Optimized sizing of photovoltaic grid‐connected electric vehicle charging system using particle swarm optimization
Summary In this paper, the particle swarm optimization (PSO) is used to find optimum size of the photovoltaic (PV) array and energy storage unit (ESU) for PV grid‐connected charging system (in office workplace) for electric vehicles (EV). It is designed in such a way that the EVs are charged at a fi...
Saved in:
| Published in | International journal of energy research Vol. 43; no. 1; pp. 500 - 522 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Bognor Regis
John Wiley & Sons, Inc
01.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0363-907X 1099-114X |
| DOI | 10.1002/er.4287 |
Cover
| Abstract | Summary
In this paper, the particle swarm optimization (PSO) is used to find optimum size of the photovoltaic (PV) array and energy storage unit (ESU) for PV grid‐connected charging system (in office workplace) for electric vehicles (EV). It is designed in such a way that the EVs are charged at a fixed price (rather than time‐of‐use price) without incurring economic losses to the station owner. The simulation is modeled using the single diode model (for PV) and the state of charge of Li‐ion battery (for ESU and EV). The objective function of the PSO is formulated based on a financial model that comprises of the grid tariff, EV demand, and the purchasing as well as selling prices of the energy from PV and ESU. By integrating the financial model with energy management algorithm (EMA), the PSO computes the minimum number of PV modules (Npv) and ESU batteries (Nbat) for a various number of vehicles and office holidays. The resiliency of the proposed system is validated under different weather conditions, EV fleet, parity levels, energy prices, and operating period. Furthermore, the performance of the proposed system is compared with the standard grid charging system. The results suggest that with the computed Npv and Nbat, the charging price is decreased by approximately 16%, while the EV charging burden on the grid is reduced by 94% to 99%. It is envisaged that this work provides the guidance for the installers to precisely determine the optimum size of the components prior to the physical construction of the charging station.
Methodology for modeling of PV‐ESU grid‐based EV charging system is described.
Main features of existing popular system sizing techniques are compared.
An energy management algorithm (EMA) is developed to control the charging system.
Optimum sizes of PV modules and ESU batteries are determined by means of PSO.
Proposed system is benchmarked against the standard grid charging system. |
|---|---|
| AbstractList | Summary
In this paper, the particle swarm optimization (PSO) is used to find optimum size of the photovoltaic (PV) array and energy storage unit (ESU) for PV grid‐connected charging system (in office workplace) for electric vehicles (EV). It is designed in such a way that the EVs are charged at a fixed price (rather than time‐of‐use price) without incurring economic losses to the station owner. The simulation is modeled using the single diode model (for PV) and the state of charge of Li‐ion battery (for ESU and EV). The objective function of the PSO is formulated based on a financial model that comprises of the grid tariff, EV demand, and the purchasing as well as selling prices of the energy from PV and ESU. By integrating the financial model with energy management algorithm (EMA), the PSO computes the minimum number of PV modules (Npv) and ESU batteries (Nbat) for a various number of vehicles and office holidays. The resiliency of the proposed system is validated under different weather conditions, EV fleet, parity levels, energy prices, and operating period. Furthermore, the performance of the proposed system is compared with the standard grid charging system. The results suggest that with the computed Npv and Nbat, the charging price is decreased by approximately 16%, while the EV charging burden on the grid is reduced by 94% to 99%. It is envisaged that this work provides the guidance for the installers to precisely determine the optimum size of the components prior to the physical construction of the charging station.
Methodology for modeling of PV‐ESU grid‐based EV charging system is described.
Main features of existing popular system sizing techniques are compared.
An energy management algorithm (EMA) is developed to control the charging system.
Optimum sizes of PV modules and ESU batteries are determined by means of PSO.
Proposed system is benchmarked against the standard grid charging system. In this paper, the particle swarm optimization (PSO) is used to find optimum size of the photovoltaic (PV) array and energy storage unit (ESU) for PV grid‐connected charging system (in office workplace) for electric vehicles (EV). It is designed in such a way that the EVs are charged at a fixed price (rather than time‐of‐use price) without incurring economic losses to the station owner. The simulation is modeled using the single diode model (for PV) and the state of charge of Li‐ion battery (for ESU and EV). The objective function of the PSO is formulated based on a financial model that comprises of the grid tariff, EV demand, and the purchasing as well as selling prices of the energy from PV and ESU. By integrating the financial model with energy management algorithm (EMA), the PSO computes the minimum number of PV modules (Npv) and ESU batteries (Nbat) for a various number of vehicles and office holidays. The resiliency of the proposed system is validated under different weather conditions, EV fleet, parity levels, energy prices, and operating period. Furthermore, the performance of the proposed system is compared with the standard grid charging system. The results suggest that with the computed Npv and Nbat, the charging price is decreased by approximately 16%, while the EV charging burden on the grid is reduced by 94% to 99%. It is envisaged that this work provides the guidance for the installers to precisely determine the optimum size of the components prior to the physical construction of the charging station. |
| Author | Salam, Zainal Sultana, Umbrin Awan, Ahmed Bilal Younas, Muhammad Bhatti, Abdul Rauf Sultana, Beenish Rasheed, Nadia |
| Author_xml | – sequence: 1 givenname: Abdul Rauf orcidid: 0000-0001-9609-4563 surname: Bhatti fullname: Bhatti, Abdul Rauf email: bhatti.abdulrauf@gmail.com organization: Universiti Teknologi Malaysia – sequence: 2 givenname: Zainal surname: Salam fullname: Salam, Zainal organization: Universiti Teknologi Malaysia – sequence: 3 givenname: Beenish orcidid: 0000-0002-9461-2854 surname: Sultana fullname: Sultana, Beenish organization: NED University of Engineering and Technology – sequence: 4 givenname: Nadia surname: Rasheed fullname: Rasheed, Nadia organization: The Islamia University of Bahawalpur – sequence: 5 givenname: Ahmed Bilal orcidid: 0000-0002-5373-2999 surname: Awan fullname: Awan, Ahmed Bilal organization: Majmaah University – sequence: 6 givenname: Umbrin surname: Sultana fullname: Sultana, Umbrin organization: NED University of Engineering and Technology – sequence: 7 givenname: Muhammad surname: Younas fullname: Younas, Muhammad organization: COMSATS University Islamabad |
| BookMark | eNp1kN9KwzAUxoNMcE7xFQpeeCGdJ0mXLpcy5h8YDERhdyVN0y2jbWqSbWxXPoLP6JPYrl6JXn0cvt_5Duc7R73KVAqhKwxDDEDulB1GZByfoD4GzkOMo0UP9YEyGnKIF2fo3Lk1QOPhuI_8vPa61AeVBU4fdLUMTB7UK-PN1hReaBksrc6-Pj6lqSolfcOpolHbOFu10rJQgVwJu2xX3d55VQYb1w61sP5ou52wZWC6O8JrU12g01wUTl3-6AC9PUxfJ0_hbP74PLmfhZI2H4QjIBizMUDKScpiCTICKXOecYFplkmZioixUcpSkhLFczbKIc1jRYkgHBilA3Td5dbWvG-U88nabGzVnEwIHsV4jCnEDXXTUdIa56zKk9rqUth9giFpK02UTdpKGzL8RUrtjx95K3TxB3_b8TtdqP1_scn05Uh_A8swi8M |
| CitedBy_id | crossref_primary_10_3390_su11071973 crossref_primary_10_1002_oca_3099 crossref_primary_10_1051_rees_2022013 crossref_primary_10_3390_en14175368 crossref_primary_10_1016_j_ijepes_2021_107346 crossref_primary_10_1016_j_est_2024_111306 crossref_primary_10_1080_15435075_2020_1731816 crossref_primary_10_5004_dwt_2020_26064 crossref_primary_10_1016_j_est_2021_102913 crossref_primary_10_3390_su142113767 crossref_primary_10_1002_est2_115 crossref_primary_10_1080_03772063_2024_2409685 crossref_primary_10_1049_els2_12002 crossref_primary_10_3390_en13143639 crossref_primary_10_1016_j_matpr_2023_02_030 crossref_primary_10_3390_en17112653 crossref_primary_10_1002_er_5407 crossref_primary_10_4271_2023_01_0706 crossref_primary_10_1016_j_engappai_2020_103963 crossref_primary_10_3390_en14206723 crossref_primary_10_3390_en17164012 crossref_primary_10_3390_math10060924 crossref_primary_10_1002_er_8476 crossref_primary_10_1186_s44147_024_00477_9 crossref_primary_10_1016_j_seta_2021_101439 crossref_primary_10_1016_j_scs_2024_105575 crossref_primary_10_3390_s21217133 crossref_primary_10_1002_ieam_4299 crossref_primary_10_1002_er_4793 crossref_primary_10_1016_j_est_2022_103973 crossref_primary_10_1002_er_5488 crossref_primary_10_3390_app11104601 crossref_primary_10_1177_0958305X231225101 crossref_primary_10_3390_wevj13080152 crossref_primary_10_3390_su132111893 crossref_primary_10_32628_IJSRSET2411270 crossref_primary_10_3390_en14061537 crossref_primary_10_22581_muet1982_2103_12 crossref_primary_10_3390_su142114045 crossref_primary_10_1088_1742_6596_2849_1_012098 crossref_primary_10_1109_ACCESS_2021_3096864 crossref_primary_10_1016_j_est_2024_114111 crossref_primary_10_1016_j_ijhydene_2019_03_158 crossref_primary_10_1002_er_5678 crossref_primary_10_3390_en16083509 crossref_primary_10_3390_su151411144 crossref_primary_10_1002_er_4864 crossref_primary_10_1080_15567036_2021_1905109 crossref_primary_10_3390_su15010771 crossref_primary_10_1002_oca_3190 crossref_primary_10_1016_j_est_2020_101962 crossref_primary_10_3390_app11010245 crossref_primary_10_1371_journal_pone_0266660 crossref_primary_10_1016_j_energy_2023_129991 crossref_primary_10_1109_ACCESS_2020_3022738 crossref_primary_10_1007_s40866_021_00105_y crossref_primary_10_1088_2053_1591_ab3ca5 crossref_primary_10_1007_s12555_019_0931_6 crossref_primary_10_1016_j_est_2024_114728 crossref_primary_10_3390_s22197448 crossref_primary_10_3390_en16062570 crossref_primary_10_3390_su14148320 crossref_primary_10_1038_s41598_024_53248_0 crossref_primary_10_1016_j_est_2023_108860 crossref_primary_10_1002_er_4499 crossref_primary_10_1007_s42835_024_02066_5 |
| Cites_doi | 10.1016/j.rser.2011.07.104 10.1016/j.energy.2016.08.099 10.1016/j.solener.2010.10.018 10.1016/j.epsr.2014.08.007 10.1016/j.enpol.2008.09.030 10.1016/j.solener.2014.09.034 10.1016/j.energy.2011.09.006 10.1016/j.energy.2013.11.045 10.1016/j.solener.2011.06.025 10.1016/j.renene.2015.06.029 10.1016/j.epsr.2016.08.017 10.1016/j.solener.2012.04.009 10.1016/j.enconman.2016.11.060 10.1016/j.epsr.2014.01.012 10.1016/j.enpol.2018.01.029 10.1002/er.3289 10.1016/j.epsr.2008.09.017 10.3906/elk-1412-136 10.1016/j.renene.2018.02.126 10.1016/j.energy.2014.11.069 10.1155/2015/496401 10.1002/er.3525 10.1016/j.renene.2014.10.028 10.1007/s00521-011-0711-6 10.1016/j.renene.2013.11.066 10.1109/PECON.2016.7951571 10.1016/j.epsr.2014.07.033 10.1016/j.enconman.2013.11.011 10.1016/j.enpol.2010.03.013 10.1016/j.enconman.2016.05.011 10.1002/er.3130 10.6113/JPE.2011.11.2.179 10.1016/j.energy.2014.11.072 10.1109/TSTE.2013.2247428 10.1016/j.apenergy.2016.08.168 10.1016/j.epsr.2015.06.019 10.1016/j.enpol.2011.08.052 10.3390/en8054335 10.1016/j.energy.2015.05.145 10.2172/983330 10.1016/j.renene.2015.02.045 10.1016/j.epsr.2012.10.015 10.1016/j.epsr.2016.04.002 10.1109/TSTE.2013.2278544 10.1016/j.rser.2015.04.061 10.1109/TIA.2013.2296620 10.1016/j.renene.2014.08.012 10.1109/TPEL.2012.2212917 10.1109/TII.2014.2322822 10.1016/j.rser.2015.09.091 10.2172/1176740 10.1016/j.solener.2016.11.013 10.1016/j.apenergy.2012.12.081 10.1109/TPWRS.2012.2208232 10.1109/ISGT-Asia.2015.7387132 10.1002/er.3472 |
| ContentType | Journal Article |
| Copyright | 2018 John Wiley & Sons, Ltd. 2019 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2018 John Wiley & Sons, Ltd. – notice: 2019 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| DOI | 10.1002/er.4287 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Economics |
| EISSN | 1099-114X |
| EndPage | 522 |
| ExternalDocumentID | 10_1002_er_4287 ER4287 |
| Genre | article |
| GrantInformation_xml | – fundername: Universiti Teknologi Malaysia funderid: R.J130000.7823.4F919 – fundername: Ministry of Higher Education |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PQGLB PUEGO 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| ID | FETCH-LOGICAL-c3287-502116800b92b67c0c40ccf9d9a13ddccba4665b6b2b2e9f65f0bf7e32a290633 |
| IEDL.DBID | DR2 |
| ISSN | 0363-907X |
| IngestDate | Fri Jul 25 12:16:06 EDT 2025 Wed Oct 01 02:24:10 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Wed Jan 22 16:29:37 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3287-502116800b92b67c0c40ccf9d9a13ddccba4665b6b2b2e9f65f0bf7e32a290633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9461-2854 0000-0001-9609-4563 0000-0002-5373-2999 |
| PQID | 2157181307 |
| PQPubID | 996365 |
| PageCount | 23 |
| ParticipantIDs | proquest_journals_2157181307 crossref_primary_10_1002_er_4287 crossref_citationtrail_10_1002_er_4287 wiley_primary_10_1002_er_4287_ER4287 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Bognor Regis |
| PublicationPlace_xml | – name: Bognor Regis |
| PublicationTitle | International journal of energy research |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2015; 39 2013; 4 2013; 28 2013; 22 2015; 501 2015; 75 2018; 125 2008; 36 2011; 11 2015; 80 2011; 15 2016; 141 2014; 66 2014; 65 2016; 140 2016; 78 2016; 183 2015; 89 2014; 5 2015; 49 2015; 82 2013; 96 2016; 85 2016; 40 2016; 115 2014; 50 2014; 10 2014; 117 2010; 38 2010 2013; 105 2015; 120 2016; 54 1995 2015; 128 2011; 36 2014; 110 2017; 133 2011; 39 2015; 8 2016; 120 2016; 7 2009; 79 2018; 115 2014; 38 2015; 2015 2011; 85 2016 2015 2016; 137 2014 2014; 78 2016; 24 2012; 86 Zhang W (e_1_2_9_28_1) 2015; 2015 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 Andreas A (e_1_2_9_41_1) e_1_2_9_47_1 Zhang L (e_1_2_9_60_1) 2014 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_55_1 Liu N (e_1_2_9_27_1) 2016; 137 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 Abdolrasol MG (e_1_2_9_32_1) 2016; 78 e_1_2_9_25_1 e_1_2_9_48_1 Bhatti AR (e_1_2_9_7_1) 2016; 7 e_1_2_9_29_1 Parrado C (e_1_2_9_46_1); 2016 |
| References_xml | – volume: 36 start-page: 6567 issue: 11 year: 2011 end-page: 6576 article-title: Stochastic optimal charging of electric‐drive vehicles with renewable energy publication-title: Energy – volume: 50 start-page: 2323 issue: 4 year: 2014 end-page: 2330 article-title: Optimal charging of plug‐in electric vehicles for a car‐park infrastructure publication-title: IEEE Trans Ind Appl – volume: 28 start-page: 607 issue: 2 year: 2013 end-page: 614 article-title: Development of physical‐based demand response‐enabled residential load models publication-title: IEEE Trans Power Syst – volume: 40 start-page: 1293 issue: 9 year: 2016 end-page: 1300 article-title: Solar energy integration into advanced building design for meeting energy demand and environment problem publication-title: Int J Energy Res – volume: 85 start-page: 100 issue: 1 year: 2011 end-page: 110 article-title: Optimal sizing study of hybrid wind/PV/diesel power generation unit publication-title: Sol Energy – volume: 115 start-page: 38 issue: 1 year: 2016 end-page: 48 article-title: Control and operation of power sources in a medium‐voltage direct‐current microgrid for an electric vehicle fast charging station with a photovoltaic and a battery energy storage system publication-title: Energy – volume: 82 start-page: 92 issue: 1 year: 2015 end-page: 99 article-title: Coordinated charging of plug‐in hybrid electric vehicles in smart hybrid AC/DC distribution systems publication-title: Renew Energy – volume: 78 start-page: 77 issue: 6 year: 2016 end-page: 83 article-title: PSO optimization for solar system inverter controller and comparison between two controller techniques publication-title: J Teknol – volume: 15 start-page: 4470 issue: 9 year: 2011 end-page: 4482 article-title: A review of solar photovoltaic levelized cost of electricity publication-title: Renew Sustain Energy Rev – volume: 8 start-page: 4335 issue: 5 year: 2015 end-page: 4356 article-title: Modeling and simulation of DC microgrids for electric vehicle charging stations publication-title: Energies – volume: 7 start-page: 114 issue: 1 year: 2016 end-page: 123 article-title: A comprehensive overview of electric vehicle charging using renewable energy publication-title: Int J Power Electron Drive Syst – volume: 22 start-page: 259 issue: 2 year: 2013 end-page: 269 article-title: A self‐learning scheme for residential energy system control and management publication-title: Neural Comput & Applic – volume: 137 start-page: 76 issue: 1 year: 2016 end-page: 85 article-title: Online energy management of PV‐assisted charging station under time‐of‐use pricing publication-title: Electr Pow Syst Res – year: 2014 – volume: 24 start-page: 3933 issue: 5 year: 2016 end-page: 3948 article-title: Optimal siting and sizing of rapid charging station for electric vehicles considering Bangi city road network in Malaysia publication-title: Turk J Electr Eng Comput Sci – volume: 49 start-page: 610 issue: 1 year: 2015 end-page: 628 article-title: Profitable climate change mitigation: the case of greenhouse gas emission reduction benefits enabled by solar photovoltaic systems publication-title: Renew Sustain Energy Rev – volume: 38 start-page: 3270 issue: 7 year: 2010 end-page: 3273 article-title: Reconsidering solar grid parity publication-title: Energy Policy – volume: 133 start-page: 249 issue: 1 year: 2017 end-page: 263 article-title: Battery sizing and rule‐based operation of grid‐connected photovoltaic‐battery system: a case study in Sweden publication-title: Energ Conver Manage – volume: 66 start-page: 280 issue: 1 year: 2014 end-page: 287 article-title: PV powered smart charging station for PHEVs publication-title: Renew Energy – volume: 75 start-page: 489 issue: 0 year: 2015 end-page: 495 article-title: Optimal sizing of grid‐connected photovoltaic energy system in Saudi Arabia publication-title: Renew Energy – volume: 78 start-page: 537 issue: 1 year: 2014 end-page: 550 article-title: Optimal decentralized valley‐filling charging strategy for electric vehicles publication-title: Energ Conver Manage – volume: 501 start-page: 1 issue: 1 year: 2015 end-page: 12 article-title: A reinforcement learning‐based maximum power point tracking method for photovoltaic Array publication-title: Int J Photoenergy – volume: 141 start-page: 407 year: 2016 end-page: 420 article-title: Online optimal variable charge‐rate coordination of plug‐in electric vehicles to maximize customer satisfaction and improve grid performance publication-title: Electr Pow Syst Res – year: 2015 – volume: 28 start-page: 2151 issue: 5 year: 2013 end-page: 2169 article-title: Review of battery charger topologies, charging power levels, and infrastructure for plug‐in electric and hybrid vehicles publication-title: IEEE Trans Power Electron – volume: 79 start-page: 511 issue: 4 year: 2009 end-page: 520 article-title: Battery energy storage technology for power systems—an overview publication-title: Electr Pow Syst Res – volume: 110 start-page: 438 year: 2014 end-page: 451 article-title: Combining photovoltaic energy with electric vehicles, smart charging and vehicle‐to‐grid publication-title: Sol Energy – volume: 2016 start-page: 422 issue: 94 end-page: 430 article-title: 2050 LCOE (levelized cost of energy) projection for a hybrid PV (photovoltaic)‐CSP (concentrated solar power) plant in the Atacama Desert, Chile publication-title: Energy – volume: 117 start-page: 134 year: 2014 end-page: 142 article-title: Optimal charging/discharging of grid‐enabled electric vehicles for predictability enhancement of PV generation publication-title: Electr Pow Syst Res – volume: 89 start-page: 739 year: 2015 end-page: 756 article-title: Assessing current and future techno‐economic potential of concentrated solar power and photovoltaic electricity generation publication-title: Energy – volume: 38 start-page: 404 issue: 3 year: 2014 end-page: 414 article-title: Effectiveness of smart charging of electric vehicles under power limitations publication-title: Int J Energy Res – volume: 120 start-page: 430 issue: 1 year: 2016 end-page: 448 article-title: A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system publication-title: Energ Conver Manage – volume: 110 start-page: 133 issue: 0 year: 2014 end-page: 143 article-title: Studying the feasibility of charging plug‐in hybrid electric vehicles using photovoltaic electricity in residential distribution systems publication-title: Electr Pow Syst Res – volume: 80 start-page: 293 year: 2015 end-page: 302 article-title: Solar grid parity dynamics in Italy: a real option approach publication-title: Energy – volume: 105 start-page: 304 issue: 1 year: 2013 end-page: 318 article-title: A multi‐level energy management system for multi‐source electric vehicles–an integrated rule‐based meta‐heuristic approach publication-title: Appl Energy – volume: 54 start-page: 34 issue: 1 year: 2016 end-page: 47 article-title: Electric vehicles charging using photovoltaic: status and technological review publication-title: Renew Sustain Energy Rev – year: 2016 – volume: 120 start-page: 96 issue: 1 year: 2015 end-page: 108 article-title: EV fast charging stations and energy storage technologies: a real implementation in the smart micro grid paradigm publication-title: Electr Pow Syst Res – volume: 140 start-page: 219 year: 2016 end-page: 226 article-title: A comparison of heuristic optimization techniques for optimal placement and sizing of photovoltaic based distributed generation in a distribution system publication-title: Sol Energy – volume: 2015 start-page: 1 issue: 1 year: 2015 end-page: 9 article-title: Optimal day‐time charging strategies for electric vehicles considering photovoltaic power system and distribution grid constraints publication-title: Math Probl Eng – volume: 85 start-page: 2349 issue: 9 year: 2011 end-page: 2359 article-title: An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) publication-title: Sol Energy – volume: 39 start-page: 1153 issue: 9 year: 2015 end-page: 1178 article-title: Perturbative methods for maximum power point tracking (MPPT) of photovoltaic (PV) systems: a review publication-title: Int J Energy Res – volume: 36 start-page: 4419 issue: 12 year: 2008 end-page: 4426 article-title: Demand side management: Benefits and challenges publication-title: Energy Policy – year: 2010 – volume: 96 start-page: 133 year: 2013 end-page: 143 article-title: Real‐time energy management scheme for hybrid renewable energy systems in smart grid applications publication-title: Electr Pow Syst Res – volume: 80 start-page: 263 year: 2015 end-page: 274 article-title: Day charging electric vehicles with excess solar electricity for a sustainable energy system publication-title: Energy – volume: 11 start-page: 179 issue: 2 year: 2011 end-page: 187 article-title: Accurate MATLAB simulink PV system simulator based on a two‐diode model publication-title: J Power Electron – volume: 10 start-page: 1917 issue: 3 year: 2014 end-page: 1926 article-title: Optimal integration of plug‐in hybrid electric vehicles in microgrids publication-title: IEEE Trans Ind Inf – volume: 183 start-page: 160 year: 2016 end-page: 169 article-title: Determining the size of PHEV charging stations powered by commercial grid‐integrated PV systems considering reactive power support publication-title: Appl Energy – volume: 40 start-page: 439 issue: 4 year: 2016 end-page: 461 article-title: A critical review of electric vehicle charging using solar photovoltaic publication-title: Int J Energy Res – volume: 86 start-page: 2067 issue: 7 year: 2012 end-page: 2082 article-title: An intelligent method for sizing optimization in grid‐connected photovoltaic system publication-title: Sol Energy – volume: 5 start-page: 577 issue: 2 year: 2014 end-page: 586 article-title: Real‐time energy management algorithm for plug‐in hybrid electric vehicle charging parks involving sustainable energy publication-title: IEEE Trans Sustainable Energy – volume: 125 start-page: 384 issue: 1 year: 2018 end-page: 400 article-title: A rule‐based energy management scheme for uninterrupted electric vehicles charging at constant price using photovoltaic‐grid system publication-title: Renew Energy – volume: 39 start-page: 7290 issue: 11 year: 2011 end-page: 7297 article-title: Solar power generation in the US: too expensive, or a bargain? publication-title: Energy Policy – volume: 85 start-page: 181 year: 2016 end-page: 194 article-title: Improved particle swarm optimization for photovoltaic system connected to the grid with low voltage ride through capability publication-title: Renew Energy – volume: 128 start-page: 19 issue: 1 year: 2015 end-page: 29 article-title: Real‐time charging coordination of plug‐in electric vehicles based on hybrid fuzzy discrete particle swarm optimization publication-title: Electr Pow Syst Res – volume: 115 start-page: 572 issue: 1 year: 2018 end-page: 583 article-title: Energy policy regime change and advanced energy storage: a comparative analysis publication-title: Energy Policy – volume: 80 start-page: 552 issue: 1 year: 2015 end-page: 563 article-title: Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system publication-title: Renew Energy – volume: 4 start-page: 464 issue: 2 year: 2013 end-page: 473 article-title: Battery energy storage station (BESS)‐based smoothing control of photovoltaic (PV) and wind power generation fluctuations publication-title: IEEE Trans Sustainable Energy – start-page: 2014 year: 2014 – volume: 65 start-page: 572 issue: 0 year: 2014 end-page: 579 article-title: Optimal scheduling of electric vehicles in an intelligent parking lot considering vehicle‐to‐grid concept and battery condition publication-title: Energy – year: 1995 – article-title: NREL solar radiation research laboratory (SRRL) publication-title: Baseline Measurement System (BMS) – ident: e_1_2_9_44_1 doi: 10.1016/j.rser.2011.07.104 – ident: e_1_2_9_15_1 doi: 10.1016/j.energy.2016.08.099 – ident: e_1_2_9_30_1 doi: 10.1016/j.solener.2010.10.018 – volume: 2015 start-page: 1 issue: 1 year: 2015 ident: e_1_2_9_28_1 article-title: Optimal day‐time charging strategies for electric vehicles considering photovoltaic power system and distribution grid constraints publication-title: Math Probl Eng – ident: e_1_2_9_12_1 doi: 10.1016/j.epsr.2014.08.007 – ident: e_1_2_9_51_1 doi: 10.1016/j.enpol.2008.09.030 – ident: e_1_2_9_6_1 doi: 10.1016/j.solener.2014.09.034 – ident: e_1_2_9_8_1 doi: 10.1016/j.energy.2011.09.006 – ident: e_1_2_9_19_1 doi: 10.1016/j.energy.2013.11.045 – ident: e_1_2_9_35_1 doi: 10.1016/j.solener.2011.06.025 – ident: e_1_2_9_59_1 doi: 10.1016/j.renene.2015.06.029 – ident: e_1_2_9_2_1 doi: 10.1016/j.epsr.2016.08.017 – ident: e_1_2_9_29_1 doi: 10.1016/j.solener.2012.04.009 – volume-title: Optimal Power Management of Parking‐Lot Electric Vehicle Charging year: 2014 ident: e_1_2_9_60_1 – ident: e_1_2_9_20_1 doi: 10.1016/j.enconman.2016.11.060 – ident: e_1_2_9_13_1 doi: 10.1016/j.epsr.2014.01.012 – ident: e_1_2_9_5_1 doi: 10.1016/j.enpol.2018.01.029 – ident: e_1_2_9_37_1 doi: 10.1002/er.3289 – ident: e_1_2_9_17_1 doi: 10.1016/j.epsr.2008.09.017 – ident: e_1_2_9_23_1 doi: 10.3906/elk-1412-136 – ident: e_1_2_9_26_1 doi: 10.1016/j.renene.2018.02.126 – ident: e_1_2_9_16_1 doi: 10.1016/j.energy.2014.11.069 – ident: e_1_2_9_55_1 doi: 10.1155/2015/496401 – ident: e_1_2_9_4_1 doi: 10.1002/er.3525 – ident: e_1_2_9_21_1 doi: 10.1016/j.renene.2014.10.028 – ident: e_1_2_9_49_1 doi: 10.1007/s00521-011-0711-6 – ident: e_1_2_9_50_1 doi: 10.1016/j.renene.2013.11.066 – ident: e_1_2_9_39_1 doi: 10.1109/PECON.2016.7951571 – ident: e_1_2_9_3_1 doi: 10.1016/j.epsr.2014.07.033 – ident: e_1_2_9_66_1 doi: 10.1016/j.enconman.2013.11.011 – ident: e_1_2_9_67_1 doi: 10.1016/j.enpol.2010.03.013 – ident: e_1_2_9_22_1 doi: 10.1016/j.enconman.2016.05.011 – volume: 2016 start-page: 422 issue: 94 ident: e_1_2_9_46_1 article-title: 2050 LCOE (levelized cost of energy) projection for a hybrid PV (photovoltaic)‐CSP (concentrated solar power) plant in the Atacama Desert, Chile publication-title: Energy – ident: e_1_2_9_11_1 doi: 10.1002/er.3130 – ident: e_1_2_9_36_1 doi: 10.6113/JPE.2011.11.2.179 – ident: e_1_2_9_65_1 doi: 10.1016/j.energy.2014.11.072 – ident: e_1_2_9_42_1 doi: 10.1109/TSTE.2013.2247428 – ident: e_1_2_9_24_1 doi: 10.1016/j.apenergy.2016.08.168 – ident: e_1_2_9_9_1 doi: 10.1016/j.epsr.2015.06.019 – ident: e_1_2_9_53_1 doi: 10.1016/j.enpol.2011.08.052 – ident: e_1_2_9_34_1 doi: 10.3390/en8054335 – ident: e_1_2_9_47_1 doi: 10.1016/j.energy.2015.05.145 – ident: e_1_2_9_54_1 doi: 10.2172/983330 – ident: e_1_2_9_33_1 doi: 10.1016/j.renene.2015.02.045 – ident: e_1_2_9_58_1 – ident: e_1_2_9_40_1 – ident: e_1_2_9_14_1 doi: 10.1016/j.epsr.2012.10.015 – volume: 137 start-page: 76 issue: 1 year: 2016 ident: e_1_2_9_27_1 article-title: Online energy management of PV‐assisted charging station under time‐of‐use pricing publication-title: Electr Pow Syst Res doi: 10.1016/j.epsr.2016.04.002 – ident: e_1_2_9_57_1 doi: 10.1109/TSTE.2013.2278544 – ident: e_1_2_9_52_1 doi: 10.1016/j.rser.2015.04.061 – ident: e_1_2_9_62_1 doi: 10.1109/TIA.2013.2296620 – ident: e_1_2_9_41_1 article-title: NREL solar radiation research laboratory (SRRL) publication-title: Baseline Measurement System (BMS) – ident: e_1_2_9_10_1 doi: 10.1016/j.renene.2014.08.012 – ident: e_1_2_9_61_1 doi: 10.1109/TPEL.2012.2212917 – ident: e_1_2_9_56_1 doi: 10.1109/TII.2014.2322822 – ident: e_1_2_9_18_1 doi: 10.1016/j.rser.2015.09.091 – ident: e_1_2_9_43_1 doi: 10.2172/1176740 – ident: e_1_2_9_31_1 doi: 10.1016/j.solener.2016.11.013 – volume: 7 start-page: 114 issue: 1 year: 2016 ident: e_1_2_9_7_1 article-title: A comprehensive overview of electric vehicle charging using renewable energy publication-title: Int J Power Electron Drive Syst – ident: e_1_2_9_63_1 doi: 10.1016/j.apenergy.2012.12.081 – ident: e_1_2_9_48_1 doi: 10.1109/TPWRS.2012.2208232 – ident: e_1_2_9_64_1 – volume: 78 start-page: 77 issue: 6 year: 2016 ident: e_1_2_9_32_1 article-title: PSO optimization for solar system inverter controller and comparison between two controller techniques publication-title: J Teknol – ident: e_1_2_9_25_1 doi: 10.1109/ISGT-Asia.2015.7387132 – ident: e_1_2_9_38_1 doi: 10.1002/er.3472 – ident: e_1_2_9_45_1 |
| SSID | ssj0009917 |
| Score | 2.5137932 |
| Snippet | Summary
In this paper, the particle swarm optimization (PSO) is used to find optimum size of the photovoltaic (PV) array and energy storage unit (ESU) for PV... In this paper, the particle swarm optimization (PSO) is used to find optimum size of the photovoltaic (PV) array and energy storage unit (ESU) for PV... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 500 |
| SubjectTerms | Batteries Computer simulation Economic impact Economic models Economics Electric vehicle charging Electric vehicles Energy Energy management Energy storage energy storage unit EV charging station Lithium-ion batteries Objective function optimum system sizing Particle swarm optimization Photovoltaic cells photovoltaic module Photovoltaics PSO PV‐ESU grid system Solar cells solar energy Tariffs Vehicles Weather |
| Title | Optimized sizing of photovoltaic grid‐connected electric vehicle charging system using particle swarm optimization |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4287 https://www.proquest.com/docview/2157181307 |
| Volume | 43 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 issn: 0363-907X databaseCode: ADMLS dateStart: 20050610 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0363-907X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PS8MwFA-ykx78L06n5DC8dWubNjNHkY0hqDAcDC8lSdOt6NbRdgo7-RH8jH4SX5ruj4ognlqavDQ0L-_9Xpr8HkJ1HhHPI4JbjvSV5V1KZjFC9R33ACURToU-4Hx7R7t972bgD9ZSfRl-iOWCm54Zhb3WE5yLrLkiDVVpQ8N9sL4OoUUw1VsRRwHqaS3-UkL4NzDHZbVks5T76odW4HIdohY-prODHhe9M1tLnhqzXDTk_Btx47-6v4u2S-SJr4yq7KENNdlHW2t8hAcovwcDMo7nKsRZPIdHOInwdJTkCRixnMcSD9M4_Hh7l3p7jASwik0aHSh5USPdLi6ol7So4YjGemP9EE9LDcXZK0_HODHvKbTiEPU77YfrrlWmZbAkgR5bPsAChwLQFMwVtCVt6dlSRixk3CFhKKXgHqW-oMIVrmIR9SNbRC1FXK655Qk5QpVJMlHHCEOwBfYtUrZuxKFUENHScJ_RkCnX5lV0sRikQJac5Tp1xnNg2JbdQKWB_oxVhJcVp4am42eV2mKUg3KeZgEAHnDO4MehuF4M12_iQbunLyd_q3aKNgFZMbNWU0OVPJ2pM0AvuTgvFPUTi_jvjQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYDsCBHVFWHxC3lDROXHxEiKrsUlWkShwi23GggjZVGkDqiU_gG_kSZuK0ZRES4pQo9thOPJ55dsbPhOzJmPk-U9Kp6MA4_qEWjmAc76QPKIlJrnCD8-UVr9_4Z62gVURV4l4Yyw8xWnDDkZHbaxzguCB9MGYNNWkZ8f4kmfY5zFIQEDXG1FGAe6rD_5QwAWzZDbMoelAIfvVEY3j5GaTmXqa2QG6H7bPBJQ_lp0yV9eAbdeP_XmCRzBfgkx5ZbVkiE6a7TOY-URKukOwabEinPTAR7bcH8IgmMe3dJ1kCdiyTbU3v0nb0_vqmMUJGA16l9iQdSHk291guzdmXUNTSRFOMrb-jvUJJaf9Fph2a2HpyxVglN7WT5nHdKU5mcDSDFjsBIIMKB6yphKd4Vbvad7WORSRkhUWR1kr6nAeKK095RsQ8iF0VVw3zJNLLM7ZGprpJ16wTCvMtMHGxcbGQCueKqSoifsEjYTxXlsj-sJdCXdCW4-kZj6ElXPZCk4b4GUuEjjL2LFPHzyxbw24Oi6HaDwHzgH8GVw7Je3l__SYenjTwsvG3bLtkpt68vAgvTq_ON8ksAC1hl262yFSWPpltADOZ2sm19gOD3_Ou |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-QPTgW3ybw-Kta9u0WXMUdfG5iigseChJmuqibpduVdiTP8Hf6C9xpum6PhDEU0uTSdJmMvMlnXwhpCITFgRMScfToXGCbS0cwTjeyQBQEpNc4Qbn0wY_uAqOmmGzjKrEvTCWH-JjwQ1HRmGvcYCbTpxsDVhDTVZFvD9MRoNQbGM4397FgDoKcE-t_58SJoBNu2EWRbdKwa-eaAAvP4PUwsvUp8h1v302uOSu-pirqu59o2783wtMk8kSfNIdqy0zZMi0Z8nEJ0rCOZKfgQ15aPVMTLutHjyiaUI7t2megh3LZUvTm6wVv728aoyQ0YBXqT1JB1KezC2WSwv2JRS1NNEUY-tvaKdUUtp9ltkDTW09hWLMk6v6_uXugVOezOBoBi12QkAGHgesqYSveE27OnC1TkQspMfiWGslA85DxZWvfCMSHiauSmqG-RLp5RlbICPttG0WCYX5Fpi4xLhYiMe5YqqGiF_wWBjflUtks99LkS5py_H0jPvIEi77kcki_IxLhH5k7Fimjp9ZVvvdHJVDtRsB5gH_DK4ckitFf_0mHu1f4GX5b9k2yNj5Xj06OWwcr5BxwFnCrtyskpE8ezRrgGVytV4o7Ts9-vMy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+sizing+of+photovoltaic+grid%E2%80%90connected+electric+vehicle+charging+system+using+particle+swarm+optimization&rft.jtitle=International+journal+of+energy+research&rft.au=Abdul+Rauf+Bhatti&rft.au=Salam%2C+Zainal&rft.au=Sultana%2C+Beenish&rft.au=Rasheed%2C+Nadia&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=43&rft.issue=1&rft.spage=500&rft.epage=522&rft_id=info:doi/10.1002%2Fer.4287&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |