Development of a deep-learning algorithm for etiological classification of subarachnoid hemorrhage using non-contrast CT scans
Objectives This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans. Methods This retrospective study included 618 patients diagnosed with...
        Saved in:
      
    
          | Published in | European radiology Vol. 35; no. 11; pp. 6775 - 6784 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.11.2025
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1432-1084 0938-7994 1432-1084  | 
| DOI | 10.1007/s00330-025-11666-2 | 
Cover
| Abstract | Objectives
This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans.
Methods
This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH.
Results
The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929–0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889–0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660).
Conclusion
The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model’s high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings.
Key Points
Question
Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis
.
Findings
A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists’ diagnostic performance
.
Clinical relevance
AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency
.
Graphical Abstract | 
    
|---|---|
| AbstractList | This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans.OBJECTIVESThis study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans.This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH.METHODSThis retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH.The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929-0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889-0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660).RESULTSThe model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929-0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889-0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660).The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model's high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings.CONCLUSIONThe study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model's high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings.Question Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis. Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists' diagnostic performance. Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency.KEY POINTSQuestion Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis. Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists' diagnostic performance. Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency. This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans. This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH. The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929-0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889-0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660). The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model's high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings. Question Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis. Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists' diagnostic performance. Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency. Objectives This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans. Methods This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH. Results The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929–0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889–0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660). Conclusion The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model’s high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings. Key Points Question Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis . Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists’ diagnostic performance . Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency . Graphical Abstract ObjectivesThis study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans.MethodsThis retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH.ResultsThe model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929–0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889–0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660).ConclusionThe study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model’s high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings.Key PointsQuestionDifferentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis.FindingsA ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists’ diagnostic performance.Clinical relevanceAI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency.  | 
    
| Author | Li, Yuanjun Wang, Sihui Kang, Jianghe Wang, Xiaochen Sun, Shengjun Bao, Yang Chen, Lingxu Zhao, Xuening Yuan, Mengyuan  | 
    
| Author_xml | – sequence: 1 givenname: Lingxu surname: Chen fullname: Chen, Lingxu organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Department of Radiology, Beijing Neurosurgical Institute – sequence: 2 givenname: Xiaochen surname: Wang fullname: Wang, Xiaochen organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Department of Radiology, Beijing Neurosurgical Institute – sequence: 3 givenname: Yuanjun surname: Li fullname: Li, Yuanjun organization: Department of Radiology, Zhongshan Hospital Affiliated to Xiamen University, Hubinnan Road – sequence: 4 givenname: Yang surname: Bao fullname: Bao, Yang organization: Neusoft Medical Systems – sequence: 5 givenname: Sihui surname: Wang fullname: Wang, Sihui organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University – sequence: 6 givenname: Xuening surname: Zhao fullname: Zhao, Xuening organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University – sequence: 7 givenname: Mengyuan surname: Yuan fullname: Yuan, Mengyuan organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University – sequence: 8 givenname: Jianghe surname: Kang fullname: Kang, Jianghe organization: Department of Radiology, Zhongshan Hospital Affiliated to Xiamen University, Hubinnan Road – sequence: 9 givenname: Shengjun orcidid: 0000-0001-5024-145X surname: Sun fullname: Sun, Shengjun email: sunshengjun0212@163.com organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Department of Radiology, Beijing Neurosurgical Institute  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40382487$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kctuFDEQRS0URF78AAtkiU02Br-7Z4mGEJAisUnWltsu93Tktge7G4lNvh0PEx5iwapK5XOrrnzP0UnKCRB6xehbRmn3rlIqBCWUK8KY1prwZ-iMScEJo708-as_Ree1PlBKN0x2L9CppKLnsu_O0OMH-AYx72dIC84BW-wB9iSCLWlKI7ZxzGVadjMOuWBYphzzODkbsYu21im0vg3TQVvXwRbrdilPHu9gzqXs7Ah4rYdNzTxxOS3F1gVv73B1NtVL9DzYWOHlU71A9x-v77afyO2Xm8_b97fECd4vhAluu164jRKeS65oN3jQQ3tTMvS0c6wPevDehY1SjofQiRAYhQBMO--5uEBXx737kr-uUBczT9VBjDZBXqsRnCqtJaesoW_-QR_yWlJz1yitNBdK9o16_UStwwze7Ms02_Ld_PrZBvAj4EqutUD4jTBqDvGZY3ymxWd-xmcONsVRVBucRih_bv9H9QMJnJ3v | 
    
| Cites_doi | 10.1056/NEJMcp1605827 10.3174/ajnr.A7483 10.1212/WNL.0000000000201710 10.1055/s-0028-1109355 10.1002/ana.22270 10.1109/CVPR.2016.90 10.1016/j.neuroimage.2023.120321 10.3171/2013.9.JNS131337 10.5152/dir.2014.13401 10.3171/2022.3.JNS22157 10.3390/app10061959 10.1038/s41598-023-48482-x 10.1016/0140-6736(91)91836-J 10.1016/j.nicl.2021.102785 10.1016/S0140-6736(22)00938-2 10.3174/ajnr.A4503 10.1007/978-3-030-00889-5_1 10.1148/radiol.10092373 10.1001/jamaneurol.2019.0006 10.1177/197140091102400508 10.1038/s41551-018-0305-z 10.1148/radiol.2433060536 10.1007/s00701-009-0525-9 10.1016/S0140-6736(16)30668-7 10.1093/neuros/nyz346 10.1016/S1474-4422(09)70025-0 10.1055/s-0042-1748771 10.3390/diagnostics13182987 10.3390/s21144758 10.1111/jon.13078 10.1093/neuros/nyw113 10.3171/2022.11.JNS222192 10.1109/TMI.2021.3078828 10.1136/neurintsurg-2015-011680 10.1007/s10143-021-01650-x 10.1016/j.cmpb.2022.106874 10.1038/s41598-020-77441-z 10.1056/NEJMra052760 10.3390/s22197575 10.3389/fneur.2022.960702  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to European Society of Radiology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2025. The Author(s), under exclusive licence to European Society of Radiology. The Author(s), under exclusive licence to European Society of Radiology 2025.  | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to European Society of Radiology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2025. The Author(s), under exclusive licence to European Society of Radiology. – notice: The Author(s), under exclusive licence to European Society of Radiology 2025.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8  | 
    
| DOI | 10.1007/s00330-025-11666-2 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Health & Medical Complete (Alumni)  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1432-1084 | 
    
| EndPage | 6784 | 
    
| ExternalDocumentID | 40382487 10_1007_s00330_025_11666_2  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Beijing China China  | 
    
| GeographicLocations_xml | – name: China – name: Beijing China  | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 82371939 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Capital' s Funds for Health Improvement and Research grantid: SF 2022-2-1074 – fundername: National Natural Science Foundation of China grantid: 82371939  | 
    
| GroupedDBID | --- -Y2 .86 .VR 04C 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29G 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6PF 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABRTQ ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHVE ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSTC ACUDM ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADJJI ADKFA ADKNI ADKPE ADOJX ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFHIU AFJLC AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGVAE AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECF ECT EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9S PF0 PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S37 S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TT1 TUC U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z8Z ZMTXR ZOVNA ~EX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 AAYZH  | 
    
| ID | FETCH-LOGICAL-c328t-132a783c953d242507bde6b32854f807c18f6bddcf955c2ff73ff10efe16cdd23 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1432-1084 0938-7994  | 
    
| IngestDate | Fri Sep 05 16:17:28 EDT 2025 Wed Oct 29 04:44:29 EDT 2025 Wed Oct 29 02:16:15 EDT 2025 Wed Oct 29 21:20:45 EDT 2025 Tue Oct 28 02:38:11 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | Deep learning Computed tomography Subarachnoid hemorrhage Intracranial aneurysm  | 
    
| Language | English | 
    
| License | 2025. The Author(s), under exclusive licence to European Society of Radiology. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c328t-132a783c953d242507bde6b32854f807c18f6bddcf955c2ff73ff10efe16cdd23 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-5024-145X | 
    
| PMID | 40382487 | 
    
| PQID | 3265623548 | 
    
| PQPubID | 54162 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_3205664201 proquest_journals_3265623548 pubmed_primary_40382487 crossref_primary_10_1007_s00330_025_11666_2 springer_journals_10_1007_s00330_025_11666_2  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20251100 | 
    
| PublicationDateYYYYMMDD | 2025-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2025 text: 20251100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg  | 
    
| PublicationTitle | European radiology | 
    
| PublicationTitleAbbrev | Eur Radiol | 
    
| PublicationTitleAlternate | Eur Radiol | 
    
| PublicationYear | 2025 | 
    
| Publisher | Springer Berlin Heidelberg Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V  | 
    
| References | MT Lawton (11666_CR4) 2017; 377 AN Wallace (11666_CR33) 2016; 8 VL Feigin (11666_CR1) 2009; 8 TJ Kaufmann (11666_CR12) 2007; 243 NA Bakker (11666_CR13) 2014; 120 A Pérez Del Barrio (11666_CR23) 2023; 33 RL Macdonald (11666_CR6) 2017; 389 A Weyerbrock (11666_CR34) 2009; 181 S Nayak (11666_CR40) 2011; 24 X Wang (11666_CR25) 2021; 32 HE Westerlaan (11666_CR35) 2011; 258 D Mandel (11666_CR19) 2023; 138 KH Yu (11666_CR20) 2018; 2 JY Lee (11666_CR26) 2020; 10 GJ Rinkel (11666_CR7) 1991; 338 J Claassen (11666_CR8) 2022; 400 K Hou (11666_CR9) 2022; 13 J Egger (11666_CR22) 2022; 221 A Thanellas (11666_CR28) 2023; 100 N Etminan (11666_CR2) 2019; 76 K Baumgartner (11666_CR17) 2023; 139 Z Zhou (11666_CR29) 2018; 11045 H Zheng (11666_CR30) 2021; 40 M Woznica (11666_CR39) 2010; 152 MJ Kole (11666_CR18) 2020; 86 J Menke (11666_CR3) 2011; 69 C Conzen (11666_CR10) 2022; 45 LR Philipp (11666_CR15) 2017; 80 11666_CR32 11666_CR31 I Nguyen (11666_CR14) 2022; 43 P Hu (11666_CR27) 2023; 279 JJ Heit (11666_CR16) 2016; 37 11666_CR36 R Nützel (11666_CR11) 2023; 84 ES Kim (11666_CR38) 2014; 20 JL Brisman (11666_CR5) 2006; 355 S Umapathy (11666_CR24) 2023; 13 S Bhat (11666_CR37) 2023; 13 D Ahmedt-Aristizabal (11666_CR21) 2021; 21 40844754 - Eur Radiol. 2025 Nov;35(11):6773-6774. doi: 10.1007/s00330-025-11859-9.  | 
    
| References_xml | – volume: 377 start-page: 257 year: 2017 ident: 11666_CR4 publication-title: N Engl J Med doi: 10.1056/NEJMcp1605827 – volume: 43 start-page: 731 year: 2022 ident: 11666_CR14 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A7483 – volume: 100 start-page: e1257 year: 2023 ident: 11666_CR28 publication-title: Neurology doi: 10.1212/WNL.0000000000201710 – volume: 181 start-page: 881 year: 2009 ident: 11666_CR34 publication-title: Rofo doi: 10.1055/s-0028-1109355 – volume: 69 start-page: 646 year: 2011 ident: 11666_CR3 publication-title: Ann Neurol doi: 10.1002/ana.22270 – ident: 11666_CR36 doi: 10.1109/CVPR.2016.90 – volume: 279 start-page: 120321 year: 2023 ident: 11666_CR27 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2023.120321 – volume: 120 start-page: 99 year: 2014 ident: 11666_CR13 publication-title: J Neurosurg doi: 10.3171/2013.9.JNS131337 – volume: 20 start-page: 277 year: 2014 ident: 11666_CR38 publication-title: Diagn Interv Radiol doi: 10.5152/dir.2014.13401 – volume: 138 start-page: 165 year: 2023 ident: 11666_CR19 publication-title: J Neurosurg doi: 10.3171/2022.3.JNS22157 – ident: 11666_CR31 doi: 10.3390/app10061959 – volume: 13 year: 2023 ident: 11666_CR37 publication-title: Sci Rep doi: 10.1038/s41598-023-48482-x – volume: 338 start-page: 964 year: 1991 ident: 11666_CR7 publication-title: Lancet doi: 10.1016/0140-6736(91)91836-J – volume: 32 start-page: 102785 year: 2021 ident: 11666_CR25 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2021.102785 – volume: 400 start-page: 846 year: 2022 ident: 11666_CR8 publication-title: Lancet doi: 10.1016/S0140-6736(22)00938-2 – volume: 37 start-page: 297 year: 2016 ident: 11666_CR16 publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A4503 – volume: 11045 start-page: 3 year: 2018 ident: 11666_CR29 publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support doi: 10.1007/978-3-030-00889-5_1 – volume: 258 start-page: 134 year: 2011 ident: 11666_CR35 publication-title: Radiology doi: 10.1148/radiol.10092373 – volume: 76 start-page: 588 year: 2019 ident: 11666_CR2 publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2019.0006 – volume: 24 start-page: 715 year: 2011 ident: 11666_CR40 publication-title: Neuroradiol J doi: 10.1177/197140091102400508 – volume: 2 start-page: 719 year: 2018 ident: 11666_CR20 publication-title: Nat Biomed Eng doi: 10.1038/s41551-018-0305-z – volume: 243 start-page: 812 year: 2007 ident: 11666_CR12 publication-title: Radiology doi: 10.1148/radiol.2433060536 – volume: 152 start-page: 417 year: 2010 ident: 11666_CR39 publication-title: Acta Neurochir doi: 10.1007/s00701-009-0525-9 – volume: 389 start-page: 655 year: 2017 ident: 11666_CR6 publication-title: Lancet doi: 10.1016/S0140-6736(16)30668-7 – volume: 86 start-page: 783 year: 2020 ident: 11666_CR18 publication-title: Neurosurgery doi: 10.1093/neuros/nyz346 – volume: 8 start-page: 355 year: 2009 ident: 11666_CR1 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(09)70025-0 – volume: 84 start-page: 167 year: 2023 ident: 11666_CR11 publication-title: J Neurol Surg A Cent Eur Neurosurg doi: 10.1055/s-0042-1748771 – volume: 13 start-page: 2987 year: 2023 ident: 11666_CR24 publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics13182987 – volume: 21 start-page: 4758 year: 2021 ident: 11666_CR21 publication-title: Sensors (Basel) doi: 10.3390/s21144758 – volume: 33 start-page: 218 year: 2023 ident: 11666_CR23 publication-title: J Neuroimaging doi: 10.1111/jon.13078 – volume: 80 start-page: 769 year: 2017 ident: 11666_CR15 publication-title: Neurosurgery doi: 10.1093/neuros/nyw113 – volume: 139 start-page: 106 year: 2023 ident: 11666_CR17 publication-title: J Neurosurg doi: 10.3171/2022.11.JNS222192 – volume: 40 start-page: 2452 year: 2021 ident: 11666_CR30 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2021.3078828 – volume: 8 start-page: 378 year: 2016 ident: 11666_CR33 publication-title: J Neurointerv Surg doi: 10.1136/neurintsurg-2015-011680 – volume: 45 start-page: 1413 year: 2022 ident: 11666_CR10 publication-title: Neurosurg Rev doi: 10.1007/s10143-021-01650-x – volume: 221 start-page: 106874 year: 2022 ident: 11666_CR22 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106874 – volume: 10 year: 2020 ident: 11666_CR26 publication-title: Sci Rep doi: 10.1038/s41598-020-77441-z – volume: 355 start-page: 928 year: 2006 ident: 11666_CR5 publication-title: N Engl J Med doi: 10.1056/NEJMra052760 – ident: 11666_CR32 doi: 10.3390/s22197575 – volume: 13 start-page: 960702 year: 2022 ident: 11666_CR9 publication-title: Front Neurol doi: 10.3389/fneur.2022.960702 – reference: 40844754 - Eur Radiol. 2025 Nov;35(11):6773-6774. doi: 10.1007/s00330-025-11859-9.  | 
    
| SSID | ssj0009147 | 
    
| Score | 2.481963 | 
    
| Snippet | Objectives
This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid... This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage... ObjectivesThis study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid...  | 
    
| SourceID | proquest pubmed crossref springer  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 6775 | 
    
| SubjectTerms | Accuracy Adult Aged Algorithms Aneurysm Aneurysms Angiography Classification Clinical medicine Computed tomography Correlation coefficient Correlation coefficients Decision making Deep Learning Diagnosis Diagnostic Radiology Electronic health records Etiology Female Hemorrhage Hospitals Humans Imaging Internal Medicine Interventional Radiology Machine learning Male Medical imaging Medical records Medicine Medicine & Public Health Middle Aged Neuro Neuroradiology Patients Radiographic Image Interpretation, Computer-Assisted - methods Radiology Retrospective Studies Sensitivity Sensitivity and Specificity Subarachnoid hemorrhage Subarachnoid Hemorrhage - classification Subarachnoid Hemorrhage - diagnostic imaging Subarachnoid Hemorrhage - etiology Tomography, X-Ray Computed - methods Ultrasound  | 
    
| Title | Development of a deep-learning algorithm for etiological classification of subarachnoid hemorrhage using non-contrast CT scans | 
    
| URI | https://link.springer.com/article/10.1007/s00330-025-11666-2 https://www.ncbi.nlm.nih.gov/pubmed/40382487 https://www.proquest.com/docview/3265623548 https://www.proquest.com/docview/3205664201  | 
    
| Volume | 35 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009147 issn: 1432-1084 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH6IgngRd-NSRvCmA8nMZDtWaRWlnizoKSSztIK2xbRXf7vvpUmrqAdPOWSWMN_kzfvmbQDnqUJxWAjHY6VCrpAQ8CI1OdfI4pBtaBVWF269h-i2r-6ewqc6KKxsvN0bk2QlqRfBblR2zOdUfjUgWxdHwbsWUjov3MV90V6m2g1UXIfH_N7v-xH0Q6_8YROtjpruFmzWOiJrz0HdhhU72oH1Xm0F34WPL54-bOxYzoy1E14XgBiw_HUwRs4_fGOokTI7fWkEHNOkK5NzUIUH9S1nZG6g6_UXw4bkdvs-RBHDyB9-wEbjEa-c2fNyyq4fWYlAlHvQ73Yer295XUeBaykSqjYv8jiROg2lIYbhx4WxUSEpeNIlCEiQuKgwRrs0DLVwLpbOBb51Noi0MULuwyrOZw-BxdrgGFEa575TMtG5NIlJbOFCE-AwvgcXzdJmk3m6jGyRGLkCIkMgsgqITHhw0qx-Vv86ZYb6JOlkyKQ8OFu8xk1Plox8ZMczaoN6GzInP_DgYI7aYjrly0QgDfPgsoFxOfjf33L0v-bHsCHmW4r7wQmsTt9n9hTVk2nRgrV29-rqgZ43z_edVrU7PwGJQOFO | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-MwFH5CRQIuMMMahhmMxA2MEtvZjggBZSmnVoJTlHhpK6CtmvTCgd8-z1nKMMCBc7zF7_n5fX4bwGEsUBxmzNBQCJ8KBAQ0i1VKJaI4RBtS-OWDW-cuaPfE9b1_XweF5Y23e2OSLCX1PNjNlh1zqS2_6llbF0XBuygQoLAWLJ5ePtycvyXb9URYB8h83vP9JfRBs_xgFS0vm4s16DXLrHxMHk9mRXYiX_7L4Pjd__gBq7X2SU4rdvkJC3q0Dkud2r6-Aa__-BCRsSEpUVpPaF1aok_Sp_54OiwGzwR1XaKLYSM6ibRauHU7Kilt--Yza8iwD_dDRQbWoXc6QOFFrKd9n4zGI1q6yad5Qc66JEcS55vQuzjvnrVpXaGBSs4iW8eepWHEZexzZbGLG2ZKBxm3YZkmQlJ7kQkypaSJfV8yY0JujOdqo71AKsX4FrRwPr0DJJQKxwjiMHWN4JFMuYpUpDPjKw-HcR04akiWTKpEHMk85XK5pQluaVJuacIc2GuomtSHMk9QU7XaHmI0Bw7mn_E4WRtJOtLjmW2DGiFiMtdzYLvihvl0wuURQ4DnwHFD2bfBv17L7vea78Nyu9u5TW6v7m5-wQqrGIW63h60iulM_0YlqMj-1Dz_F3l0_hU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFH6qQEK9IKClhK2u1BtYk9jOdkTAiC4gDjPS3KLEywxSmxmRzJXfzntZZkDQQ8_xEvmzn7_ntwF8TxWKw0I4HisVcoUKAS9Sk3ONWhxqG1qFzYPb7V10M1Y_J-HkRRR_4-3emyTbmAbK0lTWg4Vxg1XgG5Ug8zmVYg3I7sVRCG8qSpSAO3osLtZpdwMVd6Ey7_d7fR294Zhv7KPNtTPcge2OL7KLFuBd-GDLPdi67Szin-DphdcPmzuWM2PtgnfFIKYs_zOdo_4_-8uQnTJbP_TCjmnizeQo1GBDfaslmR7oqf3BsBm54D7OUNww8o2fsnJe8saxPa9qdjliFYJSfYbx8Hp0ecO7mgpcS5FQ5XmRx4nUaSgNaRt-XBgbFZICKV2C4ASJiwpjtEvDUAvnYulc4Ftng0gbI-Q-bOB89gBYrA2OEaVx7jslE51Lk5jEFi40AQ7je3DWL222aFNnZKskyQ0QGQKRNUBkwoPjfvWz7hhVGXJL4meoVXnwbfUZDwBZNfLSzpfUBjkcalF-4MGXFrXVdMqXiUCVzIPzHsb14P_-l8P_a_4Vtu6vhtnvH3e_juCjaHcX94Nj2Kgfl_YEWUtdnDYb8xkFguVm | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+deep-learning+algorithm+for+etiological+classification+of+subarachnoid+hemorrhage+using+non-contrast+CT+scans&rft.jtitle=European+radiology&rft.au=Chen%2C+Lingxu&rft.au=Wang%2C+Xiaochen&rft.au=Li%2C+Yuanjun&rft.au=Bao%2C+Yang&rft.date=2025-11-01&rft.eissn=1432-1084&rft.volume=35&rft.issue=11&rft.spage=6775&rft_id=info:doi/10.1007%2Fs00330-025-11666-2&rft_id=info%3Apmid%2F40382487&rft.externalDocID=40382487 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon |