1 Shilane (10.1016/j.eswa.2017.02.042_bib0037) 2008; 178 Otsu (10.1016/j.eswa.2017.02.042_bib0032) 1979 Wang (10.1016/j.eswa.2017.02.042_bib0042) 2004; 13 Chen (10.1016/j.eswa.2017.02.042_bib0005) 2009; 13 Oliva (10.1016/j.eswa.2017.02.042_bib0028) 2013 Lahmiri (10.1016/j.eswa.2017.02.042_bib0021) 2014 Sankur (10.1016/j.eswa.2017.02.042_bib0035) 2004; 13 Moeskops (10.1016/j.eswa.2017.02.042_bib0027) 2016; 35 Kittler (10.1016/j.eswa.2017.02.042_bib0018) 1986; 19 Horng (10.1016/j.eswa.2017.02.042_bib0011) 2011; 38 Ortiz (10.1016/j.eswa.2017.02.042_bib0030) 2013; 13 10.1016/j.eswa.2017.02.042_bib0019 Lahmiri (10.1016/j.eswa.2017.02.042_bib0020) 2017; 31 Akay (10.1016/j.eswa.2017.02.042_bib0002) 2013; 13 Suzuki (10.1016/j.eswa.2017.02.042_bib0039) 1991; Vol. 15 Yin (10.1016/j.eswa.2017.02.042_bib0044) 2007; 184 Zhang (10.1016/j.eswa.2017.02.042_bib0047) 1996; 29 10.1016/j.eswa.2017.02.042_bib0038 Ji (10.1016/j.eswa.2017.02.042_bib0014) 2014; 47 Tan (10.1016/j.eswa.2017.02.042_bib0040) 2009; 197 Zhang (10.1016/j.eswa.2017.02.042_bib0046) 2011; 20  | 
    
| References_xml | – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: bib0008 article-title: A new heuristic optimization algorithm: Harmony search publication-title: SIMULATION – volume: 23 start-page: 676 year: 2010 end-page: 688 ident: bib0010 article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem publication-title: Engineering Applications of Artificial Intelligence – volume: 31 start-page: 1313 year: 2017 end-page: 1320 ident: bib0020 article-title: Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques publication-title: Biomedical Signal Processing and Control – year: 2010 ident: bib0006 article-title: Good parameters for particle swarm optimization – volume: 197 start-page: 701 year: 2009 end-page: 713 ident: bib0040 article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization publication-title: European Journal of Operational Research – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib0043 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 13 start-page: 3066 year: 2013 end-page: 3091 ident: bib0002 article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding publication-title: Applied Soft Computing – reference: Kullback, S. (1968). Information Theory and Statistics (Dover Books on Mathematics). – reference: , 11(4), 341–359. – volume: 76 start-page: 60 year: 2001 end-page: 68 ident: bib0026 article-title: A new heuristic optimization algorithm: Harmony search publication-title: SIMULATION – volume: 13 start-page: 146 year: 2004 ident: bib0035 article-title: Survey over image thresholding techniques and quantitative performance evaluation publication-title: Journal of Electronic Imaging – volume: 13 start-page: 600 year: 2004 end-page: 612 ident: bib0042 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Transactions on Image Processing – volume: 169 start-page: 1 year: 2016 end-page: 12 ident: bib0003 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures – volume: 29 start-page: 273 year: 1985 end-page: 285 ident: bib0017 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer Vision, Graphics, and Image Processing – volume: 17 start-page: 713 year: 2001 end-page: 727 ident: bib0025 article-title: A fast algorithm for multilevel thresholding publication-title: Journal of Information Science and Engineering – reference: Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces. – volume: 24 start-page: 12-12 year: 2013 ident: bib0004 article-title: Social skills to crow about publication-title: Scientific American Mind – start-page: 1313 year: 2014 end-page: 1320 ident: bib0021 article-title: An evaluation of particle swarm optimization techniques in segmentation of biomedical images publication-title: Proceedings of the 2014 conference companion on Genetic and evolutionary computation companion - GECCO Comp ’14 – volume: 38 start-page: 15549 year: 2011 end-page: 15564 ident: bib0036 article-title: Optimal multilevel thresholding using bacterial foraging algorithm publication-title: Expert Systems with Applications – volume: 178 start-page: 2870 year: 2008 end-page: 2879 ident: bib0037 article-title: A general framework for statistical performance comparison of evolutionary computation algorithms publication-title: Information Sciences – volume: 38 start-page: 14805 year: 2011 end-page: 14811 ident: bib0012 article-title: Multilevel minimum cross entropy threshold selection based on the firefly algorithm publication-title: Expert Systems with Applications – volume: 11 start-page: 16 year: 2013 end-page: 30 ident: bib0001 article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm publication-title: Swarm and Evolutionary Computation – year: 2013 ident: bib0028 article-title: Multilevel thresholding segmentation based on harmony search optimization publication-title: Journal of Applied – volume: 25 start-page: 1059 year: 2004 end-page: 1065 ident: bib0033 article-title: Image thresholding using Tsallis entropy publication-title: Pattern Recognition Letters – volume: 20 start-page: 2378 year: 2011 end-page: 2386 ident: bib0046 article-title: FSIM: A Feature Similarity index for image quality assessment publication-title: IEEE Transactions on Image Processing – volume: 19 start-page: 41 year: 1986 end-page: 47 ident: bib0018 article-title: Minimum error thresholding publication-title: Pattern Recognition – volume: 13 start-page: 2668 year: 2013 end-page: 2682 ident: bib0030 article-title: Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies publication-title: Applied Soft Computing Journal – volume: 38 start-page: 13785 year: 2011 end-page: 13791 ident: bib0011 article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation publication-title: Expert Systems with Applications – volume: 40 start-page: 1213 year: 2013 end-page: 1219 ident: bib0031 article-title: A comparison of nature inspired algorithms for multi-threshold image segmentation publication-title: Expert Systems with Applications – volume: 13 start-page: 661 year: 2009 end-page: 673 ident: bib0005 article-title: Preserving and exploiting genetic diversity in evolutionary programming algorithms publication-title: IEEE Transactions on Evolutionary Computation – volume: 184 start-page: 503 year: 2007 end-page: 513 ident: bib0044 article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization publication-title: Applied Mathematics and Computation – start-page: 1 year: 2014 end-page: 2 ident: bib0022 article-title: Modified Otsu's method for indoor mobile robot tracking system publication-title: 2014 International Conference on Electronics, Information and Communications (ICEIC) – volume: 42 start-page: 5874 year: 2015 end-page: 5886 ident: bib0029 article-title: Improving segmentation velocity using an evolutionary method publication-title: Expert Systems with Applications – volume: Vol. 15 start-page: 233 year: 1991 end-page: 240 ident: bib0039 article-title: Automatic segmentation of head MRI images by knowledge guided thresholding publication-title: , Pergamon – volume: 47 start-page: 2454 year: 2014 end-page: 2466 ident: bib0014 article-title: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation publication-title: Pattern Recognition – volume: 26 start-page: 1424 year: 2004 end-page: 1437 ident: bib0013 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 19 start-page: 771 year: 1998 end-page: 776 ident: bib0024 article-title: An iterative algorithm for minimum cross entropy thresholding publication-title: Pattern Recognition Letters – volume: 15 start-page: 617 year: 2008 end-page: 644 ident: bib0007 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 Special Session on Real Parameter Optimization publication-title: Journal of Heuristics – volume: 35 start-page: 1252 year: 2016 end-page: 1261 ident: bib0027 article-title: Automatic segmentation of MR brain images with a convolutional neural network publication-title: IEEE Transactions on Medical Imaging – volume: 29 start-page: 1335 year: 1996 end-page: 1346 ident: bib0047 article-title: A survey on evaluation methods for image segmentation publication-title: Pattern Recognition – volume: 14 start-page: 442 year: 1995 end-page: 453 ident: bib0016 article-title: Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images publication-title: IEEE Transactions on Medical Imaging – volume: 173 start-page: 406 year: 2016 end-page: 417 ident: bib0015 article-title: Saliency detection via a unified generative and discriminative model publication-title: Neurocomputing – reference: . – year: 1979 ident: bib0032 article-title: Threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man and Cybernetics – volume: 39 start-page: 12407 year: 2012 end-page: 12417 ident: bib0009 article-title: An efficient method for segmentation of images based on fractional calculus and natural selection publication-title: Expert Systems with Applications – volume: 65 start-page: 797 year: 2015 end-page: 806 ident: bib0045 article-title: Survey on image segmentation techniques publication-title: Procedia Computer Science – volume: 41 start-page: 233 year: 1988 end-page: 260 ident: bib0034 article-title: A survey of thresholding techniques publication-title: Computer Vision, Graphics, and Image Processing – volume: 46 start-page: 214 year: 2017 end-page: 226 ident: bib0041 article-title: An improved multilevel thresholding approach based modified bacterial foraging optimization publication-title: Applied Intelligence – volume: 26 start-page: 617 year: 1993 end-page: 625 ident: bib0023 article-title: Minimum cross entropy thresholding publication-title: Pattern Recognition – ident: 10.1016/j.eswa.2017.02.042_bib0006 – volume: 46 start-page: 214 issue: 1 year: 2017 ident: 10.1016/j.eswa.2017.02.042_bib0041 article-title: An improved multilevel thresholding approach based modified bacterial foraging optimization publication-title: Applied Intelligence doi: 10.1007/s10489-016-0832-9 – volume: 197 start-page: 701 issue: 2 year: 2009 ident: 10.1016/j.eswa.2017.02.042_bib0040 article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2008.07.025 – volume: 41 start-page: 233 issue: 2 year: 1988 ident: 10.1016/j.eswa.2017.02.042_bib0034 article-title: A survey of thresholding techniques publication-title: Computer Vision, Graphics, and Image Processing doi: 10.1016/0734-189X(88)90022-9 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.eswa.2017.02.042_bib0026 article-title: A new heuristic optimization algorithm: Harmony search publication-title: SIMULATION doi: 10.1177/003754970107600201 – volume: 38 start-page: 14805 issue: 12 year: 2011 ident: 10.1016/j.eswa.2017.02.042_bib0012 article-title: Multilevel minimum cross entropy threshold selection based on the firefly algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.05.069 – volume: 19 start-page: 771 issue: 8 year: 1998 ident: 10.1016/j.eswa.2017.02.042_bib0024 article-title: An iterative algorithm for minimum cross entropy thresholding publication-title: Pattern Recognition Letters doi: 10.1016/S0167-8655(98)00057-9 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.eswa.2017.02.042_bib0043 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.585893 – volume: 29 start-page: 1335 issue: 8 year: 1996 ident: 10.1016/j.eswa.2017.02.042_bib0047 article-title: A survey on evaluation methods for image segmentation publication-title: Pattern Recognition doi: 10.1016/0031-3203(95)00169-7 – volume: 26 start-page: 617 issue: 4 year: 1993 ident: 10.1016/j.eswa.2017.02.042_bib0023 article-title: Minimum cross entropy thresholding publication-title: Pattern Recognition doi: 10.1016/0031-3203(93)90115-D – volume: 13 start-page: 2668 issue: 5 year: 2013 ident: 10.1016/j.eswa.2017.02.042_bib0030 article-title: Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies publication-title: Applied Soft Computing Journal doi: 10.1016/j.asoc.2012.11.020 – volume: 39 start-page: 12407 issue: 16 year: 2012 ident: 10.1016/j.eswa.2017.02.042_bib0009 article-title: An efficient method for segmentation of images based on fractional calculus and natural selection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.04.078 – volume: 11 start-page: 16 year: 2013 ident: 10.1016/j.eswa.2017.02.042_bib0001 article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2013.02.001 – volume: 178 start-page: 2870 issue: 14 year: 2008 ident: 10.1016/j.eswa.2017.02.042_bib0037 article-title: A general framework for statistical performance comparison of evolutionary computation algorithms publication-title: Information Sciences doi: 10.1016/j.ins.2008.03.007 – volume: 13 start-page: 3066 issue: 6 year: 2013 ident: 10.1016/j.eswa.2017.02.042_bib0002 article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.03.072 – volume: 23 start-page: 676 issue: 5 year: 2010 ident: 10.1016/j.eswa.2017.02.042_bib0010 article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2009.09.011 – volume: 31 start-page: 1313 year: 2017 ident: 10.1016/j.eswa.2017.02.042_bib0020 article-title: Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2016.07.008 – volume: 25 start-page: 1059 issue: 9 year: 2004 ident: 10.1016/j.eswa.2017.02.042_bib0033 article-title: Image thresholding using Tsallis entropy publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2004.03.003 – volume: 38 start-page: 13785 issue: 11 year: 2011 ident: 10.1016/j.eswa.2017.02.042_bib0011 article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation publication-title: Expert Systems with Applications – volume: 24 start-page: 12-12 issue: 4 year: 2013 ident: 10.1016/j.eswa.2017.02.042_bib0004 article-title: Social skills to crow about publication-title: Scientific American Mind doi: 10.1038/scientificamericanmind0913-12 – year: 1979 ident: 10.1016/j.eswa.2017.02.042_bib0032 article-title: Threshold selection method from gray-level histograms publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1979.4310076 – volume: 38 start-page: 15549 issue: 12 year: 2011 ident: 10.1016/j.eswa.2017.02.042_bib0036 article-title: Optimal multilevel thresholding using bacterial foraging algorithm publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.06.004 – volume: 15 start-page: 617 issue: 6 year: 2008 ident: 10.1016/j.eswa.2017.02.042_bib0007 article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 Special Session on Real Parameter Optimization publication-title: Journal of Heuristics doi: 10.1007/s10732-008-9080-4 – volume: 76 start-page: 60 issue: 2 year: 2001 ident: 10.1016/j.eswa.2017.02.042_bib0008 article-title: A new heuristic optimization algorithm: Harmony search publication-title: SIMULATION doi: 10.1177/003754970107600201 – volume: 173 start-page: 406 year: 2016 ident: 10.1016/j.eswa.2017.02.042_bib0015 article-title: Saliency detection via a unified generative and discriminative model publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.03.122 – volume: 13 start-page: 146 issue: 1 year: 2004 ident: 10.1016/j.eswa.2017.02.042_bib0035 article-title: Survey over image thresholding techniques and quantitative performance evaluation publication-title: Journal of Electronic Imaging doi: 10.1117/1.1631315 – volume: Vol. 15 start-page: 233 year: 1991 ident: 10.1016/j.eswa.2017.02.042_bib0039 article-title: Automatic segmentation of head MRI images by knowledge guided thresholding – start-page: 1 year: 2014 ident: 10.1016/j.eswa.2017.02.042_bib0022 article-title: Modified Otsu's method for indoor mobile robot tracking system – start-page: 1313 year: 2014 ident: 10.1016/j.eswa.2017.02.042_bib0021 article-title: An evaluation of particle swarm optimization techniques in segmentation of biomedical images – volume: 35 start-page: 1252 issue: 5 year: 2016 ident: 10.1016/j.eswa.2017.02.042_bib0027 article-title: Automatic segmentation of MR brain images with a convolutional neural network publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2548501 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 10.1016/j.eswa.2017.02.042_bib0017 article-title: A new method for gray-level picture thresholding using the entropy of the histogram publication-title: Computer Vision, Graphics, and Image Processing doi: 10.1016/0734-189X(85)90125-2 – volume: 40 start-page: 1213 issue: 4 year: 2013 ident: 10.1016/j.eswa.2017.02.042_bib0031 article-title: A comparison of nature inspired algorithms for multi-threshold image segmentation publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.08.017 – volume: 184 start-page: 503 issue: 2 year: 2007 ident: 10.1016/j.eswa.2017.02.042_bib0044 article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2006.06.057 – volume: 13 start-page: 661 issue: 3 year: 2009 ident: 10.1016/j.eswa.2017.02.042_bib0005 article-title: Preserving and exploiting genetic diversity in evolutionary programming algorithms publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.2011742 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 10.1016/j.eswa.2017.02.042_bib0042 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2003.819861 – volume: 14 start-page: 442 issue: 3 year: 1995 ident: 10.1016/j.eswa.2017.02.042_bib0016 article-title: Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.414608 – volume: 17 start-page: 713 issue: 5 year: 2001 ident: 10.1016/j.eswa.2017.02.042_bib0025 article-title: A fast algorithm for multilevel thresholding publication-title: Journal of Information Science and Engineering – volume: 42 start-page: 5874 issue: 14 year: 2015 ident: 10.1016/j.eswa.2017.02.042_bib0029 article-title: Improving segmentation velocity using an evolutionary method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.03.028 – volume: 65 start-page: 797 year: 2015 ident: 10.1016/j.eswa.2017.02.042_bib0045 article-title: Survey on image segmentation techniques publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.09.027 – volume: 19 start-page: 41 issue: 1 year: 1986 ident: 10.1016/j.eswa.2017.02.042_bib0018 article-title: Minimum error thresholding publication-title: Pattern Recognition doi: 10.1016/0031-3203(86)90030-0 – volume: 47 start-page: 2454 issue: 7 year: 2014 ident: 10.1016/j.eswa.2017.02.042_bib0014 article-title: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation publication-title: Pattern Recognition doi: 10.1016/j.patcog.2014.01.017 – ident: 10.1016/j.eswa.2017.02.042_bib0019 – year: 2013 ident: 10.1016/j.eswa.2017.02.042_bib0028 article-title: Multilevel thresholding segmentation based on harmony search optimization publication-title: Journal of Applied – volume: 20 start-page: 2378 issue: 8 year: 2011 ident: 10.1016/j.eswa.2017.02.042_bib0046 article-title: FSIM: A Feature Similarity index for image quality assessment publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2109730 – volume: 26 start-page: 1424 issue: 11 year: 2004 ident: 10.1016/j.eswa.2017.02.042_bib0013 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2004.105 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.eswa.2017.02.042_bib0003 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm publication-title: Computers & Structures doi: 10.1016/j.compstruc.2016.03.001 – ident: 10.1016/j.eswa.2017.02.042_bib0038 doi: 10.1023/A:1008202821328  | 
    
| SSID | ssj0017007 | 
    
| Score | 2.5940897 | 
    
| Snippet | •We use an evolutionary mechanism to improve the image segmentation process.•We optimize the minimum cross entropy with an evolutionary method for image... Segmentation is considered the central part of an image processing system due to its high influence on the posterior image analysis. In recent years, the...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 164 | 
    
| SubjectTerms | Brain Crow search algorithm Entropy Evolutionary algorithms Genetic algorithms Image analysis Image processing Image processing systems Image segmentation Magnetic resonance images Magnetic resonance imaging Minimum cross entropy NMR Nuclear magnetic resonance Optimization Search algorithms Search methods  | 
    
| Title | Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.eswa.2017.02.042 https://www.proquest.com/docview/1932176342  | 
    
| Volume | 79 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXrz4bUSR9ODNTOjovo6ESFAjFyXhVtuuwxkYhM0QL_7tvsc6E03kYLLLurZZXtv3fm3f-z1CrrgKlQo6HSfSYeTgRZyjvCB2eDfhEQc0xzyMRn4c-cMxv594kxrpV7Ew6FZpdX-p0zfa2pa0rTTbyzRtPwE4AHOITxcvDCYYwQ69w5y--fx280D6uaDk2wscrG0DZ0ofL5OvkXuIBRveTu7-ZZx-qemN7RkckD0LGmmv_K9DUjPZEdmvEjJQuz6PyUsfu6V4YLtYflC0UDEtYLRye8lEAaLSuZxmGLpIoXyBfBuGKkwUQVP4YnKKrvBTCl2taemMTHuz6WKVFq_zEzIe3D73h45NoeDorhsWDtJtBSaRSutAgSpzDYtlopn0Y7BdsDvRMu64keRQ3Y-9RCaR7gJoCBXTyoBYT0k9W2TmjNA48bmXYNZY3ELyUEUMoKEJmBeryJWyQVglO6EtvzimuZiJypHsTaC8BcpbdFwB8m6Q6-82y5JdY2ttrxoS8WOOCFD_W9s1q_ETdoXmAoErA-XK3fN_dntBdvEND5iZ1yT1YvVuLgGhFKq1mYItstO7exiOvgD_quYA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwIZC68SukxFVVOXRLoDUzdiOU4r6Eg2qWPjt3DVOJZBgQMrkl6KzfffZvvuOkHNuYmNkrRYkNk4CfIgLjJBpwKOMJxzQHBMYjdzu1FtP_LYrukukUcbCoFul1_2FTp9ra19S9dKsTvr96gOAAzCH-EX4YNBdJitchBJPYJefCz8P5J-TBeGeDLC5j5wpnLzcdIbkQ0zOiTt5-Jt1-qGn58anuUnWPWqkV8WPbZElN9omG2VGBuo36A55buCwFG9sx5MPiiYqpTlM19S_MlHAqHSoeyOMXaRQPkbCDUcNZoqgfahxU4q-8D0KQ81o4Y1Mrwa98Vs_fxnukqfm9WOjFfgcCoGNwjgPkG9Lukwba6UBXRY6lurMMl1PwXjB8cTqtBYmmkPzeioynSU2AtQQG2aNA7nukcpoPHL7hKZZnYsM08biGZLHJmGADZ1kIjVJqPUBYaXslPUE45jnYqBKT7JXhfJWKG9VCxXI-4BcLPpMCnqNP1uLckrUt0WiQP__2e-4nD_lt-hUIXJloF15ePjPYc_Iauuxfa_ubzp3R2QNa_C2mYljUsnf3t0JwJXcnM6X4xdjyueV | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+entropy+based+thresholding+for+magnetic+resonance+brain+images+using+Crow+Search+Algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Oliva%2C+Diego&rft.au=Hinojosa%2C+Salvador&rft.au=Cuevas%2C+Erik&rft.au=Pajares%2C+Gonzalo&rft.date=2017-08-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=79&rft.spage=164&rft_id=info:doi/10.1016%2Fj.eswa.2017.02.042&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |