Optimal convergence rates for semidiscrete approximations of parabolic problems with nonsmooth boundary data
We consider semidiscrete approximations of parabolic boundary value problems based on an elliptic approximation by J. Nitsche, in which the approximating subspaces are not subject to any boundary conditions. Optimal L p (L 2 ) error estimates are derived for both smooth and nonsmooth boundary data....
        Saved in:
      
    
          | Published in | Numerical functional analysis and optimization Vol. 12; no. 5-6; pp. 469 - 485 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Philadelphia, PA
          Marcel Dekker, Inc
    
        01.01.1991
     Taylor & Francis  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0163-0563 1532-2467  | 
| DOI | 10.1080/01630569108816443 | 
Cover
| Abstract | We consider semidiscrete approximations of parabolic boundary value problems based on an elliptic approximation by J. Nitsche, in which the approximating subspaces are not subject to any boundary conditions. Optimal L
p
(L
2
) error estimates are derived for both smooth and nonsmooth boundary data. The approach is
based on semigroup theory combined with the theory of singular integrals. | 
    
|---|---|
| AbstractList | We consider semidiscrete approximations of parabolic boundary value problems based on an elliptic approximation by J. Nitsche, in which the approximating subspaces are not subject to any boundary conditions. Optimal L
p
(L
2
) error estimates are derived for both smooth and nonsmooth boundary data. The approach is
based on semigroup theory combined with the theory of singular integrals. | 
    
| Author | Choudury, Gilbert Lasiecka, Irena  | 
    
| Author_xml | – sequence: 1 givenname: Gilbert surname: Choudury fullname: Choudury, Gilbert organization: Department of Mathematical Sciences , University of Cincinnati – sequence: 2 givenname: Irena surname: Lasiecka fullname: Lasiecka, Irena organization: Department of Applied Mathematics , University of Virginia  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4309747$$DView record in Pascal Francis | 
    
| BookMark | eNp9kE1LxDAQhoMouK7-AG85eK0mTZu24EUWv2DBi57LNB8aSZOSRNf992Zd96LoaWaY9xneeY_QvvNOIXRKyTklLbkglDNS8y4PLeVVxfbQjNasLMqKN_tottkXWcAO0VGMr4QQVnbtDNmHKZkRLBbevavwrJxQOEBSEWsfcFSjkSaKoJLCME3Bf2R1Mt5F7DWeIMDgrRE4bwarxohXJr3gbC6O3udu8G9OQlhjCQmO0YEGG9XJd52jp5vrx8VdsXy4vV9cLQvByiYVWjdUD4ppqtlAFaGEc05aLlvSQSnz0NWUVFU9yFJLwRrNoKa0ZFAORMiGzdHZ9u4EUYDVAZwwsZ9C9h7WfcVI11QbWbOVieBjDEr3wqSv51IAY3tK-k22_a9sM0l_kLvb_zGXW8a4nOwIKx-s7BOsrQ87h-xv_BN1PJHu | 
    
| CODEN | NFAODL | 
    
| CitedBy_id | crossref_primary_10_1090_S0025_5718_1994_1242055_6 crossref_primary_10_1090_S0025_5718_1995_1262280_9  | 
    
| Cites_doi | 10.3792/pja/1195521686 10.1007/BF01442900 10.1137/0719003 10.1137/0707048 10.1137/0719002 10.1090/S0025-5718-1981-0628699-1 10.1007/BF02995904 10.1137/0721058 10.1137/0714015 10.1007/978-1-4612-5561-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright Taylor & Francis Group, LLC 1991 1993 INIST-CNRS  | 
    
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 1991 – notice: 1993 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW  | 
    
| DOI | 10.1080/01630569108816443 | 
    
| DatabaseName | CrossRef Pascal-Francis  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1532-2467 | 
    
| EndPage | 485 | 
    
| ExternalDocumentID | 4309747 10_1080_01630569108816443 8816443  | 
    
| GroupedDBID | -~X 07G 0R~ 123 1TA 4.4 5VS AAIKQ AAKBW ABEFU ABJNI ACGEE ACGEJ ACGFS ACIWK ADCVX ADXPE AENEX AEPSL AEUMN AEYOC AGLEN AKOOK ALMA_UNASSIGNED_HOLDINGS AMVHM AMXXU AQTUD AWYRJ BCCOT BPLKW C06 CS3 DU5 DWIFK EBS EJD H13 HZ~ IVXBP NA5 NUSFT NY~ O9- P2P PQQKQ TAQ TDBHL TFL TFMCV TFW TN5 TOXWX UB9 UU8 V3K V4Q YNT YQT .4S .7F .DC .QJ 0BK 29N 30N AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABDBF ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACTCW ACTIO ACUHS ADGTB ADYSH AEISY AEOZL AFKVX AFRVT AGCQS AGDLA AGMYJ AGROQ AHDZW AHMOU AIJEM AIYEW AJWEG AKBVH ALCKM ALQZU AMEWO AQRUH ARCSS AVBZW BLEHA CAG CCCUG CE4 CITATION COF CRFIH DGEBU DKSSO DMQIW EAP EDO EMK EPL EST ESX E~A E~B GTTXZ HF~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NHB QCRFL RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TEJ TFT TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ IQODW  | 
    
| ID | FETCH-LOGICAL-c327t-ff71fbe3f1f3b1e010666086d809a2d6669510445bd2fdc37f3a51123a2b0cd73 | 
    
| ISSN | 0163-0563 | 
    
| IngestDate | Wed Apr 02 07:16:18 EDT 2025 Thu Apr 24 22:56:13 EDT 2025 Wed Oct 01 00:51:08 EDT 2025 Mon Oct 20 23:42:45 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5-6 | 
    
| Keywords | Convergence rate Parabolic equation Semigroup Boundary value problem Error estimation Singular integral  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c327t-ff71fbe3f1f3b1e010666086d809a2d6669510445bd2fdc37f3a51123a2b0cd73 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | pascalfrancis_primary_4309747 crossref_primary_10_1080_01630569108816443 informaworld_taylorfrancis_310_1080_01630569108816443 crossref_citationtrail_10_1080_01630569108816443  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 1900 | 
    
| PublicationDate | 1/1/1991 1991-01-00 1991  | 
    
| PublicationDateYYYYMMDD | 1991-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 1991 text: 1/1/1991 day: 01  | 
    
| PublicationDecade | 1990 | 
    
| PublicationPlace | Philadelphia, PA | 
    
| PublicationPlace_xml | – name: Philadelphia, PA | 
    
| PublicationTitle | Numerical functional analysis and optimization | 
    
| PublicationYear | 1991 | 
    
| Publisher | Marcel Dekker, Inc Taylor & Francis  | 
    
| Publisher_xml | – name: Marcel Dekker, Inc – name: Taylor & Francis  | 
    
| References | Triebel H. (CIT0020) 1978 de Simon L. (CIT0018) 1964; 54 CIT0011 Babuska I. (CIT0002) 1972 Adams R.A. (CIT0001) 1975 Balakrishnan A.V. (CIT0003) 1976 Thomee V. (CIT0019) 1984; 1054 Lasiecka I. (CIT0010) 1986; 47 Pazy A. (CIT0016) 1983; 44 Lions J. L. (CIT0013) 1972; 1 CIT0014 CIT0004 CIT0015 CIT0007 CIT0006 CIT0017 Cannarsa J. P. (CIT0005) 1984 CIT0009 CIT0008 Lasiecka I. (CIT0012) 1986; 65  | 
    
| References_xml | – ident: CIT0007 doi: 10.3792/pja/1195521686 – ident: CIT0011 doi: 10.1007/BF01442900 – volume: 1 volume-title: Nonhomogeneous boundary value problems and applications year: 1972 ident: CIT0013 – volume: 47 start-page: 55 year: 1986 ident: CIT0010 publication-title: Math. Comp. – volume: 1054 volume-title: Galerkin Finite Element Methods for Parabolic Problems year: 1984 ident: CIT0019 – volume-title: Sobolev spaces year: 1975 ident: CIT0001 – volume-title: Interpolation Theory, Function Spaces, Differential Operators year: 1978 ident: CIT0020 – ident: CIT0014 doi: 10.1137/0719003 – ident: CIT0006 doi: 10.1137/0707048 – ident: CIT0017 doi: 10.1137/0719002 – volume: 65 start-page: 149 year: 1986 ident: CIT0012 publication-title: J. Math. Pures et Appl. – volume-title: Applied Functional Analysis year: 1976 ident: CIT0003 – ident: CIT0008 doi: 10.1090/S0025-5718-1981-0628699-1 – volume-title: Cauchy problem year: 1984 ident: CIT0005 – ident: CIT0015 doi: 10.1007/BF02995904 – ident: CIT0009 doi: 10.1137/0721058 – volume-title: The Mathematical Foundations of the Finite Element Method year: 1972 ident: CIT0002 – ident: CIT0004 doi: 10.1137/0714015 – volume: 44 year: 1983 ident: CIT0016 publication-title: Appl. Math. Sci. doi: 10.1007/978-1-4612-5561-1 – volume: 54 start-page: 205 year: 1964 ident: CIT0018 publication-title: Rend. Sem. Mat. Univ. Padova  | 
    
| SSID | ssj0003298 | 
    
| Score | 1.3464428 | 
    
| Snippet | We consider semidiscrete approximations of parabolic boundary value problems based on an elliptic approximation by J. Nitsche, in which the approximating... | 
    
| SourceID | pascalfrancis crossref informaworld  | 
    
| SourceType | Index Database Enrichment Source Publisher  | 
    
| StartPage | 469 | 
    
| SubjectTerms | Exact sciences and technology Mathematics Nitsche's method Numerical analysis Numerical analysis. Scientific computation Parabolic Boundary-Value Problems Partial differential equations, boundary value problems Sciences and techniques of general use Semidiscrete Approximation  | 
    
| Title | Optimal convergence rates for semidiscrete approximations of parabolic problems with nonsmooth boundary data | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/01630569108816443 | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCO Mathematics Source customDbUrl: eissn: 1532-2467 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0003298 issn: 0163-0563 databaseCode: AMVHM dateStart: 19790101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPCAaIfcoPPBEF1V9N-liNTYWpmwQtGk9VPmxpUj-mNkWDv353seMmHRpjUhW1SWNHuZ995_Pd7wj5IAxIOYOBBNpThlIpHcZJl4UsYoZxIzKVob9jeNEdjOXXK3XVat3UopbWRfop-_PXvJKnSBXOgVwxS_Y_JOsbhRPwHeQLR5AwHB8l40sY77OS4GP-y2ZR6gCpH0qOhWClZ9eYdLsEu9hyh99ezzaRb0j6nSIrcOCKyrhEtzlcny1AgEFallxa_g5cApu3Yi_Wdp9nGqBadN7EpKI3QVf8Ap_MpXj6bY7B5fjz-NvP0hXvA4H637-cnpz3Nw7c3OXkbZwPo3t1QOquStwhVm76quZaXsOUCutTp7QlW5wWlraQz70J3kVEQtvQNJg6cQzrPUv01CTT3lJyPvRQig4uoZ6RHY4enDbZ6Q9_DIZeewte1k_2T1_thCMf-3avDVumwXSLIbbJCuRg7Gup2SyjV-SlW2zQvkXOa9LS813yYuiZeldvyNRhiNYwREsMUeiH1jFEmxiiC0M9hmiFIYoYoh5DtMIQRQy9JeOz09HJIHQVOMJM8KgIjYEhm2oY0EakTKP_oNuFRXAed3oJz-EHGuhSqjTnJs9EZESCFrxIeNrJ8ki8I23oUb8ntMcxTR9UButpGeUsiWORax2JnjSKGblHOtW7nGSOnh6rpEwnrGKx3X79e-Sjv-XGcrM89GdVF9CkKKHrxDMRD9x31JCk78kBaf8f1w_IcxtdiJ9D0i6Wa30EdmyRHjvo3QF-Dp7n | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+convergence+rates+for+semidiscrete+approximations+of+parabolic+problems+with+nonsmooth+boundary+data&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=CHOUDURY%2C+G&rft.au=LASIECKA%2C+I&rft.date=1991&rft.pub=Taylor+%26+Francis&rft.issn=0163-0563&rft.volume=12&rft.issue=5-6&rft.spage=469&rft.epage=485&rft_id=info:doi/10.1080%2F01630569108816443&rft.externalDBID=n%2Fa&rft.externalDocID=4309747 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon |