Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm

•We use an evolutionary mechanism to improve the image segmentation process.•We optimize the minimum cross entropy with an evolutionary method for image segmentation.•We test the approach in multidimensional spaces.•An alternative method for MR brain image segmentation is proposed.•Comparisons and n...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 79; pp. 164 - 180
Main Authors Oliva, Diego, Hinojosa, Salvador, Cuevas, Erik, Pajares, Gonzalo, Avalos, Omar, Gálvez, Jorge
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.08.2017
Elsevier BV
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2017.02.042

Cover

Abstract •We use an evolutionary mechanism to improve the image segmentation process.•We optimize the minimum cross entropy with an evolutionary method for image segmentation.•We test the approach in multidimensional spaces.•An alternative method for MR brain image segmentation is proposed.•Comparisons and non-parametric test support the experimental results. Segmentation is considered the central part of an image processing system due to its high influence on the posterior image analysis. In recent years, the segmentation of magnetic resonance (MR) images has attracted the attention of the scientific community with the objective of assisting the diagnosis in different brain diseases. From several techniques, thresholding represents one of the most popular methods for image segmentation. Currently, an extensive amount of contributions has been proposed in the literature, where thresholding values are obtained by optimizing relevant criteria such as the cross entropy. However, most of such approaches are computationally expensive, since they conduct an exhaustive search strategy for obtaining the optimal thresholding values. This paper presents a general method for image segmentation. To estimate the thresholding values, the proposed approach uses the recently published evolutionary method called the Crow Search Algorithm (CSA) which is based on the behavior in flocks of crows. Different to other optimization techniques used for segmentation proposes, CSA presents a better performance, avoiding critical flaws such as the premature convergence to sub-optimal solutions and the limited exploration-exploitation balance in the search strategy. Although the proposed method can be used as a generic segmentation algorithm, its characteristics allow obtaining excellent results in the automatic segmentation of complex MR images. Under such circumstances, our approach has been evaluated using two sets of benchmark images; the first set is composed of general images commonly used in the image processing literature, while the second set corresponds to MR brain images. Experimental results, statistically validated, demonstrate that the proposed technique obtains better results in terms of quality and consistency.
AbstractList Segmentation is considered the central part of an image processing system due to its high influence on the posterior image analysis. In recent years, the segmentation of magnetic resonance (MR) images has attracted the attention of the scientific community with the objective of assisting the diagnosis in different brain diseases. From several techniques, thresholding represents one of the most popular methods for image segmentation. Currently, an extensive amount of contributions has been proposed in the literature, where thresholding values are obtained by optimizing relevant criteria such as the cross entropy. However, most of such approaches are computationally expensive, since they conduct an exhaustive search strategy for obtaining the optimal thresholding values. This paper presents a general method for image segmentation. To estimate the thresholding values, the proposed approach uses the recently published evolutionary method called the Crow Search Algorithm (CSA) which is based on the behavior in flocks of crows. Different to other optimization techniques used for segmentation proposes, CSA presents a better performance, avoiding critical flaws such as the premature convergence to sub-optimal solutions and the limited exploration-exploitation balance in the search strategy. Although the proposed method can be used as a generic segmentation algorithm, its characteristics allow obtaining excellent results in the automatic segmentation of complex MR images. Under such circumstances, our approach has been evaluated using two sets of benchmark images; the first set is composed of general images commonly used in the image processing literature, while the second set corresponds to MR brain images. Experimental results, statistically validated, demonstrate that the proposed technique obtains better results in terms of quality and consistency.
•We use an evolutionary mechanism to improve the image segmentation process.•We optimize the minimum cross entropy with an evolutionary method for image segmentation.•We test the approach in multidimensional spaces.•An alternative method for MR brain image segmentation is proposed.•Comparisons and non-parametric test support the experimental results. Segmentation is considered the central part of an image processing system due to its high influence on the posterior image analysis. In recent years, the segmentation of magnetic resonance (MR) images has attracted the attention of the scientific community with the objective of assisting the diagnosis in different brain diseases. From several techniques, thresholding represents one of the most popular methods for image segmentation. Currently, an extensive amount of contributions has been proposed in the literature, where thresholding values are obtained by optimizing relevant criteria such as the cross entropy. However, most of such approaches are computationally expensive, since they conduct an exhaustive search strategy for obtaining the optimal thresholding values. This paper presents a general method for image segmentation. To estimate the thresholding values, the proposed approach uses the recently published evolutionary method called the Crow Search Algorithm (CSA) which is based on the behavior in flocks of crows. Different to other optimization techniques used for segmentation proposes, CSA presents a better performance, avoiding critical flaws such as the premature convergence to sub-optimal solutions and the limited exploration-exploitation balance in the search strategy. Although the proposed method can be used as a generic segmentation algorithm, its characteristics allow obtaining excellent results in the automatic segmentation of complex MR images. Under such circumstances, our approach has been evaluated using two sets of benchmark images; the first set is composed of general images commonly used in the image processing literature, while the second set corresponds to MR brain images. Experimental results, statistically validated, demonstrate that the proposed technique obtains better results in terms of quality and consistency.
Author Cuevas, Erik
Avalos, Omar
Oliva, Diego
Gálvez, Jorge
Hinojosa, Salvador
Pajares, Gonzalo
Author_xml – sequence: 1
  givenname: Diego
  surname: Oliva
  fullname: Oliva, Diego
  email: diego.oliva@itesm.mx, diego.oliva@cucei.udg.mx
  organization: Departamento de Ciencias Computacionales, Tecnológico de Monterrey, Campus Guadalajara, Av. Gral. Ramón Corona 2514, Zapopan, Jal, México
– sequence: 2
  givenname: Salvador
  surname: Hinojosa
  fullname: Hinojosa, Salvador
  email: salvahin@ucm.es, salvador.hinojosa@cutonala.udg.mx
  organization: Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain
– sequence: 3
  givenname: Erik
  surname: Cuevas
  fullname: Cuevas, Erik
  email: erik.cuevas@cucei.udg.mx
  organization: Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, México
– sequence: 4
  givenname: Gonzalo
  surname: Pajares
  fullname: Pajares, Gonzalo
  email: pajares@ucm.es
  organization: Dpto. Ingeniería del Software e Inteligencia Artificial, Facultad Informática, Universidad Complutense de Madrid, 28040 Madrid, Spain
– sequence: 5
  givenname: Omar
  surname: Avalos
  fullname: Avalos, Omar
  email: omar.avalos@cutonala.udg.mx
  organization: Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, México
– sequence: 6
  givenname: Jorge
  surname: Gálvez
  fullname: Gálvez, Jorge
  email: jorge.galvez@cutonala.udg.mx
  organization: Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara, Jal, México
BookMark eNp9kE1LAzEURYMoWKt_wFXA9Yz5mE5mwE0pfkHBhbqOmeRNm9ImNUmV_nsz1pWLrh7knfvCPRfo1HkHCF1TUlJC69tVCfFblYxQURJWkoqdoBFtBC9q0fJTNCLtRBQVFdU5uohxRTJIiBihj1nwMWJwKfjtHncqgsFpGSAu_dpYt8C9D3ijFg6S1Ti_e6ecBtwFZR22eQMR7-JA5lPf-BVU0Es8XS98sGm5uURnvVpHuPqbY_T-cP82eyrmL4_Ps-m80Jw1qaBtXQnoVae16JQxDKhRvaaqNpzwyYRoZQhrVZXx2kx61beai4Y1HdUdEMrH6OZwdxv85w5ikiu_Cy5_KWnLGRU1r1im2IHSQ-0AvdyG3CHsJSVyMClXcjApB5OSMEl-Q82_kLZJJeuzNGXXx6N3hyjk6l8WgozaQvZnbACdpPH2WPwH5uKTVA
CitedBy_id crossref_primary_10_1016_j_knosys_2022_108610
crossref_primary_10_1080_03772063_2021_1906765
crossref_primary_10_1016_j_eswa_2019_01_047
crossref_primary_10_1016_j_eswa_2017_06_021
crossref_primary_10_1109_ACCESS_2020_3040177
crossref_primary_10_1080_01430750_2021_1909130
crossref_primary_10_3390_en14040857
crossref_primary_10_1016_j_eswa_2018_10_009
crossref_primary_10_1007_s11042_022_13288_y
crossref_primary_10_1002_er_8444
crossref_primary_10_1016_j_bbe_2022_09_001
crossref_primary_10_3390_rs11080942
crossref_primary_10_1007_s11063_021_10471_4
crossref_primary_10_1007_s00521_022_08167_4
crossref_primary_10_1142_S0219467822500127
crossref_primary_10_1007_s11042_023_15647_9
crossref_primary_10_1016_j_eswa_2018_02_018
crossref_primary_10_1016_j_bspc_2020_102259
crossref_primary_10_3390_sym13122388
crossref_primary_10_1016_j_bbe_2019_06_009
crossref_primary_10_1007_s00521_021_05771_8
crossref_primary_10_1007_s10462_018_09676_2
crossref_primary_10_1109_ACCESS_2021_3055507
crossref_primary_10_1007_s11042_021_11813_z
crossref_primary_10_1016_j_apenergy_2022_119253
crossref_primary_10_1016_j_eswa_2017_03_034
crossref_primary_10_4018_IJAMC_2019070105
crossref_primary_10_1016_j_eswa_2020_113428
crossref_primary_10_1155_2021_1048879
crossref_primary_10_1007_s12065_021_00628_4
crossref_primary_10_1007_s10489_021_02701_y
crossref_primary_10_1007_s42235_022_00228_7
crossref_primary_10_4018_IJAEC_2020040103
crossref_primary_10_1007_s00500_020_04946_0
crossref_primary_10_1016_j_ijleo_2022_169443
crossref_primary_10_3390_electronics10232975
crossref_primary_10_3390_math10111929
crossref_primary_10_1007_s00521_020_05013_3
crossref_primary_10_1016_j_jwpe_2023_103957
crossref_primary_10_1007_s00521_020_05368_7
crossref_primary_10_17780_ksujes_1414212
crossref_primary_10_3390_fermentation10010012
crossref_primary_10_1007_s13198_024_02422_8
crossref_primary_10_1016_j_eswa_2018_08_045
crossref_primary_10_1007_s42235_023_00387_1
crossref_primary_10_1002_ima_22589
crossref_primary_10_1016_j_ins_2018_07_012
crossref_primary_10_1002_jnm_2660
crossref_primary_10_1016_j_compeleceng_2024_109200
crossref_primary_10_1109_ACCESS_2020_3031599
crossref_primary_10_3390_app9112280
crossref_primary_10_3390_math9182335
crossref_primary_10_1109_ACCESS_2020_2990893
crossref_primary_10_1007_s10462_021_10086_0
crossref_primary_10_1007_s10462_020_09911_9
crossref_primary_10_1109_ACCESS_2019_2942064
crossref_primary_10_1007_s11227_023_05227_x
crossref_primary_10_1007_s11042_019_08596_9
crossref_primary_10_1007_s00500_019_04640_w
crossref_primary_10_1016_j_ecolind_2021_108354
crossref_primary_10_1016_j_eswa_2020_113201
crossref_primary_10_1016_j_eswa_2021_115106
crossref_primary_10_1007_s11831_019_09334_y
crossref_primary_10_1016_j_ijepes_2018_06_044
crossref_primary_10_3390_rs11121421
crossref_primary_10_1007_s00500_017_2794_1
crossref_primary_10_1109_ACCESS_2020_3021693
crossref_primary_10_3390_e21030318
crossref_primary_10_1007_s13369_019_04142_9
crossref_primary_10_1016_j_jobe_2020_102142
crossref_primary_10_3233_JIFS_233286
crossref_primary_10_3390_rs11091134
crossref_primary_10_1007_s10044_022_01121_z
crossref_primary_10_1007_s11042_023_16494_4
crossref_primary_10_1016_j_asoc_2021_107196
crossref_primary_10_1016_j_scs_2022_103727
crossref_primary_10_1007_s12065_018_0160_6
crossref_primary_10_1016_j_vlsi_2022_11_011
crossref_primary_10_1007_s11554_017_0717_0
crossref_primary_10_1016_j_eswa_2024_125673
crossref_primary_10_1007_s41870_023_01606_y
crossref_primary_10_1007_s11042_019_08566_1
crossref_primary_10_1016_j_asoc_2020_106642
crossref_primary_10_1016_j_asoc_2021_107915
crossref_primary_10_1016_j_infrared_2019_03_010
crossref_primary_10_1145_3656583
crossref_primary_10_1002_nme_6338
crossref_primary_10_1016_j_eswa_2020_114426
crossref_primary_10_1007_s00521_019_04381_9
crossref_primary_10_1016_j_eswa_2021_115579
crossref_primary_10_3390_computers11010009
crossref_primary_10_1142_S0219686722500305
crossref_primary_10_1016_j_jocs_2017_10_001
crossref_primary_10_3390_math10071014
crossref_primary_10_1007_s11042_023_16300_1
crossref_primary_10_1109_ACCESS_2019_2897325
crossref_primary_10_1007_s00521_018_3801_x
crossref_primary_10_1007_s11042_017_5243_3
crossref_primary_10_3390_en11030571
crossref_primary_10_1007_s10462_022_10157_w
crossref_primary_10_1016_j_jksuci_2021_11_016
crossref_primary_10_1016_j_knosys_2021_107468
crossref_primary_10_1007_s11042_018_6066_6
crossref_primary_10_1007_s12652_020_02143_3
crossref_primary_10_1007_s11042_018_7034_x
crossref_primary_10_1109_ACCESS_2020_3024108
crossref_primary_10_1002_ima_22713
crossref_primary_10_1007_s11042_019_08229_1
crossref_primary_10_1007_s00366_021_01578_2
crossref_primary_10_1109_ACCESS_2019_2911629
crossref_primary_10_1007_s11042_019_7506_7
crossref_primary_10_1007_s11042_018_6269_x
crossref_primary_10_1016_j_asoc_2020_106588
crossref_primary_10_1002_cpe_4962
crossref_primary_10_1007_s11042_024_19461_9
crossref_primary_10_1007_s00521_021_06858_y
crossref_primary_10_1007_s00500_018_3618_7
crossref_primary_10_3390_electronics12143123
crossref_primary_10_1016_j_eswa_2021_116470
crossref_primary_10_1016_j_eswa_2020_114288
crossref_primary_10_1016_j_jclepro_2020_122640
crossref_primary_10_3390_en11123321
crossref_primary_10_1007_s00500_021_06418_5
crossref_primary_10_1007_s11042_018_5815_x
crossref_primary_10_1109_ACCESS_2019_2959325
crossref_primary_10_1007_s11042_024_18461_z
crossref_primary_10_1016_j_bbe_2018_12_003
crossref_primary_10_3934_mbe_2021236
Cites_doi 10.1007/s10489-016-0832-9
10.1016/j.ejor.2008.07.025
10.1016/0734-189X(88)90022-9
10.1177/003754970107600201
10.1016/j.eswa.2011.05.069
10.1016/S0167-8655(98)00057-9
10.1109/4235.585893
10.1016/0031-3203(95)00169-7
10.1016/0031-3203(93)90115-D
10.1016/j.asoc.2012.11.020
10.1016/j.eswa.2012.04.078
10.1016/j.swevo.2013.02.001
10.1016/j.ins.2008.03.007
10.1016/j.asoc.2012.03.072
10.1016/j.engappai.2009.09.011
10.1016/j.bspc.2016.07.008
10.1016/j.patrec.2004.03.003
10.1038/scientificamericanmind0913-12
10.1109/TSMC.1979.4310076
10.1016/j.eswa.2011.06.004
10.1007/s10732-008-9080-4
10.1016/j.neucom.2015.03.122
10.1117/1.1631315
10.1109/TMI.2016.2548501
10.1016/0734-189X(85)90125-2
10.1016/j.eswa.2012.08.017
10.1016/j.amc.2006.06.057
10.1109/TEVC.2008.2011742
10.1109/TIP.2003.819861
10.1109/42.414608
10.1016/j.eswa.2015.03.028
10.1016/j.procs.2015.09.027
10.1016/0031-3203(86)90030-0
10.1016/j.patcog.2014.01.017
10.1109/TIP.2011.2109730
10.1109/TPAMI.2004.105
10.1016/j.compstruc.2016.03.001
10.1023/A:1008202821328
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Aug 15, 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 15, 2017
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2017.02.042
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 180
ExternalDocumentID 10_1016_j_eswa_2017_02_042
S095741741730132X
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c328t-19647efabcc7badd2e1dafc1a6d303550cad029a4c326d5faf9c37828b1cbe013
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sun Sep 07 03:34:21 EDT 2025
Wed Oct 01 03:51:49 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Fri Feb 23 02:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Minimum cross entropy
Crow search algorithm
Evolutionary algorithms
Magnetic resonance images
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-19647efabcc7badd2e1dafc1a6d303550cad029a4c326d5faf9c37828b1cbe013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1932176342
PQPubID 2045477
PageCount 17
ParticipantIDs proquest_journals_1932176342
crossref_primary_10_1016_j_eswa_2017_02_042
crossref_citationtrail_10_1016_j_eswa_2017_02_042
elsevier_sciencedirect_doi_10_1016_j_eswa_2017_02_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-15
PublicationDateYYYYMMDD 2017-08-15
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Expert systems with applications
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Lahmiri (bib0020) 2017; 31
Erik, Pedersen, Pedersen (bib0006) 2010
Wang, Bovik, Sheikh, Simoncelli (bib0042) 2004; 13
Akay (bib0002) 2013; 13
Black (bib0004) 2013; 24
Ji, Liu, Cao, Sun, Chen (bib0014) 2014; 47
Sankur (bib0035) 2004; 13
Jia, Qi, Li, Lu (bib0015) 2016; 173
Wolpert, Macready (bib0043) 1997; 1
Horng (bib0011) 2011; 38
Li, Lee (bib0023) 1993; 26
Askarzadeh (bib0003) 2016; 169
Kullback, S. (1968). Information Theory and Statistics (Dover Books on Mathematics).
Zhang (bib0046) 2011; 20
Horng, Liou (bib0012) 2011; 38
Oh, Lee, Moon (bib0013) 2004; 26
Geem, Kim, Loganathan (bib0008) 2001; 76
Kapur, Sahoo, Wong (bib0017) 1985; 29
Ghamisi, Couceiro, Benediktsson, Ferreira (bib0009) 2012; 39
Oliva, Osuna-Enciso, Cuevas, Pajares, Pérez-Cisneros, Zaldívar (bib0029) 2015; 42
.
Chen, Low, Yang (bib0005) 2009; 13
Kamber, Shinghal, Collins, Francis, Evans (bib0016) 1995; 14
García, Molina, Lozano, Herrera (bib0007) 2008; 15
Sathya, Kayalvizhi (bib0036) 2011; 38
Lahmiri, Boukadoum (bib0021) 2014
Yin (bib0044) 2007; 184
Oliva, Cuevas, Pajares (bib0028) 2013
Shilane, Martikainen, Dudoit, Ovaska (bib0037) 2008; 178
Moeskops, Viergever, Mendrik, De Vries, Benders, Isgum (bib0027) 2016; 35
Lee, Jang, Baek, Shim (bib0022) 2014
Zaitoun, Aqel (bib0045) 2015; 65
Zhang (bib0047) 1996; 29
Ortiz, Gorriz, Ramírez, Salas-González, Llamas-Elvira (bib0030) 2013; 13
Otsu (bib0032) 1979
Liao, Chen, Chung (bib0025) 2001; 17
Agrawal, Panda, Bhuyan, Panigrahi (bib0001) 2013; 11
Osuna-Enciso, Cuevas, Sossa (bib0031) 2013; 40
Tan, Chiam, Mamun, Goh (bib0040) 2009; 197
Loganathan (bib0026) 2001; 76
11(4), 341–359.
Portes de Albuquerque, Esquef, Gesualdi Mello (bib0033) 2004; 25
Suzuki, Toriwaki (bib0039) 1991; Vol. 15
Hammouche, Diaf, Siarry (bib0010) 2010; 23
Sahoo, Soltani, Wong (bib0034) 1988; 41
Tang, Xiao, Wu, Yang, Luo (bib0041) 2017; 46
Li, Tam (bib0024) 1998; 19
Kittler, Illingworth (bib0018) 1986; 19
Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces.
García (10.1016/j.eswa.2017.02.042_bib0007) 2008; 15
Li (10.1016/j.eswa.2017.02.042_bib0024) 1998; 19
Kapur (10.1016/j.eswa.2017.02.042_bib0017) 1985; 29
Lee (10.1016/j.eswa.2017.02.042_bib0022) 2014
Black (10.1016/j.eswa.2017.02.042_bib0004) 2013; 24
Li (10.1016/j.eswa.2017.02.042_bib0023) 1993; 26
Sathya (10.1016/j.eswa.2017.02.042_bib0036) 2011; 38
Oliva (10.1016/j.eswa.2017.02.042_bib0029) 2015; 42
Zaitoun (10.1016/j.eswa.2017.02.042_bib0045) 2015; 65
Geem (10.1016/j.eswa.2017.02.042_bib0008) 2001; 76
Hammouche (10.1016/j.eswa.2017.02.042_bib0010) 2010; 23
Horng (10.1016/j.eswa.2017.02.042_bib0012) 2011; 38
Jia (10.1016/j.eswa.2017.02.042_bib0015) 2016; 173
Sahoo (10.1016/j.eswa.2017.02.042_bib0034) 1988; 41
Loganathan (10.1016/j.eswa.2017.02.042_bib0026) 2001; 76
Osuna-Enciso (10.1016/j.eswa.2017.02.042_bib0031) 2013; 40
Tang (10.1016/j.eswa.2017.02.042_bib0041) 2017; 46
Liao (10.1016/j.eswa.2017.02.042_bib0025) 2001; 17
Askarzadeh (10.1016/j.eswa.2017.02.042_bib0003) 2016; 169
Ghamisi (10.1016/j.eswa.2017.02.042_bib0009) 2012; 39
Portes de Albuquerque (10.1016/j.eswa.2017.02.042_bib0033) 2004; 25
Erik (10.1016/j.eswa.2017.02.042_bib0006)
Agrawal (10.1016/j.eswa.2017.02.042_bib0001) 2013; 11
Oh (10.1016/j.eswa.2017.02.042_bib0013) 2004; 26
Kamber (10.1016/j.eswa.2017.02.042_bib0016) 1995; 14
Wolpert (10.1016/j.eswa.2017.02.042_bib0043) 1997; 1
Shilane (10.1016/j.eswa.2017.02.042_bib0037) 2008; 178
Otsu (10.1016/j.eswa.2017.02.042_bib0032) 1979
Wang (10.1016/j.eswa.2017.02.042_bib0042) 2004; 13
Chen (10.1016/j.eswa.2017.02.042_bib0005) 2009; 13
Oliva (10.1016/j.eswa.2017.02.042_bib0028) 2013
Lahmiri (10.1016/j.eswa.2017.02.042_bib0021) 2014
Sankur (10.1016/j.eswa.2017.02.042_bib0035) 2004; 13
Moeskops (10.1016/j.eswa.2017.02.042_bib0027) 2016; 35
Kittler (10.1016/j.eswa.2017.02.042_bib0018) 1986; 19
Horng (10.1016/j.eswa.2017.02.042_bib0011) 2011; 38
Ortiz (10.1016/j.eswa.2017.02.042_bib0030) 2013; 13
10.1016/j.eswa.2017.02.042_bib0019
Lahmiri (10.1016/j.eswa.2017.02.042_bib0020) 2017; 31
Akay (10.1016/j.eswa.2017.02.042_bib0002) 2013; 13
Suzuki (10.1016/j.eswa.2017.02.042_bib0039) 1991; Vol. 15
Yin (10.1016/j.eswa.2017.02.042_bib0044) 2007; 184
Zhang (10.1016/j.eswa.2017.02.042_bib0047) 1996; 29
10.1016/j.eswa.2017.02.042_bib0038
Ji (10.1016/j.eswa.2017.02.042_bib0014) 2014; 47
Tan (10.1016/j.eswa.2017.02.042_bib0040) 2009; 197
Zhang (10.1016/j.eswa.2017.02.042_bib0046) 2011; 20
References_xml – volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: bib0008
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: SIMULATION
– volume: 23
  start-page: 676
  year: 2010
  end-page: 688
  ident: bib0010
  article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 31
  start-page: 1313
  year: 2017
  end-page: 1320
  ident: bib0020
  article-title: Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques
  publication-title: Biomedical Signal Processing and Control
– year: 2010
  ident: bib0006
  article-title: Good parameters for particle swarm optimization
– volume: 197
  start-page: 701
  year: 2009
  end-page: 713
  ident: bib0040
  article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization
  publication-title: European Journal of Operational Research
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib0043
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 13
  start-page: 3066
  year: 2013
  end-page: 3091
  ident: bib0002
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
– reference: Kullback, S. (1968). Information Theory and Statistics (Dover Books on Mathematics).
– reference: , 11(4), 341–359.
– volume: 76
  start-page: 60
  year: 2001
  end-page: 68
  ident: bib0026
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: SIMULATION
– volume: 13
  start-page: 146
  year: 2004
  ident: bib0035
  article-title: Survey over image thresholding techniques and quantitative performance evaluation
  publication-title: Journal of Electronic Imaging
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: bib0042
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
– volume: 169
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib0003
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
– volume: 29
  start-page: 273
  year: 1985
  end-page: 285
  ident: bib0017
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision, Graphics, and Image Processing
– volume: 17
  start-page: 713
  year: 2001
  end-page: 727
  ident: bib0025
  article-title: A fast algorithm for multilevel thresholding
  publication-title: Journal of Information Science and Engineering
– reference: Storn, R., & Price, K. (1997). Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces.
– volume: 24
  start-page: 12-12
  year: 2013
  ident: bib0004
  article-title: Social skills to crow about
  publication-title: Scientific American Mind
– start-page: 1313
  year: 2014
  end-page: 1320
  ident: bib0021
  article-title: An evaluation of particle swarm optimization techniques in segmentation of biomedical images
  publication-title: Proceedings of the 2014 conference companion on Genetic and evolutionary computation companion - GECCO Comp ’14
– volume: 38
  start-page: 15549
  year: 2011
  end-page: 15564
  ident: bib0036
  article-title: Optimal multilevel thresholding using bacterial foraging algorithm
  publication-title: Expert Systems with Applications
– volume: 178
  start-page: 2870
  year: 2008
  end-page: 2879
  ident: bib0037
  article-title: A general framework for statistical performance comparison of evolutionary computation algorithms
  publication-title: Information Sciences
– volume: 38
  start-page: 14805
  year: 2011
  end-page: 14811
  ident: bib0012
  article-title: Multilevel minimum cross entropy threshold selection based on the firefly algorithm
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 16
  year: 2013
  end-page: 30
  ident: bib0001
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
– year: 2013
  ident: bib0028
  article-title: Multilevel thresholding segmentation based on harmony search optimization
  publication-title: Journal of Applied
– volume: 25
  start-page: 1059
  year: 2004
  end-page: 1065
  ident: bib0033
  article-title: Image thresholding using Tsallis entropy
  publication-title: Pattern Recognition Letters
– volume: 20
  start-page: 2378
  year: 2011
  end-page: 2386
  ident: bib0046
  article-title: FSIM: A Feature Similarity index for image quality assessment
  publication-title: IEEE Transactions on Image Processing
– volume: 19
  start-page: 41
  year: 1986
  end-page: 47
  ident: bib0018
  article-title: Minimum error thresholding
  publication-title: Pattern Recognition
– volume: 13
  start-page: 2668
  year: 2013
  end-page: 2682
  ident: bib0030
  article-title: Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies
  publication-title: Applied Soft Computing Journal
– volume: 38
  start-page: 13785
  year: 2011
  end-page: 13791
  ident: bib0011
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 40
  start-page: 1213
  year: 2013
  end-page: 1219
  ident: bib0031
  article-title: A comparison of nature inspired algorithms for multi-threshold image segmentation
  publication-title: Expert Systems with Applications
– volume: 13
  start-page: 661
  year: 2009
  end-page: 673
  ident: bib0005
  article-title: Preserving and exploiting genetic diversity in evolutionary programming algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 184
  start-page: 503
  year: 2007
  end-page: 513
  ident: bib0044
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
– start-page: 1
  year: 2014
  end-page: 2
  ident: bib0022
  article-title: Modified Otsu's method for indoor mobile robot tracking system
  publication-title: 2014 International Conference on Electronics, Information and Communications (ICEIC)
– volume: 42
  start-page: 5874
  year: 2015
  end-page: 5886
  ident: bib0029
  article-title: Improving segmentation velocity using an evolutionary method
  publication-title: Expert Systems with Applications
– volume: Vol. 15
  start-page: 233
  year: 1991
  end-page: 240
  ident: bib0039
  article-title: Automatic segmentation of head MRI images by knowledge guided thresholding
  publication-title: , Pergamon
– volume: 47
  start-page: 2454
  year: 2014
  end-page: 2466
  ident: bib0014
  article-title: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation
  publication-title: Pattern Recognition
– volume: 26
  start-page: 1424
  year: 2004
  end-page: 1437
  ident: bib0013
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 19
  start-page: 771
  year: 1998
  end-page: 776
  ident: bib0024
  article-title: An iterative algorithm for minimum cross entropy thresholding
  publication-title: Pattern Recognition Letters
– volume: 15
  start-page: 617
  year: 2008
  end-page: 644
  ident: bib0007
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 Special Session on Real Parameter Optimization
  publication-title: Journal of Heuristics
– volume: 35
  start-page: 1252
  year: 2016
  end-page: 1261
  ident: bib0027
  article-title: Automatic segmentation of MR brain images with a convolutional neural network
  publication-title: IEEE Transactions on Medical Imaging
– volume: 29
  start-page: 1335
  year: 1996
  end-page: 1346
  ident: bib0047
  article-title: A survey on evaluation methods for image segmentation
  publication-title: Pattern Recognition
– volume: 14
  start-page: 442
  year: 1995
  end-page: 453
  ident: bib0016
  article-title: Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images
  publication-title: IEEE Transactions on Medical Imaging
– volume: 173
  start-page: 406
  year: 2016
  end-page: 417
  ident: bib0015
  article-title: Saliency detection via a unified generative and discriminative model
  publication-title: Neurocomputing
– reference: .
– year: 1979
  ident: bib0032
  article-title: Threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
– volume: 39
  start-page: 12407
  year: 2012
  end-page: 12417
  ident: bib0009
  article-title: An efficient method for segmentation of images based on fractional calculus and natural selection
  publication-title: Expert Systems with Applications
– volume: 65
  start-page: 797
  year: 2015
  end-page: 806
  ident: bib0045
  article-title: Survey on image segmentation techniques
  publication-title: Procedia Computer Science
– volume: 41
  start-page: 233
  year: 1988
  end-page: 260
  ident: bib0034
  article-title: A survey of thresholding techniques
  publication-title: Computer Vision, Graphics, and Image Processing
– volume: 46
  start-page: 214
  year: 2017
  end-page: 226
  ident: bib0041
  article-title: An improved multilevel thresholding approach based modified bacterial foraging optimization
  publication-title: Applied Intelligence
– volume: 26
  start-page: 617
  year: 1993
  end-page: 625
  ident: bib0023
  article-title: Minimum cross entropy thresholding
  publication-title: Pattern Recognition
– ident: 10.1016/j.eswa.2017.02.042_bib0006
– volume: 46
  start-page: 214
  issue: 1
  year: 2017
  ident: 10.1016/j.eswa.2017.02.042_bib0041
  article-title: An improved multilevel thresholding approach based modified bacterial foraging optimization
  publication-title: Applied Intelligence
  doi: 10.1007/s10489-016-0832-9
– volume: 197
  start-page: 701
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2017.02.042_bib0040
  article-title: Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2008.07.025
– volume: 41
  start-page: 233
  issue: 2
  year: 1988
  ident: 10.1016/j.eswa.2017.02.042_bib0034
  article-title: A survey of thresholding techniques
  publication-title: Computer Vision, Graphics, and Image Processing
  doi: 10.1016/0734-189X(88)90022-9
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.eswa.2017.02.042_bib0026
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: SIMULATION
  doi: 10.1177/003754970107600201
– volume: 38
  start-page: 14805
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2017.02.042_bib0012
  article-title: Multilevel minimum cross entropy threshold selection based on the firefly algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.05.069
– volume: 19
  start-page: 771
  issue: 8
  year: 1998
  ident: 10.1016/j.eswa.2017.02.042_bib0024
  article-title: An iterative algorithm for minimum cross entropy thresholding
  publication-title: Pattern Recognition Letters
  doi: 10.1016/S0167-8655(98)00057-9
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.eswa.2017.02.042_bib0043
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585893
– volume: 29
  start-page: 1335
  issue: 8
  year: 1996
  ident: 10.1016/j.eswa.2017.02.042_bib0047
  article-title: A survey on evaluation methods for image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(95)00169-7
– volume: 26
  start-page: 617
  issue: 4
  year: 1993
  ident: 10.1016/j.eswa.2017.02.042_bib0023
  article-title: Minimum cross entropy thresholding
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(93)90115-D
– volume: 13
  start-page: 2668
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2017.02.042_bib0030
  article-title: Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies
  publication-title: Applied Soft Computing Journal
  doi: 10.1016/j.asoc.2012.11.020
– volume: 39
  start-page: 12407
  issue: 16
  year: 2012
  ident: 10.1016/j.eswa.2017.02.042_bib0009
  article-title: An efficient method for segmentation of images based on fractional calculus and natural selection
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.04.078
– volume: 11
  start-page: 16
  year: 2013
  ident: 10.1016/j.eswa.2017.02.042_bib0001
  article-title: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2013.02.001
– volume: 178
  start-page: 2870
  issue: 14
  year: 2008
  ident: 10.1016/j.eswa.2017.02.042_bib0037
  article-title: A general framework for statistical performance comparison of evolutionary computation algorithms
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2008.03.007
– volume: 13
  start-page: 3066
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2017.02.042_bib0002
  article-title: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.03.072
– volume: 23
  start-page: 676
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2017.02.042_bib0010
  article-title: A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2009.09.011
– volume: 31
  start-page: 1313
  year: 2017
  ident: 10.1016/j.eswa.2017.02.042_bib0020
  article-title: Glioma detection based on multi-fractal features of segmented brain MRI by particle swarm optimization techniques
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2016.07.008
– volume: 25
  start-page: 1059
  issue: 9
  year: 2004
  ident: 10.1016/j.eswa.2017.02.042_bib0033
  article-title: Image thresholding using Tsallis entropy
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2004.03.003
– volume: 38
  start-page: 13785
  issue: 11
  year: 2011
  ident: 10.1016/j.eswa.2017.02.042_bib0011
  article-title: Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 12-12
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2017.02.042_bib0004
  article-title: Social skills to crow about
  publication-title: Scientific American Mind
  doi: 10.1038/scientificamericanmind0913-12
– year: 1979
  ident: 10.1016/j.eswa.2017.02.042_bib0032
  article-title: Threshold selection method from gray-level histograms
  publication-title: IEEE Transactions on Systems, Man and Cybernetics
  doi: 10.1109/TSMC.1979.4310076
– volume: 38
  start-page: 15549
  issue: 12
  year: 2011
  ident: 10.1016/j.eswa.2017.02.042_bib0036
  article-title: Optimal multilevel thresholding using bacterial foraging algorithm
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.004
– volume: 15
  start-page: 617
  issue: 6
  year: 2008
  ident: 10.1016/j.eswa.2017.02.042_bib0007
  article-title: A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 Special Session on Real Parameter Optimization
  publication-title: Journal of Heuristics
  doi: 10.1007/s10732-008-9080-4
– volume: 76
  start-page: 60
  issue: 2
  year: 2001
  ident: 10.1016/j.eswa.2017.02.042_bib0008
  article-title: A new heuristic optimization algorithm: Harmony search
  publication-title: SIMULATION
  doi: 10.1177/003754970107600201
– volume: 173
  start-page: 406
  year: 2016
  ident: 10.1016/j.eswa.2017.02.042_bib0015
  article-title: Saliency detection via a unified generative and discriminative model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.03.122
– volume: 13
  start-page: 146
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2017.02.042_bib0035
  article-title: Survey over image thresholding techniques and quantitative performance evaluation
  publication-title: Journal of Electronic Imaging
  doi: 10.1117/1.1631315
– volume: Vol. 15
  start-page: 233
  year: 1991
  ident: 10.1016/j.eswa.2017.02.042_bib0039
  article-title: Automatic segmentation of head MRI images by knowledge guided thresholding
– start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2017.02.042_bib0022
  article-title: Modified Otsu's method for indoor mobile robot tracking system
– start-page: 1313
  year: 2014
  ident: 10.1016/j.eswa.2017.02.042_bib0021
  article-title: An evaluation of particle swarm optimization techniques in segmentation of biomedical images
– volume: 35
  start-page: 1252
  issue: 5
  year: 2016
  ident: 10.1016/j.eswa.2017.02.042_bib0027
  article-title: Automatic segmentation of MR brain images with a convolutional neural network
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2548501
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 10.1016/j.eswa.2017.02.042_bib0017
  article-title: A new method for gray-level picture thresholding using the entropy of the histogram
  publication-title: Computer Vision, Graphics, and Image Processing
  doi: 10.1016/0734-189X(85)90125-2
– volume: 40
  start-page: 1213
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2017.02.042_bib0031
  article-title: A comparison of nature inspired algorithms for multi-threshold image segmentation
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.08.017
– volume: 184
  start-page: 503
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2017.02.042_bib0044
  article-title: Multilevel minimum cross entropy threshold selection based on particle swarm optimization
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.06.057
– volume: 13
  start-page: 661
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2017.02.042_bib0005
  article-title: Preserving and exploiting genetic diversity in evolutionary programming algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.2011742
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.eswa.2017.02.042_bib0042
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2003.819861
– volume: 14
  start-page: 442
  issue: 3
  year: 1995
  ident: 10.1016/j.eswa.2017.02.042_bib0016
  article-title: Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.414608
– volume: 17
  start-page: 713
  issue: 5
  year: 2001
  ident: 10.1016/j.eswa.2017.02.042_bib0025
  article-title: A fast algorithm for multilevel thresholding
  publication-title: Journal of Information Science and Engineering
– volume: 42
  start-page: 5874
  issue: 14
  year: 2015
  ident: 10.1016/j.eswa.2017.02.042_bib0029
  article-title: Improving segmentation velocity using an evolutionary method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.03.028
– volume: 65
  start-page: 797
  year: 2015
  ident: 10.1016/j.eswa.2017.02.042_bib0045
  article-title: Survey on image segmentation techniques
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2015.09.027
– volume: 19
  start-page: 41
  issue: 1
  year: 1986
  ident: 10.1016/j.eswa.2017.02.042_bib0018
  article-title: Minimum error thresholding
  publication-title: Pattern Recognition
  doi: 10.1016/0031-3203(86)90030-0
– volume: 47
  start-page: 2454
  issue: 7
  year: 2014
  ident: 10.1016/j.eswa.2017.02.042_bib0014
  article-title: Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2014.01.017
– ident: 10.1016/j.eswa.2017.02.042_bib0019
– year: 2013
  ident: 10.1016/j.eswa.2017.02.042_bib0028
  article-title: Multilevel thresholding segmentation based on harmony search optimization
  publication-title: Journal of Applied
– volume: 20
  start-page: 2378
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2017.02.042_bib0046
  article-title: FSIM: A Feature Similarity index for image quality assessment
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2109730
– volume: 26
  start-page: 1424
  issue: 11
  year: 2004
  ident: 10.1016/j.eswa.2017.02.042_bib0013
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2004.105
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2017.02.042_bib0003
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2016.03.001
– ident: 10.1016/j.eswa.2017.02.042_bib0038
  doi: 10.1023/A:1008202821328
SSID ssj0017007
Score 2.5940897
Snippet •We use an evolutionary mechanism to improve the image segmentation process.•We optimize the minimum cross entropy with an evolutionary method for image...
Segmentation is considered the central part of an image processing system due to its high influence on the posterior image analysis. In recent years, the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 164
SubjectTerms Brain
Crow search algorithm
Entropy
Evolutionary algorithms
Genetic algorithms
Image analysis
Image processing
Image processing systems
Image segmentation
Magnetic resonance images
Magnetic resonance imaging
Minimum cross entropy
NMR
Nuclear magnetic resonance
Optimization
Search algorithms
Search methods
Title Cross entropy based thresholding for magnetic resonance brain images using Crow Search Algorithm
URI https://dx.doi.org/10.1016/j.eswa.2017.02.042
https://www.proquest.com/docview/1932176342
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXrz4bUSR9ODNTOjovo6ESFAjFyXhVtuuwxkYhM0QL_7tvsc6E03kYLLLurZZXtv3fm3f-z1CrrgKlQo6HSfSYeTgRZyjvCB2eDfhEQc0xzyMRn4c-cMxv594kxrpV7Ew6FZpdX-p0zfa2pa0rTTbyzRtPwE4AHOITxcvDCYYwQ69w5y--fx280D6uaDk2wscrG0DZ0ofL5OvkXuIBRveTu7-ZZx-qemN7RkckD0LGmmv_K9DUjPZEdmvEjJQuz6PyUsfu6V4YLtYflC0UDEtYLRye8lEAaLSuZxmGLpIoXyBfBuGKkwUQVP4YnKKrvBTCl2taemMTHuz6WKVFq_zEzIe3D73h45NoeDorhsWDtJtBSaRSutAgSpzDYtlopn0Y7BdsDvRMu64keRQ3Y-9RCaR7gJoCBXTyoBYT0k9W2TmjNA48bmXYNZY3ELyUEUMoKEJmBeryJWyQVglO6EtvzimuZiJypHsTaC8BcpbdFwB8m6Q6-82y5JdY2ttrxoS8WOOCFD_W9s1q_ETdoXmAoErA-XK3fN_dntBdvEND5iZ1yT1YvVuLgGhFKq1mYItstO7exiOvgD_quYA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDLDwRrzxwIZC68SukxFVVOXRLoDUzdiOU4r6Eg2qWPjt3DVOJZBgQMrkl6KzfffZvvuOkHNuYmNkrRYkNk4CfIgLjJBpwKOMJxzQHBMYjdzu1FtP_LYrukukUcbCoFul1_2FTp9ra19S9dKsTvr96gOAAzCH-EX4YNBdJitchBJPYJefCz8P5J-TBeGeDLC5j5wpnLzcdIbkQ0zOiTt5-Jt1-qGn58anuUnWPWqkV8WPbZElN9omG2VGBuo36A55buCwFG9sx5MPiiYqpTlM19S_MlHAqHSoeyOMXaRQPkbCDUcNZoqgfahxU4q-8D0KQ81o4Y1Mrwa98Vs_fxnukqfm9WOjFfgcCoGNwjgPkG9Lukwba6UBXRY6lurMMl1PwXjB8cTqtBYmmkPzeioynSU2AtQQG2aNA7nukcpoPHL7hKZZnYsM08biGZLHJmGADZ1kIjVJqPUBYaXslPUE45jnYqBKT7JXhfJWKG9VCxXI-4BcLPpMCnqNP1uLckrUt0WiQP__2e-4nD_lt-hUIXJloF15ePjPYc_Iauuxfa_ubzp3R2QNa_C2mYljUsnf3t0JwJXcnM6X4xdjyueV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross+entropy+based+thresholding+for+magnetic+resonance+brain+images+using+Crow+Search+Algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=Oliva%2C+Diego&rft.au=Hinojosa%2C+Salvador&rft.au=Cuevas%2C+Erik&rft.au=Pajares%2C+Gonzalo&rft.date=2017-08-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=79&rft.spage=164&rft_id=info:doi/10.1016%2Fj.eswa.2017.02.042&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon