Modeling, simulation, and optimization of a microalgae biomass drying process

Summary The aim of the present work was to develop a transient mathematical model focused on microalgae biomass drying, considering two phases: solid (wet biomass) and gas (drying air). Mass and thermal energy balances were written for each phase producing a system of ordinary differential equations...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 43; no. 8; pp. 3421 - 3435
Main Authors Disconzi, Fernanda P., Balmant, Wellington, Vargas, Jose Viriato Coelho, Peixoto, Pedro H.R., Taher, Dhyogo M., Mariano, Andre B.
Format Journal Article
LanguageEnglish
Published Bognor Regis John Wiley & Sons, Inc 25.06.2019
Subjects
Online AccessGet full text
ISSN0363-907X
1099-114X
DOI10.1002/er.4481

Cover

Abstract Summary The aim of the present work was to develop a transient mathematical model focused on microalgae biomass drying, considering two phases: solid (wet biomass) and gas (drying air). Mass and thermal energy balances were written for each phase producing a system of ordinary differential equations (ODE). The solution of the ODE set delivers the temperature and air humidity ratio and biomass profiles with respect to time. The numerical results were directly compared with temperature experimental measurements—for both phases—and with the biomass humidity content. Data from experiment 1 were used to carry out the mathematical model adjustment, whereas data from experiment 2 were used for the experimental validation of the model. The model was adjusted by proposing a new correlation for the mass transfer coefficient and by calibrating the heat transfer coefficient. The transient numerical results were in good quantitative and qualitative agreement with the experimental results, ie, within the experimental error bars. Then the experimentally validated mathematical model was utilized to optimize the following parameters: (i) the electric heater power ( Q̇res) and the dry air mass flow rate ( ṁda) and (ii) the convection oven length to width ratio (L/W). The goal was to minimize system energy consumption (objective function). The optimization procedure was subject to the following physical constraints: (i) fixed convection oven total volume and (ii) fixed biomass and drying air contact surface area. For the oven original geometry, Q̇res,opt = 3.0 kW and ṁda,opt = 9 g s−1 were numerically found for minimum energy consumption, so that 36.9% and 43.5% energy consumption decreases were obtained, respectively, in comparison with the measurements of experiment 1. Next, the numerical geometric optimization found (L/W)opt = 9, with Q̇res,opt and ṁda,opt, which was capable to reach a 51.6% energy consumption reduction in comparison with the original system tested in experiment 1. The novelty of this work consists of the development and experimental validation of a physically based microalgae biomass drying mathematical model, ie, instead of using empirical correlations to predict the drying time and temperature profiles and then minimize system energy consumption. Therefore, the results show that it is reasonable to state that the model could be used to design, control, and optimize drying systems with configurations similar to the one analyzed in this study. The novelty of this work consists of the development of a phenomenological mathematical model for the drying of microalgae biomass, formulated from the mass and energy conservation laws, ie, different from previously published models that use empirical correlations to predict the drying time and temperature profiles. In addition, a new correlation to predict the mass transfer coefficient was introduced; the model was experimentally validated and then used to minimize system energy consumption, making available new optimization results for general utilization.
AbstractList The aim of the present work was to develop a transient mathematical model focused on microalgae biomass drying, considering two phases: solid (wet biomass) and gas (drying air). Mass and thermal energy balances were written for each phase producing a system of ordinary differential equations (ODE). The solution of the ODE set delivers the temperature and air humidity ratio and biomass profiles with respect to time. The numerical results were directly compared with temperature experimental measurements—for both phases—and with the biomass humidity content. Data from experiment 1 were used to carry out the mathematical model adjustment, whereas data from experiment 2 were used for the experimental validation of the model. The model was adjusted by proposing a new correlation for the mass transfer coefficient and by calibrating the heat transfer coefficient. The transient numerical results were in good quantitative and qualitative agreement with the experimental results, ie, within the experimental error bars. Then the experimentally validated mathematical model was utilized to optimize the following parameters: (i) the electric heater power (Q̇res) and the dry air mass flow rate (ṁda) and (ii) the convection oven length to width ratio (L/W). The goal was to minimize system energy consumption (objective function). The optimization procedure was subject to the following physical constraints: (i) fixed convection oven total volume and (ii) fixed biomass and drying air contact surface area. For the oven original geometry, Q̇res,opt = 3.0 kW and ṁda,opt = 9 g s−1 were numerically found for minimum energy consumption, so that 36.9% and 43.5% energy consumption decreases were obtained, respectively, in comparison with the measurements of experiment 1. Next, the numerical geometric optimization found (L/W)opt = 9, with Q̇res,opt and ṁda,opt, which was capable to reach a 51.6% energy consumption reduction in comparison with the original system tested in experiment 1. The novelty of this work consists of the development and experimental validation of a physically based microalgae biomass drying mathematical model, ie, instead of using empirical correlations to predict the drying time and temperature profiles and then minimize system energy consumption. Therefore, the results show that it is reasonable to state that the model could be used to design, control, and optimize drying systems with configurations similar to the one analyzed in this study.
Summary The aim of the present work was to develop a transient mathematical model focused on microalgae biomass drying, considering two phases: solid (wet biomass) and gas (drying air). Mass and thermal energy balances were written for each phase producing a system of ordinary differential equations (ODE). The solution of the ODE set delivers the temperature and air humidity ratio and biomass profiles with respect to time. The numerical results were directly compared with temperature experimental measurements—for both phases—and with the biomass humidity content. Data from experiment 1 were used to carry out the mathematical model adjustment, whereas data from experiment 2 were used for the experimental validation of the model. The model was adjusted by proposing a new correlation for the mass transfer coefficient and by calibrating the heat transfer coefficient. The transient numerical results were in good quantitative and qualitative agreement with the experimental results, ie, within the experimental error bars. Then the experimentally validated mathematical model was utilized to optimize the following parameters: (i) the electric heater power ( Q̇res) and the dry air mass flow rate ( ṁda) and (ii) the convection oven length to width ratio (L/W). The goal was to minimize system energy consumption (objective function). The optimization procedure was subject to the following physical constraints: (i) fixed convection oven total volume and (ii) fixed biomass and drying air contact surface area. For the oven original geometry, Q̇res,opt = 3.0 kW and ṁda,opt = 9 g s−1 were numerically found for minimum energy consumption, so that 36.9% and 43.5% energy consumption decreases were obtained, respectively, in comparison with the measurements of experiment 1. Next, the numerical geometric optimization found (L/W)opt = 9, with Q̇res,opt and ṁda,opt, which was capable to reach a 51.6% energy consumption reduction in comparison with the original system tested in experiment 1. The novelty of this work consists of the development and experimental validation of a physically based microalgae biomass drying mathematical model, ie, instead of using empirical correlations to predict the drying time and temperature profiles and then minimize system energy consumption. Therefore, the results show that it is reasonable to state that the model could be used to design, control, and optimize drying systems with configurations similar to the one analyzed in this study. The novelty of this work consists of the development of a phenomenological mathematical model for the drying of microalgae biomass, formulated from the mass and energy conservation laws, ie, different from previously published models that use empirical correlations to predict the drying time and temperature profiles. In addition, a new correlation to predict the mass transfer coefficient was introduced; the model was experimentally validated and then used to minimize system energy consumption, making available new optimization results for general utilization.
Author Mariano, Andre B.
Disconzi, Fernanda P.
Taher, Dhyogo M.
Balmant, Wellington
Vargas, Jose Viriato Coelho
Peixoto, Pedro H.R.
Author_xml – sequence: 1
  givenname: Fernanda P.
  surname: Disconzi
  fullname: Disconzi, Fernanda P.
  organization: NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980
– sequence: 2
  givenname: Wellington
  surname: Balmant
  fullname: Balmant, Wellington
  organization: NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980
– sequence: 3
  givenname: Jose Viriato Coelho
  orcidid: 0000-0002-1458-2908
  surname: Vargas
  fullname: Vargas, Jose Viriato Coelho
  email: jvargas@demec.ufpr.br
  organization: NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980
– sequence: 4
  givenname: Pedro H.R.
  surname: Peixoto
  fullname: Peixoto, Pedro H.R.
  organization: NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980
– sequence: 5
  givenname: Dhyogo M.
  surname: Taher
  fullname: Taher, Dhyogo M.
  organization: NPDEAS, Federal University of Paraná, UFPR, CP 19011, 81531–980
– sequence: 6
  givenname: Andre B.
  surname: Mariano
  fullname: Mariano, Andre B.
  organization: Federal University of Paraná, UFPR, CP 19011, 81531–980
BookMark eNp1kE1LAzEQhoNUsK3iXwh48GC35mO72Ryl1A9oEUSht5DNTkrK7qYmW0r99W5bT6KngZln3nfmHaBe4xtA6JqSMSWE3UMYp2lOz1CfEikTStNlD_UJz3giiVheoEGMa0K6GRV9tFj4EirXrEY4unpb6db5ZoR1U2K_aV3tvo4d7C3WuHYmeF2tNODC-VrHiMuw75bxJngDMV6ic6urCFc_dYg-Hmfv0-dk_vr0Mn2YJ4aznCYZocwUaQmW0Bxsyo0sMpCFLfLUTASD0nJupUhzIwjLtTRGTgyILDe25IXhQ3Rz0u18P7cQW7X229B0looxLoRgk4x21O2J6q6OMYBVm-BqHfaKEnXISkFQh6w6MvlFGtceH2-DdtUf_N2J37kK9v_Jqtnbkf4GAE57ow
CitedBy_id crossref_primary_10_1016_j_fuel_2020_119190
crossref_primary_10_1002_er_5605
crossref_primary_10_1002_ese3_815
crossref_primary_10_1016_j_biteb_2022_101146
crossref_primary_10_1016_j_fufo_2024_100420
crossref_primary_10_1016_j_seta_2022_102211
crossref_primary_10_1016_j_renene_2020_08_068
crossref_primary_10_1016_j_jenvman_2024_122141
Cites_doi 10.1007/978-3-540-48260-4_89
10.1016/0309-1708(79)90025-3
10.1021/bp070371k
10.1002/jctb.4125
10.1016/j.egypro.2014.11.931
10.1002/aic.690190228
10.1016/S0065-2717(08)70223-5
10.1016/S0734-9750(02)00050-2
10.1590/S0104-66322008000100006
10.14207/ejsd.2016.v5n4p421
10.1002/jctb.5000651216
10.1016/j.jfoodeng.2007.06.009
10.1021/ie50340a006
10.1115/1.2910670
10.1016/j.biortech.2014.12.092
10.1115/1.2911449
10.1016/S0341-8162(01)00161-8
10.1016/j.fbp.2016.10.005
10.1002/bit.10268
10.1016/j.ijthermalsci.2016.06.012
10.1155/MPE.2005.275
10.1115/1.1348337
10.1016/j.applthermaleng.2012.05.034
10.1080/01425919708914325
10.1016/j.jfoodeng.2003.09.001
10.1016/j.amc.2007.02.121
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.4481
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1099-114X
EndPage 3435
ExternalDocumentID 10_1002_er_4481
ER4481
Genre article
GrantInformation_xml – fundername: the Coordination for the Improvement of Higher Education Personnel (CAPES), and Santa Catarina State University (UDESC)
– fundername: contract 41‐2013/UFPR/PSA‐Peugeot‐Citroen
– fundername: National Council for Scientific and Technological Development, CNPq, Brazil
  funderid: 407198/2013‐0; 403560/2013‐6; 407204/2013‐0; 302938/2015‐0
– fundername: CAPES, Ministry of Education, Brazil
  funderid: 062/14
– fundername: contract 111‐2014/UFPR/NILKO Tecnologia Ltd.
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
G-S
G.N
GNP
GODZA
H.T
H.X
HHY
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
CITATION
WXSBR
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c3281-6012cb4def018ef43c9b6e9bfb84c572edf33f9748c7028a9cc95ce768cfd3bc3
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Mon Sep 08 00:00:17 EDT 2025
Wed Oct 01 02:24:12 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Wed Jan 22 16:40:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3281-6012cb4def018ef43c9b6e9bfb84c572edf33f9748c7028a9cc95ce768cfd3bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1458-2908
PQID 2237772561
PQPubID 996365
PageCount 15
ParticipantIDs proquest_journals_2237772561
crossref_primary_10_1002_er_4481
crossref_citationtrail_10_1002_er_4481
wiley_primary_10_1002_er_4481_ER4481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 June 2019
PublicationDateYYYYMMDD 2019-06-25
PublicationDate_xml – month: 06
  year: 2019
  text: 25 June 2019
  day: 25
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2004; 64
2001; 123
1946; 65
2015; 180
1994; 116
2016; 109
2002; 79
1973; 19
2016; 101
2008
2006
1995
2004
1993
2002
1991
2014; 61
2001; 46
2013; 6
2005; 2005
2014; 89
2016; 5
2007; 192
2013; 50
2002; 21
2008; 25
1997; 18
2008; 24
2017
1979; 2
2017; 19
1982
1977; 13
2014
1981
2009; 2
2008; 84
1938; 30
1993; 115
2003; 20
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_13_1
Treybal RE (e_1_2_9_26_1) 1981
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Kincaid D (e_1_2_9_35_1) 1991
Poling BE (e_1_2_9_25_1) 2004
Bejan A (e_1_2_9_40_1) 1995
Himmelblau DM (e_1_2_9_41_1) 1982
e_1_2_9_15_1
e_1_2_9_39_1
Harke JH (e_1_2_9_5_1) 2002
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_42_1
e_1_2_9_20_1
Mancini MC (e_1_2_9_14_1) 2002; 21
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
Bejan A (e_1_2_9_28_1) 1993
Chen P (e_1_2_9_4_1) 2009; 2
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_3_1
Minkowycz WJ (e_1_2_9_38_1) 2006
Li Y (e_1_2_9_2_1) 2008; 24
e_1_2_9_9_1
Simo‐Tagne M (e_1_2_9_22_1) 2017; 19
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 64
  start-page: 405
  issue: 4
  year: 2004
  end-page: 415
  article-title: Simulation and grain quality for in‐store drying of paddy
  publication-title: J Food Eng
– volume: 61
  start-page: 168
  year: 2014
  end-page: 171
  article-title: Modeling and optimization of microalgae drying for power generation
  publication-title: Energy Procedia
– volume: 5
  start-page: 421
  issue: 4
  year: 2016
  end-page: 430
  article-title: Mathematical modelling of drying of sp., and at different drying conditions
  publication-title: Eur J Sustainable Dev
– volume: 2
  start-page: 1
  issue: 4
  year: 2009
  end-page: 30
  article-title: Review of the biological and engineering aspects of algae to fuels approach
  publication-title: Int J Agricultural Biological Eng
– volume: 30
  start-page: 388
  issue: 4
  year: 1938
  end-page: 397
  article-title: Drying materials in trays evaporation of surface moisture
  publication-title: Ind Eng Chem
– start-page: 768
  year: 2004
– volume: 89
  start-page: 137
  issue: 1
  year: 2014
  end-page: 142
  article-title: Effect of moisture on transesterification of microalgae for biodiesel production
  publication-title: J Chem Technol Biotechnol
– volume: 2005
  start-page: 275
  year: 2005
  end-page: 291
  article-title: On modelling the drying of porous materials: analytical solutions to coupled partial differential equations governing heat and moisture transfer
  publication-title: Math Probl Eng
– volume: 84
  start-page: 516
  issue: 4
  year: 2008
  end-page: 525
  article-title: Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity
  publication-title: J Food Eng
– volume: 2
  start-page: 131
  year: 1979
  end-page: 144
  article-title: General conservation equations for multi‐phase systems: averaging procedure
  publication-title: Adv Water Resour
– volume: 180
  start-page: 207
  year: 2015
  end-page: 213
  article-title: Development of an oven drying protocol to improve biodiesel production for an indigenous chlorophycean microalga sp
  publication-title: Bioresour Technol
– volume: 18
  start-page: 303
  issue: 4
  year: 1997
  end-page: 311
  article-title: Microalgal biomass drying by a simple solar device
  publication-title: Int J Solar Energy
– start-page: 649
  year: 2006
  end-page: 655
– year: 2014
– volume: 79
  start-page: 416
  issue: 4
  year: 2002
  end-page: 428
  article-title: A two‐phase model for water and heat transfer within an intermittently‐mixed solid‐state fermentation bioreactor with forced aeration
  publication-title: Biotechnol Bioeng
– volume: 101
  start-page: 68
  year: 2016
  end-page: 73
  article-title: Mathematical model for heat and mass transfer during convective drying of pumpkin
  publication-title: Food Bioprod Process
– volume: 116
  start-page: 797
  year: 1994
  end-page: 798
  article-title: Journal of heat transfer editorial policy statement on numerical accuracy
  publication-title: ASME J Heat Transfer
– volume: 19
  start-page: 375
  issue: 2
  year: 1973
  end-page: 376
  article-title: Empirical expressions for the shear stress in turbulent flow in commerical pipe
  publication-title: AIChE Journal
– year: 1982
– volume: 21
  start-page: 121
  issue: 1
  year: 2002
  end-page: 129
  article-title: Transferência de massa na secagem de milho em secadores de camada espessa em leito fixo e deslizante
  publication-title: Revista Universidade Rural
– volume: 109
  start-page: 299
  year: 2016
  end-page: 308
  article-title: Modeling of coupled heat and mass transfer during drying of tropical woods
  publication-title: Int J Therm Sci
– volume: 19
  start-page: 95
  issue: 1
  year: 2017
  end-page: 112
  article-title: Modeling and simulation of an industrial indirect solar dryer for Iroko wood ( ) in a tropical environment
  publication-title: Maderas Ciencia y Tecnología
– volume: 20
  start-page: 491
  issue: 7–8
  year: 2003
  end-page: 515
  article-title: Recovery of microalgal biomass and metabolites: process options and economics
  publication-title: Biotechnol Adv
– start-page: 784
  year: 1981
– year: 2008
– start-page: 984
  year: 2006
– start-page: 668
  year: 2017
– start-page: 623
  year: 1995
– volume: 46
  start-page: 103
  year: 2001
  end-page: 123
  article-title: Soil erosion under different rainfall intensities, surface roughness, and soil water regimes
  publication-title: Catena
– volume: 192
  start-page: 69
  issue: 1
  year: 2007
  end-page: 77
  article-title: Modelling and simulation of pear drying
  publication-title: Appl Math Comput
– start-page: 1232
  year: 2002
– volume: 50
  start-page: 1369
  issue: 1
  year: 2013
  end-page: 1375
  article-title: Pool boiling characteristics of microalgae suspension for biofuels production
  publication-title: Appl Therm Eng
– start-page: 675
  year: 1993
– year: 1991
– volume: 123
  start-page: 200
  issue: 3
  year: 2001
  end-page: 210
  article-title: A numerical model to predict the thermal and psychrometric response of electronic packages
  publication-title: J Electron Packag
– volume: 65
  start-page: 419
  issue: 12
  year: 1946
  end-page: 421
  article-title: The kinetics of package life. III: the isotherm
  publication-title: J Chem Industry
– volume: 25
  start-page: 39
  issue: 01
  year: 2008
  end-page: 50
  article-title: Mathematical model for heat and mass transfer inside a granular medium
  publication-title: Braz J Chem Eng
– volume: 115
  start-page: 5
  year: 1993
  end-page: 6
  article-title: Journal of heat transfer policy on reporting uncertainties in experimental measurements and results [editorial]
  publication-title: J Heat Transfer
– volume: 6
  issue: 2
  year: 2013
– volume: 13
  start-page: 119
  issue: C
  year: 1977
  end-page: 203
  article-title: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying
  publication-title: Adv Heat Tran
– volume: 24
  start-page: 815
  issue: 1
  year: 2008
  end-page: 820
  article-title: Biofuels from microalgae
  publication-title: Biotechnol Prog
– ident: e_1_2_9_12_1
  doi: 10.1007/978-3-540-48260-4_89
– ident: e_1_2_9_20_1
  doi: 10.1016/0309-1708(79)90025-3
– start-page: 984
  volume-title: Handbook of Numerical Heat Transfer
  year: 2006
  ident: e_1_2_9_38_1
– volume: 24
  start-page: 815
  issue: 1
  year: 2008
  ident: e_1_2_9_2_1
  article-title: Biofuels from microalgae
  publication-title: Biotechnol Prog
  doi: 10.1021/bp070371k
– start-page: 623
  volume-title: Convection Heat Transfer
  year: 1995
  ident: e_1_2_9_40_1
– ident: e_1_2_9_6_1
– volume-title: Basic Principles and Calculations in Chemical Engineering
  year: 1982
  ident: e_1_2_9_41_1
– ident: e_1_2_9_30_1
  doi: 10.1002/jctb.4125
– ident: e_1_2_9_7_1
  doi: 10.1016/j.egypro.2014.11.931
– ident: e_1_2_9_33_1
  doi: 10.1002/aic.690190228
– volume: 19
  start-page: 95
  issue: 1
  year: 2017
  ident: e_1_2_9_22_1
  article-title: Modeling and simulation of an industrial indirect solar dryer for Iroko wood (Chlorophora excelsa) in a tropical environment
  publication-title: Maderas Ciencia y Tecnología
– volume-title: Numerical Analysis: Mathematics of Scientific Computing
  year: 1991
  ident: e_1_2_9_35_1
– ident: e_1_2_9_19_1
  doi: 10.1016/S0065-2717(08)70223-5
– ident: e_1_2_9_3_1
  doi: 10.1016/S0734-9750(02)00050-2
– ident: e_1_2_9_39_1
– ident: e_1_2_9_16_1
  doi: 10.1590/S0104-66322008000100006
– start-page: 784
  volume-title: Mass Transfer Operations
  year: 1981
  ident: e_1_2_9_26_1
– ident: e_1_2_9_8_1
  doi: 10.14207/ejsd.2016.v5n4p421
– start-page: 1232
  volume-title: Chemical Engineering: Particle Technology and Separation Processes
  year: 2002
  ident: e_1_2_9_5_1
– ident: e_1_2_9_24_1
  doi: 10.1002/jctb.5000651216
– ident: e_1_2_9_21_1
– start-page: 768
  volume-title: The Properties of Gases and Liquids
  year: 2004
  ident: e_1_2_9_25_1
– ident: e_1_2_9_17_1
  doi: 10.1016/j.jfoodeng.2007.06.009
– ident: e_1_2_9_27_1
  doi: 10.1021/ie50340a006
– ident: e_1_2_9_37_1
  doi: 10.1115/1.2910670
– ident: e_1_2_9_32_1
  doi: 10.1016/j.biortech.2014.12.092
– ident: e_1_2_9_36_1
  doi: 10.1115/1.2911449
– volume: 21
  start-page: 121
  issue: 1
  year: 2002
  ident: e_1_2_9_14_1
  article-title: Transferência de massa na secagem de milho em secadores de camada espessa em leito fixo e deslizante
  publication-title: Revista Universidade Rural
– ident: e_1_2_9_34_1
  doi: 10.1016/S0341-8162(01)00161-8
– ident: e_1_2_9_9_1
  doi: 10.1016/j.fbp.2016.10.005
– ident: e_1_2_9_13_1
  doi: 10.1002/bit.10268
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ijthermalsci.2016.06.012
– start-page: 675
  volume-title: Heat Transfer
  year: 1993
  ident: e_1_2_9_28_1
– ident: e_1_2_9_11_1
  doi: 10.1155/MPE.2005.275
– ident: e_1_2_9_23_1
  doi: 10.1115/1.1348337
– ident: e_1_2_9_42_1
  doi: 10.1016/j.applthermaleng.2012.05.034
– ident: e_1_2_9_31_1
  doi: 10.1080/01425919708914325
– volume: 2
  start-page: 1
  issue: 4
  year: 2009
  ident: e_1_2_9_4_1
  article-title: Review of the biological and engineering aspects of algae to fuels approach
  publication-title: Int J Agricultural Biological Eng
– ident: e_1_2_9_10_1
  doi: 10.1016/j.jfoodeng.2003.09.001
– ident: e_1_2_9_29_1
– ident: e_1_2_9_15_1
  doi: 10.1016/j.amc.2007.02.121
SSID ssj0009917
Score 2.275466
Snippet Summary The aim of the present work was to develop a transient mathematical model focused on microalgae biomass drying, considering two phases: solid (wet...
The aim of the present work was to develop a transient mathematical model focused on microalgae biomass drying, considering two phases: solid (wet biomass) and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3421
SubjectTerms Air flow
Air masses
Air temperature
Algae
Biomass
Computer simulation
Convection
Design optimization
Differential equations
Drying
Drying ovens
drying process
Electric contacts
Empirical analysis
Energy
Energy balance
Energy conservation
Energy consumption
Experiments
Flow rates
Heat transfer
Heat transfer coefficients
Humidity
Mass flow rate
Mass transfer
mass transfer correlation
mathematical model
Mathematical models
Mathematics
Microalgae
microalgae biomass
Objective function
Ordinary differential equations
Phytoplankton
Profiles
Qualitative analysis
Temperature effects
Temperature profile
Temperature profiles
Thermal energy
Title Modeling, simulation, and optimization of a microalgae biomass drying process
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.4481
https://www.proquest.com/docview/2237772561
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  issn: 0363-907X
  databaseCode: ADMLS
  dateStart: 20050610
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0363-907X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV05SwNBGB0klRbeYjTKFMEqm2RndvYoRRKCEItgINgsc4JoDjZJ46_3-_ZIoiKI1TZzMed7O_PeR0gzNlIyAciNy0B5gRDKk8YlnpS-jRh3cKyj3nn4FA7GweNETHZCfRX-EJsfbrgy8v0aF7hUy87WNNRmbaAWSHx8LvIL2tHWOApQT1TdUgL9mxRyWczZKfN9PYe24HIXouZnTP-IvFStK56WvLXXK9XWH9-MG__V_GNyWCJPel9MlROyZ2en5GDHj_CMDDEyGurTW3T5Oi0De7WonBk6h61lWmo26dxRSaf4lA-VIJaihh9AODUZiqboohAfnJNxv_f8MPDKeAue5iz2PeBmTKvAWNf1Y-sCrhMV2kQ5FQdaRMwax7kDAhLrCGCJTLROhLZAWLQzXGl-QWqz-cxeEuqYCwF4WKYiP5BoCuY0FNwNTWgFlFwnd1Xvp7o0I8eYGO9pYaPMUpul2D91QjcJF4X_xs8kjWr40nIBLlOoPALiAOiwTpr5OPyWPe2N8HP1t2TXZB8gExo3eEw0SG2Vre0NwJKVus1n4CeY39_-
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4MHtSDbyOK2gPxxALbfR-NQlCBA4GExMOm7baJURaywMVf78w-ADUmxtNe2u5u22m_aef7hpCqH3HOHEBuFreFYTuOMHikA4NzU3nM0rCtI9-513c7I_tp7IzzqErkwmT6EKsDN7SMdL1GA8cD6cZaNVQldfAtwPPZxts5NMqHwVo6CnCPV9xTggM4zgizWLWRV_y6E63h5SZITXeZ9gF5Kb4vCy55qy8Xoi4_vkk3_u8HDsl-Dj7pXTZbjsiWio_J3oYk4QnpYXI0pKjX6Px1kuf2qlEeR3QKq8skp23SqaacTjCaD8kgiiKNH3A4jRLkTdFZxj84JaN2a3jfMfKUC4a0mG8a4J4xKexI6abpK21bMhCuCoQWvi0dj6lIW5YGH8SXHiATHkgZOFKBzyJ1ZAlpnZFSPI3VOaGaaRewh2LCM22OumBaQsNNN3KVAy2XyW3R_aHM9cgxLcZ7mCkps1AlIfZPmdBVwVkmwfGzSKUYvzC3wXkIL_fAdwCAWCbVdCB-qx62Bvi4-FuxG7LTGfa6Yfex_3xJdgFBoY6DwZwKKS2SpboClLIQ1-l0_ASZj-Qa
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxGA2iIHpwF6tVcyieOm0nk9mOoi11aZFioXgJWUG009Ll4q_3yyxtVQTxNJckE5J8yXszee9DqBIpzokPyM3jVDjU94XDlYkdzl0dEs_AsW71zp1u0O7T-4E_WEn1lflDLD642chI92sb4GNl6kvTUD2pAbUA4rNBA-BWFg_1ls5RAHvC4jcl8L9Bppe1Vet5xa8H0RJdrmLU9JBp7aKXonvZ3ZK32nwmavLjm3Pjv_q_h3Zy6Imvs7Wyj9Z0coC2VwwJD1HHpkazAvUqnr4O88xeVcwThUewtwxz0SYeGczx0N7ls1IQja2IH1A4VhOrmsLjTH1whPqt5vNN28kTLjjSI5HrADkjUlClTcONtKGejEWgY2FERKUfEq2M5xlgIJEMAZfwWMrYlxoYizTKE9I7RuvJKNEnCBtiAkAemojQpdy6ghkJDTcCFWgfWi6hq2L0mczdyG1SjHeW-SgTpifMjk8J4UXBcWbA8bNIuZg-lkfglMHLQ2AOAA9LqJLOw2_VWbNnH6d_K3aJNp9uW-zxrvtwhrYAPlkTB4f4ZbQ-m8z1OUCUmbhIF-MnDlziyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling%2C+simulation%2C+and+optimization+of+a+microalgae+biomass+drying+process&rft.jtitle=International+journal+of+energy+research&rft.au=Disconzi%2C+Fernanda+P.&rft.au=Balmant%2C+Wellington&rft.au=Vargas%2C+Jose+Viriato+Coelho&rft.au=Peixoto%2C+Pedro+H.R.&rft.date=2019-06-25&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=43&rft.issue=8&rft.spage=3421&rft.epage=3435&rft_id=info:doi/10.1002%2Fer.4481&rft.externalDBID=10.1002%252Fer.4481&rft.externalDocID=ER4481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon