Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions

Metal-oxide-semiconductor (MOS) device is the basic building block for field effect transistors (FET). The majority of thin-film transistors (TFTs) are FETs. When MOSFET are mechanically bent, the MOS structure will be inevitably subject to mechanical strain. In this paper, flexible MOS devices usin...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 108; no. 23
Main Authors Cho, Minkyu, Seo, Jung-Hun, Park, Dong-Wook, Zhou, Weidong, Ma, Zhenqiang
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 06.06.2016
Subjects
Online AccessGet full text
ISSN0003-6951
1077-3118
DOI10.1063/1.4953458

Cover

Abstract Metal-oxide-semiconductor (MOS) device is the basic building block for field effect transistors (FET). The majority of thin-film transistors (TFTs) are FETs. When MOSFET are mechanically bent, the MOS structure will be inevitably subject to mechanical strain. In this paper, flexible MOS devices using single crystalline Silicon (Si) and Germanium (Ge) nanomembranes (NM) with SiO2, SiO, and Al2O3 dielectric layers are fabricated on a plastic substrate. The relationships between semiconductor nanomembranes and various oxide materials are carefully investigated under tensile/compressive strain. The flatband voltage, threshold voltage, and effective charge density in various MOS combinations revealed that Si NM−SiO2 configuration shows the best interface charge behavior, while Ge NM−Al2O3 shows the worst. This investigation of flexible MOS devices can help us understand the impact of charges in the active region of the flexible TFTs and capacitance changes under the tensile/compressive strains on the change in electrical characteristics in flexible NM based TFTs.
AbstractList Metal-oxide-semiconductor (MOS) device is the basic building block for field effect transistors (FET). The majority of thin-film transistors (TFTs) are FETs. When MOSFET are mechanically bent, the MOS structure will be inevitably subject to mechanical strain. In this paper, flexible MOS devices using single crystalline Silicon (Si) and Germanium (Ge) nanomembranes (NM) with SiO2, SiO, and Al2O3 dielectric layers are fabricated on a plastic substrate. The relationships between semiconductor nanomembranes and various oxide materials are carefully investigated under tensile/compressive strain. The flatband voltage, threshold voltage, and effective charge density in various MOS combinations revealed that Si NM−SiO2 configuration shows the best interface charge behavior, while Ge NM−Al2O3 shows the worst. This investigation of flexible MOS devices can help us understand the impact of charges in the active region of the flexible TFTs and capacitance changes under the tensile/compressive strains on the change in electrical characteristics in flexible NM based TFTs.
Author Ma, Zhenqiang
Cho, Minkyu
Park, Dong-Wook
Zhou, Weidong
Seo, Jung-Hun
Author_xml – sequence: 1
  givenname: Minkyu
  surname: Cho
  fullname: Cho, Minkyu
  organization: 3Department of Electrical Engineering, NanoFAB Center, University of Texas, Arlington, Texas 76019, USA
– sequence: 2
  givenname: Jung-Hun
  surname: Seo
  fullname: Seo, Jung-Hun
  organization: Wisconsin
– sequence: 3
  givenname: Dong-Wook
  surname: Park
  fullname: Park, Dong-Wook
  organization: Wisconsin
– sequence: 4
  givenname: Weidong
  surname: Zhou
  fullname: Zhou, Weidong
  organization: University of Texas
– sequence: 5
  givenname: Zhenqiang
  surname: Ma
  fullname: Ma, Zhenqiang
  email: mazq@engr.wisc.edu
  organization: Wisconsin
BookMark eNqdkE1LAzEQhoMoWD8O_oOAJ4W1-djd7h6laBUKHtTzMptMNGU3qUla6i_wb7uliiCePA3DPO87M-8R2XfeISFnnF1xVsoxv8rrQuZFtUdGnE0mmeS82icjxpjMyrrgh-QoxsXQFkLKEfmYwhKUTeAUZmvfJXhBql4hgEoYbExWReoNfbQUnKYzpA6c77FvAzikLUTU1HS4sW2HtMcEXeY3VmMWsbfKO71SyQeqcW0VRrpyGgNt0WnrXuh2bpP1Lp6QAwNdxNOvekyeb2-epnfZ_GF2P72eZ0qKScoQtcmN0Iq1Is-xzotaV1VeMFCl4ZUyevgLWmAVE6ISUHJRl2bIoxxoLbk8Juc732XwbyuMqVn4VXDDykZwwSc8F5UcqPGOUsHHGNA024i2h6YAtms4a7ZpN7z5SntQXPxSLIPtIbz_yV7u2Pjt-j947cMP2Cy1kZ8c-J9S
CODEN APPLAB
CitedBy_id crossref_primary_10_1063_1_4979509
crossref_primary_10_1063_1_5051626
crossref_primary_10_1088_2053_1591_aab2e3
crossref_primary_10_22144_ctu_jen_2021_002
crossref_primary_10_1088_2053_1591_aacb0d
crossref_primary_10_15251_DJNB_2021_161_135
crossref_primary_10_1007_s12274_021_3440_x
crossref_primary_10_1063_1_4978692
crossref_primary_10_1109_TED_2017_2668899
crossref_primary_10_1002_adhm_201601371
crossref_primary_10_1016_j_jallcom_2024_176923
crossref_primary_10_1063_1_4964853
crossref_primary_10_1021_acsami_8b01583
crossref_primary_10_3390_cryst12111609
crossref_primary_10_1021_acsami_7b01549
Cites_doi 10.1002/adom.201500402
10.1109/JMEMS.2010.2082500
10.1063/1.1894611
10.1109/4.18621
10.1063/1.2899631
10.1088/0022-3727/45/14/143001
10.1109/LED.2008.918272
10.1063/1.95098
10.1038/srep24771
10.1063/1.1710011
10.1116/1.582331
10.1143/APEX.4.051301
10.1063/1.3110184
10.1109/JPROC.2005.851237
10.1063/1.4882647
10.1109/TED.2009.2022693
10.1063/1.369002
10.1063/1.2838234
ContentType Journal Article
Copyright Author(s)
2016 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2016 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4953458
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_4953458
apl
GrantInformation_xml – fundername: Air Force Office of Scientific Research (AFOSR)
  grantid: FA9550-09-1-0482
  funderid: http://dx.doi.org/10.13039/100000181
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-eedf4f2dc0b244e9459d88450ac6f18cfd052aba0802282a61296f345644ed313
ISSN 0003-6951
IngestDate Sun Jun 29 13:50:55 EDT 2025
Tue Jul 01 01:15:15 EDT 2025
Thu Apr 24 23:05:02 EDT 2025
Fri Jun 21 00:14:54 EDT 2024
Sun Jul 14 10:05:21 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License 0003-6951/2016/108(23)/233505/5/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-eedf4f2dc0b244e9459d88450ac6f18cfd052aba0802282a61296f345644ed313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5039-2503
0000-0001-9219-6845
0000-0002-0006-2063
PQID 2121714283
PQPubID 2050678
PageCount 5
ParticipantIDs proquest_journals_2121714283
crossref_citationtrail_10_1063_1_4953458
crossref_primary_10_1063_1_4953458
scitation_primary_10_1063_1_4953458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160606
2016-06-06
PublicationDateYYYYMMDD 2016-06-06
PublicationDate_xml – month: 06
  year: 2016
  text: 20160606
  day: 06
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2016
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Seo, Ling, Gong, Zhou, Ma, Guo, Ma (c2) 2016; 6
Cheng-Yi, Ying-Jhe, Yen-Chun, Ching-Fang, Shu-Tong, Chee Wee (c9) 2009; 56
Weinberg, Young, Calise, Cohen, Deluca, Deline (c13) 1984; 45
Kuzum, Krishnamohan, Pethe, Okyay, Oshima, Sun, McVittie, Pianetta, McIntyre, Saraswat (c15) 2008; 29
Mikhaelashvili, Betzer, Prudnikov, Orenstein, Ritter, Eisenstein (c20) 1998; 84
Johnson, Niimi, Lucovsky (c16) 2000; 18
Budenstein, Hayes (c21) 1967; 38
Taoka, Harada, Yamashita, Yamamoto, Sugiyama, Takagi (c17) 2008; 92
Peng, Huang, Fu, Yang, Lai, Chang, Liu (c8) 2009; 105
Huang, Huang, Qin, Dong, Chen (c10) 2010; 19
Choi, Numata, Nishida, Harris, Thompson (c11) 2008; 103
Seo, Zhang, Kim, Zhao, Yang, Zhou, Ma (c3) 2016; 4
Yamamoto, Ueno, Yamanaka, Hirayama, Yang, Wang, Nakashima (c18) 2011; 4
Zhu, Menard, Hurley, Nuzzo, Rogers (c1) 2005; 86
Ghoneim, Kutbee, Ghodsi Nasseri, Bersuker, Hussain (c5) 2014; 104
Zhang, Seo, Zhou, Ma (c6) 2012; 45
Tewksbury, Hae-Seung, Miller (c12) 1989; 24
Reuss, Chalamala, Moussessian, Kane, Kumar, Zhang, Rogers, Hatalis, Temple, Moddel (c4) 2005; 93
(2023070115084813700_c6) 2012; 45
(2023070115084813700_c11) 2008; 103
(2023070115084813700_c1) 2005; 86
(2023070115084813700_c17) 2008; 92
(2023070115084813700_c5) 2014; 104
(2023070115084813700_c16) 2000; 18
(2023070115084813700_c13) 1984; 45
(2023070115084813700_c12) 1989; 24
(2023070115084813700_c15) 2008; 29
2023070115084813700_c22
(2023070115084813700_c20) 1998; 84
(2023070115084813700_c3) 2016; 4
(2023070115084813700_c4) 2005; 93
(2023070115084813700_c9) 2009; 56
(2023070115084813700_c10) 2010; 19
(2023070115084813700_c7) 1989
(2023070115084813700_c21) 1967; 38
(2023070115084813700_c14) 1982
(2023070115084813700_c19) 2010
(2023070115084813700_c2) 2016; 6
(2023070115084813700_c8) 2009; 105
(2023070115084813700_c18) 2011; 4
References_xml – volume: 56
  start-page: 1736
  year: 2009
  ident: c9
  publication-title: IEEE Trans. Electron Devices
– volume: 84
  start-page: 6747
  year: 1998
  ident: c20
  publication-title: J. Appl. Phys.
– volume: 93
  start-page: 1239
  year: 2005
  ident: c4
  publication-title: Proc. IEEE
– volume: 103
  start-page: 064510
  year: 2008
  ident: c11
  publication-title: J. Appl. Phys.
– volume: 86
  start-page: 133507
  year: 2005
  ident: c1
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 120
  year: 2016
  ident: c3
  publication-title: Adv. Opt. Mater.
– volume: 4
  start-page: 051301
  year: 2011
  ident: c18
  publication-title: Appl. Phys. Express
– volume: 45
  start-page: 1204
  year: 1984
  ident: c13
  publication-title: Appl. Phys. Lett.
– volume: 24
  start-page: 542
  year: 1989
  ident: c12
  publication-title: IEEE J. Solid-State Circuits
– volume: 45
  start-page: 143001
  year: 2012
  ident: c6
  publication-title: J. Phys. D: Appl. Phys.
– volume: 38
  start-page: 2837
  year: 1967
  ident: c21
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 24771
  year: 2016
  ident: c2
  publication-title: Sci. Rep.
– volume: 104
  start-page: 234104
  year: 2014
  ident: c5
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 113511
  year: 2008
  ident: c17
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 328
  year: 2008
  ident: c15
  publication-title: IEEE Electron Device Lett.
– volume: 19
  start-page: 1521
  year: 2010
  ident: c10
  publication-title: J. Microelectromech. Syst.
– volume: 105
  start-page: 083537
  year: 2009
  ident: c8
  publication-title: J. Appl. Phys.
– volume: 18
  start-page: 1230
  year: 2000
  ident: c16
  publication-title: J. Vac. Sci. Technol., A
– volume: 4
  start-page: 120
  year: 2016
  ident: 2023070115084813700_c3
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500402
– volume: 19
  start-page: 1521
  issue: 6
  year: 2010
  ident: 2023070115084813700_c10
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2010.2082500
– volume: 86
  start-page: 133507
  year: 2005
  ident: 2023070115084813700_c1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1894611
– volume: 24
  start-page: 542
  issue: 2
  year: 1989
  ident: 2023070115084813700_c12
  publication-title: IEEE J. Solid-State Circuits
  doi: 10.1109/4.18621
– volume: 92
  start-page: 113511
  year: 2008
  ident: 2023070115084813700_c17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2899631
– volume: 45
  start-page: 143001
  year: 2012
  ident: 2023070115084813700_c6
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/45/14/143001
– volume: 29
  start-page: 328
  issue: 4
  year: 2008
  ident: 2023070115084813700_c15
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2008.918272
– volume: 45
  start-page: 1204
  year: 1984
  ident: 2023070115084813700_c13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.95098
– volume: 6
  start-page: 24771
  year: 2016
  ident: 2023070115084813700_c2
  publication-title: Sci. Rep.
  doi: 10.1038/srep24771
– volume: 38
  start-page: 2837
  year: 1967
  ident: 2023070115084813700_c21
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1710011
– volume: 18
  start-page: 1230
  issue: 4
  year: 2000
  ident: 2023070115084813700_c16
  publication-title: J. Vac. Sci. Technol., A
  doi: 10.1116/1.582331
– volume: 4
  start-page: 051301
  year: 2011
  ident: 2023070115084813700_c18
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.4.051301
– volume: 105
  start-page: 083537
  year: 2009
  ident: 2023070115084813700_c8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3110184
– volume-title: MOS (Metal Oxide Semiconductor) Physics and Technology
  year: 1982
  ident: 2023070115084813700_c14
– volume-title: Electronic Materials: Science and Technology
  year: 1989
  ident: 2023070115084813700_c7
– year: 2010
  ident: 2023070115084813700_c19
– volume: 93
  start-page: 1239
  issue: 7
  year: 2005
  ident: 2023070115084813700_c4
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2005.851237
– volume: 104
  start-page: 234104
  year: 2014
  ident: 2023070115084813700_c5
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4882647
– volume: 56
  start-page: 1736
  issue: 8
  year: 2009
  ident: 2023070115084813700_c9
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2009.2022693
– ident: 2023070115084813700_c22
– volume: 84
  start-page: 6747
  year: 1998
  ident: 2023070115084813700_c20
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.369002
– volume: 103
  start-page: 064510
  issue: 6
  year: 2008
  ident: 2023070115084813700_c11
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2838234
SSID ssj0005233
Score 2.2838926
Snippet Metal-oxide-semiconductor (MOS) device is the basic building block for field effect transistors (FET). The majority of thin-film transistors (TFTs) are FETs....
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aluminum oxide
Applied physics
Basic oxides
Bending machines
Capacitance-voltage characteristics
Charge density
Compressive properties
Field effect transistors
Germanium
Metal oxide semiconductors
MOS devices
MOSFETs
Semiconductor devices
Silicon dioxide
Strain
Substrates
Thin film transistors
Threshold voltage
Transistors
Title Capacitance-voltage characteristics of Si and Ge nanomembrane based flexible metal-oxide-semiconductor devices under bending conditions
URI http://dx.doi.org/10.1063/1.4953458
https://www.proquest.com/docview/2121714283
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1077-3118
  dateEnd: 20240930
  omitProxy: false
  ssIdentifier: ssj0005233
  issn: 0003-6951
  databaseCode: ADMLS
  dateStart: 19840101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJwQ8IBggCgNZwANSlS2JEyd5nDpYNTE0aZvYW2THtoho46o_EPAP8G9zdpw0KwUNXqLKtazK9-X8-Xr3HUJv4kgRzhLhsSwlcEExgSZGAk_FPILjJ8247Vpy-pGOL6OTq_iq11OdrKXVku8XP7bWlfyPVWEM7GqqZP_Bsu2iMACfwb7wBAvD80Y2HsFJV8DlHgzngZtZmvybYkOB2RSllPYvgmM5rFilp3IKN2TgluYAE0NlFDFN-dRUAg_39LdSSG9hUuZ1ZbRgtekgbt2JbZk7H3JZF8KY78t1uK9RsnWsto6YLIYTWy7UEvfRZ10n61dfvq_a6E4drz0Bv-ONVy1az1wa95GG8U_NZcAGufXK5gbKUmh38rrARUBtghW95oyJRzOnNytr_-snJmzqXHLjoP20g8S6PPk3zw9UywQh9k2-bFSrwW8IabPZ5BbaCRNKwz7aOTw6_XDeSQYipOmtaH5So0FFyUG75HXmsr6O3FkUTk69w0wuHqD77kqBD2t8PEQ9We2iex2hyV10-6w2xyP0cwtm8AZmsFb4vMSAGXwscRcz2GIGN5jBf8QMdpjBFjPYYQavMfMYXb5_dzEae64Zh1eQMFl6wKVUpEJR-BwYocyiOBNpGsU-K6gK0kIJ2ETGma3dTkMGzDmjihi1okgKEpAnqF_pSj5FOPZ5nBAepCwkkc9UKrifMZoSEomU-mKA3jYbnTdbaxqmTHKbMUFJHuTOJgP0qp06q-VZtk3aa6yVu7d3kQNlCxIrNzhAr1sL_m2RLbO-6vl6Rj4T6tmN1nqO7q5fiD3UX85X8gVw2yV_6YD5CwNEqYs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacitance-voltage+characteristics+of+Si+and+Ge+nanomembrane+based+flexible+metal-oxide-semiconductor+devices+under+bending+conditions&rft.jtitle=Applied+physics+letters&rft.au=Cho%2C+Minkyu&rft.au=Seo%2C+Jung-Hun&rft.au=Park%2C+Dong-Wook&rft.au=Zhou%2C+Weidong&rft.date=2016-06-06&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=108&rft.issue=23&rft_id=info:doi/10.1063%2F1.4953458&rft.externalDocID=apl
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon