A new large-update interior point algorithm for P ∗( κ) LCPs based on kernel functions

In this paper we propose a new large-update primal-dual interior point algorithm for P ∗( κ) linear complementarity problems (LCPs). Recently, Peng et al. introduced self-regular barrier functions for primal-dual interior point methods (IPMs) for linear optimization (LO) problems and reduced the gap...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 182; no. 2; pp. 1169 - 1183
Main Authors Cho, Gyeong-Mi, Kim, Min-Kyung
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.11.2006
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2006.04.060

Cover

Abstract In this paper we propose a new large-update primal-dual interior point algorithm for P ∗( κ) linear complementarity problems (LCPs). Recently, Peng et al. introduced self-regular barrier functions for primal-dual interior point methods (IPMs) for linear optimization (LO) problems and reduced the gap between the practical behavior of the algorithm and its theoretical worst case complexity. We introduce a new class of kernel functions which is not logarithmic barrier nor self-regular in the complexity analysis of interior point method (IPM) for P ∗( κ) linear complementarity problem (LCP). New search directions and proximity measures are proposed based on the kernel function. We showed that if a strictly feasible starting point is available, then the new large-update primal-dual interior point algorithms for solving P ∗( κ) LCPs have the polynomial complexity O q 3 2 ( 1 + 2 κ ) n ( log n ) q + 1 q log n ϵ which is better than the classical large-update primal-dual algorithm based on the classical logarithmic barrier function.
AbstractList In this paper we propose a new large-update primal-dual interior point algorithm for P ∗( κ) linear complementarity problems (LCPs). Recently, Peng et al. introduced self-regular barrier functions for primal-dual interior point methods (IPMs) for linear optimization (LO) problems and reduced the gap between the practical behavior of the algorithm and its theoretical worst case complexity. We introduce a new class of kernel functions which is not logarithmic barrier nor self-regular in the complexity analysis of interior point method (IPM) for P ∗( κ) linear complementarity problem (LCP). New search directions and proximity measures are proposed based on the kernel function. We showed that if a strictly feasible starting point is available, then the new large-update primal-dual interior point algorithms for solving P ∗( κ) LCPs have the polynomial complexity O q 3 2 ( 1 + 2 κ ) n ( log n ) q + 1 q log n ϵ which is better than the classical large-update primal-dual algorithm based on the classical logarithmic barrier function.
Author Kim, Min-Kyung
Cho, Gyeong-Mi
Author_xml – sequence: 1
  givenname: Gyeong-Mi
  surname: Cho
  fullname: Cho, Gyeong-Mi
  email: gcho@dongseo.ac.kr
  organization: Department of Multimedia Engineering, Division of Computer and Information Engineering, Dongseo University, San 69-1, Sasang-Gu, Churye2-Dong, Busan 617-716, Republic of Korea
– sequence: 2
  givenname: Min-Kyung
  surname: Kim
  fullname: Kim, Min-Kyung
  organization: Department of Mathematics, Pusan National University, Busan 609-735, Republic of Korea
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18371103$$DView record in Pascal Francis
BookMark eNp9kE1KxDAUx4MoOH4cwF02gi5aX5o2aXElg18w4Cx04Sqk6cuYsZMOSVW8gTfwLh7CQ3gSO4wguHD1Ho__78H_t0M2feeRkAMGKQMmTuapXpg0AxAp5CkI2CAjVkqeFCKvNskIoBIJB-DbZCfGOQBIwfIRuT-jHl9oq8MMk6dlo3ukzvcYXBfoshtWqttZF1z_sKB2uE3p19v7Ef38OKaT8TTSWkdsaOfpIwaPLbVP3vSu83GPbFndRtz_mbvk7uL8dnyVTG4ur8dnk8TwTPaJKYS0WNoszzNbcFFYbQvEyla6EmVVoeFWFjarjeW2ZFBmRW11U5ZSSFNDzXfJ4frvUkejWxu0Ny6qZXALHV4VK7lkDPiQY-ucCV2MAe1vBNTKoZqrwaFaOVSQq8HhwMg_jHG9XtXrg3btv-TpmsSh-rPDoKJx6A02LqDpVdO5f-hv4cWO_g
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1016_j_na_2010_07_036
crossref_primary_10_1007_s11741_009_0201_3
crossref_primary_10_3934_naco_2020053
crossref_primary_10_1007_s12190_015_0978_3
crossref_primary_10_1016_j_amc_2008_11_002
crossref_primary_10_1016_j_na_2009_05_078
crossref_primary_10_1007_s10898_013_0072_z
crossref_primary_10_1186_1029_242X_2014_363
crossref_primary_10_1007_s10255_018_0729_y
crossref_primary_10_1051_ro_2010014
crossref_primary_10_1186_s13660_019_1954_5
crossref_primary_10_1007_s10898_013_0090_x
crossref_primary_10_1186_1029_242X_2013_215
Cites_doi 10.1007/s101070200296
10.1007/BF01594942
10.1137/S1052623403423114
10.1007/BF01585565
10.1007/BF01587074
ContentType Journal Article
Copyright 2006 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2006.04.060
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1873-5649
EndPage 1183
ExternalDocumentID 18371103
10_1016_j_amc_2006_04_060
S0096300306004310
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-c567fe8f2442f5365faf5ee9f9a96899ec3f75f2bcf3f810825bfad88767cb0b3
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Mon Jul 21 09:15:35 EDT 2025
Wed Oct 01 02:15:24 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Kernel function
Linear complementarity problem
Polynomial algorithm
Large-update interior point method
Complexity
Logarithmic function
Barrier function
Optimization method
Interior point method
Complementarity problem
Gap problem
Numerical analysis
Applied mathematics
Primal dual method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-c567fe8f2442f5365faf5ee9f9a96899ec3f75f2bcf3f810825bfad88767cb0b3
PageCount 15
ParticipantIDs pascalfrancis_primary_18371103
crossref_primary_10_1016_j_amc_2006_04_060
crossref_citationtrail_10_1016_j_amc_2006_04_060
elsevier_sciencedirect_doi_10_1016_j_amc_2006_04_060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-11-15
PublicationDateYYYYMMDD 2006-11-15
PublicationDate_xml – month: 11
  year: 2006
  text: 2006-11-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Illes, Nagy (bib3) 2004
Kojima, Megiddo, Noma, Yoshise (bib4) 1989
Cottle, Pang, Stone (bib2) 1992
Peng, Roos, Terlaky (bib10) 2002; 93
Wright (bib12) 1997
Kojima, Mizuno, Yoshise (bib7) 1991; 50
Kojima, Mizuno, Yoshise (bib6) 1989; 44
Megiddo (bib8) 1989
Miao (bib9) 1995; 69
Roos, Terlaky, Vial (bib11) 1997
Kojima, Megiddo, Noma, Yoshise (bib5) 1991; vol. 538
Bai, El ghami, Roos (bib1) 2005; 15
Peng (10.1016/j.amc.2006.04.060_bib10) 2002; 93
Roos (10.1016/j.amc.2006.04.060_bib11) 1997
Illes (10.1016/j.amc.2006.04.060_bib3) 2004
Kojima (10.1016/j.amc.2006.04.060_bib5) 1991; vol. 538
Megiddo (10.1016/j.amc.2006.04.060_bib8) 1989
Bai (10.1016/j.amc.2006.04.060_bib1) 2005; 15
Cottle (10.1016/j.amc.2006.04.060_bib2) 1992
Kojima (10.1016/j.amc.2006.04.060_bib4) 1989
Wright (10.1016/j.amc.2006.04.060_bib12) 1997
Kojima (10.1016/j.amc.2006.04.060_bib6) 1989; 44
Miao (10.1016/j.amc.2006.04.060_bib9) 1995; 69
Kojima (10.1016/j.amc.2006.04.060_bib7) 1991; 50
References_xml – start-page: 158
  year: 1989
  end-page: 313
  ident: bib8
  article-title: Pathways to the optimal set in linear programming
  publication-title: Progress in Mathematical Programming; Interior point and Related Methods
– volume: vol. 538
  year: 1991
  ident: bib5
  article-title: A unifided approach to interior point algorithms for linear complementarity problems
  publication-title: Lecture Notes in Computer Science
– volume: 50
  start-page: 331
  year: 1991
  end-page: 342
  ident: bib7
  article-title: An
  publication-title: Math. Program.
– volume: 15
  start-page: 101
  year: 2005
  end-page: 128
  ident: bib1
  article-title: A Comparative study of kernel functions for primal-dual interior-point algorithms in Linear Optimization
  publication-title: Siam J. Optimiz.
– volume: 44
  start-page: 1
  year: 1989
  end-page: 26
  ident: bib6
  article-title: A polynomial-time algorithm for a class of linear complementarity problems
  publication-title: Math. Program.
– year: 1997
  ident: bib11
  article-title: Theory and Algorithms for Linear Optimization, An Interior Approach
– year: 1992
  ident: bib2
  article-title: The Linear Complementarity Problem
– start-page: 29
  year: 1989
  end-page: 47
  ident: bib4
  article-title: A primal-dual interior point algorithm for linear programming
  publication-title: Progress in Mathematical Programming; Interior Point Related Metho
– year: 1997
  ident: bib12
  article-title: Primal-Dual Interior-Point Methods
– year: 2004
  ident: bib3
  article-title: The Mizuno-Todd-Ye predictor-corrector algorithm for sufficient matrix linear complementarity problem
– volume: 93
  start-page: 129
  year: 2002
  end-page: 171
  ident: bib10
  article-title: Self-regular functions and new search directions for linear and semidefinite optimization
  publication-title: Math. Program.
– volume: 69
  start-page: 355
  year: 1995
  end-page: 368
  ident: bib9
  article-title: A quadratically convergent
  publication-title: Math. Program.
– year: 2004
  ident: 10.1016/j.amc.2006.04.060_bib3
– start-page: 158
  year: 1989
  ident: 10.1016/j.amc.2006.04.060_bib8
  article-title: Pathways to the optimal set in linear programming
– volume: 93
  start-page: 129
  year: 2002
  ident: 10.1016/j.amc.2006.04.060_bib10
  article-title: Self-regular functions and new search directions for linear and semidefinite optimization
  publication-title: Math. Program.
  doi: 10.1007/s101070200296
– start-page: 29
  year: 1989
  ident: 10.1016/j.amc.2006.04.060_bib4
  article-title: A primal-dual interior point algorithm for linear programming
– volume: 50
  start-page: 331
  year: 1991
  ident: 10.1016/j.amc.2006.04.060_bib7
  article-title: An O(nL) iteration potential reduction algorithm for linear complementarity problems
  publication-title: Math. Program.
  doi: 10.1007/BF01594942
– volume: 15
  start-page: 101
  year: 2005
  ident: 10.1016/j.amc.2006.04.060_bib1
  article-title: A Comparative study of kernel functions for primal-dual interior-point algorithms in Linear Optimization
  publication-title: Siam J. Optimiz.
  doi: 10.1137/S1052623403423114
– year: 1997
  ident: 10.1016/j.amc.2006.04.060_bib11
– year: 1992
  ident: 10.1016/j.amc.2006.04.060_bib2
– volume: 69
  start-page: 355
  year: 1995
  ident: 10.1016/j.amc.2006.04.060_bib9
  article-title: A quadratically convergent O((1+κ)nL)-iteration algorithm for the P∗(κ)-matrix linear complementarity problem
  publication-title: Math. Program.
  doi: 10.1007/BF01585565
– volume: vol. 538
  year: 1991
  ident: 10.1016/j.amc.2006.04.060_bib5
  article-title: A unifided approach to interior point algorithms for linear complementarity problems
– volume: 44
  start-page: 1
  year: 1989
  ident: 10.1016/j.amc.2006.04.060_bib6
  article-title: A polynomial-time algorithm for a class of linear complementarity problems
  publication-title: Math. Program.
  doi: 10.1007/BF01587074
– year: 1997
  ident: 10.1016/j.amc.2006.04.060_bib12
SSID ssj0007614
Score 1.9519085
Snippet In this paper we propose a new large-update primal-dual interior point algorithm for P ∗( κ) linear complementarity problems (LCPs). Recently, Peng et al....
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1169
SubjectTerms Applied sciences
Calculus of variations and optimal control
Complexity
Exact sciences and technology
Kernel function
Large-update interior point method
Linear complementarity problem
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Operational research and scientific management
Operational research. Management science
Optimization. Search problems
Polynomial algorithm
Sciences and techniques of general use
Title A new large-update interior point algorithm for P ∗( κ) LCPs based on kernel functions
URI https://dx.doi.org/10.1016/j.amc.2006.04.060
Volume 182
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTsMwELWg3YAQ4ivKp_KCBSAF0thJnGVVUZWvWIAEq8hObSiUJErLljU34C4cgkNwEmbyKSAhFuyiJE6imdHMm3jmDSHbUjhMKhlYEvCxxZUnLNVyfIv7qi8iAVdMXuV77vWu-PG1ez1FOlUvDJZVlr6_8Om5ty7PHJTSPEgHA-zxDZAvCjAvbmdhm1Ud4o8QNVJvH530zicOGTL1gow5wDIvm1Wbm3mZl3yMyi0Jvm_nRJW_hqe5VI5AaKaYdvEtBHUXyHyJHWm7-LxFMqXjJTJ7NiFeHS2TmzYFnEyHWN9tPaWYzlNkhMgGSUbTBA6pHN4m2WB890gBr9IL-vHyukPf33bpaediRDGq9WkS0wedxXpIMe7lprlCrrqHl52eVU5PsCLm-GMrcj3faGEgfjvGZZ5rpHG1DkwgAw-yLB0x47vGUZFhRrQwVVRG9sHpeH6kbMVWSS1OYr1GqCdc7XMORof5IOhTcSNsX9uOxj5V1iB2JbQwKqnFccLFMKxqyO5DkDOOvPRCm4cg5wbZmyxJC16Nv27mlSbCH8YRgt__a1nzh9a-XgRZOcAetv6_526QmfxHDBYDupukNs6e9BZAk7Fqkun951azNMBP6j_ivw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTsQwDI0QLAAhxFd8hyxYAFKhNEnTLkcj0AADYgESrKqkk8DA0FadYcuaG3AXDsEhOAl2P3wkxIJd1TZtZVv2c_NsE7KpAo8prUJHAT52uPYDR-970uFSd4M4gCu2YPme-e1LfnwlrkZIq66FQVpl5ftLn1546-rMXiXNvazXwxrfEPtFAebF7SwssxrjwpOYge0-ffE8IE8vWzGHSPJyWb21WZC81ENcbUjwXbdoU_lrcJrK1ABEZstZF98C0OEMma6QI22WHzdLRkwyRyZPP9uuDubJdZMCSqZ9ZHc7jxkm8xT7QeS9NKdZCodU9W_SvDe8faCAVuk5fX9-2aJvr9u00zofUIxpXZom9N7kielTjHqFYS6Qy8ODi1bbqWYnODHz5NCJhS-tCSxEb88K5gurrDAmtKEKfcixTMysFNbTsWU22MdEUVvVBZfjy1i7mi2S0SRNzBKhfiCM5BxMDrNB0KbmNnClcT2DVapsmbi10KK4aiyO8y36Uc0gu4tAzjjw0o9cHoGcl8nO55Ks7Krx18281kT0wzQi8Pp_LWv80NrXiyAnB9DDVv733A0y3r447USdo7OTVTJR_JJBWqBYI6PD_NGsA0gZ6kZhhB_KeeOH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+large-update+interior+point+algorithm+for+P%E2%88%97%28%CE%BA%29+LCPs+based+on+kernel+functions&rft.jtitle=Applied+mathematics+and+computation&rft.au=Cho%2C+Gyeong-Mi&rft.au=Kim%2C+Min-Kyung&rft.date=2006-11-15&rft.issn=0096-3003&rft.volume=182&rft.issue=2&rft.spage=1169&rft.epage=1183&rft_id=info:doi/10.1016%2Fj.amc.2006.04.060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2006_04_060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon