Path integration of the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations
This paper is focused on the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations using path integration based on the Gauss–Legendre integration scheme. First applying methods of harmonic balance and multiple scales to the deterministic case, the stabilities of the responses ca...
        Saved in:
      
    
          | Published in | Applied mathematics and computation Vol. 171; no. 2; pp. 870 - 884 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York, NY
          Elsevier Inc
    
        15.12.2005
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0096-3003 1873-5649  | 
| DOI | 10.1016/j.amc.2005.01.095 | 
Cover
| Abstract | This paper is focused on the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations using path integration based on the Gauss–Legendre integration scheme. First applying methods of harmonic balance and multiple scales to the deterministic case, the stabilities of the responses can be analyzed. Then the steady state periodic solution of probability density can be captured via path integration. At the same time, the changes of probability density induced by the intensities of harmonic and stochastic excitations are discussed in three cases. | 
    
|---|---|
| AbstractList | This paper is focused on the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations using path integration based on the Gauss–Legendre integration scheme. First applying methods of harmonic balance and multiple scales to the deterministic case, the stabilities of the responses can be analyzed. Then the steady state periodic solution of probability density can be captured via path integration. At the same time, the changes of probability density induced by the intensities of harmonic and stochastic excitations are discussed in three cases. | 
    
| Author | Xie, W.X. Cai, L. Xu, W.  | 
    
| Author_xml | – sequence: 1 givenname: W.X. surname: Xie fullname: Xie, W.X. email: xiewy8899@eyou.com organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China – sequence: 2 givenname: W. surname: Xu fullname: Xu, W. email: weixu@nwpu.edu.cn organization: Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China – sequence: 3 givenname: L. surname: Cai fullname: Cai, L. organization: College of Astronautics, Northwestern Polytechnical University, Xi’an, Shaanaxi 710072, PR China  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17470868$$DView record in Pascal Francis | 
    
| BookMark | eNp9kE1O5DAQRi3ESDTMHICdNywTyp3ESYsV4l9CYjSaWVsVp9xxK20j2yDYcQduyEnG0MCCBatSSd_7VPV22bbzjhjbF1AKEPJwVeJal3OApgRRwqLZYjPRtVXRyHqxzWYAC1lUANUO241xBQCtFPWMDb8xjdy6RMuAyXrHveFpJH56Z4x1y5en5z_4OJFdjtxHbacJkw883vUr0oknz0cMa--s5ugGHpPXI8aUV3rQNr1Vxp_sh8Ep0q_3ucf-nZ_9Pbksrm8urk6OrwtdzdtU9Ch0bRYogdpeVnXXdAM1c9NWWNGAskboTdfVpiFhSNeiGSQB5tzQ9YL6ao8dbHpvMWqcTECnbVS3wa4xPCrR1i10ssu5dpPTwccYyKiPU1NAOykB6lWqWqksVb1KVSBUlppJ8YX8LP-GOdowlF-_txRU9khO02BDdqgGb7-h_wPN0pUB | 
    
| CODEN | AMHCBQ | 
    
| CitedBy_id | crossref_primary_10_1115_1_3124780 crossref_primary_10_1177_10775463221089424 crossref_primary_10_4028_www_scientific_net_AMM_430_3 crossref_primary_10_1016_j_amc_2018_09_061 crossref_primary_10_1016_j_physa_2006_05_021 crossref_primary_10_1115_1_4049836 crossref_primary_10_1063_5_0153658 crossref_primary_10_1016_j_probengmech_2012_02_004 crossref_primary_10_1016_j_amc_2007_07_088 crossref_primary_10_1016_j_probengmech_2013_06_001 crossref_primary_10_1016_j_apm_2012_04_014 crossref_primary_10_1088_1402_4896_acc0b2  | 
    
| Cites_doi | 10.1016/S0266-8920(02)00034-6 10.1016/0020-7462(82)90023-3 10.1016/0020-7462(82)90013-0 10.1016/S0020-7462(96)00096-0 10.1006/jsvi.2000.3083 10.1016/0020-7462(90)90014-Z 10.1016/0020-7462(96)00053-4 10.1016/S0266-8920(99)00031-4 10.1023/A:1008389909132  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2005 Elsevier Inc. 2006 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2005 Elsevier Inc. – notice: 2006 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW  | 
    
| DOI | 10.1016/j.amc.2005.01.095 | 
    
| DatabaseName | CrossRef Pascal-Francis  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1873-5649 | 
    
| EndPage | 884 | 
    
| ExternalDocumentID | 17470868 10_1016_j_amc_2005_01_095 S0096300305001402  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH  | 
    
| ID | FETCH-LOGICAL-c327t-ba1c4f9a60e7b634858de52f73a3eda64a0bf884f5e1fec415d6e0a485d8b1eb3 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0096-3003 | 
    
| IngestDate | Mon Jul 21 09:13:54 EDT 2025 Wed Oct 01 02:15:18 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 Fri Feb 23 02:29:03 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Harmonic and stochastic excitation Path integration Method of multiple scales Duffing–Rayleigh oscillator Method of harmonic balance Density of states Stability Path integral Probability distribution Duffing-Rayleigh oscillator Harmonic balance Probability density Stochastic excitation Applied mathematics Duffing Rayleigh oscillator Multiple scale Sinusoidal excitation Steady state solution Harmonic oscillator  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c327t-ba1c4f9a60e7b634858de52f73a3eda64a0bf884f5e1fec415d6e0a485d8b1eb3 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | pascalfrancis_primary_17470868 crossref_citationtrail_10_1016_j_amc_2005_01_095 crossref_primary_10_1016_j_amc_2005_01_095 elsevier_sciencedirect_doi_10_1016_j_amc_2005_01_095  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2005-12-15 | 
    
| PublicationDateYYYYMMDD | 2005-12-15 | 
    
| PublicationDate_xml | – month: 12 year: 2005 text: 2005-12-15 day: 15  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | New York, NY | 
    
| PublicationPlace_xml | – name: New York, NY | 
    
| PublicationTitle | Applied mathematics and computation | 
    
| PublicationYear | 2005 | 
    
| Publisher | Elsevier Inc Elsevier  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier  | 
    
| References | Von Wagner, Wedig (bib6) 2000; 21 Lin, Cai (bib4) 1995 Dimentberg (bib3) 1982; 17 Zhou, Zhu (bib13) 1998 Di Paola, Sofi (bib7) 2002; 17 Yu, Lin (bib11) 2003 Cai, Lin (bib5) 1996; 31 Caughey (bib1) 1971 Caughey, Ma (bib2) 1982; 17 Naess, Moe (bib8) 2000; 15 Huang, Zhu, Suzuki (bib9) 2000; 238 Nayfeh, Serhan (bib12) 1990; 25 Yu, Cai, Lin (bib10) 1997; 32 Lin (10.1016/j.amc.2005.01.095_bib4) 1995 Von Wagner (10.1016/j.amc.2005.01.095_bib6) 2000; 21 Zhou (10.1016/j.amc.2005.01.095_bib13) 1998 Huang (10.1016/j.amc.2005.01.095_bib9) 2000; 238 Caughey (10.1016/j.amc.2005.01.095_bib1) 1971 Dimentberg (10.1016/j.amc.2005.01.095_bib3) 1982; 17 Yu (10.1016/j.amc.2005.01.095_bib11) 2003 Caughey (10.1016/j.amc.2005.01.095_bib2) 1982; 17 Yu (10.1016/j.amc.2005.01.095_bib10) 1997; 32 Nayfeh (10.1016/j.amc.2005.01.095_bib12) 1990; 25 Di Paola (10.1016/j.amc.2005.01.095_bib7) 2002; 17 Naess (10.1016/j.amc.2005.01.095_bib8) 2000; 15 Cai (10.1016/j.amc.2005.01.095_bib5) 1996; 31  | 
    
| References_xml | – volume: 31 start-page: 647 year: 1996 end-page: 655 ident: bib5 article-title: Exact and approximate solutions for randomly excited MDOF nonlinear systems publication-title: Int. J. Non-linear Mech. – year: 1998 ident: bib13 article-title: Nonlinear vibrations – volume: 17 start-page: 231 year: 1982 end-page: 236 ident: bib3 article-title: An exact solution to a certain non-linear random vibration problem publication-title: Int. J. Non-Linear Mech. – volume: 238 start-page: 233 year: 2000 end-page: 256 ident: bib9 article-title: Stochastic averaging of strongly non-linear oscillators under combined harmonic and white noise excitations publication-title: J. Sound Vib. – year: 1995 ident: bib4 article-title: Probabilistic structural dynamics: advanced theory and applications – volume: 21 start-page: 289 year: 2000 end-page: 306 ident: bib6 article-title: On the calculation of stationary solutions of multi-dimensional Fokker–Planck equations by orthogonal functions publication-title: Nonlinear Dynam. – year: 1971 ident: bib1 article-title: Advances in applied mechanics – year: 2003 ident: bib11 article-title: Numerical path integration of a nonlinear oscillator subject to both sinusoidal and white noise excitations publication-title: Advances in stochastic structural dynamics – volume: 15 start-page: 221 year: 2000 end-page: 231 ident: bib8 article-title: Efficient path integration methods for nonlinear dynamic systems publication-title: Prob. Eng. Mech. – volume: 32 start-page: 759 year: 1997 end-page: 768 ident: bib10 article-title: A new path integration procedure based on Gauss–Legendre scheme publication-title: Int. J. Non-Linear Mech. – volume: 17 start-page: 137 year: 1982 end-page: 142 ident: bib2 article-title: The exact steady-state solution of a class of nonlinear stochastic systems publication-title: Int. J. Non-Linear Mech. – volume: 17 start-page: 369 year: 2002 end-page: 384 ident: bib7 article-title: Approximate solution of the Fokker–Planck–Kolmogorov equation publication-title: Prob. Eng. Mech. – volume: 25 start-page: 493 year: 1990 end-page: 515 ident: bib12 article-title: Response statistics of nonlinear systems to combined deterministic and random excitations publication-title: Int. J. Non-Linear Mech. – volume: 17 start-page: 369 year: 2002 ident: 10.1016/j.amc.2005.01.095_bib7 article-title: Approximate solution of the Fokker–Planck–Kolmogorov equation publication-title: Prob. Eng. Mech. doi: 10.1016/S0266-8920(02)00034-6 – volume: 17 start-page: 231 year: 1982 ident: 10.1016/j.amc.2005.01.095_bib3 article-title: An exact solution to a certain non-linear random vibration problem publication-title: Int. J. Non-Linear Mech. doi: 10.1016/0020-7462(82)90023-3 – volume: 17 start-page: 137 year: 1982 ident: 10.1016/j.amc.2005.01.095_bib2 article-title: The exact steady-state solution of a class of nonlinear stochastic systems publication-title: Int. J. Non-Linear Mech. doi: 10.1016/0020-7462(82)90013-0 – volume: 32 start-page: 759 year: 1997 ident: 10.1016/j.amc.2005.01.095_bib10 article-title: A new path integration procedure based on Gauss–Legendre scheme publication-title: Int. J. Non-Linear Mech. doi: 10.1016/S0020-7462(96)00096-0 – year: 1998 ident: 10.1016/j.amc.2005.01.095_bib13 – volume: 238 start-page: 233 year: 2000 ident: 10.1016/j.amc.2005.01.095_bib9 article-title: Stochastic averaging of strongly non-linear oscillators under combined harmonic and white noise excitations publication-title: J. Sound Vib. doi: 10.1006/jsvi.2000.3083 – year: 1995 ident: 10.1016/j.amc.2005.01.095_bib4 – volume: 25 start-page: 493 year: 1990 ident: 10.1016/j.amc.2005.01.095_bib12 article-title: Response statistics of nonlinear systems to combined deterministic and random excitations publication-title: Int. J. Non-Linear Mech. doi: 10.1016/0020-7462(90)90014-Z – year: 1971 ident: 10.1016/j.amc.2005.01.095_bib1 – year: 2003 ident: 10.1016/j.amc.2005.01.095_bib11 article-title: Numerical path integration of a nonlinear oscillator subject to both sinusoidal and white noise excitations – volume: 31 start-page: 647 year: 1996 ident: 10.1016/j.amc.2005.01.095_bib5 article-title: Exact and approximate solutions for randomly excited MDOF nonlinear systems publication-title: Int. J. Non-linear Mech. doi: 10.1016/0020-7462(96)00053-4 – volume: 15 start-page: 221 year: 2000 ident: 10.1016/j.amc.2005.01.095_bib8 article-title: Efficient path integration methods for nonlinear dynamic systems publication-title: Prob. Eng. Mech. doi: 10.1016/S0266-8920(99)00031-4 – volume: 21 start-page: 289 year: 2000 ident: 10.1016/j.amc.2005.01.095_bib6 article-title: On the calculation of stationary solutions of multi-dimensional Fokker–Planck equations by orthogonal functions publication-title: Nonlinear Dynam. doi: 10.1023/A:1008389909132  | 
    
| SSID | ssj0007614 | 
    
| Score | 1.8868095 | 
    
| Snippet | This paper is focused on the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations using path integration based on the Gauss–Legendre... | 
    
| SourceID | pascalfrancis crossref elsevier  | 
    
| SourceType | Index Database Enrichment Source Publisher  | 
    
| StartPage | 870 | 
    
| SubjectTerms | Duffing–Rayleigh oscillator Exact sciences and technology Global analysis, analysis on manifolds Harmonic and stochastic excitation Mathematical analysis Mathematics Measure and integration Method of harmonic balance Method of multiple scales Ordinary differential equations Path integration Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds  | 
    
| Title | Path integration of the Duffing–Rayleigh oscillator subject to harmonic and stochastic excitations | 
    
| URI | https://dx.doi.org/10.1016/j.amc.2005.01.095 | 
    
| Volume | 171 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5649 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007614 issn: 0096-3003 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qe1FEfGJ9lD14EtJukt10cyzVUpUWEQu9hX1iRdNiW_Ak_gf_ob_E2SapFsSDxyS7yTI7zMw3mf0GoTPqCF6EcUVhxAJAYbEXUyI9pqkfKBXYYMHd2etH3QG9HrJhCbWLszCurDK3_ZlNX1jr_E4jl2ZjMhq5M76x44sChV2QxIAdroD_4byMKq2rm25_aZABqWdkzLEr8yJh8XNzUeYlnlWeWfHrxHWZ-N09bU7EFIRms24XP1xQZxtt5bEjbmXL20Elk-6ijd6SeHW6h_QtXOGCAwJkjscWw3N8MbcWvNTn-8cdYHSXD8WOxhKUAEA3ns6ly8fg2Rg7KmtHl4tFqjFEhupBOCpnbF5VTuc93UeDzuV9u-vljRQ8FQbNmSeFr6iNRURMU0Yh5YxrwwLbDEVotIioINJyTi0zvjUKfLqODBEwTnPpA9w-QOV0nJpDhBWTVgeuR4nUNFKKKy21jgPJQgtIUVYRKeSXFMtyzS6ekqKc7DEBkbvulywhfgIir6Lz5ZRJRrHx12BabEqyoicJuIC_ptVWNvD7QwCnANXxo_-99xitZ1yugeezE1SevczNKUQpM1lDa_U3v5br4hfAFekI | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EDyoiPvFZ9-BJiG42u2lylGqp2hYRBW9hn6hoW2wLnsT_4D_0lziTR1UQDx6T7CbL7DAz32T2G0L2BRK8KIdFYcwDQJFpkAqmA2lFyI3hnufcnZ1u3LoR57fydoo0qrMwWFZZ2v7CpufWurxzVErzaHB_j2d8U-SLAoXNSWLADs8IyeuIwA5fv-o8AKcXVMwpFnmxqPq1mRd5qSdT5lXCQ4Y9Jn53TgsDNQSR-aLXxTcH1Fwii2XkSI-LxS2TKddbIfOdCe3qcJXYS7iiFQMESJz2PYXn9GTsPfioj7f3K0DomA2lSGIJKgCQmw7HGrMxdNSnSGSNZLlU9SyFuNDcKSRypu7FlGTewzVy0zy9brSCso1CYCJeHwVahUb4VMXM1XUciUQm1knu65GKnFWxUEz7JBFeutA7Ax7dxo4pGGcTHQLYXifTvX7PbRBqpPaWY4cSbUVsTGKstjblWkYecKLeJKySX1YtC1tdPGZVMdlDBiLH3pcyY2EGIt8kB5Mpg4Jg46_BotqU7IeWZOAA_ppW-7GBXx8CMAWYLtn633v3yGzrutPO2mfdi20yV7C68iCUO2R69Dx2uxCvjHQt18dPtS_p0A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+integration+of+the+Duffing-Rayleigh+oscillator+subject+to+harmonic+and+stochastic+excitations&rft.jtitle=Applied+mathematics+and+computation&rft.au=XIE%2C+W.+X&rft.au=XU%2C+W&rft.au=CAI%2C+L&rft.date=2005-12-15&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=171&rft.issue=2&rft.spage=870&rft.epage=884&rft_id=info:doi/10.1016%2Fj.amc.2005.01.095&rft.externalDBID=n%2Fa&rft.externalDocID=17470868 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |