Development of a deep-learning algorithm for etiological classification of subarachnoid hemorrhage using non-contrast CT scans

Objectives This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans. Methods This retrospective study included 618 patients diagnosed with...

Full description

Saved in:
Bibliographic Details
Published inEuropean radiology Vol. 35; no. 11; pp. 6775 - 6784
Main Authors Chen, Lingxu, Wang, Xiaochen, Li, Yuanjun, Bao, Yang, Wang, Sihui, Zhao, Xuening, Yuan, Mengyuan, Kang, Jianghe, Sun, Shengjun
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-1084
0938-7994
1432-1084
DOI10.1007/s00330-025-11666-2

Cover

Abstract Objectives This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans. Methods This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH. Results The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929–0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889–0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660). Conclusion The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model’s high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings. Key Points Question Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis . Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists’ diagnostic performance . Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency . Graphical Abstract
AbstractList This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans.OBJECTIVESThis study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans.This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH.METHODSThis retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH.The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929-0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889-0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660).RESULTSThe model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929-0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889-0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660).The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model's high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings.CONCLUSIONThe study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model's high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings.Question Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis. Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists' diagnostic performance. Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency.KEY POINTSQuestion Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis. Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists' diagnostic performance. Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency.
This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans. This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH. The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929-0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889-0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660). The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model's high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings. Question Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis. Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists' diagnostic performance. Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency.
Objectives This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans. Methods This retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH. Results The model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929–0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889–0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660). Conclusion The study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model’s high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings. Key Points Question Differentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis . Findings A ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists’ diagnostic performance . Clinical relevance AI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency . Graphical Abstract
ObjectivesThis study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage (naSAH) using non-contrast computed tomography (NCCT) scans.MethodsThis retrospective study included 618 patients diagnosed with SAH. The dataset was divided into a training and internal validation cohort (533 cases: aSAH = 305, naSAH = 228) and an external test cohort (85 cases: aSAH = 55, naSAH = 30). Hemorrhage regions were automatically segmented using a U-Net + + architecture. A ResNet-based deep learning model was trained to classify the etiology of SAH.ResultsThe model achieved robust performance in distinguishing aSAH from naSAH. In the internal validation cohort, it yielded an average sensitivity of 0.898, specificity of 0.877, accuracy of 0.889, Matthews correlation coefficient (MCC) of 0.777, and an area under the curve (AUC) of 0.948 (95% CI: 0.929–0.967). In the external test cohort, the model demonstrated an average sensitivity of 0.891, specificity of 0.880, accuracy of 0.887, MCC of 0.761, and AUC of 0.914 (95% CI: 0.889–0.940), outperforming junior radiologists (average accuracy: 0.836; MCC: 0.660).ConclusionThe study presents a deep learning architecture capable of accurately identifying SAH etiology from NCCT scans. The model’s high diagnostic performance highlights its potential to support rapid and precise clinical decision-making in emergency settings.Key PointsQuestionDifferentiating aneurysmal from naSAH is crucial for timely treatment, yet existing imaging modalities are not universally accessible or convenient for rapid diagnosis.FindingsA ResNet-variant-based deep learning model utilizing non-contrast CT scans demonstrated high accuracy in classifying SAH etiology and enhanced junior radiologists’ diagnostic performance.Clinical relevanceAI-driven analysis of non-contrast CT scans provides a fast, cost-effective, and non-invasive solution for preoperative SAH diagnosis. This approach facilitates early identification of patients needing aneurysm surgery while minimizing unnecessary angiography in non-aneurysmal cases, enhancing clinical workflow efficiency.
Author Li, Yuanjun
Wang, Sihui
Kang, Jianghe
Wang, Xiaochen
Sun, Shengjun
Bao, Yang
Chen, Lingxu
Zhao, Xuening
Yuan, Mengyuan
Author_xml – sequence: 1
  givenname: Lingxu
  surname: Chen
  fullname: Chen, Lingxu
  organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Department of Radiology, Beijing Neurosurgical Institute
– sequence: 2
  givenname: Xiaochen
  surname: Wang
  fullname: Wang, Xiaochen
  organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Department of Radiology, Beijing Neurosurgical Institute
– sequence: 3
  givenname: Yuanjun
  surname: Li
  fullname: Li, Yuanjun
  organization: Department of Radiology, Zhongshan Hospital Affiliated to Xiamen University, Hubinnan Road
– sequence: 4
  givenname: Yang
  surname: Bao
  fullname: Bao, Yang
  organization: Neusoft Medical Systems
– sequence: 5
  givenname: Sihui
  surname: Wang
  fullname: Wang, Sihui
  organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University
– sequence: 6
  givenname: Xuening
  surname: Zhao
  fullname: Zhao, Xuening
  organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University
– sequence: 7
  givenname: Mengyuan
  surname: Yuan
  fullname: Yuan, Mengyuan
  organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University
– sequence: 8
  givenname: Jianghe
  surname: Kang
  fullname: Kang, Jianghe
  organization: Department of Radiology, Zhongshan Hospital Affiliated to Xiamen University, Hubinnan Road
– sequence: 9
  givenname: Shengjun
  orcidid: 0000-0001-5024-145X
  surname: Sun
  fullname: Sun, Shengjun
  email: sunshengjun0212@163.com
  organization: Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Department of Radiology, Beijing Neurosurgical Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40382487$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URF78AAtkiU02Br-7Z4mGEJAisUnWltsu93Tktge7G4lNvh0PEx5iwapK5XOrrnzP0UnKCRB6xehbRmn3rlIqBCWUK8KY1prwZ-iMScEJo708-as_Ree1PlBKN0x2L9CppKLnsu_O0OMH-AYx72dIC84BW-wB9iSCLWlKI7ZxzGVadjMOuWBYphzzODkbsYu21im0vg3TQVvXwRbrdilPHu9gzqXs7Ah4rYdNzTxxOS3F1gVv73B1NtVL9DzYWOHlU71A9x-v77afyO2Xm8_b97fECd4vhAluu164jRKeS65oN3jQQ3tTMvS0c6wPevDehY1SjofQiRAYhQBMO--5uEBXx737kr-uUBczT9VBjDZBXqsRnCqtJaesoW_-QR_yWlJz1yitNBdK9o16_UStwwze7Ms02_Ld_PrZBvAj4EqutUD4jTBqDvGZY3ymxWd-xmcONsVRVBucRih_bv9H9QMJnJ3v
Cites_doi 10.1056/NEJMcp1605827
10.3174/ajnr.A7483
10.1212/WNL.0000000000201710
10.1055/s-0028-1109355
10.1002/ana.22270
10.1109/CVPR.2016.90
10.1016/j.neuroimage.2023.120321
10.3171/2013.9.JNS131337
10.5152/dir.2014.13401
10.3171/2022.3.JNS22157
10.3390/app10061959
10.1038/s41598-023-48482-x
10.1016/0140-6736(91)91836-J
10.1016/j.nicl.2021.102785
10.1016/S0140-6736(22)00938-2
10.3174/ajnr.A4503
10.1007/978-3-030-00889-5_1
10.1148/radiol.10092373
10.1001/jamaneurol.2019.0006
10.1177/197140091102400508
10.1038/s41551-018-0305-z
10.1148/radiol.2433060536
10.1007/s00701-009-0525-9
10.1016/S0140-6736(16)30668-7
10.1093/neuros/nyz346
10.1016/S1474-4422(09)70025-0
10.1055/s-0042-1748771
10.3390/diagnostics13182987
10.3390/s21144758
10.1111/jon.13078
10.1093/neuros/nyw113
10.3171/2022.11.JNS222192
10.1109/TMI.2021.3078828
10.1136/neurintsurg-2015-011680
10.1007/s10143-021-01650-x
10.1016/j.cmpb.2022.106874
10.1038/s41598-020-77441-z
10.1056/NEJMra052760
10.3390/s22197575
10.3389/fneur.2022.960702
ContentType Journal Article
Copyright The Author(s), under exclusive licence to European Society of Radiology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2025. The Author(s), under exclusive licence to European Society of Radiology.
The Author(s), under exclusive licence to European Society of Radiology 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to European Society of Radiology 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2025. The Author(s), under exclusive licence to European Society of Radiology.
– notice: The Author(s), under exclusive licence to European Society of Radiology 2025.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1007/s00330-025-11666-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1432-1084
EndPage 6784
ExternalDocumentID 40382487
10_1007_s00330_025_11666_2
Genre Journal Article
GeographicLocations Beijing China
China
GeographicLocations_xml – name: China
– name: Beijing China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 82371939
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Capital' s Funds for Health Improvement and Research
  grantid: SF 2022-2-1074
– fundername: National Natural Science Foundation of China
  grantid: 82371939
GroupedDBID ---
-Y2
.86
.VR
04C
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6PF
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHVE
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSTC
ACUDM
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADJJI
ADKFA
ADKNI
ADKPE
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFHIU
AFJLC
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGVAE
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECF
ECT
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9S
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDE
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z8Z
ZMTXR
ZOVNA
~EX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
AAYZH
ID FETCH-LOGICAL-c328t-132a783c953d242507bde6b32854f807c18f6bddcf955c2ff73ff10efe16cdd23
IEDL.DBID U2A
ISSN 1432-1084
0938-7994
IngestDate Fri Sep 05 16:17:28 EDT 2025
Wed Oct 29 04:44:29 EDT 2025
Wed Oct 29 02:16:15 EDT 2025
Wed Oct 29 21:20:45 EDT 2025
Tue Oct 28 02:38:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Deep learning
Computed tomography
Subarachnoid hemorrhage
Intracranial aneurysm
Language English
License 2025. The Author(s), under exclusive licence to European Society of Radiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c328t-132a783c953d242507bde6b32854f807c18f6bddcf955c2ff73ff10efe16cdd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5024-145X
PMID 40382487
PQID 3265623548
PQPubID 54162
PageCount 10
ParticipantIDs proquest_miscellaneous_3205664201
proquest_journals_3265623548
pubmed_primary_40382487
crossref_primary_10_1007_s00330_025_11666_2
springer_journals_10_1007_s00330_025_11666_2
PublicationCentury 2000
PublicationDate 20251100
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 20251100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle European radiology
PublicationTitleAbbrev Eur Radiol
PublicationTitleAlternate Eur Radiol
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References MT Lawton (11666_CR4) 2017; 377
AN Wallace (11666_CR33) 2016; 8
VL Feigin (11666_CR1) 2009; 8
TJ Kaufmann (11666_CR12) 2007; 243
NA Bakker (11666_CR13) 2014; 120
A Pérez Del Barrio (11666_CR23) 2023; 33
RL Macdonald (11666_CR6) 2017; 389
A Weyerbrock (11666_CR34) 2009; 181
S Nayak (11666_CR40) 2011; 24
X Wang (11666_CR25) 2021; 32
HE Westerlaan (11666_CR35) 2011; 258
D Mandel (11666_CR19) 2023; 138
KH Yu (11666_CR20) 2018; 2
JY Lee (11666_CR26) 2020; 10
GJ Rinkel (11666_CR7) 1991; 338
J Claassen (11666_CR8) 2022; 400
K Hou (11666_CR9) 2022; 13
J Egger (11666_CR22) 2022; 221
A Thanellas (11666_CR28) 2023; 100
N Etminan (11666_CR2) 2019; 76
K Baumgartner (11666_CR17) 2023; 139
Z Zhou (11666_CR29) 2018; 11045
H Zheng (11666_CR30) 2021; 40
M Woznica (11666_CR39) 2010; 152
MJ Kole (11666_CR18) 2020; 86
J Menke (11666_CR3) 2011; 69
C Conzen (11666_CR10) 2022; 45
LR Philipp (11666_CR15) 2017; 80
11666_CR32
11666_CR31
I Nguyen (11666_CR14) 2022; 43
P Hu (11666_CR27) 2023; 279
JJ Heit (11666_CR16) 2016; 37
11666_CR36
R Nützel (11666_CR11) 2023; 84
ES Kim (11666_CR38) 2014; 20
JL Brisman (11666_CR5) 2006; 355
S Umapathy (11666_CR24) 2023; 13
S Bhat (11666_CR37) 2023; 13
D Ahmedt-Aristizabal (11666_CR21) 2021; 21
40844754 - Eur Radiol. 2025 Nov;35(11):6773-6774. doi: 10.1007/s00330-025-11859-9.
References_xml – volume: 377
  start-page: 257
  year: 2017
  ident: 11666_CR4
  publication-title: N Engl J Med
  doi: 10.1056/NEJMcp1605827
– volume: 43
  start-page: 731
  year: 2022
  ident: 11666_CR14
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A7483
– volume: 100
  start-page: e1257
  year: 2023
  ident: 11666_CR28
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000201710
– volume: 181
  start-page: 881
  year: 2009
  ident: 11666_CR34
  publication-title: Rofo
  doi: 10.1055/s-0028-1109355
– volume: 69
  start-page: 646
  year: 2011
  ident: 11666_CR3
  publication-title: Ann Neurol
  doi: 10.1002/ana.22270
– ident: 11666_CR36
  doi: 10.1109/CVPR.2016.90
– volume: 279
  start-page: 120321
  year: 2023
  ident: 11666_CR27
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120321
– volume: 120
  start-page: 99
  year: 2014
  ident: 11666_CR13
  publication-title: J Neurosurg
  doi: 10.3171/2013.9.JNS131337
– volume: 20
  start-page: 277
  year: 2014
  ident: 11666_CR38
  publication-title: Diagn Interv Radiol
  doi: 10.5152/dir.2014.13401
– volume: 138
  start-page: 165
  year: 2023
  ident: 11666_CR19
  publication-title: J Neurosurg
  doi: 10.3171/2022.3.JNS22157
– ident: 11666_CR31
  doi: 10.3390/app10061959
– volume: 13
  year: 2023
  ident: 11666_CR37
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-48482-x
– volume: 338
  start-page: 964
  year: 1991
  ident: 11666_CR7
  publication-title: Lancet
  doi: 10.1016/0140-6736(91)91836-J
– volume: 32
  start-page: 102785
  year: 2021
  ident: 11666_CR25
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2021.102785
– volume: 400
  start-page: 846
  year: 2022
  ident: 11666_CR8
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)00938-2
– volume: 37
  start-page: 297
  year: 2016
  ident: 11666_CR16
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A4503
– volume: 11045
  start-page: 3
  year: 2018
  ident: 11666_CR29
  publication-title: Deep Learn Med Image Anal Multimodal Learn Clin Decis Support
  doi: 10.1007/978-3-030-00889-5_1
– volume: 258
  start-page: 134
  year: 2011
  ident: 11666_CR35
  publication-title: Radiology
  doi: 10.1148/radiol.10092373
– volume: 76
  start-page: 588
  year: 2019
  ident: 11666_CR2
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2019.0006
– volume: 24
  start-page: 715
  year: 2011
  ident: 11666_CR40
  publication-title: Neuroradiol J
  doi: 10.1177/197140091102400508
– volume: 2
  start-page: 719
  year: 2018
  ident: 11666_CR20
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-018-0305-z
– volume: 243
  start-page: 812
  year: 2007
  ident: 11666_CR12
  publication-title: Radiology
  doi: 10.1148/radiol.2433060536
– volume: 152
  start-page: 417
  year: 2010
  ident: 11666_CR39
  publication-title: Acta Neurochir
  doi: 10.1007/s00701-009-0525-9
– volume: 389
  start-page: 655
  year: 2017
  ident: 11666_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)30668-7
– volume: 86
  start-page: 783
  year: 2020
  ident: 11666_CR18
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyz346
– volume: 8
  start-page: 355
  year: 2009
  ident: 11666_CR1
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(09)70025-0
– volume: 84
  start-page: 167
  year: 2023
  ident: 11666_CR11
  publication-title: J Neurol Surg A Cent Eur Neurosurg
  doi: 10.1055/s-0042-1748771
– volume: 13
  start-page: 2987
  year: 2023
  ident: 11666_CR24
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics13182987
– volume: 21
  start-page: 4758
  year: 2021
  ident: 11666_CR21
  publication-title: Sensors (Basel)
  doi: 10.3390/s21144758
– volume: 33
  start-page: 218
  year: 2023
  ident: 11666_CR23
  publication-title: J Neuroimaging
  doi: 10.1111/jon.13078
– volume: 80
  start-page: 769
  year: 2017
  ident: 11666_CR15
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyw113
– volume: 139
  start-page: 106
  year: 2023
  ident: 11666_CR17
  publication-title: J Neurosurg
  doi: 10.3171/2022.11.JNS222192
– volume: 40
  start-page: 2452
  year: 2021
  ident: 11666_CR30
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2021.3078828
– volume: 8
  start-page: 378
  year: 2016
  ident: 11666_CR33
  publication-title: J Neurointerv Surg
  doi: 10.1136/neurintsurg-2015-011680
– volume: 45
  start-page: 1413
  year: 2022
  ident: 11666_CR10
  publication-title: Neurosurg Rev
  doi: 10.1007/s10143-021-01650-x
– volume: 221
  start-page: 106874
  year: 2022
  ident: 11666_CR22
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106874
– volume: 10
  year: 2020
  ident: 11666_CR26
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-77441-z
– volume: 355
  start-page: 928
  year: 2006
  ident: 11666_CR5
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra052760
– ident: 11666_CR32
  doi: 10.3390/s22197575
– volume: 13
  start-page: 960702
  year: 2022
  ident: 11666_CR9
  publication-title: Front Neurol
  doi: 10.3389/fneur.2022.960702
– reference: 40844754 - Eur Radiol. 2025 Nov;35(11):6773-6774. doi: 10.1007/s00330-025-11859-9.
SSID ssj0009147
Score 2.481963
Snippet Objectives This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid...
This study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid hemorrhage...
ObjectivesThis study aims to develop a deep learning algorithm for differentiating aneurysmal subarachnoid hemorrhage (aSAH) from non-aneurysmal subarachnoid...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 6775
SubjectTerms Accuracy
Adult
Aged
Algorithms
Aneurysm
Aneurysms
Angiography
Classification
Clinical medicine
Computed tomography
Correlation coefficient
Correlation coefficients
Decision making
Deep Learning
Diagnosis
Diagnostic Radiology
Electronic health records
Etiology
Female
Hemorrhage
Hospitals
Humans
Imaging
Internal Medicine
Interventional Radiology
Machine learning
Male
Medical imaging
Medical records
Medicine
Medicine & Public Health
Middle Aged
Neuro
Neuroradiology
Patients
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
Retrospective Studies
Sensitivity
Sensitivity and Specificity
Subarachnoid hemorrhage
Subarachnoid Hemorrhage - classification
Subarachnoid Hemorrhage - diagnostic imaging
Subarachnoid Hemorrhage - etiology
Tomography, X-Ray Computed - methods
Ultrasound
Title Development of a deep-learning algorithm for etiological classification of subarachnoid hemorrhage using non-contrast CT scans
URI https://link.springer.com/article/10.1007/s00330-025-11666-2
https://www.ncbi.nlm.nih.gov/pubmed/40382487
https://www.proquest.com/docview/3265623548
https://www.proquest.com/docview/3205664201
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009147
  issn: 1432-1084
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH6IgngRd-NSRvCmA8nMZDtWaRWlnizoKSSztIK2xbRXf7vvpUmrqAdPOWSWMN_kzfvmbQDnqUJxWAjHY6VCrpAQ8CI1OdfI4pBtaBVWF269h-i2r-6ewqc6KKxsvN0bk2QlqRfBblR2zOdUfjUgWxdHwbsWUjov3MV90V6m2g1UXIfH_N7v-xH0Q6_8YROtjpruFmzWOiJrz0HdhhU72oH1Xm0F34WPL54-bOxYzoy1E14XgBiw_HUwRs4_fGOokTI7fWkEHNOkK5NzUIUH9S1nZG6g6_UXw4bkdvs-RBHDyB9-wEbjEa-c2fNyyq4fWYlAlHvQ73Yer295XUeBaykSqjYv8jiROg2lIYbhx4WxUSEpeNIlCEiQuKgwRrs0DLVwLpbOBb51Noi0MULuwyrOZw-BxdrgGFEa575TMtG5NIlJbOFCE-AwvgcXzdJmk3m6jGyRGLkCIkMgsgqITHhw0qx-Vv86ZYb6JOlkyKQ8OFu8xk1Plox8ZMczaoN6GzInP_DgYI7aYjrly0QgDfPgsoFxOfjf33L0v-bHsCHmW4r7wQmsTt9n9hTVk2nRgrV29-rqgZ43z_edVrU7PwGJQOFO
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT-MwFH5CRQIuMMMahhmMxA2MEtvZjggBZSmnVoJTlHhpK6CtmvTCgd8-z1nKMMCBc7zF7_n5fX4bwGEsUBxmzNBQCJ8KBAQ0i1VKJaI4RBtS-OWDW-cuaPfE9b1_XweF5Y23e2OSLCX1PNjNlh1zqS2_6llbF0XBuygQoLAWLJ5ePtycvyXb9URYB8h83vP9JfRBs_xgFS0vm4s16DXLrHxMHk9mRXYiX_7L4Pjd__gBq7X2SU4rdvkJC3q0Dkud2r6-Aa__-BCRsSEpUVpPaF1aok_Sp_54OiwGzwR1XaKLYSM6ibRauHU7Kilt--Yza8iwD_dDRQbWoXc6QOFFrKd9n4zGI1q6yad5Qc66JEcS55vQuzjvnrVpXaGBSs4iW8eepWHEZexzZbGLG2ZKBxm3YZkmQlJ7kQkypaSJfV8yY0JujOdqo71AKsX4FrRwPr0DJJQKxwjiMHWN4JFMuYpUpDPjKw-HcR04akiWTKpEHMk85XK5pQluaVJuacIc2GuomtSHMk9QU7XaHmI0Bw7mn_E4WRtJOtLjmW2DGiFiMtdzYLvihvl0wuURQ4DnwHFD2bfBv17L7vea78Nyu9u5TW6v7m5-wQqrGIW63h60iulM_0YlqMj-1Dz_F3l0_hU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT9wwFH6qQEK9IKClhK2u1BtYk9jOdkTAiC4gDjPS3KLEywxSmxmRzJXfzntZZkDQQ8_xEvmzn7_ntwF8TxWKw0I4HisVcoUKAS9Sk3ONWhxqG1qFzYPb7V10M1Y_J-HkRRR_4-3emyTbmAbK0lTWg4Vxg1XgG5Ug8zmVYg3I7sVRCG8qSpSAO3osLtZpdwMVd6Ey7_d7fR294Zhv7KPNtTPcge2OL7KLFuBd-GDLPdi67Szin-DphdcPmzuWM2PtgnfFIKYs_zOdo_4_-8uQnTJbP_TCjmnizeQo1GBDfaslmR7oqf3BsBm54D7OUNww8o2fsnJe8saxPa9qdjliFYJSfYbx8Hp0ecO7mgpcS5FQ5XmRx4nUaSgNaRt-XBgbFZICKV2C4ASJiwpjtEvDUAvnYulc4Ftng0gbI-Q-bOB89gBYrA2OEaVx7jslE51Lk5jEFi40AQ7je3DWL222aFNnZKskyQ0QGQKRNUBkwoPjfvWz7hhVGXJL4meoVXnwbfUZDwBZNfLSzpfUBjkcalF-4MGXFrXVdMqXiUCVzIPzHsb14P_-l8P_a_4Vtu6vhtnvH3e_juCjaHcX94Nj2Kgfl_YEWUtdnDYb8xkFguVm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+deep-learning+algorithm+for+etiological+classification+of+subarachnoid+hemorrhage+using+non-contrast+CT+scans&rft.jtitle=European+radiology&rft.au=Chen%2C+Lingxu&rft.au=Wang%2C+Xiaochen&rft.au=Li%2C+Yuanjun&rft.au=Bao%2C+Yang&rft.date=2025-11-01&rft.eissn=1432-1084&rft.volume=35&rft.issue=11&rft.spage=6775&rft_id=info:doi/10.1007%2Fs00330-025-11666-2&rft_id=info%3Apmid%2F40382487&rft.externalDocID=40382487
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-1084&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-1084&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-1084&client=summon