Three Dimensional Intruder Closest Point of Approach Estimation Based-on Monocular Image Parameters in Aircraft Sense and Avoid Motto: ’Almost Everything from Almost Nothing

The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional image information it finally characterizes the whole three dimensional collision situation by estimating the time to closest point of approach...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & robotic systems Vol. 93; no. 1-2; pp. 261 - 276
Main Authors Bauer, Peter, Hiba, Antal, Bokor, Jozsef, Zarandy, Akos
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2019
Springer
Subjects
Online AccessGet full text
ISSN0921-0296
1573-0409
DOI10.1007/s10846-018-0816-6

Cover

Abstract The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional image information it finally characterizes the whole three dimensional collision situation by estimating the time to closest point of approach, the horizontal relative distance and its direction and the vertical relative distance also. The distances are relative to the intruder aircraft horizontal and vertical sizes. The overall estimated relative distance is the closest between the two aircraft in three dimension. So finally, every important information can be extracted to be used in a collision decision. The applicability of the developed method is presented in software-in-the-loop simulation test runs. Several intruder size and speed values are considered together with trajectories covering the whole three dimensional space. The horizontal intruder flight directions relative to the own aircraft cover 360 ∘ and the intruder can come from below ar above also. Detailed evaluation and discussion of the results is also included. Finally, the missed detection rate results to be superior (below 3% in every test scenario) though the false alarm rate results a bit high between 7–14%.
AbstractList The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional image information it finally characterizes the whole three dimensional collision situation by estimating the time to closest point of approach, the horizontal relative distance and its direction and the vertical relative distance also. The distances are relative to the intruder aircraft horizontal and vertical sizes. The overall estimated relative distance is the closest between the two aircraft in three dimension. So finally, every important information can be extracted to be used in a collision decision. The applicability of the developed method is presented in software-in-the-loop simulation test runs. Several intruder size and speed values are considered together with trajectories covering the whole three dimensional space. The horizontal intruder flight directions relative to the own aircraft cover 360[degrees] and the intruder can come from below ar above also. Detailed evaluation and discussion of the results is also included. Finally, the missed detection rate results to be superior (below 3% in every test scenario) though the false alarm rate results a bit high between 7-14%. Keywords Sense and avoid * Monocular camera * Closest point of approach * Intruder direction Mathematics Subject Classification (2010) 93C41 * 93A30 * 93C85
The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional image information it finally characterizes the whole three dimensional collision situation by estimating the time to closest point of approach, the horizontal relative distance and its direction and the vertical relative distance also. The distances are relative to the intruder aircraft horizontal and vertical sizes. The overall estimated relative distance is the closest between the two aircraft in three dimension. So finally, every important information can be extracted to be used in a collision decision. The applicability of the developed method is presented in software-in-the-loop simulation test runs. Several intruder size and speed values are considered together with trajectories covering the whole three dimensional space. The horizontal intruder flight directions relative to the own aircraft cover 360 ∘ and the intruder can come from below ar above also. Detailed evaluation and discussion of the results is also included. Finally, the missed detection rate results to be superior (below 3% in every test scenario) though the false alarm rate results a bit high between 7–14%.
Audience Academic
Author Bokor, Jozsef
Bauer, Peter
Hiba, Antal
Zarandy, Akos
Author_xml – sequence: 1
  givenname: Peter
  orcidid: 0000-0002-1925-2270
  surname: Bauer
  fullname: Bauer, Peter
  email: bauer.peter@sztaki.mta.hu
  organization: Systems and Control Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
– sequence: 2
  givenname: Antal
  surname: Hiba
  fullname: Hiba, Antal
  organization: Computational Optical Sensing and Processing Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
– sequence: 3
  givenname: Jozsef
  surname: Bokor
  fullname: Bokor, Jozsef
  organization: Systems and Control Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
– sequence: 4
  givenname: Akos
  surname: Zarandy
  fullname: Zarandy, Akos
  organization: Computational Optical Sensing and Processing Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
BookMark eNp9kcGOFCEQholZE2dXH8AbL8BadA80HNtx1UnWuIlzJ9U0zLLphgkwJp58dVnHk4cNB0ilvr9SH9fkKqboCHnP4ZYDDB8KB7WVDLhioLhk8hXZcDH0DLagr8gGdMcZdFq-IdelPAGAVkJvyO_DY3aOfgqriyWkiAvdx5rPs8t0t6TiSqUPKcRKk6fj6ZQT2kd6V2pYsbZ--hGLm1l7fEsx2fOCme5XPDr6gBlXV10uNEQ6hmwz-kp_tDmOYpzp-DOF-S157XEp7t2_-4YcPt8ddl_Z_fcv-914z2zfDZVNW-E1qA6dstraHpUQWiFID37iVoKYPO9g6iUMeh62nbDAsZ9QSMFB9zfk9hJ7xMWZEH2qGW07s1uDbSp9aPVx6Foq54NqwHABbE6lZOeNDfXvxg0Mi-Fgnr2bi3fTvJtn70Y2kv9HnnKTlX-9yHQXprTeeHTZPKVzbp9RXoD-AHNjl-Q
CitedBy_id crossref_primary_10_1007_s10846_020_01284_z
crossref_primary_10_3390_drones6120418
crossref_primary_10_1016_j_ast_2021_107167
crossref_primary_10_3390_s20082401
crossref_primary_10_1155_2019_7191839
crossref_primary_10_1016_j_ifacol_2019_09_110
crossref_primary_10_3390_rs12183035
Cites_doi 10.1007/978-3-642-39402-7_2
10.2514/6.2005-7179
10.1109/ICPR.1992.201512
10.2514/1.57131
10.1109/MAES.2016.150126
10.1109/ICUAS.2017.7991371
10.1109/MAES.2016.150155
10.2514/6.2007-6865
10.1109/MAES.2016.150129
10.1109/ISCAS.2011.5938030
10.2514/6.2009-1881
10.1109/MAES.2016.150164
10.1109/MED.2014.6961553
10.1109/MED.2016.7535965
10.1109/IVS.2013.6629605
10.1109/ICRA.2013.6630807
10.1109/MAES.2016.150157
10.2514/1.G001468
10.2514/6.2012-4703
10.1109/ROBOT.2009.5152487
10.1111/risa.12200
ContentType Journal Article
Copyright Springer Nature B.V. 2018
COPYRIGHT 2019 Springer
Copyright_xml – notice: Springer Nature B.V. 2018
– notice: COPYRIGHT 2019 Springer
DBID AAYXX
CITATION
DOI 10.1007/s10846-018-0816-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-0409
EndPage 276
ExternalDocumentID A725981178
10_1007_s10846_018_0816_6
GrantInformation_xml – fundername: Horizon 2020 Framework Program
  grantid: 690811
  funderid: https://doi.org/10.13039/100010661
– fundername: MTA SZTAKI
  grantid: ISAAC 008
GroupedDBID -5B
-5G
-BR
-EM
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
C6C
CCPQU
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
L6V
LAK
LLZTM
M0N
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9P
PF0
PQQKQ
PROAC
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8S
Z8T
Z8W
Z92
ZMTXR
_50
~A9
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
AAFWJ
AARHV
AASML
AAYTO
AAYXX
ABDBE
ABFSG
ABQSL
ACACY
ACBXY
ACSTC
ACULB
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFEXP
AFFNX
AFGCZ
AFGXO
AFHIU
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ARCEE
AYFIA
BBWZM
C24
CAG
CITATION
COF
ICD
KOW
N2Q
NDZJH
OVD
PHGZM
PHGZT
PQGLB
PUEGO
R4E
RHV
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
SCV
T16
TEORI
ID FETCH-LOGICAL-c327t-b45f9082ae8c9cc3a85598a06f0fb1c605bf120b36079d7425c01a3ba5651093
IEDL.DBID U2A
ISSN 0921-0296
IngestDate Mon Oct 20 16:30:20 EDT 2025
Wed Oct 01 02:39:04 EDT 2025
Thu Apr 24 22:59:27 EDT 2025
Fri Feb 21 02:35:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Intruder direction
Sense and avoid
Monocular camera
Closest point of approach
93C41
93C85
93A30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-b45f9082ae8c9cc3a85598a06f0fb1c605bf120b36079d7425c01a3ba5651093
ORCID 0000-0002-1925-2270
PageCount 16
ParticipantIDs gale_infotracacademiconefile_A725981178
crossref_citationtrail_10_1007_s10846_018_0816_6
crossref_primary_10_1007_s10846_018_0816_6
springer_journals_10_1007_s10846_018_0816_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle with a special section on Unmanned Systems
PublicationTitle Journal of intelligent & robotic systems
PublicationTitleAbbrev J Intell Robot Syst
PublicationYear 2019
Publisher Springer Netherlands
Springer
Publisher_xml – name: Springer Netherlands
– name: Springer
References Fasano, G., Accardo, D., Forlenza, L., Moccia, A., Rispoli, A.: A multi-sensor obstacle detection and tracking system for autonomousuav sense and avoid. In: XX Congresso Nazionale AIDAA, Milano (2009)
ZsedrovitsTBauerPPenczBJMHibaAGőzseIKisantalMNémethMNagyZVanekBZarándyABokorJOnboard visual sense and avoid system for small aircraftIEEE A&E Syst. Mag.201631182710.1109/MAES.2016.150129
Mori, T., Scherer, S.: First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. In: International Conference on Robotics and Automation (2013)
NussbergerAGrabnerHGoolLVFeature article: Robust Aerial Object Tracking from an Airborne platformIEEE Aerosp. Electron. Syst. Mag.2016317384610.1109/MAES.2016.150126https://doi.org/10.1109/MAES.2016.150126 https://doi.org/10.1109/MAES.2016.150126
airliners.net: aircraft-data. http://www.airliners.net/aircraft-data/ (2015)
Degen, S.: Reactive image-based collision avoidance system for unmanned aircraft systems. Master’s thesis, Australian Research Centre for Aerospace Automation (2011)
Meyer, F., Bouthemy, P.: Estimation of time-to-collision maps from first order motion models and normal flows. In: Proc. of 11th IAPR International Conference on Pattern Recognition (1992)
Shakernia, O., Chen, W.-Z., Raska, V.: Passive ranging for uav sense and avoid applications. In: fotech Aerospace (2005)
MelnykRSchrageDVolovoiVJimenezHSense and avoid requirements for unmanned aircraft systems using a target level of safety approachRisk Anal.201434101894190610.1111/risa.12200
EU: Roadmap for the integration of civil Remotely-Piloted Aircraft Systems into the European Aviation System. Tech. rep., European RPAS Steering Group (2013)
MejiasLMcFadyenAFordJJFeature article: Sense and avoid technology developments at Queensland university of technologyIEEE Aerosp. Electron. Syst. Mag.2016317283710.1109/MAES.2016.150157https://doi.org/10.1109/MAES.2016.150157
FAA: Federal Aviation Regulation 14 CFR Part 91. Federal Aviation Administration (FAA) (2016)
Bauer, P., Hiba, A., Vanek, B., Zarandy, A., Bokor, J.: Monocular image-based time to collision and closest point of approach estimation. In: proceedings of 24th Mediterranean Conference on Control and Automation (MED’16). Athens, Greece (2016)
Zarandy, A., Nagy, Z., Vanek, B., Zsedrovits, T., Kiss, A., Nemeth, M.: A five-camera vision system for uav visual attitude calculation and collision warning. In: Computer Vision Systems, Lecture Notes in Computer Science, pp. 11–20. Saint Petersburg, Russia (2013)
Salazar, L.R., Sabatini, R., Ramasamy, S., Gardi, A.: A novel system for non-cooperative uav sense-and-avoid. In: Proceedings of european navigation conference 2013 (ENC 2013) (2013)
Byrne, J., Taylor, C.J.: Expansion segmentation for visual collision detection and estimation. In: Proc. of IEEE International Conference on Robotics and Automation (2009)
Schaub, A., Burschka, D.: Spatio-temporal prediction of collision candidates for static and dynamic objects in monocular image sequences. In Proc. of IEEE Intelligent Vehicles Symposium (IV 2013) (2013)
ZsedrovitsTZarandyAVanekBPeniTBokorJRoskaTCollision avoidance for UAV using visual detection. In: Proceedings of IEEE ISCAS 2011 (International Symposium on Circuits and Systems), pp. 2173–2176. IEEE, Rio de Janeiro201110.1109/ISCAS.2011.5938030
LyuYPanQZhaoCZhangYHuJFeature article: Vision-based UAV collision avoidance with 2D dynamic safety envelopeIEEE Aerosp. Electron. Syst. Mag.2016317162610.1109/MAES.2016.150155https://doi.org/10.1109/MAES.2016.150155
Bauer, P., Hiba, A.: Vision only collision detection with omnidirectional multi-camera system. In: Proc. of the 20th World Congress of the International Federation of Automatic Control, pp. 15,780–15,785. IFAC, Toulouse, France (2017)
Dempsey, M.: U.s. army unmanned aircraft systems roadmap 2010-2035. Tech. rep., U.S. Army UAS Center of Excellence (2010)
Bauer, P., Vanek, B., Pni, T., Zsedrovits, T., Pencz, B., Zarndy, K., Bokor, J.: Aircraft trajectory tracking with large sideslip angles for sense and avoid intruder state estimation. In proceedings of 22nd Mediterranean Conference on Control and Automation (MED’14). Palermo, Italy (2014)
ChoiHKimYHwangIReactive collision avoidance of unmanned aerial vehicles using a single vision sensorJ. Guid. Control. Dyn.20133641234124010.2514/1.57131https://doi.org/10.2514/1.57131 https://doi.org/10.2514/1.57131
Hutchings, T., Jeffryes, S., Farmer, S.J.: Architecting uav sense & avoid systems. In: Proc. Institution of Engineering and Technology Conf. Autonomous Systems, pp. 1–8 (2007)
Bauer, P., Hiba, A., Bokor, J.: Monocular image-based intruder direction estimation at closest point of approach. In: Proc. of the International Conference on Unmanned Aircraft Systems (ICUAS) 2017, pp. 1108–1117, ICUAS Association, Miami, FL, USA (2017)
Speijker, L., Verstraeten, J., Kranenburg, C., van der Geest, P.: Scoping improvements to ’See And Avoid’ for general aviation (SISA). Tech. rep., European Aviation Safety Agency (EASA (2012)
Watanabe, Y.: Stochastically optimized monocular vision-based navigation and guidance. Ph.D. thesis, Georgia Institute of Technology (2008)
FasanoGAccardoDTirriAEMocciaAFeature article: Experimental analysis of onboard non-cooperative sense and avoid solutions based on radar, optical sensors, and data fusionIEEE Aerosp. Electron. Syst. Mag.201631761410.1109/MAES.2016.150164https://doi.org/10.1109/MAES.2016.150164
Forlenza, L.: Vision based strategies for implementing Sense and Avoid capabilities onboard Unmanned Aerial Systems. Ph.D. thesis, UNIVERSITÁ DEGLI STUDI DI NAPOLI FEDERICO II (2012)
Bauer, P., Vanek, B., Peni, T., Futaki, A., Pencz, B., Zarandy, A., Bokor, J.: Monocular image parameter-based aircraft sense and avoid. In: proceedings of 23rd Mediterranean Conference on Control and Automation (MED’15). Torremolinos, Spain (2015)
Frew, E.W.: Observer trajectory generation for target-motion estimation using monocular vision. Ph.D. thesis, Stanford University (2003)
JamoomMBJoergerMPervanBUnmanned aircraft system sense-and-avoid integrity and continuity riskJ. Guid. Control. Dyn.201539349850910.2514/1.G001468https://doi.org/10.2514/1.G001468
Vanek, B., Peni, T., Zarandy, A., Bokor, J., Zsedrovits, T., Roska, T.: Performance characteristics of a complete vision only sense and avoid system. In: Proceedings of AIAA GNC 2012 (Guidance, Navigation and Control Conference), AIAA 2012-4703, pp. 1–15, Minneapolis, Minnesota (2012)
816_CR23
816_CR22
816_CR28
H Choi (816_CR8) 2013; 36
L Mejias (816_CR20) 2016; 31
816_CR27
816_CR26
816_CR25
G Fasano (816_CR14) 2016; 31
816_CR29
R Melnyk (816_CR21) 2014; 34
816_CR9
T Zsedrovits (816_CR33) 2011
816_CR7
816_CR6
816_CR5
Y Lyu (816_CR19) 2016; 31
816_CR4
816_CR3
816_CR2
816_CR1
816_CR13
816_CR12
816_CR11
816_CR10
816_CR17
816_CR16
816_CR15
MB Jamoom (816_CR18) 2015; 39
A Nussberger (816_CR24) 2016; 31
T Zsedrovits (816_CR32) 2016; 31
816_CR31
816_CR30
References_xml – reference: Watanabe, Y.: Stochastically optimized monocular vision-based navigation and guidance. Ph.D. thesis, Georgia Institute of Technology (2008)
– reference: Bauer, P., Hiba, A.: Vision only collision detection with omnidirectional multi-camera system. In: Proc. of the 20th World Congress of the International Federation of Automatic Control, pp. 15,780–15,785. IFAC, Toulouse, France (2017)
– reference: FasanoGAccardoDTirriAEMocciaAFeature article: Experimental analysis of onboard non-cooperative sense and avoid solutions based on radar, optical sensors, and data fusionIEEE Aerosp. Electron. Syst. Mag.201631761410.1109/MAES.2016.150164https://doi.org/10.1109/MAES.2016.150164
– reference: EU: Roadmap for the integration of civil Remotely-Piloted Aircraft Systems into the European Aviation System. Tech. rep., European RPAS Steering Group (2013)
– reference: Zarandy, A., Nagy, Z., Vanek, B., Zsedrovits, T., Kiss, A., Nemeth, M.: A five-camera vision system for uav visual attitude calculation and collision warning. In: Computer Vision Systems, Lecture Notes in Computer Science, pp. 11–20. Saint Petersburg, Russia (2013)
– reference: Bauer, P., Vanek, B., Peni, T., Futaki, A., Pencz, B., Zarandy, A., Bokor, J.: Monocular image parameter-based aircraft sense and avoid. In: proceedings of 23rd Mediterranean Conference on Control and Automation (MED’15). Torremolinos, Spain (2015)
– reference: Frew, E.W.: Observer trajectory generation for target-motion estimation using monocular vision. Ph.D. thesis, Stanford University (2003)
– reference: Bauer, P., Hiba, A., Bokor, J.: Monocular image-based intruder direction estimation at closest point of approach. In: Proc. of the International Conference on Unmanned Aircraft Systems (ICUAS) 2017, pp. 1108–1117, ICUAS Association, Miami, FL, USA (2017)
– reference: Hutchings, T., Jeffryes, S., Farmer, S.J.: Architecting uav sense & avoid systems. In: Proc. Institution of Engineering and Technology Conf. Autonomous Systems, pp. 1–8 (2007)
– reference: Meyer, F., Bouthemy, P.: Estimation of time-to-collision maps from first order motion models and normal flows. In: Proc. of 11th IAPR International Conference on Pattern Recognition (1992)
– reference: FAA: Federal Aviation Regulation 14 CFR Part 91. Federal Aviation Administration (FAA) (2016)
– reference: JamoomMBJoergerMPervanBUnmanned aircraft system sense-and-avoid integrity and continuity riskJ. Guid. Control. Dyn.201539349850910.2514/1.G001468https://doi.org/10.2514/1.G001468
– reference: Dempsey, M.: U.s. army unmanned aircraft systems roadmap 2010-2035. Tech. rep., U.S. Army UAS Center of Excellence (2010)
– reference: Vanek, B., Peni, T., Zarandy, A., Bokor, J., Zsedrovits, T., Roska, T.: Performance characteristics of a complete vision only sense and avoid system. In: Proceedings of AIAA GNC 2012 (Guidance, Navigation and Control Conference), AIAA 2012-4703, pp. 1–15, Minneapolis, Minnesota (2012)
– reference: Schaub, A., Burschka, D.: Spatio-temporal prediction of collision candidates for static and dynamic objects in monocular image sequences. In Proc. of IEEE Intelligent Vehicles Symposium (IV 2013) (2013)
– reference: LyuYPanQZhaoCZhangYHuJFeature article: Vision-based UAV collision avoidance with 2D dynamic safety envelopeIEEE Aerosp. Electron. Syst. Mag.2016317162610.1109/MAES.2016.150155https://doi.org/10.1109/MAES.2016.150155
– reference: Shakernia, O., Chen, W.-Z., Raska, V.: Passive ranging for uav sense and avoid applications. In: fotech Aerospace (2005)
– reference: Bauer, P., Hiba, A., Vanek, B., Zarandy, A., Bokor, J.: Monocular image-based time to collision and closest point of approach estimation. In: proceedings of 24th Mediterranean Conference on Control and Automation (MED’16). Athens, Greece (2016)
– reference: MejiasLMcFadyenAFordJJFeature article: Sense and avoid technology developments at Queensland university of technologyIEEE Aerosp. Electron. Syst. Mag.2016317283710.1109/MAES.2016.150157https://doi.org/10.1109/MAES.2016.150157
– reference: Mori, T., Scherer, S.: First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. In: International Conference on Robotics and Automation (2013)
– reference: Salazar, L.R., Sabatini, R., Ramasamy, S., Gardi, A.: A novel system for non-cooperative uav sense-and-avoid. In: Proceedings of european navigation conference 2013 (ENC 2013) (2013)
– reference: Degen, S.: Reactive image-based collision avoidance system for unmanned aircraft systems. Master’s thesis, Australian Research Centre for Aerospace Automation (2011)
– reference: airliners.net: aircraft-data. http://www.airliners.net/aircraft-data/ (2015)
– reference: NussbergerAGrabnerHGoolLVFeature article: Robust Aerial Object Tracking from an Airborne platformIEEE Aerosp. Electron. Syst. Mag.2016317384610.1109/MAES.2016.150126https://doi.org/10.1109/MAES.2016.150126 https://doi.org/10.1109/MAES.2016.150126
– reference: ZsedrovitsTZarandyAVanekBPeniTBokorJRoskaTCollision avoidance for UAV using visual detection. In: Proceedings of IEEE ISCAS 2011 (International Symposium on Circuits and Systems), pp. 2173–2176. IEEE, Rio de Janeiro201110.1109/ISCAS.2011.5938030
– reference: Forlenza, L.: Vision based strategies for implementing Sense and Avoid capabilities onboard Unmanned Aerial Systems. Ph.D. thesis, UNIVERSITÁ DEGLI STUDI DI NAPOLI FEDERICO II (2012)
– reference: Fasano, G., Accardo, D., Forlenza, L., Moccia, A., Rispoli, A.: A multi-sensor obstacle detection and tracking system for autonomousuav sense and avoid. In: XX Congresso Nazionale AIDAA, Milano (2009)
– reference: Speijker, L., Verstraeten, J., Kranenburg, C., van der Geest, P.: Scoping improvements to ’See And Avoid’ for general aviation (SISA). Tech. rep., European Aviation Safety Agency (EASA (2012)
– reference: ZsedrovitsTBauerPPenczBJMHibaAGőzseIKisantalMNémethMNagyZVanekBZarándyABokorJOnboard visual sense and avoid system for small aircraftIEEE A&E Syst. Mag.201631182710.1109/MAES.2016.150129
– reference: Byrne, J., Taylor, C.J.: Expansion segmentation for visual collision detection and estimation. In: Proc. of IEEE International Conference on Robotics and Automation (2009)
– reference: MelnykRSchrageDVolovoiVJimenezHSense and avoid requirements for unmanned aircraft systems using a target level of safety approachRisk Anal.201434101894190610.1111/risa.12200
– reference: ChoiHKimYHwangIReactive collision avoidance of unmanned aerial vehicles using a single vision sensorJ. Guid. Control. Dyn.20133641234124010.2514/1.57131https://doi.org/10.2514/1.57131 https://doi.org/10.2514/1.57131
– reference: Bauer, P., Vanek, B., Pni, T., Zsedrovits, T., Pencz, B., Zarndy, K., Bokor, J.: Aircraft trajectory tracking with large sideslip angles for sense and avoid intruder state estimation. In proceedings of 22nd Mediterranean Conference on Control and Automation (MED’14). Palermo, Italy (2014)
– ident: 816_CR15
– ident: 816_CR31
  doi: 10.1007/978-3-642-39402-7_2
– ident: 816_CR25
  doi: 10.2514/6.2005-7179
– ident: 816_CR22
  doi: 10.1109/ICPR.1992.201512
– volume: 36
  start-page: 1234
  issue: 4
  year: 2013
  ident: 816_CR8
  publication-title: J. Guid. Control. Dyn.
  doi: 10.2514/1.57131
– volume: 31
  start-page: 38
  issue: 7
  year: 2016
  ident: 816_CR24
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2016.150126
– ident: 816_CR11
– ident: 816_CR17
– ident: 816_CR3
  doi: 10.1109/ICUAS.2017.7991371
– volume: 31
  start-page: 16
  issue: 7
  year: 2016
  ident: 816_CR19
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2016.150155
– ident: 816_CR30
  doi: 10.2514/6.2007-6865
– volume: 31
  start-page: 18
  year: 2016
  ident: 816_CR32
  publication-title: IEEE A&E Syst. Mag.
  doi: 10.1109/MAES.2016.150129
– volume-title: Collision avoidance for UAV using visual detection. In: Proceedings of IEEE ISCAS 2011 (International Symposium on Circuits and Systems), pp. 2173–2176. IEEE, Rio de Janeiro
  year: 2011
  ident: 816_CR33
  doi: 10.1109/ISCAS.2011.5938030
– ident: 816_CR1
– ident: 816_CR9
– ident: 816_CR5
– ident: 816_CR13
  doi: 10.2514/6.2009-1881
– ident: 816_CR28
– ident: 816_CR26
– volume: 31
  start-page: 6
  issue: 7
  year: 2016
  ident: 816_CR14
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2016.150164
– ident: 816_CR6
  doi: 10.1109/MED.2014.6961553
– ident: 816_CR4
  doi: 10.1109/MED.2016.7535965
– ident: 816_CR10
– ident: 816_CR27
  doi: 10.1109/IVS.2013.6629605
– ident: 816_CR12
– ident: 816_CR23
  doi: 10.1109/ICRA.2013.6630807
– ident: 816_CR16
– volume: 31
  start-page: 28
  issue: 7
  year: 2016
  ident: 816_CR20
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2016.150157
– ident: 816_CR2
– volume: 39
  start-page: 498
  issue: 3
  year: 2015
  ident: 816_CR18
  publication-title: J. Guid. Control. Dyn.
  doi: 10.2514/1.G001468
– ident: 816_CR29
  doi: 10.2514/6.2012-4703
– ident: 816_CR7
  doi: 10.1109/ROBOT.2009.5152487
– volume: 34
  start-page: 1894
  issue: 10
  year: 2014
  ident: 816_CR21
  publication-title: Risk Anal.
  doi: 10.1111/risa.12200
SSID ssj0009859
Score 2.2474976
Snippet The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional...
SourceID gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 261
SubjectTerms Artificial Intelligence
Control
Electrical Engineering
Engineering
Mechanical Engineering
Mechatronics
Robotics
Simulation methods
Subtitle Motto: ’Almost Everything from Almost Nothing
Title Three Dimensional Intruder Closest Point of Approach Estimation Based-on Monocular Image Parameters in Aircraft Sense and Avoid
URI https://link.springer.com/article/10.1007/s10846-018-0816-6
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-0409
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AAJSJ
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-0409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009859
  issn: 0921-0296
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS9xAEMeHqi_1wbZW8Wwr81AQKgt7yWWTfYz2_Ily1BP0KeyPBA6uSbmLvvqvO3NJqoIKPl0eks2R787ODLvzGYCf3gfcdtEL8k6xGFgthSYvJsIwZ4KZtLLgAufzC3V8NTi9jq7bOu55d9q925JcrNRPit3IV1Lqy0TlvhJqCVYipnnRJL4K0kfSbhI1gL2A8uRAq24r86Uhnjmjbkl-viG68DOHn2GtDRAxbRT9Ah_ych0-dc0XsLXFdVh9QhL8Cvdj0iTH38zqbzgbeFLWs1tPjxxMqzmt_TiqJmWNVYFpyxHHIdl3U7qI--TNvKALMvJqcTYVT_7SWoMjw8e3mMGJkxLTyczNTFHjJb0nR1N6TO-qid-A8eFwfHAs2t4KwoVBXAs7iArudm7yxGnnQpMwqd1IVcjC9h0lObbok1ShkrH2lD9HTvZNaA0FgEyg2oTlsirzLUAfFBR0UCRgjR5IrxMlfUAzw8aUKyod90B23zhzLXec219Ms0diMsuSkSwZy5KpHvz6_8i_Brrx1s27LFzGBknjOtPWFdC_Y7RVlsaU4XE5bdKDvU7brLXU-evjbr_r7m_wkUIp3Zzn_g7LpHD-g8KV2u7ASnp0czak3_3hxejPzmK6PgDZ1OKA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Na9tAEIaHNj2kOaRtPqiTtplDINCysJbslfaopgl264RAHMht2Q8JDI5UbKXX_vXMWFLiQFvoTQdpJfTu7MywO88AHIcQcdvFIMg7JWLgtBSavJiI45wJZtLJggucLy7V6Gbw_XZ429ZxL7vT7t2W5GqlXit2I19JqS8TlftKqJfwivlVDMy_ibIn0m46bAB7EeXJkVbdVuafhnjmjLol-fmG6MrPnL-F7TZAxKxR9B28yMsdeNM1X8DWFndga40kuAu_p6RJjt-Y1d9wNnBc1ov7QI-czqslrf14Vc3KGqsCs5Yjjmdk303pIn4lbxYEXZCRV6uzqTi-o7UGrywf32IGJ85KzGYLv7BFjdf0nhxtGTD7Vc3CHkzPz6anI9H2VhA-jpJauMGw4G7nNk-99j62KZParVSFLFzfU5Ljij5JFSuZ6ED589DLvo2dpQCQCVT7sFFWZf4eMEQFBR0UCTirBzLoVMkQ0cxwCeWKSic9kN0_Nr7ljnP7i7l5IiazLIZkMSyLUT34_PjIzwa68a-bT1g4wwZJ43rb1hXQ1zHaymQJZXhcTpv24EunrWktdfn3cQ_-6-4j2BxNLyZmMr78cQivKazSzdnuD7BBaucfKXSp3afVVH0AZ8fiPg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3La9wwEIeHNoXSHtomben2OYdAoEVEa3tl6-gmWbJ9hIVuIDehhwULqR12nVz7r3dmbecBbaE3H2zZ-KfRzCDNNwC7ISTcdjEI8k65yJyWQpMXE2laMcFMOhm5wPn7iTo-zb6cTc76Pqfr4bT7sCXZ1TQwpalu9y9C3L9V-EZ-k9JgpiuPlVD34UHGnASa0KdJeUPdLSYdbC-hnDnRatjW_NMQdxzTsDzf3Rzd-JzpM3jSB4tYdupuw72q3oGnQyMG7O1yBx7fogo-h18L0qfCQ-b2d8wNnNXt6jLQIwfnzZr8AM6bZd1iE7HsmeJ4RLbelTHiZ_JsQdAFGXyzOaeKs5-07uDc8lEu5nHissZyufIrG1v8Qe-p0NYBy6tmGV7AYnq0ODgWfZ8F4dMkb4XLJpE7n9uq8Nr71BZMbbdSRRnd2FPC4-KYZEuVzHWgXHri5dimzlIwyDSql7BVN3X1CjAkkQIQigqc1ZkMulAyJDRLXE55o9L5COTwj43vGeTcCuPc3NCTWRZDshiWxagRfLx-5KIDcPzr5j0WzrBx0rje9jUG9HWMuTJlTtkel9YWI_g0aGt6q13_fdzX_3X3B3g4P5yab7OTr2_gEUVYujvm_Ra2SOzqHUUxrXu_mam_AZVD5no
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+Dimensional+Intruder+Closest+Point+of+Approach+Estimation+Based-on+Monocular+Image+Parameters+in+Aircraft+Sense+and+Avoid&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Bauer%2C+Peter&rft.au=Hiba%2C+Antal&rft.au=Bokor%2C+Jozsef&rft.au=Zarandy%2C+Akos&rft.date=2019-02-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=93&rft.issue=1-2&rft.spage=261&rft.epage=276&rft_id=info:doi/10.1007%2Fs10846-018-0816-6&rft.externalDocID=10_1007_s10846_018_0816_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon