Revisiting nonlinear impedance in acoustic liners
Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic line...
Saved in:
| Published in | Journal of sound and vibration Vol. 608; p. 119058 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
21.07.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-460X 1095-8568 1095-8568 |
| DOI | 10.1016/j.jsv.2025.119058 |
Cover
| Abstract | Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic liners. Using both experiments and the Impulse Response Time-Domain Impedance Boundary Condition (IR-TDIBC) model, the paper explores how varying spectral content, including multitone excitations with different phase configurations, influences the impedance characteristics of liners. Experimental results are compared with theoretical predictions, revealing strong alignment and highlighting the significant role of excitation phase and amplitude in shaping the impedance response. It is the time-domain instantaneous particle velocity at the liner interface that proves to be the primary determinant of the nonlinear response, and the sole input required by the IR-TDIBC.
Additionally, the influence of the shear grazing flow noise on the impedance is examined by superimposing a single-tone excitation on background flow noise at different Mach numbers. Flow-induced noise is found to increase resistance and decrease reactance, as observed in duct experiments, accounting for some of the changes in impedance under shear grazing flow conditions. These findings underscore the importance of considering both complex source excitations and flow-induced noise when modeling the impedance of aeroacoustic liners, with implications for improving the accuracy of impedance predictions in practical aeroacoustic applications.
[Display omitted]
•IR-TDIBC model captures nonlinear acoustic liner impedance subject to complex sound fields.•Shows the complex influence of noise level and phase on nonlinear liner impedance.•Instantaneous velocity is shown as essential for accurate nonlinear impedance modeling.•Approach offers insights into turbulence-induced noise effects on liner impedance.•Provides a pathway for time-domain modeling of liners in realistic aeroacoustic setups. |
|---|---|
| AbstractList | Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic liners. Using both experiments and the Impulse Response Time-Domain Impedance Boundary Condition (IR-TDIBC) model, the paper explores how varying spectral content, including multitone excitations with different phase configurations, influences the impedance characteristics of liners. Experimental results are compared with theoretical predictions, revealing strong alignment and highlighting the significant role of excitation phase and amplitude in shaping the impedance response. It is the time-domain instantaneous particle velocity at the liner interface that proves to be the primary determinant of the nonlinear response, and the sole input required by the IR-TDIBC.
Additionally, the influence of the shear grazing flow noise on the impedance is examined by superimposing a single-tone excitation on background flow noise at different Mach numbers. Flow-induced noise is found to increase resistance and decrease reactance, as observed in duct experiments, fully accounting for the changes in impedance under shear grazing flow conditions at high Mach numbers. These findings underscore the importance of considering both complex source excitations and flow-induced noise when modeling the impedance of aeroacoustic liners, with implications for improving the accuracy of impedance predictions in practical aeroacoustic applications. Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under varying sound pressure levels. This study investigates the impact of complex source excitations on the nonlinear impedance of aeroacoustic liners. Using both experiments and the Impulse Response Time-Domain Impedance Boundary Condition (IR-TDIBC) model, the paper explores how varying spectral content, including multitone excitations with different phase configurations, influences the impedance characteristics of liners. Experimental results are compared with theoretical predictions, revealing strong alignment and highlighting the significant role of excitation phase and amplitude in shaping the impedance response. It is the time-domain instantaneous particle velocity at the liner interface that proves to be the primary determinant of the nonlinear response, and the sole input required by the IR-TDIBC. Additionally, the influence of the shear grazing flow noise on the impedance is examined by superimposing a single-tone excitation on background flow noise at different Mach numbers. Flow-induced noise is found to increase resistance and decrease reactance, as observed in duct experiments, accounting for some of the changes in impedance under shear grazing flow conditions. These findings underscore the importance of considering both complex source excitations and flow-induced noise when modeling the impedance of aeroacoustic liners, with implications for improving the accuracy of impedance predictions in practical aeroacoustic applications. [Display omitted] •IR-TDIBC model captures nonlinear acoustic liner impedance subject to complex sound fields.•Shows the complex influence of noise level and phase on nonlinear liner impedance.•Instantaneous velocity is shown as essential for accurate nonlinear impedance modeling.•Approach offers insights into turbulence-induced noise effects on liner impedance.•Provides a pathway for time-domain modeling of liners in realistic aeroacoustic setups. |
| ArticleNumber | 119058 |
| Author | Roncen, Rémi |
| Author_xml | – sequence: 1 givenname: Rémi orcidid: 0000-0001-5847-1276 surname: Roncen fullname: Roncen, Rémi email: remi.roncen@onera.fr organization: ONERA/Département Multi-Physique pour l’Énergétique, Université de Toulouse, F-31055, Toulouse, France |
| BackLink | https://hal.science/hal-04810729$$DView record in HAL |
| BookMark | eNqNkMFKw0AQhhepYFt9AG-5ekic2WySXTyVolYoCKLgbdlsprohTUo2jfTtTYjgTTwNzPzfD98s2KxuamLsGiFCwPS2jErfRxx4EiEqSOQZmyOoJJRJKmdsDsB5KFJ4v2AL70sAUCIWc4Yv1DvvOld_BENl5WoybeD2BypMbSlwdWBsc_Sds8F4bP0lO9-ZytPVz1yyt4f71_Um3D4_Pq1X29DGXHYhpoR5VqDIBc-lkgZ5yinJlAKUsQArUgtxlmc7S3lcEJdgiWOGVoDKpImXjE-9x_pgTl-mqvShdXvTnjSCHqV1qQdpPUrrSXqAbibo0_zGG-P0ZrXV4w6ERMi46nHI4pS1beN9S7t_9d9NDA3mvaNWe-toeFThWrKdLhr3B_0N2lF-Iw |
| Cites_doi | 10.1016/j.jsv.2022.116892 10.1006/jsvi.2001.3571 10.1016/j.jsv.2007.01.012 10.1121/1.1914532 10.1121/1.393691 10.1016/S0022-460X(75)80234-3 10.2514/1.J060862 10.3397/1/37691 10.2514/2.369 10.1063/1.1423934 10.1121/10.0012993 10.1016/j.jcp.2018.08.037 10.1121/1.1400736 10.1016/j.jsv.2015.07.001 10.1016/0888-3270(89)90020-4 10.2514/1.J055838 10.1007/s11071-023-09219-7 10.3397/1.2828379 10.2514/2.7529 10.1016/j.jsv.2023.117691 10.1016/j.jsv.2015.12.022 10.2514/1.J058756 10.1016/j.jsv.2021.116741 10.1016/j.jsv.2020.115547 10.2514/2.1498 10.1016/S0022-460X(73)80125-7 10.1007/s00348-019-2791-5 10.2514/1.C037048 10.1016/j.jsv.2017.04.005 10.1017/jfm.2016.79 10.2514/1.J053705 10.1121/1.3586789 10.1016/j.jsv.2016.10.014 10.1016/j.ijmecsci.2023.108197 10.2514/3.8680 10.2514/1.J055295 10.1016/j.apacoust.2017.08.014 10.1016/j.paerosci.2014.12.003 10.1016/j.ijmecsci.2022.107508 10.1006/jsvi.1998.1811 10.1016/S0022-460X(86)80056-6 10.1016/j.jsv.2012.07.051 10.1121/1.1910576 10.1016/0021-9991(92)90046-2 10.2514/1.J059100 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY |
| DOI | 10.1016/j.jsv.2025.119058 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1095-8568 |
| ExternalDocumentID | oai:HAL:hal-04810729v1 10_1016_j_jsv_2025_119058 S0022460X25001324 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFSI ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DM4 E.L EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM LG5 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSQ SST SSZ T5K TN5 XPP ZMT ~G- 29L 6TJ AAQXK AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEUPX AFPUW AGQPQ AHPGS AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF EFKBS EFLBG EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 IHE M24 M37 NDZJH R2- SMS SPG T9H VOH WUQ ZY4 ~HD 1XC ACNNM VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c328t-16e1b7d14b42b898a1262e5799018340c46c037b7fceb3de280ce2171c40978a3 |
| IEDL.DBID | .~1 |
| ISSN | 0022-460X 1095-8568 |
| IngestDate | Sun Oct 26 04:15:29 EDT 2025 Tue Oct 14 20:54:19 EDT 2025 Wed Oct 01 06:35:16 EDT 2025 Sat Apr 26 15:41:29 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Aeroacoustic liner Shear flow effect Nonlinear impedance TDIBC Flow-induced noise Impulse response flow-induced noise phase interference aeroacoustic liner nonlinear impedance impulse response shear flow effect |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c328t-16e1b7d14b42b898a1262e5799018340c46c037b7fceb3de280ce2171c40978a3 |
| ORCID | 0000-0001-5847-1276 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-04810729v1/document |
| ParticipantIDs | unpaywall_primary_10_1016_j_jsv_2025_119058 hal_primary_oai_HAL_hal_04810729v1 crossref_primary_10_1016_j_jsv_2025_119058 elsevier_sciencedirect_doi_10_1016_j_jsv_2025_119058 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-21 |
| PublicationDateYYYYMMDD | 2025-07-21 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of sound and vibration |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Boden (b43) 2019 Jones, Parrott (b47) 1989; 3 Guess (b51) 1975; 40 Ingard, Ising (b31) 1967; 42 Roncen (b46) 2025 Bruneau (b50) 2006 Renou, Aurégan (b65) 2011; 130 Ingard, Singhal (b68) 1974; 55 Méry, Roncen, Simon, Botte, Ostorero (b3) 2023; 60 Melling (b32) 1973; 29 Lafont, Méry, Roncen, Simon, Piot (b35) 2020; 58 Léon, Méry, Piot, Conte (b62) 2019; 60 Temiz, Tournadre, Arteaga, Hirschberg (b52) 2016; 366 Bodén (b39) 2012 Poinsot, Lelef (b55) 1992; 101 Monteghetti, Matignon, Piot (b59) 2018; 375 Bodén, Guo, Tözün (b38) 2006 Boden, Fritzell (b42) 2017 Kirby, Cummings (b60) 1998; 217 Ryoo, Jeon (b8) 2022; 229 Jing, Sun, Wu, Meng (b12) 2001; 39 Roncen, Cardesa (b45) 2023 Kreitzman, Jones (b44) 2024 Zhang, Bodony (b61) 2016; 792 Watson, Carpenter, Jones (b23) 2015; 53 Boden, Shah, Boij (b53) 2024 Troian, Dragna, Bailly, Galland (b24) 2017; 392 Jones, Parrott, Watson (b18) 2003 Tam, Kurbatskii, Ahuja, Gaeta (b33) 2001; 245 Boden (b40) 2015 . Roncen, Méry, Piot, Klotz (b36) 2022; 524 Roncen, Sebbane, Mery, Piot, Simon (b63) 2020 Zhu, Gao, Dai, Qu, Meng (b9) 2023; 247 Simon, Sebbane (b10) 2021; 69 Weng, Schulz, Ronneberger, Enghardt, Bake (b26) 2018; 56 Diab, Dragna, Salze, Galland (b57) 2022; 528 Primus, Piot, Simon (b20) 2013; 332 Watson, Tanner, Parrott (b16) 1998; 36 M.G. Jones, W.R. Watson, D.M. Nark, B.M. Howerton, M.C. Brown, A review of acoustic liner experimental characterization at NASA Langley, URL Piot, Primus, Simon (b19) 2012 Jing, Sun (b34) 2002; 14 Atalla, Sgard (b49) 2007; 303 Jones, Watson, Nark (b14) 2010 Cummings (b56) 1984; 22 Lahiri, Bake (b2) 2017; 400 Allard, Atalla (b48) 2009 Zhang, Bodony (b64) 2013 Chen, Ji, Huang (b15) 2020; 485 Zhou, Bodén (b22) 2015; 356 Cummings (b37) 1986; 79 Boden (b41) 2016 Z. Chen, N. Xiang, C.J. Fackler, Bayesian estimations of dissipation, sound speed, and microphone positions in impedance tubes, JASA Express Lett. 2 (8) Rao, Munjal (b11) 1986; 108 Watson, Jones (b21) 2013 Jones, Simon, Roncen (b5) 2022; 60 Parrott, Jones (b7) 1995; 43 Spillere, Medeiros, Cordioli (b25) 2018; 129 Ji, Huber (b6) 2022; 26 Moufid, Roncen, Matignon, Piot (b58) 2024; 112 Dickey, Selamet, Ciray (b13) 2001; 110 G. Bielak, J. Gallman, R. Kunze, P. Murray, J. Premo, M. Kosanchick, A. Hersh, J. Celano, B. Walker, J. Yu, et al., Advanced Nacelle Acoustic Lining Concepts Development, Tech. Rep., 2002, URL Förner, Tournadre, Martínez-Lera, Polifke (b69) 2017; 55 Zhao, Li (b4) 2015; 74 Jones, Nark, Howerton (b29) 2024 Shah, Bodén, Boij (b54) 2024 Howerton, Vold, Jones (b27) 2019 Roncen, Piot, Méry, Simon, Jones, Nark (b28) 2020; 58 Watson, Jones, Parrott (b17) 1999; 37 Burgmayer, Kohlenberg, Knobloch (b30) 2024 Jing (10.1016/j.jsv.2025.119058_b34) 2002; 14 Spillere (10.1016/j.jsv.2025.119058_b25) 2018; 129 Ingard (10.1016/j.jsv.2025.119058_b31) 1967; 42 Watson (10.1016/j.jsv.2025.119058_b21) 2013 Ryoo (10.1016/j.jsv.2025.119058_b8) 2022; 229 Simon (10.1016/j.jsv.2025.119058_b10) 2021; 69 Rao (10.1016/j.jsv.2025.119058_b11) 1986; 108 Förner (10.1016/j.jsv.2025.119058_b69) 2017; 55 Chen (10.1016/j.jsv.2025.119058_b15) 2020; 485 Zhao (10.1016/j.jsv.2025.119058_b4) 2015; 74 Monteghetti (10.1016/j.jsv.2025.119058_b59) 2018; 375 Roncen (10.1016/j.jsv.2025.119058_b36) 2022; 524 Jones (10.1016/j.jsv.2025.119058_b47) 1989; 3 Roncen (10.1016/j.jsv.2025.119058_b28) 2020; 58 10.1016/j.jsv.2025.119058_b1 Diab (10.1016/j.jsv.2025.119058_b57) 2022; 528 Watson (10.1016/j.jsv.2025.119058_b23) 2015; 53 Léon (10.1016/j.jsv.2025.119058_b62) 2019; 60 Watson (10.1016/j.jsv.2025.119058_b17) 1999; 37 Roncen (10.1016/j.jsv.2025.119058_b63) 2020 Shah (10.1016/j.jsv.2025.119058_b54) 2024 Méry (10.1016/j.jsv.2025.119058_b3) 2023; 60 Boden (10.1016/j.jsv.2025.119058_b40) 2015 Parrott (10.1016/j.jsv.2025.119058_b7) 1995; 43 Guess (10.1016/j.jsv.2025.119058_b51) 1975; 40 Bodén (10.1016/j.jsv.2025.119058_b38) 2006 Zhang (10.1016/j.jsv.2025.119058_b64) 2013 Watson (10.1016/j.jsv.2025.119058_b16) 1998; 36 Boden (10.1016/j.jsv.2025.119058_b43) 2019 Allard (10.1016/j.jsv.2025.119058_b48) 2009 Primus (10.1016/j.jsv.2025.119058_b20) 2013; 332 Tam (10.1016/j.jsv.2025.119058_b33) 2001; 245 Zhou (10.1016/j.jsv.2025.119058_b22) 2015; 356 Zhu (10.1016/j.jsv.2025.119058_b9) 2023; 247 Melling (10.1016/j.jsv.2025.119058_b32) 1973; 29 Bruneau (10.1016/j.jsv.2025.119058_b50) 2006 Cummings (10.1016/j.jsv.2025.119058_b56) 1984; 22 Zhang (10.1016/j.jsv.2025.119058_b61) 2016; 792 Ingard (10.1016/j.jsv.2025.119058_b68) 1974; 55 Weng (10.1016/j.jsv.2025.119058_b26) 2018; 56 Howerton (10.1016/j.jsv.2025.119058_b27) 2019 Jing (10.1016/j.jsv.2025.119058_b12) 2001; 39 Piot (10.1016/j.jsv.2025.119058_b19) 2012 Roncen (10.1016/j.jsv.2025.119058_b46) 2025 Cummings (10.1016/j.jsv.2025.119058_b37) 1986; 79 Boden (10.1016/j.jsv.2025.119058_b53) 2024 Renou (10.1016/j.jsv.2025.119058_b65) 2011; 130 Dickey (10.1016/j.jsv.2025.119058_b13) 2001; 110 Troian (10.1016/j.jsv.2025.119058_b24) 2017; 392 Jones (10.1016/j.jsv.2025.119058_b29) 2024 Boden (10.1016/j.jsv.2025.119058_b42) 2017 Temiz (10.1016/j.jsv.2025.119058_b52) 2016; 366 Burgmayer (10.1016/j.jsv.2025.119058_b30) 2024 Atalla (10.1016/j.jsv.2025.119058_b49) 2007; 303 Jones (10.1016/j.jsv.2025.119058_b18) 2003 Kirby (10.1016/j.jsv.2025.119058_b60) 1998; 217 10.1016/j.jsv.2025.119058_b66 10.1016/j.jsv.2025.119058_b67 Poinsot (10.1016/j.jsv.2025.119058_b55) 1992; 101 Moufid (10.1016/j.jsv.2025.119058_b58) 2024; 112 Ji (10.1016/j.jsv.2025.119058_b6) 2022; 26 Roncen (10.1016/j.jsv.2025.119058_b45) 2023 Jones (10.1016/j.jsv.2025.119058_b14) 2010 Lahiri (10.1016/j.jsv.2025.119058_b2) 2017; 400 Jones (10.1016/j.jsv.2025.119058_b5) 2022; 60 Kreitzman (10.1016/j.jsv.2025.119058_b44) 2024 Lafont (10.1016/j.jsv.2025.119058_b35) 2020; 58 Bodén (10.1016/j.jsv.2025.119058_b39) 2012 Boden (10.1016/j.jsv.2025.119058_b41) 2016 |
| References_xml | – volume: 792 start-page: 936 year: 2016 end-page: 980 ident: b61 article-title: Numerical investigation of a honeycomb liner grazed by laminar and turbulent boundary layers publication-title: J. Fluid Mech. – volume: 43 start-page: 183 year: 1995 end-page: 195 ident: b7 article-title: Parallel-element liner impedances for improved absorption of broadband sound in ducts publication-title: Noise Control Eng. J. – start-page: 2268 year: 2013 ident: b64 article-title: Impedance prediction of three-dimensional honeycomb liners with laminar/turbulent boundary layers using dns publication-title: 19th AIAA/CEAS Aeroacoustics Conference – volume: 400 start-page: 564 year: 2017 end-page: 605 ident: b2 article-title: A review of bias flow liners for acoustic damping in gas turbine combustors publication-title: J. Sound Vib. – volume: 245 start-page: 545 year: 2001 end-page: 557 ident: b33 article-title: A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners publication-title: J. Sound Vib. – start-page: 3266 year: 2015 ident: b40 article-title: Non-linear system identification techniques for determination of the acoustic properties of perforates publication-title: 21st AIAA/CEAS Aeroacoustics Conference – volume: 60 start-page: 1 year: 2019 end-page: 18 ident: b62 article-title: Near-wall aerodynamic response of an acoustic liner to harmonic excitation with grazing flow publication-title: Exp. Fluids – volume: 524 year: 2022 ident: b36 article-title: Spatially-varying impedance model for locally reacting acoustic liners at a high sound intensity publication-title: J. Sound Vib. – volume: 58 start-page: 1107 year: 2020 end-page: 1117 ident: b35 article-title: Liner impedance eduction under shear grazing flow at a high sound pressure level publication-title: AIAA J. – volume: 375 start-page: 393 year: 2018 end-page: 426 ident: b59 article-title: Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations publication-title: J. Comput. Phys. – volume: 39 start-page: 1478 year: 2001 end-page: 1484 ident: b12 article-title: Effect of grazing flow on the acoustic impedance of an orifice publication-title: AIAA J. – volume: 112 start-page: 3133 year: 2024 end-page: 3162 ident: b58 article-title: Time-domain simulation of the acoustic nonlinear response of acoustic liners at high sound pressure level publication-title: Nonlinear Dynam. – volume: 129 start-page: 322 year: 2018 end-page: 334 ident: b25 article-title: An improved impedance eduction technique based on impedance models and the mode matching method publication-title: Appl. Acoust. – start-page: 2151 year: 2012 ident: b39 article-title: The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples publication-title: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference) – volume: 528 year: 2022 ident: b57 article-title: Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners publication-title: J. Sound Vib. – volume: 392 start-page: 200 year: 2017 end-page: 216 ident: b24 article-title: Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow publication-title: J. Sound Vib. – start-page: 2725 year: 2019 ident: b43 article-title: Simulation of high acoustic excitation level harmonic interaction effects for perforates and liners publication-title: 25th AIAA/CEAS Aeroacoustics Conference – volume: 356 start-page: 86 year: 2015 end-page: 99 ident: b22 article-title: A systematic uncertainty analysis for liner impedance eduction technology publication-title: J. Sound Vib. – year: 2024 ident: b54 article-title: An experimental study on three-port measurements for acoustic characterisation of the perforate reactance publication-title: J. Sound Vib. – start-page: 411 year: 2020 end-page: 415 ident: b63 article-title: Experimental investigation of shear grazing flow effects on extended tube acoustic liners publication-title: EForum Acusticum – volume: 69 start-page: 1 year: 2021 end-page: 17 ident: b10 article-title: Compact 2DOF liner based on a long elastic open-neck acoustic resonator for low frequency absorption publication-title: Noise Control Eng. J. – volume: 303 start-page: 195 year: 2007 end-page: 208 ident: b49 article-title: Modeling of perforated plates and screens using rigid frame porous models publication-title: J. Sound Vib. – volume: 29 start-page: 1 year: 1973 end-page: 65 ident: b32 article-title: The acoustic impendance of perforates at medium and high sound pressure levels publication-title: J. Sound Vib. – volume: 101 start-page: 104 year: 1992 end-page: 129 ident: b55 article-title: Boundary conditions for direct simulations of compressible viscous flows publication-title: J. Comput. Phys. – volume: 42 start-page: 6 year: 1967 end-page: 17 ident: b31 article-title: Acoustic nonlinearity of an orifice publication-title: J. Acoust. Soc. Am. – volume: 55 start-page: 1194 year: 2017 end-page: 1204 ident: b69 article-title: Scattering to higher harmonics for quarter-wave and helmholtz resonators publication-title: AIAA J. – volume: 40 start-page: 119 year: 1975 end-page: 137 ident: b51 article-title: Calculation of perforated plate liner parameters from specified acoustic resistance and reactance publication-title: J. Sound Vib. – start-page: 3249 year: 2024 ident: b44 article-title: Influence of source type on acoustic liner impedance in no flow publication-title: 30th AIAA/CEAS Aeroacoustics Conference (2024) – volume: 79 start-page: 942 year: 1986 end-page: 951 ident: b37 article-title: Transient and multiple frequency sound transmission through perforated plates at high amplitude publication-title: J. Acoust. Soc. Am. – volume: 37 start-page: 818 year: 1999 end-page: 824 ident: b17 article-title: Validation of an impedance eduction method in flow publication-title: AIAA J. – volume: 366 start-page: 418 year: 2016 end-page: 428 ident: b52 article-title: Non-linear acoustic transfer impedance of micro-perforated plates with circular orifices publication-title: J. Sound Vib. – volume: 108 start-page: 283 year: 1986 end-page: 295 ident: b11 article-title: Experimental evaluation of impedance of perforates with grazing flow publication-title: J. Sound Vib. – start-page: 2404 year: 2006 ident: b38 article-title: Experimental investigation of nonlinear acoustic properties for perforates publication-title: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference) – volume: 53 start-page: 1091 year: 2015 end-page: 1102 ident: b23 article-title: Performance of Kumaresan and Tufts algorithm in liner impedance eduction with flow publication-title: AIAA J. – start-page: 2977 year: 2016 ident: b41 article-title: Determination of the acoustic properties of liners under high level multi-tone excitation publication-title: 22nd AIAA/CEAS Aeroacoustics Conference – volume: 56 start-page: 1118 year: 2018 end-page: 1132 ident: b26 article-title: Flow and viscous effects on impedance eduction publication-title: AIAA J. – volume: 60 start-page: 1314 year: 2023 end-page: 1322 ident: b3 article-title: Acoustic liner demonstrator for a turning vane of S1MA wind tunnel publication-title: J. Aircr. – start-page: 2198 year: 2012 ident: b19 article-title: Liner impedance eduction technique based on velocity fields publication-title: 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference) – volume: 332 start-page: 58 year: 2013 end-page: 75 ident: b20 article-title: An adjoint-based method for liner impedance eduction: Validation and numerical investigation publication-title: J. Sound Vib. – reference: M.G. Jones, W.R. Watson, D.M. Nark, B.M. Howerton, M.C. Brown, A review of acoustic liner experimental characterization at NASA Langley, URL – volume: 110 start-page: 2360 year: 2001 end-page: 2370 ident: b13 article-title: An experimental study of the impedance of perforated plates with grazing flow publication-title: J. Acoust. Soc. Am. – start-page: 3297 year: 2024 ident: b29 article-title: NASA investigation of flow direction effects on impedance eduction for acoustic liners publication-title: 30th AIAA/CEAS Aeroacoustics Conference (2024) – reference: Z. Chen, N. Xiang, C.J. Fackler, Bayesian estimations of dissipation, sound speed, and microphone positions in impedance tubes, JASA Express Lett. 2 (8) – reference: G. Bielak, J. Gallman, R. Kunze, P. Murray, J. Premo, M. Kosanchick, A. Hersh, J. Celano, B. Walker, J. Yu, et al., Advanced Nacelle Acoustic Lining Concepts Development, Tech. Rep., 2002, URL – start-page: 4192 year: 2017 ident: b42 article-title: A study of high level tonal and broadband random excitation for acoustic liners publication-title: 23rd AIAA/CEAS Aeroacoustics Conference – volume: 229 year: 2022 ident: b8 article-title: Broadband sound absorption using multiple hybrid resonances of acoustic metasurfaces publication-title: Int. J. Mech. Sci. – volume: 14 start-page: 268 year: 2002 end-page: 276 ident: b34 article-title: Sound-excited flow and acoustic nonlinearity at an orifice publication-title: Phys. Fluids – year: 2009 ident: b48 article-title: Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials 2e – year: 2006 ident: b50 article-title: Fundamentals of Acoustics – volume: 130 start-page: 52 year: 2011 end-page: 60 ident: b65 article-title: Failure of the ingard–myers boundary condition for a lined duct: An experimental investigation publication-title: J. Acoust. Soc. Am. – volume: 3 start-page: 15 year: 1989 end-page: 35 ident: b47 article-title: Evaluation of a multi-point method for determining acoustic impedance publication-title: Mech. Syst. Signal Process. – volume: 247 year: 2023 ident: b9 article-title: Multilayer structures for high-intensity sound energy absorption in low-frequency range publication-title: Int. J. Mech. Sci. – year: 2025 ident: b46 article-title: Accompanying dataset and Python code for reproducibility and implementation of the IR-TDIBC method – volume: 74 start-page: 114 year: 2015 end-page: 130 ident: b4 article-title: A review of acoustic dampers applied to combustion chambers in aerospace industry publication-title: Prog. Aerosp. Sci. – start-page: 3137 year: 2024 ident: b53 article-title: Comparison of experimental data and empirical models for nonlinear acoustic properties of perforates publication-title: 30th AIAA/CEAS Aeroacoustics Conference (2024) – volume: 22 start-page: 786 year: 1984 end-page: 792 ident: b56 article-title: Acoustic nonlinearities and power losses at orifices publication-title: AIAA J. – volume: 217 start-page: 619 year: 1998 end-page: 636 ident: b60 article-title: The impedance of perforated plates subjected to grazing gas flow and backed by porous media publication-title: J. Sound Vib. – volume: 58 start-page: 3040 year: 2020 end-page: 3050 ident: b28 article-title: Wavenumber-based impedance eduction with a shear grazing flow publication-title: AIAA J. – reference: . – volume: 485 year: 2020 ident: b15 article-title: Acoustic impedance of perforated plates in the presence of fully developed grazing flow publication-title: J. Sound Vib. – start-page: 3306 year: 2003 ident: b18 article-title: Comparison of acoustic impedance eduction techniques for locally-reacting liners publication-title: 9th AIAA/CEAS Aeroacoustics Conference and Exhibit – start-page: 3301 year: 2024 ident: b30 article-title: IFAR benchmark challenge# 4 publication-title: 30th AIAA/CEAS Aeroacoustics Conference (2024) – start-page: 2274 year: 2013 ident: b21 article-title: A comparative study of four impedance eduction methodologies using several test liners publication-title: 19th AIAA/CEAS Aeroacoustics Conference – volume: 60 start-page: 2481 year: 2022 end-page: 2500 ident: b5 article-title: Broadband and low-frequency acoustic liner investigations at NASA and ONERA publication-title: AIAA J. – start-page: 3763 year: 2010 ident: b14 article-title: Effects of flow profile on educed acoustic liner impedance publication-title: 16th AIAA/CEAS Aeroacoustics Conference – year: 2023 ident: b45 article-title: Generic and broadband non-linear time domain impedance boundary condition publication-title: J. Sound Vib. – start-page: 2487 year: 2019 ident: b27 article-title: Application of swept sine excitation for acoustic impedance eduction publication-title: 25th AIAA/CEAS Aeroacoustics Conference – volume: 36 start-page: 18 year: 1998 end-page: 23 ident: b16 article-title: Optimization method for educing variable-impedance liner properties publication-title: AIAA J. – volume: 55 start-page: 535 year: 1974 end-page: 538 ident: b68 article-title: Sound attenuation in turbulent pipe flow publication-title: J. Acoust. Soc. Am. – volume: 26 year: 2022 ident: b6 article-title: Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials-a review publication-title: Appl. Mater. Today – start-page: 3249 year: 2024 ident: 10.1016/j.jsv.2025.119058_b44 article-title: Influence of source type on acoustic liner impedance in no flow – year: 2024 ident: 10.1016/j.jsv.2025.119058_b54 article-title: An experimental study on three-port measurements for acoustic characterisation of the perforate reactance publication-title: J. Sound Vib. – start-page: 2268 year: 2013 ident: 10.1016/j.jsv.2025.119058_b64 article-title: Impedance prediction of three-dimensional honeycomb liners with laminar/turbulent boundary layers using dns – volume: 528 year: 2022 ident: 10.1016/j.jsv.2025.119058_b57 article-title: Nonlinear broadband time-domain admittance boundary condition for duct acoustics. application to perforated plate liners publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2022.116892 – volume: 245 start-page: 545 issue: 3 year: 2001 ident: 10.1016/j.jsv.2025.119058_b33 article-title: A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners publication-title: J. Sound Vib. doi: 10.1006/jsvi.2001.3571 – volume: 303 start-page: 195 issue: 1–2 year: 2007 ident: 10.1016/j.jsv.2025.119058_b49 article-title: Modeling of perforated plates and screens using rigid frame porous models publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.01.012 – volume: 55 start-page: 535 issue: 3 year: 1974 ident: 10.1016/j.jsv.2025.119058_b68 article-title: Sound attenuation in turbulent pipe flow publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1914532 – volume: 79 start-page: 942 issue: 4 year: 1986 ident: 10.1016/j.jsv.2025.119058_b37 article-title: Transient and multiple frequency sound transmission through perforated plates at high amplitude publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.393691 – start-page: 3306 year: 2003 ident: 10.1016/j.jsv.2025.119058_b18 article-title: Comparison of acoustic impedance eduction techniques for locally-reacting liners – volume: 40 start-page: 119 issue: 1 year: 1975 ident: 10.1016/j.jsv.2025.119058_b51 article-title: Calculation of perforated plate liner parameters from specified acoustic resistance and reactance publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(75)80234-3 – volume: 60 start-page: 2481 issue: 4 year: 2022 ident: 10.1016/j.jsv.2025.119058_b5 article-title: Broadband and low-frequency acoustic liner investigations at NASA and ONERA publication-title: AIAA J. doi: 10.2514/1.J060862 – volume: 69 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.jsv.2025.119058_b10 article-title: Compact 2DOF liner based on a long elastic open-neck acoustic resonator for low frequency absorption publication-title: Noise Control Eng. J. doi: 10.3397/1/37691 – volume: 36 start-page: 18 issue: 1 year: 1998 ident: 10.1016/j.jsv.2025.119058_b16 article-title: Optimization method for educing variable-impedance liner properties publication-title: AIAA J. doi: 10.2514/2.369 – volume: 14 start-page: 268 issue: 1 year: 2002 ident: 10.1016/j.jsv.2025.119058_b34 article-title: Sound-excited flow and acoustic nonlinearity at an orifice publication-title: Phys. Fluids doi: 10.1063/1.1423934 – ident: 10.1016/j.jsv.2025.119058_b1 – ident: 10.1016/j.jsv.2025.119058_b66 doi: 10.1121/10.0012993 – volume: 375 start-page: 393 year: 2018 ident: 10.1016/j.jsv.2025.119058_b59 article-title: Energy analysis and discretization of nonlinear impedance boundary conditions for the time-domain linearized Euler equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.037 – volume: 110 start-page: 2360 issue: 5 year: 2001 ident: 10.1016/j.jsv.2025.119058_b13 article-title: An experimental study of the impedance of perforated plates with grazing flow publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1400736 – volume: 356 start-page: 86 year: 2015 ident: 10.1016/j.jsv.2025.119058_b22 article-title: A systematic uncertainty analysis for liner impedance eduction technology publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.07.001 – volume: 3 start-page: 15 issue: 1 year: 1989 ident: 10.1016/j.jsv.2025.119058_b47 article-title: Evaluation of a multi-point method for determining acoustic impedance publication-title: Mech. Syst. Signal Process. doi: 10.1016/0888-3270(89)90020-4 – volume: 56 start-page: 1118 issue: 3 year: 2018 ident: 10.1016/j.jsv.2025.119058_b26 article-title: Flow and viscous effects on impedance eduction publication-title: AIAA J. doi: 10.2514/1.J055838 – volume: 112 start-page: 3133 issue: 5 year: 2024 ident: 10.1016/j.jsv.2025.119058_b58 article-title: Time-domain simulation of the acoustic nonlinear response of acoustic liners at high sound pressure level publication-title: Nonlinear Dynam. doi: 10.1007/s11071-023-09219-7 – volume: 43 start-page: 183 issue: 6 year: 1995 ident: 10.1016/j.jsv.2025.119058_b7 article-title: Parallel-element liner impedances for improved absorption of broadband sound in ducts publication-title: Noise Control Eng. J. doi: 10.3397/1.2828379 – volume: 37 start-page: 818 issue: 7 year: 1999 ident: 10.1016/j.jsv.2025.119058_b17 article-title: Validation of an impedance eduction method in flow publication-title: AIAA J. doi: 10.2514/2.7529 – start-page: 3297 year: 2024 ident: 10.1016/j.jsv.2025.119058_b29 article-title: NASA investigation of flow direction effects on impedance eduction for acoustic liners – year: 2023 ident: 10.1016/j.jsv.2025.119058_b45 article-title: Generic and broadband non-linear time domain impedance boundary condition publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2023.117691 – year: 2025 ident: 10.1016/j.jsv.2025.119058_b46 – year: 2009 ident: 10.1016/j.jsv.2025.119058_b48 – start-page: 3763 year: 2010 ident: 10.1016/j.jsv.2025.119058_b14 article-title: Effects of flow profile on educed acoustic liner impedance – ident: 10.1016/j.jsv.2025.119058_b67 – volume: 366 start-page: 418 year: 2016 ident: 10.1016/j.jsv.2025.119058_b52 article-title: Non-linear acoustic transfer impedance of micro-perforated plates with circular orifices publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.12.022 – start-page: 2977 year: 2016 ident: 10.1016/j.jsv.2025.119058_b41 article-title: Determination of the acoustic properties of liners under high level multi-tone excitation – start-page: 3301 year: 2024 ident: 10.1016/j.jsv.2025.119058_b30 article-title: IFAR benchmark challenge# 4 – start-page: 3266 year: 2015 ident: 10.1016/j.jsv.2025.119058_b40 article-title: Non-linear system identification techniques for determination of the acoustic properties of perforates – start-page: 2198 year: 2012 ident: 10.1016/j.jsv.2025.119058_b19 article-title: Liner impedance eduction technique based on velocity fields – volume: 58 start-page: 1107 issue: 3 year: 2020 ident: 10.1016/j.jsv.2025.119058_b35 article-title: Liner impedance eduction under shear grazing flow at a high sound pressure level publication-title: AIAA J. doi: 10.2514/1.J058756 – start-page: 2404 year: 2006 ident: 10.1016/j.jsv.2025.119058_b38 article-title: Experimental investigation of nonlinear acoustic properties for perforates – start-page: 4192 year: 2017 ident: 10.1016/j.jsv.2025.119058_b42 article-title: A study of high level tonal and broadband random excitation for acoustic liners – start-page: 2274 year: 2013 ident: 10.1016/j.jsv.2025.119058_b21 article-title: A comparative study of four impedance eduction methodologies using several test liners – volume: 524 year: 2022 ident: 10.1016/j.jsv.2025.119058_b36 article-title: Spatially-varying impedance model for locally reacting acoustic liners at a high sound intensity publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2021.116741 – volume: 485 year: 2020 ident: 10.1016/j.jsv.2025.119058_b15 article-title: Acoustic impedance of perforated plates in the presence of fully developed grazing flow publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2020.115547 – volume: 39 start-page: 1478 issue: 8 year: 2001 ident: 10.1016/j.jsv.2025.119058_b12 article-title: Effect of grazing flow on the acoustic impedance of an orifice publication-title: AIAA J. doi: 10.2514/2.1498 – volume: 29 start-page: 1 issue: 1 year: 1973 ident: 10.1016/j.jsv.2025.119058_b32 article-title: The acoustic impendance of perforates at medium and high sound pressure levels publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(73)80125-7 – volume: 60 start-page: 1 year: 2019 ident: 10.1016/j.jsv.2025.119058_b62 article-title: Near-wall aerodynamic response of an acoustic liner to harmonic excitation with grazing flow publication-title: Exp. Fluids doi: 10.1007/s00348-019-2791-5 – volume: 60 start-page: 1314 issue: 4 year: 2023 ident: 10.1016/j.jsv.2025.119058_b3 article-title: Acoustic liner demonstrator for a turning vane of S1MA wind tunnel publication-title: J. Aircr. doi: 10.2514/1.C037048 – volume: 400 start-page: 564 year: 2017 ident: 10.1016/j.jsv.2025.119058_b2 article-title: A review of bias flow liners for acoustic damping in gas turbine combustors publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.04.005 – volume: 792 start-page: 936 year: 2016 ident: 10.1016/j.jsv.2025.119058_b61 article-title: Numerical investigation of a honeycomb liner grazed by laminar and turbulent boundary layers publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.79 – volume: 53 start-page: 1091 issue: 4 year: 2015 ident: 10.1016/j.jsv.2025.119058_b23 article-title: Performance of Kumaresan and Tufts algorithm in liner impedance eduction with flow publication-title: AIAA J. doi: 10.2514/1.J053705 – volume: 130 start-page: 52 issue: 1 year: 2011 ident: 10.1016/j.jsv.2025.119058_b65 article-title: Failure of the ingard–myers boundary condition for a lined duct: An experimental investigation publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3586789 – volume: 26 year: 2022 ident: 10.1016/j.jsv.2025.119058_b6 article-title: Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials-a review publication-title: Appl. Mater. Today – volume: 392 start-page: 200 year: 2017 ident: 10.1016/j.jsv.2025.119058_b24 article-title: Broadband liner impedance eduction for multimodal acoustic propagation in the presence of a mean flow publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.10.014 – volume: 247 year: 2023 ident: 10.1016/j.jsv.2025.119058_b9 article-title: Multilayer structures for high-intensity sound energy absorption in low-frequency range publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2023.108197 – year: 2006 ident: 10.1016/j.jsv.2025.119058_b50 – start-page: 2725 year: 2019 ident: 10.1016/j.jsv.2025.119058_b43 article-title: Simulation of high acoustic excitation level harmonic interaction effects for perforates and liners – start-page: 2487 year: 2019 ident: 10.1016/j.jsv.2025.119058_b27 article-title: Application of swept sine excitation for acoustic impedance eduction – volume: 22 start-page: 786 issue: 6 year: 1984 ident: 10.1016/j.jsv.2025.119058_b56 article-title: Acoustic nonlinearities and power losses at orifices publication-title: AIAA J. doi: 10.2514/3.8680 – start-page: 2151 year: 2012 ident: 10.1016/j.jsv.2025.119058_b39 article-title: The effect of high level multi-tone excitation on the acoustic properties of perforates and liner samples – volume: 55 start-page: 1194 issue: 4 year: 2017 ident: 10.1016/j.jsv.2025.119058_b69 article-title: Scattering to higher harmonics for quarter-wave and helmholtz resonators publication-title: AIAA J. doi: 10.2514/1.J055295 – volume: 129 start-page: 322 year: 2018 ident: 10.1016/j.jsv.2025.119058_b25 article-title: An improved impedance eduction technique based on impedance models and the mode matching method publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2017.08.014 – start-page: 3137 year: 2024 ident: 10.1016/j.jsv.2025.119058_b53 article-title: Comparison of experimental data and empirical models for nonlinear acoustic properties of perforates – volume: 74 start-page: 114 year: 2015 ident: 10.1016/j.jsv.2025.119058_b4 article-title: A review of acoustic dampers applied to combustion chambers in aerospace industry publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2014.12.003 – volume: 229 year: 2022 ident: 10.1016/j.jsv.2025.119058_b8 article-title: Broadband sound absorption using multiple hybrid resonances of acoustic metasurfaces publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107508 – volume: 217 start-page: 619 issue: 4 year: 1998 ident: 10.1016/j.jsv.2025.119058_b60 article-title: The impedance of perforated plates subjected to grazing gas flow and backed by porous media publication-title: J. Sound Vib. doi: 10.1006/jsvi.1998.1811 – volume: 108 start-page: 283 issue: 2 year: 1986 ident: 10.1016/j.jsv.2025.119058_b11 article-title: Experimental evaluation of impedance of perforates with grazing flow publication-title: J. Sound Vib. doi: 10.1016/S0022-460X(86)80056-6 – start-page: 411 year: 2020 ident: 10.1016/j.jsv.2025.119058_b63 article-title: Experimental investigation of shear grazing flow effects on extended tube acoustic liners – volume: 332 start-page: 58 issue: 1 year: 2013 ident: 10.1016/j.jsv.2025.119058_b20 article-title: An adjoint-based method for liner impedance eduction: Validation and numerical investigation publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.07.051 – volume: 42 start-page: 6 issue: 1 year: 1967 ident: 10.1016/j.jsv.2025.119058_b31 article-title: Acoustic nonlinearity of an orifice publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.1910576 – volume: 101 start-page: 104 issue: 1 year: 1992 ident: 10.1016/j.jsv.2025.119058_b55 article-title: Boundary conditions for direct simulations of compressible viscous flows publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(92)90046-2 – volume: 58 start-page: 3040 issue: 7 year: 2020 ident: 10.1016/j.jsv.2025.119058_b28 article-title: Wavenumber-based impedance eduction with a shear grazing flow publication-title: AIAA J. doi: 10.2514/1.J059100 |
| SSID | ssj0009434 |
| Score | 2.4882882 |
| Snippet | Acoustic liners are essential for sound dissipation in aeroacoustic applications, but their impedance response often displays significant nonlinearity under... |
| SourceID | unpaywall hal crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 119058 |
| SubjectTerms | Aeroacoustic liner Engineering Sciences Flow-induced noise Impulse response Nonlinear impedance Physics Shear flow effect TDIBC |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwEA-6IfrFtzhfFPGT0tmkaZt-HOIYIkPEwfwU2jRjm6OOtZ3oX-9dH1NEfHzrm_Quubskv_sdIWcWLitpqkwvcgKT2xzGHFMwrgYRY8HABa-Uo3y7bqfHb_pOv-TZxlyYIUScpe3HYxPpTJDcek4vo2eV4YrZMqm7DgTeNVLvde9ajxUfOHetfr636TumcFxR7WHmaK5xMofJIHPARPgW1nf_3gstDxEOuZrF0-D1JZhMPvma9kaRxJ3kFIUIMXlqZmnYVG9fCBz_-BubZL2MOY1W0Um2yJKOt8lKjv1UyQ6h93mGOeKfjbhgzghmxgji6Qi7hDGKDTCbedUvA2_Okl3Sa18_XHXMspKCqWwmUpOCOkIvojzkLBS-CChzmXY83BQTNrcUd5Vle6E3UDC5jjQTltIwWaEK6bBEYO-RGjRA7xPDHmjtcBqCHn2ufQZGSjEFcQyLuGK21yDnlWTltCDMkBWSbCxBDRLVIAs1NAivZC9LcRWeXIJB_-m1UxDq4vPIkN1p3Uq89iHoBrlYqPH3lhz86-lDsoZnuMbL6BGppbNMH0NwkoYnZad8B60E3cM priority: 102 providerName: Unpaywall |
| Title | Revisiting nonlinear impedance in acoustic liners |
| URI | https://dx.doi.org/10.1016/j.jsv.2025.119058 https://hal.science/hal-04810729 https://hal.science/hal-04810729v1/document |
| UnpaywallVersion | submittedVersion |
| Volume | 608 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-8568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009434 issn: 1095-8568 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-8568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009434 issn: 1095-8568 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1095-8568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009434 issn: 1095-8568 databaseCode: ACRLP dateStart: 19950107 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-8568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009434 issn: 1095-8568 databaseCode: AIKHN dateStart: 19950107 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-8568 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009434 issn: 1095-8568 databaseCode: AKRWK dateStart: 19640101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5qRfRFPLEeJYhPSjS72VyPoVjiQRGxUJ9CstlgSgmll_jib3cmR1UQBZ9CToZvszOzu99-A3Bm0LSSYlJ3EivShSmwz3GJ_SpNOI9SG6NSwfLt2UFf3A6sQQM69V4YolVWvr_06YW3rq5cVWhejbOM9viSGJoxwCBOCwakCSqEQ1UMLt8_aR6kf1YrhtPT9cpmwfEaThc4ROQWOg7PoKrvP8emlRciSa7P83H09hqNRl8iUHcLNqvUUfNL67ahofIdWCsonHK6C-yx2ChONGYtLwUwoomWYVqcUMtqWa6h9yuKd2l0czLdg373-qkT6FVBBF2a3J3pDFGNnYSJWPDY9dyIcZsry6G1LdcUhhS2NEwndlKJY-REcdeQCsccTJKqlRuZ-9BEA9QBaGaqlCVYjM3hCeVx9DWSS0xHeCIkN50WnNdQhONS9yKsCWHDEHELCbewxK0FogYr_NZ4Ifrl3147RWCXnyeh68C_D-kaqdiQpvmCteBiifvflhz-z5Ij2KAzmrPl7Bias8lcnWCyMYvbxd_UhlX_5i7o4bHfe_CfPwB8DtDO |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD5sE5kv4hXntYhPSl2Tpmv3OIaj6tyDbLC30KYZdowydhNf_O2e08tUEAVfk7YcvjTnknz5AnBl0bKSZsp0IycwhS1wznGF82oUcR6MGhiVUpZvr-EPxMPQGZagXZyFIVpl7vszn55667ylnqNZn8YxnfElMTRriEGcNgxEGTaEw12qwG7fP3keJIBWSIbT48XWZkryGs9XWCNyBz1H06Jr338OTuUXYklWl8k0eHsNJpMvIaizA9t57mi0MvN2oaSTPdhMOZxqvg_sOT0pTjxmI8kUMIKZEWNeHNHQGnFioPtLb-8yqHM2P4BB567f9s38RgRT2dxbmAxhDd2IiVDw0Gt6AeMNrh2XNrc8W1hKNJRlu6E7UlgkR5p7ltJYdDBFslZeYB9CBQ3QR2DYI60dwUIcj6bQTY7ORnGF-QiPhOK2W4PrAgo5zYQvZMEIG0vETRJuMsOtBqIAS34bPYmO-bfXLhHY9edJ6dpvdSW1kYwNiZqvWA1u1rj_bcnx_yy5gKrff-rK7n3v8QS2qIcWcDk7hcpittRnmHkswvP0z_oA-f7Qsw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwEA-6IfrFtzhfFPGT0tmkaZt-HOIYIkPEwfwU2jRjm6OOtZ3oX-9dH1NEfHzrm_Quubskv_sdIWcWLitpqkwvcgKT2xzGHFMwrgYRY8HABa-Uo3y7bqfHb_pOv-TZxlyYIUScpe3HYxPpTJDcek4vo2eV4YrZMqm7DgTeNVLvde9ajxUfOHetfr636TumcFxR7WHmaK5xMofJIHPARPgW1nf_3gstDxEOuZrF0-D1JZhMPvma9kaRxJ3kFIUIMXlqZmnYVG9fCBz_-BubZL2MOY1W0Um2yJKOt8lKjv1UyQ6h93mGOeKfjbhgzghmxgji6Qi7hDGKDTCbedUvA2_Okl3Sa18_XHXMspKCqWwmUpOCOkIvojzkLBS-CChzmXY83BQTNrcUd5Vle6E3UDC5jjQTltIwWaEK6bBEYO-RGjRA7xPDHmjtcBqCHn2ufQZGSjEFcQyLuGK21yDnlWTltCDMkBWSbCxBDRLVIAs1NAivZC9LcRWeXIJB_-m1UxDq4vPIkN1p3Uq89iHoBrlYqPH3lhz86-lDsoZnuMbL6BGppbNMH0NwkoYnZad8B60E3cM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+nonlinear+impedance+in+acoustic+liners&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Roncen%2C+R%C3%A9mi&rft.date=2025-07-21&rft.issn=0022-460X&rft.volume=608&rft.spage=119058&rft_id=info:doi/10.1016%2Fj.jsv.2025.119058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsv_2025_119058 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon |