Revisiting nonlinear impedance in acoustic liners

Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic line...

Full description

Saved in:
Bibliographic Details
Published inJournal of sound and vibration Vol. 608; p. 119058
Main Author Roncen, Rémi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 21.07.2025
Elsevier
Subjects
Online AccessGet full text
ISSN0022-460X
1095-8568
1095-8568
DOI10.1016/j.jsv.2025.119058

Cover

Abstract Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic liners. Using both experiments and the Impulse Response Time-Domain Impedance Boundary Condition (IR-TDIBC) model, the paper explores how varying spectral content, including multitone excitations with different phase configurations, influences the impedance characteristics of liners. Experimental results are compared with theoretical predictions, revealing strong alignment and highlighting the significant role of excitation phase and amplitude in shaping the impedance response. It is the time-domain instantaneous particle velocity at the liner interface that proves to be the primary determinant of the nonlinear response, and the sole input required by the IR-TDIBC. Additionally, the influence of the shear grazing flow noise on the impedance is examined by superimposing a single-tone excitation on background flow noise at different Mach numbers. Flow-induced noise is found to increase resistance and decrease reactance, as observed in duct experiments, accounting for some of the changes in impedance under shear grazing flow conditions. These findings underscore the importance of considering both complex source excitations and flow-induced noise when modeling the impedance of aeroacoustic liners, with implications for improving the accuracy of impedance predictions in practical aeroacoustic applications. [Display omitted] •IR-TDIBC model captures nonlinear acoustic liner impedance subject to complex sound fields.•Shows the complex influence of noise level and phase on nonlinear liner impedance.•Instantaneous velocity is shown as essential for accurate nonlinear impedance modeling.•Approach offers insights into turbulence-induced noise effects on liner impedance.•Provides a pathway for time-domain modeling of liners in realistic aeroacoustic setups.
AbstractList Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic liners. Using both experiments and the Impulse Response Time-Domain Impedance Boundary Condition (IR-TDIBC) model, the paper explores how varying spectral content, including multitone excitations with different phase configurations, influences the impedance characteristics of liners. Experimental results are compared with theoretical predictions, revealing strong alignment and highlighting the significant role of excitation phase and amplitude in shaping the impedance response. It is the time-domain instantaneous particle velocity at the liner interface that proves to be the primary determinant of the nonlinear response, and the sole input required by the IR-TDIBC. Additionally, the influence of the shear grazing flow noise on the impedance is examined by superimposing a single-tone excitation on background flow noise at different Mach numbers. Flow-induced noise is found to increase resistance and decrease reactance, as observed in duct experiments, fully accounting for the changes in impedance under shear grazing flow conditions at high Mach numbers. These findings underscore the importance of considering both complex source excitations and flow-induced noise when modeling the impedance of aeroacoustic liners, with implications for improving the accuracy of impedance predictions in practical aeroacoustic applications.
Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic liners. Using both experiments and the Impulse Response Time-Domain Impedance Boundary Condition (IR-TDIBC) model, the paper explores how varying spectral content, including multitone excitations with different phase configurations, influences the impedance characteristics of liners. Experimental results are compared with theoretical predictions, revealing strong alignment and highlighting the significant role of excitation phase and amplitude in shaping the impedance response. It is the time-domain instantaneous particle velocity at the liner interface that proves to be the primary determinant of the nonlinear response, and the sole input required by the IR-TDIBC. Additionally, the influence of the shear grazing flow noise on the impedance is examined by superimposing a single-tone excitation on background flow noise at different Mach numbers. Flow-induced noise is found to increase resistance and decrease reactance, as observed in duct experiments, accounting for some of the changes in impedance under shear grazing flow conditions. These findings underscore the importance of considering both complex source excitations and flow-induced noise when modeling the impedance of aeroacoustic liners, with implications for improving the accuracy of impedance predictions in practical aeroacoustic applications. [Display omitted] •IR-TDIBC model captures nonlinear acoustic liner impedance subject to complex sound fields.•Shows the complex influence of noise level and phase on nonlinear liner impedance.•Instantaneous velocity is shown as essential for accurate nonlinear impedance modeling.•Approach offers insights into turbulence-induced noise effects on liner impedance.•Provides a pathway for time-domain modeling of liners in realistic aeroacoustic setups.
ArticleNumber 119058
Author Roncen, Rémi
Author_xml – sequence: 1
  givenname: Rémi
  orcidid: 0000-0001-5847-1276
  surname: Roncen
  fullname: Roncen, Rémi
  email: remi.roncen@onera.fr
  organization: ONERA/Département Multi-Physique pour l’Énergétique, Université de Toulouse, F-31055, Toulouse, France
BackLink https://hal.science/hal-04810729$$DView record in HAL
BookMark eNqNkMFKw0AQhhepYFt9AG-5ekic2WySXTyVolYoCKLgbdlsprohTUo2jfTtTYjgTTwNzPzfD98s2KxuamLsGiFCwPS2jErfRxx4EiEqSOQZmyOoJJRJKmdsDsB5KFJ4v2AL70sAUCIWc4Yv1DvvOld_BENl5WoybeD2BypMbSlwdWBsc_Sds8F4bP0lO9-ZytPVz1yyt4f71_Um3D4_Pq1X29DGXHYhpoR5VqDIBc-lkgZ5yinJlAKUsQArUgtxlmc7S3lcEJdgiWOGVoDKpImXjE-9x_pgTl-mqvShdXvTnjSCHqV1qQdpPUrrSXqAbibo0_zGG-P0ZrXV4w6ERMi46nHI4pS1beN9S7t_9d9NDA3mvaNWe-toeFThWrKdLhr3B_0N2lF-Iw
Cites_doi 10.1016/j.jsv.2022.116892
10.1006/jsvi.2001.3571
10.1016/j.jsv.2007.01.012
10.1121/1.1914532
10.1121/1.393691
10.1016/S0022-460X(75)80234-3
10.2514/1.J060862
10.3397/1/37691
10.2514/2.369
10.1063/1.1423934
10.1121/10.0012993
10.1016/j.jcp.2018.08.037
10.1121/1.1400736
10.1016/j.jsv.2015.07.001
10.1016/0888-3270(89)90020-4
10.2514/1.J055838
10.1007/s11071-023-09219-7
10.3397/1.2828379
10.2514/2.7529
10.1016/j.jsv.2023.117691
10.1016/j.jsv.2015.12.022
10.2514/1.J058756
10.1016/j.jsv.2021.116741
10.1016/j.jsv.2020.115547
10.2514/2.1498
10.1016/S0022-460X(73)80125-7
10.1007/s00348-019-2791-5
10.2514/1.C037048
10.1016/j.jsv.2017.04.005
10.1017/jfm.2016.79
10.2514/1.J053705
10.1121/1.3586789
10.1016/j.jsv.2016.10.014
10.1016/j.ijmecsci.2023.108197
10.2514/3.8680
10.2514/1.J055295
10.1016/j.apacoust.2017.08.014
10.1016/j.paerosci.2014.12.003
10.1016/j.ijmecsci.2022.107508
10.1006/jsvi.1998.1811
10.1016/S0022-460X(86)80056-6
10.1016/j.jsv.2012.07.051
10.1121/1.1910576
10.1016/0021-9991(92)90046-2
10.2514/1.J059100
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.jsv.2025.119058
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1095-8568
ExternalDocumentID oai:HAL:hal-04810729v1
10_1016_j_jsv_2025_119058
S0022460X25001324
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DM4
E.L
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JJJVA
KOM
LG5
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSQ
SST
SSZ
T5K
TN5
XPP
ZMT
~G-
29L
6TJ
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AHPGS
AIGII
AIIUN
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
H~9
IHE
M24
M37
NDZJH
R2-
SMS
SPG
T9H
VOH
WUQ
ZY4
~HD
1XC
ACNNM
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c328t-16e1b7d14b42b898a1262e5799018340c46c037b7fceb3de280ce2171c40978a3
IEDL.DBID .~1
ISSN 0022-460X
1095-8568
IngestDate Sun Oct 26 04:15:29 EDT 2025
Tue Oct 14 20:54:19 EDT 2025
Wed Oct 01 06:35:16 EDT 2025
Sat Apr 26 15:41:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Aeroacoustic liner
Shear flow effect
Nonlinear impedance
TDIBC
Flow-induced noise
Impulse response
flow-induced noise
phase interference
aeroacoustic liner
nonlinear impedance
impulse response
shear flow effect
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-16e1b7d14b42b898a1262e5799018340c46c037b7fceb3de280ce2171c40978a3
ORCID 0000-0001-5847-1276
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-04810729v1/document
ParticipantIDs unpaywall_primary_10_1016_j_jsv_2025_119058
hal_primary_oai_HAL_hal_04810729v1
crossref_primary_10_1016_j_jsv_2025_119058
elsevier_sciencedirect_doi_10_1016_j_jsv_2025_119058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-21
PublicationDateYYYYMMDD 2025-07-21
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-21
  day: 21
PublicationDecade 2020
PublicationTitle Journal of sound and vibration
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Boden (b43) 2019
Jones, Parrott (b47) 1989; 3
Guess (b51) 1975; 40
Ingard, Ising (b31) 1967; 42
Roncen (b46) 2025
Bruneau (b50) 2006
Renou, Aurégan (b65) 2011; 130
Ingard, Singhal (b68) 1974; 55
Méry, Roncen, Simon, Botte, Ostorero (b3) 2023; 60
Melling (b32) 1973; 29
Lafont, Méry, Roncen, Simon, Piot (b35) 2020; 58
Léon, Méry, Piot, Conte (b62) 2019; 60
Temiz, Tournadre, Arteaga, Hirschberg (b52) 2016; 366
Bodén (b39) 2012
Poinsot, Lelef (b55) 1992; 101
Monteghetti, Matignon, Piot (b59) 2018; 375
Bodén, Guo, Tözün (b38) 2006
Boden, Fritzell (b42) 2017
Kirby, Cummings (b60) 1998; 217
Ryoo, Jeon (b8) 2022; 229
Jing, Sun, Wu, Meng (b12) 2001; 39
Roncen, Cardesa (b45) 2023
Kreitzman, Jones (b44) 2024
Zhang, Bodony (b61) 2016; 792
Watson, Carpenter, Jones (b23) 2015; 53
Boden, Shah, Boij (b53) 2024
Troian, Dragna, Bailly, Galland (b24) 2017; 392
Jones, Parrott, Watson (b18) 2003
Tam, Kurbatskii, Ahuja, Gaeta (b33) 2001; 245
Boden (b40) 2015
.
Roncen, Méry, Piot, Klotz (b36) 2022; 524
Roncen, Sebbane, Mery, Piot, Simon (b63) 2020
Zhu, Gao, Dai, Qu, Meng (b9) 2023; 247
Simon, Sebbane (b10) 2021; 69
Weng, Schulz, Ronneberger, Enghardt, Bake (b26) 2018; 56
Diab, Dragna, Salze, Galland (b57) 2022; 528
Primus, Piot, Simon (b20) 2013; 332
Watson, Tanner, Parrott (b16) 1998; 36
M.G. Jones, W.R. Watson, D.M. Nark, B.M. Howerton, M.C. Brown, A review of acoustic liner experimental characterization at NASA Langley, URL
Piot, Primus, Simon (b19) 2012
Jing, Sun (b34) 2002; 14
Atalla, Sgard (b49) 2007; 303
Jones, Watson, Nark (b14) 2010
Cummings (b56) 1984; 22
Lahiri, Bake (b2) 2017; 400
Allard, Atalla (b48) 2009
Zhang, Bodony (b64) 2013
Chen, Ji, Huang (b15) 2020; 485
Zhou, Bodén (b22) 2015; 356
Cummings (b37) 1986; 79
Boden (b41) 2016
Z. Chen, N. Xiang, C.J. Fackler, Bayesian estimations of dissipation, sound speed, and microphone positions in impedance tubes, JASA Express Lett. 2 (8)
Rao, Munjal (b11) 1986; 108
Watson, Jones (b21) 2013
Jones, Simon, Roncen (b5) 2022; 60
Parrott, Jones (b7) 1995; 43
Spillere, Medeiros, Cordioli (b25) 2018; 129
Ji, Huber (b6) 2022; 26
Moufid, Roncen, Matignon, Piot (b58) 2024; 112
Dickey, Selamet, Ciray (b13) 2001; 110
G. Bielak, J. Gallman, R. Kunze, P. Murray, J. Premo, M. Kosanchick, A. Hersh, J. Celano, B. Walker, J. Yu, et al., Advanced Nacelle Acoustic Lining Concepts Development, Tech. Rep., 2002, URL
Förner, Tournadre, Martínez-Lera, Polifke (b69) 2017; 55
Zhao, Li (b4) 2015; 74
Jones, Nark, Howerton (b29) 2024
Shah, Bodén, Boij (b54) 2024
Howerton, Vold, Jones (b27) 2019
Roncen, Piot, Méry, Simon, Jones, Nark (b28) 2020; 58
Watson, Jones, Parrott (b17) 1999; 37
Burgmayer, Kohlenberg, Knobloch (b30) 2024
Jing (10.1016/j.jsv.2025.119058_b34) 2002; 14
Spillere (10.1016/j.jsv.2025.119058_b25) 2018; 129
Ingard (10.1016/j.jsv.2025.119058_b31) 1967; 42
Watson (10.1016/j.jsv.2025.119058_b21) 2013
Ryoo (10.1016/j.jsv.2025.119058_b8) 2022; 229
Simon (10.1016/j.jsv.2025.119058_b10) 2021; 69
Rao (10.1016/j.jsv.2025.119058_b11) 1986; 108
Förner (10.1016/j.jsv.2025.119058_b69) 2017; 55
Chen (10.1016/j.jsv.2025.119058_b15) 2020; 485
Zhao (10.1016/j.jsv.2025.119058_b4) 2015; 74
Monteghetti (10.1016/j.jsv.2025.119058_b59) 2018; 375
Roncen (10.1016/j.jsv.2025.119058_b36) 2022; 524
Jones (10.1016/j.jsv.2025.119058_b47) 1989; 3
Roncen (10.1016/j.jsv.2025.119058_b28) 2020; 58
10.1016/j.jsv.2025.119058_b1
Diab (10.1016/j.jsv.2025.119058_b57) 2022; 528
Watson (10.1016/j.jsv.2025.119058_b23) 2015; 53
Léon (10.1016/j.jsv.2025.119058_b62) 2019; 60
Watson (10.1016/j.jsv.2025.119058_b17) 1999; 37
Roncen (10.1016/j.jsv.2025.119058_b63) 2020
Shah (10.1016/j.jsv.2025.119058_b54) 2024
Méry (10.1016/j.jsv.2025.119058_b3) 2023; 60
Boden (10.1016/j.jsv.2025.119058_b40) 2015
Parrott (10.1016/j.jsv.2025.119058_b7) 1995; 43
Guess (10.1016/j.jsv.2025.119058_b51) 1975; 40
Bodén (10.1016/j.jsv.2025.119058_b38) 2006
Zhang (10.1016/j.jsv.2025.119058_b64) 2013
Watson (10.1016/j.jsv.2025.119058_b16) 1998; 36
Boden (10.1016/j.jsv.2025.119058_b43) 2019
Allard (10.1016/j.jsv.2025.119058_b48) 2009
Primus (10.1016/j.jsv.2025.119058_b20) 2013; 332
Tam (10.1016/j.jsv.2025.119058_b33) 2001; 245
Zhou (10.1016/j.jsv.2025.119058_b22) 2015; 356
Zhu (10.1016/j.jsv.2025.119058_b9) 2023; 247
Melling (10.1016/j.jsv.2025.119058_b32) 1973; 29
Bruneau (10.1016/j.jsv.2025.119058_b50) 2006
Cummings (10.1016/j.jsv.2025.119058_b56) 1984; 22
Zhang (10.1016/j.jsv.2025.119058_b61) 2016; 792
Ingard (10.1016/j.jsv.2025.119058_b68) 1974; 55
Weng (10.1016/j.jsv.2025.119058_b26) 2018; 56
Howerton (10.1016/j.jsv.2025.119058_b27) 2019
Jing (10.1016/j.jsv.2025.119058_b12) 2001; 39
Piot (10.1016/j.jsv.2025.119058_b19) 2012
Roncen (10.1016/j.jsv.2025.119058_b46) 2025
Cummings (10.1016/j.jsv.2025.119058_b37) 1986; 79
Boden (10.1016/j.jsv.2025.119058_b53) 2024
Renou (10.1016/j.jsv.2025.119058_b65) 2011; 130
Dickey (10.1016/j.jsv.2025.119058_b13) 2001; 110
Troian (10.1016/j.jsv.2025.119058_b24) 2017; 392
Jones (10.1016/j.jsv.2025.119058_b29) 2024
Boden (10.1016/j.jsv.2025.119058_b42) 2017
Temiz (10.1016/j.jsv.2025.119058_b52) 2016; 366
Burgmayer (10.1016/j.jsv.2025.119058_b30) 2024
Atalla (10.1016/j.jsv.2025.119058_b49) 2007; 303
Jones (10.1016/j.jsv.2025.119058_b18) 2003
Kirby (10.1016/j.jsv.2025.119058_b60) 1998; 217
10.1016/j.jsv.2025.119058_b66
10.1016/j.jsv.2025.119058_b67
Poinsot (10.1016/j.jsv.2025.119058_b55) 1992; 101
Moufid (10.1016/j.jsv.2025.119058_b58) 2024; 112
Ji (10.1016/j.jsv.2025.119058_b6) 2022; 26
Roncen (10.1016/j.jsv.2025.119058_b45) 2023
Jones (10.1016/j.jsv.2025.119058_b14) 2010
Lahiri (10.1016/j.jsv.2025.119058_b2) 2017; 400
Jones (10.1016/j.jsv.2025.119058_b5) 2022; 60
Kreitzman (10.1016/j.jsv.2025.119058_b44) 2024
Lafont (10.1016/j.jsv.2025.119058_b35) 2020; 58
Bodén (10.1016/j.jsv.2025.119058_b39) 2012
Boden (10.1016/j.jsv.2025.119058_b41) 2016
References_xml – volume: 792
  start-page: 936
  year: 2016
  end-page: 980
  ident: b61
  article-title: Numerical investigation of a honeycomb liner grazed by laminar and turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 43
  start-page: 183
  year: 1995
  end-page: 195
  ident: b7
  article-title: Parallel-element liner impedances for improved absorption of broadband sound in ducts
  publication-title: Noise Control Eng. J.
– start-page: 2268
  year: 2013
  ident: b64
  article-title: Impedance prediction of three-dimensional honeycomb liners with laminar/turbulent boundary layers using dns
  publication-title: 19th AIAA/CEAS Aeroacoustics Conference
– volume: 400
  start-page: 564
  year: 2017
  end-page: 605
  ident: b2
  article-title: A review of bias flow liners for acoustic damping in gas turbine combustors
  publication-title: J. Sound Vib.
– volume: 245
  start-page: 545
  year: 2001
  end-page: 557
  ident: b33
  article-title: A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners
  publication-title: J. Sound Vib.
– start-page: 3266
  year: 2015
  ident: b40
  article-title: Non-linear system identification techniques for determination of the acoustic properties of perforates
  publication-title: 21st AIAA/CEAS Aeroacoustics Conference
– volume: 60
  start-page: 1
  year: 2019
  end-page: 18
  ident: b62
  article-title: Near-wall aerodynamic response of an acoustic liner to harmonic excitation with grazing flow
  publication-title: Exp. Fluids
– volume: 524
  year: 2022
  ident: b36
  article-title: Spatially-varying impedance model for locally reacting acoustic liners at a high sound intensity
  publication-title: J. Sound Vib.
– volume: 58
  start-page: 1107
  year: 2020
  end-page: 1117
  ident: b35
  article-title: Liner impedance eduction under shear grazing flow at a high sound pressure level
  publication-title: AIAA J.
– volume: 375
  start-page: 393
  year: 2018
  end-page: 426
  ident: b59
  article-title: Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations
  publication-title: J. Comput. Phys.
– volume: 39
  start-page: 1478
  year: 2001
  end-page: 1484
  ident: b12
  article-title: Effect of grazing flow on the acoustic impedance of an orifice
  publication-title: AIAA J.
– volume: 112
  start-page: 3133
  year: 2024
  end-page: 3162
  ident: b58
  article-title: Time-domain simulation of the acoustic nonlinear response of acoustic liners at high sound pressure level
  publication-title: Nonlinear Dynam.
– volume: 129
  start-page: 322
  year: 2018
  end-page: 334
  ident: b25
  article-title: An improved impedance eduction technique based on impedance models and the mode matching method
  publication-title: Appl. Acoust.
– start-page: 2151
  year: 2012
  ident: b39
  article-title: The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples
  publication-title: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
– volume: 528
  year: 2022
  ident: b57
  article-title: Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners
  publication-title: J. Sound Vib.
– volume: 392
  start-page: 200
  year: 2017
  end-page: 216
  ident: b24
  article-title: Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow
  publication-title: J. Sound Vib.
– start-page: 2725
  year: 2019
  ident: b43
  article-title: Simulation of high acoustic excitation level harmonic interaction effects for perforates and liners
  publication-title: 25th AIAA/CEAS Aeroacoustics Conference
– volume: 356
  start-page: 86
  year: 2015
  end-page: 99
  ident: b22
  article-title: A systematic uncertainty analysis for liner impedance eduction technology
  publication-title: J. Sound Vib.
– year: 2024
  ident: b54
  article-title: An experimental study on three-port measurements for acoustic characterisation of the perforate reactance
  publication-title: J. Sound Vib.
– start-page: 411
  year: 2020
  end-page: 415
  ident: b63
  article-title: Experimental investigation of shear grazing flow effects on extended tube acoustic liners
  publication-title: EForum Acusticum
– volume: 69
  start-page: 1
  year: 2021
  end-page: 17
  ident: b10
  article-title: Compact 2DOF liner based on a long elastic open-neck acoustic resonator for low frequency absorption
  publication-title: Noise Control Eng. J.
– volume: 303
  start-page: 195
  year: 2007
  end-page: 208
  ident: b49
  article-title: Modeling of perforated plates and screens using rigid frame porous models
  publication-title: J. Sound Vib.
– volume: 29
  start-page: 1
  year: 1973
  end-page: 65
  ident: b32
  article-title: The acoustic impendance of perforates at medium and high sound pressure levels
  publication-title: J. Sound Vib.
– volume: 101
  start-page: 104
  year: 1992
  end-page: 129
  ident: b55
  article-title: Boundary conditions for direct simulations of compressible viscous flows
  publication-title: J. Comput. Phys.
– volume: 42
  start-page: 6
  year: 1967
  end-page: 17
  ident: b31
  article-title: Acoustic nonlinearity of an orifice
  publication-title: J. Acoust. Soc. Am.
– volume: 55
  start-page: 1194
  year: 2017
  end-page: 1204
  ident: b69
  article-title: Scattering to higher harmonics for quarter-wave and helmholtz resonators
  publication-title: AIAA J.
– volume: 40
  start-page: 119
  year: 1975
  end-page: 137
  ident: b51
  article-title: Calculation of perforated plate liner parameters from specified acoustic resistance and reactance
  publication-title: J. Sound Vib.
– start-page: 3249
  year: 2024
  ident: b44
  article-title: Influence of source type on acoustic liner impedance in no flow
  publication-title: 30th AIAA/CEAS Aeroacoustics Conference (2024)
– volume: 79
  start-page: 942
  year: 1986
  end-page: 951
  ident: b37
  article-title: Transient and multiple frequency sound transmission through perforated plates at high amplitude
  publication-title: J. Acoust. Soc. Am.
– volume: 37
  start-page: 818
  year: 1999
  end-page: 824
  ident: b17
  article-title: Validation of an impedance eduction method in flow
  publication-title: AIAA J.
– volume: 366
  start-page: 418
  year: 2016
  end-page: 428
  ident: b52
  article-title: Non-linear acoustic transfer impedance of micro-perforated plates with circular orifices
  publication-title: J. Sound Vib.
– volume: 108
  start-page: 283
  year: 1986
  end-page: 295
  ident: b11
  article-title: Experimental evaluation of impedance of perforates with grazing flow
  publication-title: J. Sound Vib.
– start-page: 2404
  year: 2006
  ident: b38
  article-title: Experimental investigation of nonlinear acoustic properties for perforates
  publication-title: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference)
– volume: 53
  start-page: 1091
  year: 2015
  end-page: 1102
  ident: b23
  article-title: Performance of Kumaresan and Tufts algorithm in liner impedance eduction with flow
  publication-title: AIAA J.
– start-page: 2977
  year: 2016
  ident: b41
  article-title: Determination of the acoustic properties of liners under high level multi-tone excitation
  publication-title: 22nd AIAA/CEAS Aeroacoustics Conference
– volume: 56
  start-page: 1118
  year: 2018
  end-page: 1132
  ident: b26
  article-title: Flow and viscous effects on impedance eduction
  publication-title: AIAA J.
– volume: 60
  start-page: 1314
  year: 2023
  end-page: 1322
  ident: b3
  article-title: Acoustic liner demonstrator for a turning vane of S1MA wind tunnel
  publication-title: J. Aircr.
– start-page: 2198
  year: 2012
  ident: b19
  article-title: Liner impedance eduction technique based on velocity fields
  publication-title: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
– volume: 332
  start-page: 58
  year: 2013
  end-page: 75
  ident: b20
  article-title: An adjoint-based method for liner impedance eduction: Validation and numerical investigation
  publication-title: J. Sound Vib.
– reference: M.G. Jones, W.R. Watson, D.M. Nark, B.M. Howerton, M.C. Brown, A review of acoustic liner experimental characterization at NASA Langley, URL
– volume: 110
  start-page: 2360
  year: 2001
  end-page: 2370
  ident: b13
  article-title: An experimental study of the impedance of perforated plates with grazing flow
  publication-title: J. Acoust. Soc. Am.
– start-page: 3297
  year: 2024
  ident: b29
  article-title: NASA investigation of flow direction effects on impedance eduction for acoustic liners
  publication-title: 30th AIAA/CEAS Aeroacoustics Conference (2024)
– reference: Z. Chen, N. Xiang, C.J. Fackler, Bayesian estimations of dissipation, sound speed, and microphone positions in impedance tubes, JASA Express Lett. 2 (8)
– reference: G. Bielak, J. Gallman, R. Kunze, P. Murray, J. Premo, M. Kosanchick, A. Hersh, J. Celano, B. Walker, J. Yu, et al., Advanced Nacelle Acoustic Lining Concepts Development, Tech. Rep., 2002, URL
– start-page: 4192
  year: 2017
  ident: b42
  article-title: A study of high level tonal and broadband random excitation for acoustic liners
  publication-title: 23rd AIAA/CEAS Aeroacoustics Conference
– volume: 229
  year: 2022
  ident: b8
  article-title: Broadband sound absorption using multiple hybrid resonances of acoustic metasurfaces
  publication-title: Int. J. Mech. Sci.
– volume: 14
  start-page: 268
  year: 2002
  end-page: 276
  ident: b34
  article-title: Sound-excited flow and acoustic nonlinearity at an orifice
  publication-title: Phys. Fluids
– year: 2009
  ident: b48
  article-title: Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e
– year: 2006
  ident: b50
  article-title: Fundamentals of Acoustics
– volume: 130
  start-page: 52
  year: 2011
  end-page: 60
  ident: b65
  article-title: Failure of the ingard–myers boundary condition for a lined duct: An experimental investigation
  publication-title: J. Acoust. Soc. Am.
– volume: 3
  start-page: 15
  year: 1989
  end-page: 35
  ident: b47
  article-title: Evaluation of a multi-point method for determining acoustic impedance
  publication-title: Mech. Syst. Signal Process.
– volume: 247
  year: 2023
  ident: b9
  article-title: Multilayer structures for high-intensity sound energy absorption in low-frequency range
  publication-title: Int. J. Mech. Sci.
– year: 2025
  ident: b46
  article-title: Accompanying dataset and Python code for reproducibility and implementation of the IR-TDIBC method
– volume: 74
  start-page: 114
  year: 2015
  end-page: 130
  ident: b4
  article-title: A review of acoustic dampers applied to combustion chambers in aerospace industry
  publication-title: Prog. Aerosp. Sci.
– start-page: 3137
  year: 2024
  ident: b53
  article-title: Comparison of experimental data and empirical models for nonlinear acoustic properties of perforates
  publication-title: 30th AIAA/CEAS Aeroacoustics Conference (2024)
– volume: 22
  start-page: 786
  year: 1984
  end-page: 792
  ident: b56
  article-title: Acoustic nonlinearities and power losses at orifices
  publication-title: AIAA J.
– volume: 217
  start-page: 619
  year: 1998
  end-page: 636
  ident: b60
  article-title: The impedance of perforated plates subjected to grazing gas flow and backed by porous media
  publication-title: J. Sound Vib.
– volume: 58
  start-page: 3040
  year: 2020
  end-page: 3050
  ident: b28
  article-title: Wavenumber-based impedance eduction with a shear grazing flow
  publication-title: AIAA J.
– reference: .
– volume: 485
  year: 2020
  ident: b15
  article-title: Acoustic impedance of perforated plates in the presence of fully developed grazing flow
  publication-title: J. Sound Vib.
– start-page: 3306
  year: 2003
  ident: b18
  article-title: Comparison of acoustic impedance eduction techniques for locally-reacting liners
  publication-title: 9th AIAA/CEAS Aeroacoustics Conference and Exhibit
– start-page: 3301
  year: 2024
  ident: b30
  article-title: IFAR benchmark challenge# 4
  publication-title: 30th AIAA/CEAS Aeroacoustics Conference (2024)
– start-page: 2274
  year: 2013
  ident: b21
  article-title: A comparative study of four impedance eduction methodologies using several test liners
  publication-title: 19th AIAA/CEAS Aeroacoustics Conference
– volume: 60
  start-page: 2481
  year: 2022
  end-page: 2500
  ident: b5
  article-title: Broadband and low-frequency acoustic liner investigations at NASA and ONERA
  publication-title: AIAA J.
– start-page: 3763
  year: 2010
  ident: b14
  article-title: Effects of flow profile on educed acoustic liner impedance
  publication-title: 16th AIAA/CEAS Aeroacoustics Conference
– year: 2023
  ident: b45
  article-title: Generic and broadband non-linear time domain impedance boundary condition
  publication-title: J. Sound Vib.
– start-page: 2487
  year: 2019
  ident: b27
  article-title: Application of swept sine excitation for acoustic impedance eduction
  publication-title: 25th AIAA/CEAS Aeroacoustics Conference
– volume: 36
  start-page: 18
  year: 1998
  end-page: 23
  ident: b16
  article-title: Optimization method for educing variable-impedance liner properties
  publication-title: AIAA J.
– volume: 55
  start-page: 535
  year: 1974
  end-page: 538
  ident: b68
  article-title: Sound attenuation in turbulent pipe flow
  publication-title: J. Acoust. Soc. Am.
– volume: 26
  year: 2022
  ident: b6
  article-title: Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials-a review
  publication-title: Appl. Mater. Today
– start-page: 3249
  year: 2024
  ident: 10.1016/j.jsv.2025.119058_b44
  article-title: Influence of source type on acoustic liner impedance in no flow
– year: 2024
  ident: 10.1016/j.jsv.2025.119058_b54
  article-title: An experimental study on three-port measurements for acoustic characterisation of the perforate reactance
  publication-title: J. Sound Vib.
– start-page: 2268
  year: 2013
  ident: 10.1016/j.jsv.2025.119058_b64
  article-title: Impedance prediction of three-dimensional honeycomb liners with laminar/turbulent boundary layers using dns
– volume: 528
  year: 2022
  ident: 10.1016/j.jsv.2025.119058_b57
  article-title: Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2022.116892
– volume: 245
  start-page: 545
  issue: 3
  year: 2001
  ident: 10.1016/j.jsv.2025.119058_b33
  article-title: A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.2001.3571
– volume: 303
  start-page: 195
  issue: 1–2
  year: 2007
  ident: 10.1016/j.jsv.2025.119058_b49
  article-title: Modeling of perforated plates and screens using rigid frame porous models
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.01.012
– volume: 55
  start-page: 535
  issue: 3
  year: 1974
  ident: 10.1016/j.jsv.2025.119058_b68
  article-title: Sound attenuation in turbulent pipe flow
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1914532
– volume: 79
  start-page: 942
  issue: 4
  year: 1986
  ident: 10.1016/j.jsv.2025.119058_b37
  article-title: Transient and multiple frequency sound transmission through perforated plates at high amplitude
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.393691
– start-page: 3306
  year: 2003
  ident: 10.1016/j.jsv.2025.119058_b18
  article-title: Comparison of acoustic impedance eduction techniques for locally-reacting liners
– volume: 40
  start-page: 119
  issue: 1
  year: 1975
  ident: 10.1016/j.jsv.2025.119058_b51
  article-title: Calculation of perforated plate liner parameters from specified acoustic resistance and reactance
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(75)80234-3
– volume: 60
  start-page: 2481
  issue: 4
  year: 2022
  ident: 10.1016/j.jsv.2025.119058_b5
  article-title: Broadband and low-frequency acoustic liner investigations at NASA and ONERA
  publication-title: AIAA J.
  doi: 10.2514/1.J060862
– volume: 69
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.jsv.2025.119058_b10
  article-title: Compact 2DOF liner based on a long elastic open-neck acoustic resonator for low frequency absorption
  publication-title: Noise Control Eng. J.
  doi: 10.3397/1/37691
– volume: 36
  start-page: 18
  issue: 1
  year: 1998
  ident: 10.1016/j.jsv.2025.119058_b16
  article-title: Optimization method for educing variable-impedance liner properties
  publication-title: AIAA J.
  doi: 10.2514/2.369
– volume: 14
  start-page: 268
  issue: 1
  year: 2002
  ident: 10.1016/j.jsv.2025.119058_b34
  article-title: Sound-excited flow and acoustic nonlinearity at an orifice
  publication-title: Phys. Fluids
  doi: 10.1063/1.1423934
– ident: 10.1016/j.jsv.2025.119058_b1
– ident: 10.1016/j.jsv.2025.119058_b66
  doi: 10.1121/10.0012993
– volume: 375
  start-page: 393
  year: 2018
  ident: 10.1016/j.jsv.2025.119058_b59
  article-title: Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.037
– volume: 110
  start-page: 2360
  issue: 5
  year: 2001
  ident: 10.1016/j.jsv.2025.119058_b13
  article-title: An experimental study of the impedance of perforated plates with grazing flow
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1400736
– volume: 356
  start-page: 86
  year: 2015
  ident: 10.1016/j.jsv.2025.119058_b22
  article-title: A systematic uncertainty analysis for liner impedance eduction technology
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.07.001
– volume: 3
  start-page: 15
  issue: 1
  year: 1989
  ident: 10.1016/j.jsv.2025.119058_b47
  article-title: Evaluation of a multi-point method for determining acoustic impedance
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/0888-3270(89)90020-4
– volume: 56
  start-page: 1118
  issue: 3
  year: 2018
  ident: 10.1016/j.jsv.2025.119058_b26
  article-title: Flow and viscous effects on impedance eduction
  publication-title: AIAA J.
  doi: 10.2514/1.J055838
– volume: 112
  start-page: 3133
  issue: 5
  year: 2024
  ident: 10.1016/j.jsv.2025.119058_b58
  article-title: Time-domain simulation of the acoustic nonlinear response of acoustic liners at high sound pressure level
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-023-09219-7
– volume: 43
  start-page: 183
  issue: 6
  year: 1995
  ident: 10.1016/j.jsv.2025.119058_b7
  article-title: Parallel-element liner impedances for improved absorption of broadband sound in ducts
  publication-title: Noise Control Eng. J.
  doi: 10.3397/1.2828379
– volume: 37
  start-page: 818
  issue: 7
  year: 1999
  ident: 10.1016/j.jsv.2025.119058_b17
  article-title: Validation of an impedance eduction method in flow
  publication-title: AIAA J.
  doi: 10.2514/2.7529
– start-page: 3297
  year: 2024
  ident: 10.1016/j.jsv.2025.119058_b29
  article-title: NASA investigation of flow direction effects on impedance eduction for acoustic liners
– year: 2023
  ident: 10.1016/j.jsv.2025.119058_b45
  article-title: Generic and broadband non-linear time domain impedance boundary condition
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2023.117691
– year: 2025
  ident: 10.1016/j.jsv.2025.119058_b46
– year: 2009
  ident: 10.1016/j.jsv.2025.119058_b48
– start-page: 3763
  year: 2010
  ident: 10.1016/j.jsv.2025.119058_b14
  article-title: Effects of flow profile on educed acoustic liner impedance
– ident: 10.1016/j.jsv.2025.119058_b67
– volume: 366
  start-page: 418
  year: 2016
  ident: 10.1016/j.jsv.2025.119058_b52
  article-title: Non-linear acoustic transfer impedance of micro-perforated plates with circular orifices
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.12.022
– start-page: 2977
  year: 2016
  ident: 10.1016/j.jsv.2025.119058_b41
  article-title: Determination of the acoustic properties of liners under high level multi-tone excitation
– start-page: 3301
  year: 2024
  ident: 10.1016/j.jsv.2025.119058_b30
  article-title: IFAR benchmark challenge# 4
– start-page: 3266
  year: 2015
  ident: 10.1016/j.jsv.2025.119058_b40
  article-title: Non-linear system identification techniques for determination of the acoustic properties of perforates
– start-page: 2198
  year: 2012
  ident: 10.1016/j.jsv.2025.119058_b19
  article-title: Liner impedance eduction technique based on velocity fields
– volume: 58
  start-page: 1107
  issue: 3
  year: 2020
  ident: 10.1016/j.jsv.2025.119058_b35
  article-title: Liner impedance eduction under shear grazing flow at a high sound pressure level
  publication-title: AIAA J.
  doi: 10.2514/1.J058756
– start-page: 2404
  year: 2006
  ident: 10.1016/j.jsv.2025.119058_b38
  article-title: Experimental investigation of nonlinear acoustic properties for perforates
– start-page: 4192
  year: 2017
  ident: 10.1016/j.jsv.2025.119058_b42
  article-title: A study of high level tonal and broadband random excitation for acoustic liners
– start-page: 2274
  year: 2013
  ident: 10.1016/j.jsv.2025.119058_b21
  article-title: A comparative study of four impedance eduction methodologies using several test liners
– volume: 524
  year: 2022
  ident: 10.1016/j.jsv.2025.119058_b36
  article-title: Spatially-varying impedance model for locally reacting acoustic liners at a high sound intensity
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2021.116741
– volume: 485
  year: 2020
  ident: 10.1016/j.jsv.2025.119058_b15
  article-title: Acoustic impedance of perforated plates in the presence of fully developed grazing flow
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2020.115547
– volume: 39
  start-page: 1478
  issue: 8
  year: 2001
  ident: 10.1016/j.jsv.2025.119058_b12
  article-title: Effect of grazing flow on the acoustic impedance of an orifice
  publication-title: AIAA J.
  doi: 10.2514/2.1498
– volume: 29
  start-page: 1
  issue: 1
  year: 1973
  ident: 10.1016/j.jsv.2025.119058_b32
  article-title: The acoustic impendance of perforates at medium and high sound pressure levels
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(73)80125-7
– volume: 60
  start-page: 1
  year: 2019
  ident: 10.1016/j.jsv.2025.119058_b62
  article-title: Near-wall aerodynamic response of an acoustic liner to harmonic excitation with grazing flow
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-019-2791-5
– volume: 60
  start-page: 1314
  issue: 4
  year: 2023
  ident: 10.1016/j.jsv.2025.119058_b3
  article-title: Acoustic liner demonstrator for a turning vane of S1MA wind tunnel
  publication-title: J. Aircr.
  doi: 10.2514/1.C037048
– volume: 400
  start-page: 564
  year: 2017
  ident: 10.1016/j.jsv.2025.119058_b2
  article-title: A review of bias flow liners for acoustic damping in gas turbine combustors
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.04.005
– volume: 792
  start-page: 936
  year: 2016
  ident: 10.1016/j.jsv.2025.119058_b61
  article-title: Numerical investigation of a honeycomb liner grazed by laminar and turbulent boundary layers
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.79
– volume: 53
  start-page: 1091
  issue: 4
  year: 2015
  ident: 10.1016/j.jsv.2025.119058_b23
  article-title: Performance of Kumaresan and Tufts algorithm in liner impedance eduction with flow
  publication-title: AIAA J.
  doi: 10.2514/1.J053705
– volume: 130
  start-page: 52
  issue: 1
  year: 2011
  ident: 10.1016/j.jsv.2025.119058_b65
  article-title: Failure of the ingard–myers boundary condition for a lined duct: An experimental investigation
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3586789
– volume: 26
  year: 2022
  ident: 10.1016/j.jsv.2025.119058_b6
  article-title: Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials-a review
  publication-title: Appl. Mater. Today
– volume: 392
  start-page: 200
  year: 2017
  ident: 10.1016/j.jsv.2025.119058_b24
  article-title: Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.10.014
– volume: 247
  year: 2023
  ident: 10.1016/j.jsv.2025.119058_b9
  article-title: Multilayer structures for high-intensity sound energy absorption in low-frequency range
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2023.108197
– year: 2006
  ident: 10.1016/j.jsv.2025.119058_b50
– start-page: 2725
  year: 2019
  ident: 10.1016/j.jsv.2025.119058_b43
  article-title: Simulation of high acoustic excitation level harmonic interaction effects for perforates and liners
– start-page: 2487
  year: 2019
  ident: 10.1016/j.jsv.2025.119058_b27
  article-title: Application of swept sine excitation for acoustic impedance eduction
– volume: 22
  start-page: 786
  issue: 6
  year: 1984
  ident: 10.1016/j.jsv.2025.119058_b56
  article-title: Acoustic nonlinearities and power losses at orifices
  publication-title: AIAA J.
  doi: 10.2514/3.8680
– start-page: 2151
  year: 2012
  ident: 10.1016/j.jsv.2025.119058_b39
  article-title: The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples
– volume: 55
  start-page: 1194
  issue: 4
  year: 2017
  ident: 10.1016/j.jsv.2025.119058_b69
  article-title: Scattering to higher harmonics for quarter-wave and helmholtz resonators
  publication-title: AIAA J.
  doi: 10.2514/1.J055295
– volume: 129
  start-page: 322
  year: 2018
  ident: 10.1016/j.jsv.2025.119058_b25
  article-title: An improved impedance eduction technique based on impedance models and the mode matching method
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2017.08.014
– start-page: 3137
  year: 2024
  ident: 10.1016/j.jsv.2025.119058_b53
  article-title: Comparison of experimental data and empirical models for nonlinear acoustic properties of perforates
– volume: 74
  start-page: 114
  year: 2015
  ident: 10.1016/j.jsv.2025.119058_b4
  article-title: A review of acoustic dampers applied to combustion chambers in aerospace industry
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2014.12.003
– volume: 229
  year: 2022
  ident: 10.1016/j.jsv.2025.119058_b8
  article-title: Broadband sound absorption using multiple hybrid resonances of acoustic metasurfaces
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107508
– volume: 217
  start-page: 619
  issue: 4
  year: 1998
  ident: 10.1016/j.jsv.2025.119058_b60
  article-title: The impedance of perforated plates subjected to grazing gas flow and backed by porous media
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1998.1811
– volume: 108
  start-page: 283
  issue: 2
  year: 1986
  ident: 10.1016/j.jsv.2025.119058_b11
  article-title: Experimental evaluation of impedance of perforates with grazing flow
  publication-title: J. Sound Vib.
  doi: 10.1016/S0022-460X(86)80056-6
– start-page: 411
  year: 2020
  ident: 10.1016/j.jsv.2025.119058_b63
  article-title: Experimental investigation of shear grazing flow effects on extended tube acoustic liners
– volume: 332
  start-page: 58
  issue: 1
  year: 2013
  ident: 10.1016/j.jsv.2025.119058_b20
  article-title: An adjoint-based method for liner impedance eduction: Validation and numerical investigation
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.07.051
– volume: 42
  start-page: 6
  issue: 1
  year: 1967
  ident: 10.1016/j.jsv.2025.119058_b31
  article-title: Acoustic nonlinearity of an orifice
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.1910576
– volume: 101
  start-page: 104
  issue: 1
  year: 1992
  ident: 10.1016/j.jsv.2025.119058_b55
  article-title: Boundary conditions for direct simulations of compressible viscous flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(92)90046-2
– volume: 58
  start-page: 3040
  issue: 7
  year: 2020
  ident: 10.1016/j.jsv.2025.119058_b28
  article-title: Wavenumber-based impedance eduction with a shear grazing flow
  publication-title: AIAA J.
  doi: 10.2514/1.J059100
SSID ssj0009434
Score 2.4882882
Snippet Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under...
SourceID unpaywall
hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 119058
SubjectTerms Aeroacoustic liner
Engineering Sciences
Flow-induced noise
Impulse response
Nonlinear impedance
Physics
Shear flow effect
TDIBC
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwEA-6IfrFtzhfFPGT0tmkaZt-HOIYIkPEwfwU2jRjm6OOtZ3oX-9dH1NEfHzrm_Quubskv_sdIWcWLitpqkwvcgKT2xzGHFMwrgYRY8HABa-Uo3y7bqfHb_pOv-TZxlyYIUScpe3HYxPpTJDcek4vo2eV4YrZMqm7DgTeNVLvde9ajxUfOHetfr636TumcFxR7WHmaK5xMofJIHPARPgW1nf_3gstDxEOuZrF0-D1JZhMPvma9kaRxJ3kFIUIMXlqZmnYVG9fCBz_-BubZL2MOY1W0Um2yJKOt8lKjv1UyQ6h93mGOeKfjbhgzghmxgji6Qi7hDGKDTCbedUvA2_Okl3Sa18_XHXMspKCqWwmUpOCOkIvojzkLBS-CChzmXY83BQTNrcUd5Vle6E3UDC5jjQTltIwWaEK6bBEYO-RGjRA7xPDHmjtcBqCHn2ufQZGSjEFcQyLuGK21yDnlWTltCDMkBWSbCxBDRLVIAs1NAivZC9LcRWeXIJB_-m1UxDq4vPIkN1p3Uq89iHoBrlYqPH3lhz86-lDsoZnuMbL6BGppbNMH0NwkoYnZad8B60E3cM
  priority: 102
  providerName: Unpaywall
Title Revisiting nonlinear impedance in acoustic liners
URI https://dx.doi.org/10.1016/j.jsv.2025.119058
https://hal.science/hal-04810729
https://hal.science/hal-04810729v1/document
UnpaywallVersion submittedVersion
Volume 608
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-8568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009434
  issn: 1095-8568
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-8568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009434
  issn: 1095-8568
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1095-8568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009434
  issn: 1095-8568
  databaseCode: ACRLP
  dateStart: 19950107
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-8568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009434
  issn: 1095-8568
  databaseCode: AIKHN
  dateStart: 19950107
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-8568
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009434
  issn: 1095-8568
  databaseCode: AKRWK
  dateStart: 19640101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5qRfRFPLEeJYhPSjS72VyPoVjiQRGxUJ9CstlgSgmll_jib3cmR1UQBZ9CToZvszOzu99-A3Bm0LSSYlJ3EivShSmwz3GJ_SpNOI9SG6NSwfLt2UFf3A6sQQM69V4YolVWvr_06YW3rq5cVWhejbOM9viSGJoxwCBOCwakCSqEQ1UMLt8_aR6kf1YrhtPT9cpmwfEaThc4ROQWOg7PoKrvP8emlRciSa7P83H09hqNRl8iUHcLNqvUUfNL67ahofIdWCsonHK6C-yx2ChONGYtLwUwoomWYVqcUMtqWa6h9yuKd2l0czLdg373-qkT6FVBBF2a3J3pDFGNnYSJWPDY9dyIcZsry6G1LdcUhhS2NEwndlKJY-REcdeQCsccTJKqlRuZ-9BEA9QBaGaqlCVYjM3hCeVx9DWSS0xHeCIkN50WnNdQhONS9yKsCWHDEHELCbewxK0FogYr_NZ4Ifrl3147RWCXnyeh68C_D-kaqdiQpvmCteBiifvflhz-z5Ij2KAzmrPl7Bias8lcnWCyMYvbxd_UhlX_5i7o4bHfe_CfPwB8DtDO
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD5sE5kv4hXntYhPSl2Tpmv3OIaj6tyDbLC30KYZdowydhNf_O2e08tUEAVfk7YcvjTnknz5AnBl0bKSZsp0IycwhS1wznGF82oUcR6MGhiVUpZvr-EPxMPQGZagXZyFIVpl7vszn55667ylnqNZn8YxnfElMTRriEGcNgxEGTaEw12qwG7fP3keJIBWSIbT48XWZkryGs9XWCNyBz1H06Jr338OTuUXYklWl8k0eHsNJpMvIaizA9t57mi0MvN2oaSTPdhMOZxqvg_sOT0pTjxmI8kUMIKZEWNeHNHQGnFioPtLb-8yqHM2P4BB567f9s38RgRT2dxbmAxhDd2IiVDw0Gt6AeMNrh2XNrc8W1hKNJRlu6E7UlgkR5p7ltJYdDBFslZeYB9CBQ3QR2DYI60dwUIcj6bQTY7ORnGF-QiPhOK2W4PrAgo5zYQvZMEIG0vETRJuMsOtBqIAS34bPYmO-bfXLhHY9edJ6dpvdSW1kYwNiZqvWA1u1rj_bcnx_yy5gKrff-rK7n3v8QS2qIcWcDk7hcpittRnmHkswvP0z_oA-f7Qsw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwEA-6IfrFtzhfFPGT0tmkaZt-HOIYIkPEwfwU2jRjm6OOtZ3oX-9dH1NEfHzrm_Quubskv_sdIWcWLitpqkwvcgKT2xzGHFMwrgYRY8HABa-Uo3y7bqfHb_pOv-TZxlyYIUScpe3HYxPpTJDcek4vo2eV4YrZMqm7DgTeNVLvde9ajxUfOHetfr636TumcFxR7WHmaK5xMofJIHPARPgW1nf_3gstDxEOuZrF0-D1JZhMPvma9kaRxJ3kFIUIMXlqZmnYVG9fCBz_-BubZL2MOY1W0Um2yJKOt8lKjv1UyQ6h93mGOeKfjbhgzghmxgji6Qi7hDGKDTCbedUvA2_Okl3Sa18_XHXMspKCqWwmUpOCOkIvojzkLBS-CChzmXY83BQTNrcUd5Vle6E3UDC5jjQTltIwWaEK6bBEYO-RGjRA7xPDHmjtcBqCHn2ufQZGSjEFcQyLuGK21yDnlWTltCDMkBWSbCxBDRLVIAs1NAivZC9LcRWeXIJB_-m1UxDq4vPIkN1p3Uq89iHoBrlYqPH3lhz86-lDsoZnuMbL6BGppbNMH0NwkoYnZad8B60E3cM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+nonlinear+impedance+in+acoustic+liners&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Roncen%2C+R%C3%A9mi&rft.date=2025-07-21&rft.issn=0022-460X&rft.volume=608&rft.spage=119058&rft_id=info:doi/10.1016%2Fj.jsv.2025.119058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsv_2025_119058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon