Three Dimensional Intruder Closest Point of Approach Estimation Based-on Monocular Image Parameters in Aircraft Sense and Avoid Motto: ’Almost Everything from Almost Nothing
The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional image information it finally characterizes the whole three dimensional collision situation by estimating the time to closest point of approach...
        Saved in:
      
    
          | Published in | Journal of intelligent & robotic systems Vol. 93; no. 1-2; pp. 261 - 276 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.02.2019
     Springer  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0921-0296 1573-0409  | 
| DOI | 10.1007/s10846-018-0816-6 | 
Cover
| Abstract | The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional image information it finally characterizes the whole three dimensional collision situation by estimating the time to closest point of approach, the horizontal relative distance and its direction and the vertical relative distance also. The distances are relative to the intruder aircraft horizontal and vertical sizes. The overall estimated relative distance is the closest between the two aircraft in three dimension. So finally, every important information can be extracted to be used in a collision decision. The applicability of the developed method is presented in software-in-the-loop simulation test runs. Several intruder size and speed values are considered together with trajectories covering the whole three dimensional space. The horizontal intruder flight directions relative to the own aircraft cover 360
∘
and the intruder can come from below ar above also. Detailed evaluation and discussion of the results is also included. Finally, the missed detection rate results to be superior (below 3% in every test scenario) though the false alarm rate results a bit high between 7–14%. | 
    
|---|---|
| AbstractList | The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional image information it finally characterizes the whole three dimensional collision situation by estimating the time to closest point of approach, the horizontal relative distance and its direction and the vertical relative distance also. The distances are relative to the intruder aircraft horizontal and vertical sizes. The overall estimated relative distance is the closest between the two aircraft in three dimension. So finally, every important information can be extracted to be used in a collision decision. The applicability of the developed method is presented in software-in-the-loop simulation test runs. Several intruder size and speed values are considered together with trajectories covering the whole three dimensional space. The horizontal intruder flight directions relative to the own aircraft cover 360[degrees] and the intruder can come from below ar above also. Detailed evaluation and discussion of the results is also included. Finally, the missed detection rate results to be superior (below 3% in every test scenario) though the false alarm rate results a bit high between 7-14%. Keywords Sense and avoid * Monocular camera * Closest point of approach * Intruder direction Mathematics Subject Classification (2010) 93C41 * 93A30 * 93C85 The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional image information it finally characterizes the whole three dimensional collision situation by estimating the time to closest point of approach, the horizontal relative distance and its direction and the vertical relative distance also. The distances are relative to the intruder aircraft horizontal and vertical sizes. The overall estimated relative distance is the closest between the two aircraft in three dimension. So finally, every important information can be extracted to be used in a collision decision. The applicability of the developed method is presented in software-in-the-loop simulation test runs. Several intruder size and speed values are considered together with trajectories covering the whole three dimensional space. The horizontal intruder flight directions relative to the own aircraft cover 360 ∘ and the intruder can come from below ar above also. Detailed evaluation and discussion of the results is also included. Finally, the missed detection rate results to be superior (below 3% in every test scenario) though the false alarm rate results a bit high between 7–14%.  | 
    
| Audience | Academic | 
    
| Author | Bokor, Jozsef Bauer, Peter Hiba, Antal Zarandy, Akos  | 
    
| Author_xml | – sequence: 1 givenname: Peter orcidid: 0000-0002-1925-2270 surname: Bauer fullname: Bauer, Peter email: bauer.peter@sztaki.mta.hu organization: Systems and Control Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) – sequence: 2 givenname: Antal surname: Hiba fullname: Hiba, Antal organization: Computational Optical Sensing and Processing Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) – sequence: 3 givenname: Jozsef surname: Bokor fullname: Bokor, Jozsef organization: Systems and Control Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) – sequence: 4 givenname: Akos surname: Zarandy fullname: Zarandy, Akos organization: Computational Optical Sensing and Processing Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)  | 
    
| BookMark | eNp9kcGOFCEQholZE2dXH8AbL8BadA80HNtx1UnWuIlzJ9U0zLLphgkwJp58dVnHk4cNB0ilvr9SH9fkKqboCHnP4ZYDDB8KB7WVDLhioLhk8hXZcDH0DLagr8gGdMcZdFq-IdelPAGAVkJvyO_DY3aOfgqriyWkiAvdx5rPs8t0t6TiSqUPKcRKk6fj6ZQT2kd6V2pYsbZ--hGLm1l7fEsx2fOCme5XPDr6gBlXV10uNEQ6hmwz-kp_tDmOYpzp-DOF-S157XEp7t2_-4YcPt8ddl_Z_fcv-914z2zfDZVNW-E1qA6dstraHpUQWiFID37iVoKYPO9g6iUMeh62nbDAsZ9QSMFB9zfk9hJ7xMWZEH2qGW07s1uDbSp9aPVx6Foq54NqwHABbE6lZOeNDfXvxg0Mi-Fgnr2bi3fTvJtn70Y2kv9HnnKTlX-9yHQXprTeeHTZPKVzbp9RXoD-AHNjl-Q | 
    
| CitedBy_id | crossref_primary_10_1007_s10846_020_01284_z crossref_primary_10_3390_drones6120418 crossref_primary_10_1016_j_ast_2021_107167 crossref_primary_10_3390_s20082401 crossref_primary_10_1155_2019_7191839 crossref_primary_10_1016_j_ifacol_2019_09_110 crossref_primary_10_3390_rs12183035  | 
    
| Cites_doi | 10.1007/978-3-642-39402-7_2 10.2514/6.2005-7179 10.1109/ICPR.1992.201512 10.2514/1.57131 10.1109/MAES.2016.150126 10.1109/ICUAS.2017.7991371 10.1109/MAES.2016.150155 10.2514/6.2007-6865 10.1109/MAES.2016.150129 10.1109/ISCAS.2011.5938030 10.2514/6.2009-1881 10.1109/MAES.2016.150164 10.1109/MED.2014.6961553 10.1109/MED.2016.7535965 10.1109/IVS.2013.6629605 10.1109/ICRA.2013.6630807 10.1109/MAES.2016.150157 10.2514/1.G001468 10.2514/6.2012-4703 10.1109/ROBOT.2009.5152487 10.1111/risa.12200  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Nature B.V. 2018 COPYRIGHT 2019 Springer  | 
    
| Copyright_xml | – notice: Springer Nature B.V. 2018 – notice: COPYRIGHT 2019 Springer  | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s10846-018-0816-6 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-0409 | 
    
| EndPage | 276 | 
    
| ExternalDocumentID | A725981178 10_1007_s10846_018_0816_6  | 
    
| GrantInformation_xml | – fundername: Horizon 2020 Framework Program grantid: 690811 funderid: https://doi.org/10.13039/100010661 – fundername: MTA SZTAKI grantid: ISAAC 008  | 
    
| GroupedDBID | -5B -5G -BR -EM -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ C6C CCPQU CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV L6V LAK LLZTM M0N M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9P PF0 PQQKQ PROAC PT5 PTHSS Q2X QOK QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8S Z8T Z8W Z92 ZMTXR _50 ~A9 ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 6TJ AAFWJ AARHV AASML AAYTO AAYXX ABDBE ABFSG ABQSL ACACY ACBXY ACSTC ACULB ADHKG AEBTG AEFIE AEKMD AEZWR AFEXP AFFNX AFGCZ AFGXO AFHIU AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ARCEE AYFIA BBWZM C24 CAG CITATION COF ICD KOW N2Q NDZJH OVD PHGZM PHGZT PQGLB PUEGO R4E RHV RNI RZC RZE RZK S1Z S26 S28 SCLPG SCV T16 TEORI  | 
    
| ID | FETCH-LOGICAL-c327t-b45f9082ae8c9cc3a85598a06f0fb1c605bf120b36079d7425c01a3ba5651093 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 0921-0296 | 
    
| IngestDate | Mon Oct 20 16:30:20 EDT 2025 Wed Oct 01 02:39:04 EDT 2025 Thu Apr 24 22:59:27 EDT 2025 Fri Feb 21 02:35:17 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1-2 | 
    
| Keywords | Intruder direction Sense and avoid Monocular camera Closest point of approach 93C41 93C85 93A30  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c327t-b45f9082ae8c9cc3a85598a06f0fb1c605bf120b36079d7425c01a3ba5651093 | 
    
| ORCID | 0000-0002-1925-2270 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | gale_infotracacademiconefile_A725981178 crossref_citationtrail_10_1007_s10846_018_0816_6 crossref_primary_10_1007_s10846_018_0816_6 springer_journals_10_1007_s10846_018_0816_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-02-01 | 
    
| PublicationDateYYYYMMDD | 2019-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationSubtitle | with a special section on Unmanned Systems | 
    
| PublicationTitle | Journal of intelligent & robotic systems | 
    
| PublicationTitleAbbrev | J Intell Robot Syst | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer Netherlands Springer  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer  | 
    
| References | Fasano, G., Accardo, D., Forlenza, L., Moccia, A., Rispoli, A.: A multi-sensor obstacle detection and tracking system for autonomousuav sense and avoid. In: XX Congresso Nazionale AIDAA, Milano (2009) ZsedrovitsTBauerPPenczBJMHibaAGőzseIKisantalMNémethMNagyZVanekBZarándyABokorJOnboard visual sense and avoid system for small aircraftIEEE A&E Syst. Mag.201631182710.1109/MAES.2016.150129 Mori, T., Scherer, S.: First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. In: International Conference on Robotics and Automation (2013) NussbergerAGrabnerHGoolLVFeature article: Robust Aerial Object Tracking from an Airborne platformIEEE Aerosp. Electron. Syst. Mag.2016317384610.1109/MAES.2016.150126https://doi.org/10.1109/MAES.2016.150126 https://doi.org/10.1109/MAES.2016.150126 airliners.net: aircraft-data. http://www.airliners.net/aircraft-data/ (2015) Degen, S.: Reactive image-based collision avoidance system for unmanned aircraft systems. Master’s thesis, Australian Research Centre for Aerospace Automation (2011) Meyer, F., Bouthemy, P.: Estimation of time-to-collision maps from first order motion models and normal flows. In: Proc. of 11th IAPR International Conference on Pattern Recognition (1992) Shakernia, O., Chen, W.-Z., Raska, V.: Passive ranging for uav sense and avoid applications. In: fotech Aerospace (2005) MelnykRSchrageDVolovoiVJimenezHSense and avoid requirements for unmanned aircraft systems using a target level of safety approachRisk Anal.201434101894190610.1111/risa.12200 EU: Roadmap for the integration of civil Remotely-Piloted Aircraft Systems into the European Aviation System. Tech. rep., European RPAS Steering Group (2013) MejiasLMcFadyenAFordJJFeature article: Sense and avoid technology developments at Queensland university of technologyIEEE Aerosp. Electron. Syst. Mag.2016317283710.1109/MAES.2016.150157https://doi.org/10.1109/MAES.2016.150157 FAA: Federal Aviation Regulation 14 CFR Part 91. Federal Aviation Administration (FAA) (2016) Bauer, P., Hiba, A., Vanek, B., Zarandy, A., Bokor, J.: Monocular image-based time to collision and closest point of approach estimation. In: proceedings of 24th Mediterranean Conference on Control and Automation (MED’16). Athens, Greece (2016) Zarandy, A., Nagy, Z., Vanek, B., Zsedrovits, T., Kiss, A., Nemeth, M.: A five-camera vision system for uav visual attitude calculation and collision warning. In: Computer Vision Systems, Lecture Notes in Computer Science, pp. 11–20. Saint Petersburg, Russia (2013) Salazar, L.R., Sabatini, R., Ramasamy, S., Gardi, A.: A novel system for non-cooperative uav sense-and-avoid. In: Proceedings of european navigation conference 2013 (ENC 2013) (2013) Byrne, J., Taylor, C.J.: Expansion segmentation for visual collision detection and estimation. In: Proc. of IEEE International Conference on Robotics and Automation (2009) Schaub, A., Burschka, D.: Spatio-temporal prediction of collision candidates for static and dynamic objects in monocular image sequences. In Proc. of IEEE Intelligent Vehicles Symposium (IV 2013) (2013) ZsedrovitsTZarandyAVanekBPeniTBokorJRoskaTCollision avoidance for UAV using visual detection. In: Proceedings of IEEE ISCAS 2011 (International Symposium on Circuits and Systems), pp. 2173–2176. IEEE, Rio de Janeiro201110.1109/ISCAS.2011.5938030 LyuYPanQZhaoCZhangYHuJFeature article: Vision-based UAV collision avoidance with 2D dynamic safety envelopeIEEE Aerosp. Electron. Syst. Mag.2016317162610.1109/MAES.2016.150155https://doi.org/10.1109/MAES.2016.150155 Bauer, P., Hiba, A.: Vision only collision detection with omnidirectional multi-camera system. In: Proc. of the 20th World Congress of the International Federation of Automatic Control, pp. 15,780–15,785. IFAC, Toulouse, France (2017) Dempsey, M.: U.s. army unmanned aircraft systems roadmap 2010-2035. Tech. rep., U.S. Army UAS Center of Excellence (2010) Bauer, P., Vanek, B., Pni, T., Zsedrovits, T., Pencz, B., Zarndy, K., Bokor, J.: Aircraft trajectory tracking with large sideslip angles for sense and avoid intruder state estimation. In proceedings of 22nd Mediterranean Conference on Control and Automation (MED’14). Palermo, Italy (2014) ChoiHKimYHwangIReactive collision avoidance of unmanned aerial vehicles using a single vision sensorJ. Guid. Control. Dyn.20133641234124010.2514/1.57131https://doi.org/10.2514/1.57131 https://doi.org/10.2514/1.57131 Hutchings, T., Jeffryes, S., Farmer, S.J.: Architecting uav sense & avoid systems. In: Proc. Institution of Engineering and Technology Conf. Autonomous Systems, pp. 1–8 (2007) Bauer, P., Hiba, A., Bokor, J.: Monocular image-based intruder direction estimation at closest point of approach. In: Proc. of the International Conference on Unmanned Aircraft Systems (ICUAS) 2017, pp. 1108–1117, ICUAS Association, Miami, FL, USA (2017) Speijker, L., Verstraeten, J., Kranenburg, C., van der Geest, P.: Scoping improvements to ’See And Avoid’ for general aviation (SISA). Tech. rep., European Aviation Safety Agency (EASA (2012) Watanabe, Y.: Stochastically optimized monocular vision-based navigation and guidance. Ph.D. thesis, Georgia Institute of Technology (2008) FasanoGAccardoDTirriAEMocciaAFeature article: Experimental analysis of onboard non-cooperative sense and avoid solutions based on radar, optical sensors, and data fusionIEEE Aerosp. Electron. Syst. Mag.201631761410.1109/MAES.2016.150164https://doi.org/10.1109/MAES.2016.150164 Forlenza, L.: Vision based strategies for implementing Sense and Avoid capabilities onboard Unmanned Aerial Systems. Ph.D. thesis, UNIVERSITÁ DEGLI STUDI DI NAPOLI FEDERICO II (2012) Bauer, P., Vanek, B., Peni, T., Futaki, A., Pencz, B., Zarandy, A., Bokor, J.: Monocular image parameter-based aircraft sense and avoid. In: proceedings of 23rd Mediterranean Conference on Control and Automation (MED’15). Torremolinos, Spain (2015) Frew, E.W.: Observer trajectory generation for target-motion estimation using monocular vision. Ph.D. thesis, Stanford University (2003) JamoomMBJoergerMPervanBUnmanned aircraft system sense-and-avoid integrity and continuity riskJ. Guid. Control. Dyn.201539349850910.2514/1.G001468https://doi.org/10.2514/1.G001468 Vanek, B., Peni, T., Zarandy, A., Bokor, J., Zsedrovits, T., Roska, T.: Performance characteristics of a complete vision only sense and avoid system. In: Proceedings of AIAA GNC 2012 (Guidance, Navigation and Control Conference), AIAA 2012-4703, pp. 1–15, Minneapolis, Minnesota (2012) 816_CR23 816_CR22 816_CR28 H Choi (816_CR8) 2013; 36 L Mejias (816_CR20) 2016; 31 816_CR27 816_CR26 816_CR25 G Fasano (816_CR14) 2016; 31 816_CR29 R Melnyk (816_CR21) 2014; 34 816_CR9 T Zsedrovits (816_CR33) 2011 816_CR7 816_CR6 816_CR5 Y Lyu (816_CR19) 2016; 31 816_CR4 816_CR3 816_CR2 816_CR1 816_CR13 816_CR12 816_CR11 816_CR10 816_CR17 816_CR16 816_CR15 MB Jamoom (816_CR18) 2015; 39 A Nussberger (816_CR24) 2016; 31 T Zsedrovits (816_CR32) 2016; 31 816_CR31 816_CR30  | 
    
| References_xml | – reference: Watanabe, Y.: Stochastically optimized monocular vision-based navigation and guidance. Ph.D. thesis, Georgia Institute of Technology (2008) – reference: Bauer, P., Hiba, A.: Vision only collision detection with omnidirectional multi-camera system. In: Proc. of the 20th World Congress of the International Federation of Automatic Control, pp. 15,780–15,785. IFAC, Toulouse, France (2017) – reference: FasanoGAccardoDTirriAEMocciaAFeature article: Experimental analysis of onboard non-cooperative sense and avoid solutions based on radar, optical sensors, and data fusionIEEE Aerosp. Electron. Syst. Mag.201631761410.1109/MAES.2016.150164https://doi.org/10.1109/MAES.2016.150164 – reference: EU: Roadmap for the integration of civil Remotely-Piloted Aircraft Systems into the European Aviation System. Tech. rep., European RPAS Steering Group (2013) – reference: Zarandy, A., Nagy, Z., Vanek, B., Zsedrovits, T., Kiss, A., Nemeth, M.: A five-camera vision system for uav visual attitude calculation and collision warning. In: Computer Vision Systems, Lecture Notes in Computer Science, pp. 11–20. Saint Petersburg, Russia (2013) – reference: Bauer, P., Vanek, B., Peni, T., Futaki, A., Pencz, B., Zarandy, A., Bokor, J.: Monocular image parameter-based aircraft sense and avoid. In: proceedings of 23rd Mediterranean Conference on Control and Automation (MED’15). Torremolinos, Spain (2015) – reference: Frew, E.W.: Observer trajectory generation for target-motion estimation using monocular vision. Ph.D. thesis, Stanford University (2003) – reference: Bauer, P., Hiba, A., Bokor, J.: Monocular image-based intruder direction estimation at closest point of approach. In: Proc. of the International Conference on Unmanned Aircraft Systems (ICUAS) 2017, pp. 1108–1117, ICUAS Association, Miami, FL, USA (2017) – reference: Hutchings, T., Jeffryes, S., Farmer, S.J.: Architecting uav sense & avoid systems. In: Proc. Institution of Engineering and Technology Conf. Autonomous Systems, pp. 1–8 (2007) – reference: Meyer, F., Bouthemy, P.: Estimation of time-to-collision maps from first order motion models and normal flows. In: Proc. of 11th IAPR International Conference on Pattern Recognition (1992) – reference: FAA: Federal Aviation Regulation 14 CFR Part 91. Federal Aviation Administration (FAA) (2016) – reference: JamoomMBJoergerMPervanBUnmanned aircraft system sense-and-avoid integrity and continuity riskJ. Guid. Control. Dyn.201539349850910.2514/1.G001468https://doi.org/10.2514/1.G001468 – reference: Dempsey, M.: U.s. army unmanned aircraft systems roadmap 2010-2035. Tech. rep., U.S. Army UAS Center of Excellence (2010) – reference: Vanek, B., Peni, T., Zarandy, A., Bokor, J., Zsedrovits, T., Roska, T.: Performance characteristics of a complete vision only sense and avoid system. In: Proceedings of AIAA GNC 2012 (Guidance, Navigation and Control Conference), AIAA 2012-4703, pp. 1–15, Minneapolis, Minnesota (2012) – reference: Schaub, A., Burschka, D.: Spatio-temporal prediction of collision candidates for static and dynamic objects in monocular image sequences. In Proc. of IEEE Intelligent Vehicles Symposium (IV 2013) (2013) – reference: LyuYPanQZhaoCZhangYHuJFeature article: Vision-based UAV collision avoidance with 2D dynamic safety envelopeIEEE Aerosp. Electron. Syst. Mag.2016317162610.1109/MAES.2016.150155https://doi.org/10.1109/MAES.2016.150155 – reference: Shakernia, O., Chen, W.-Z., Raska, V.: Passive ranging for uav sense and avoid applications. In: fotech Aerospace (2005) – reference: Bauer, P., Hiba, A., Vanek, B., Zarandy, A., Bokor, J.: Monocular image-based time to collision and closest point of approach estimation. In: proceedings of 24th Mediterranean Conference on Control and Automation (MED’16). Athens, Greece (2016) – reference: MejiasLMcFadyenAFordJJFeature article: Sense and avoid technology developments at Queensland university of technologyIEEE Aerosp. Electron. Syst. Mag.2016317283710.1109/MAES.2016.150157https://doi.org/10.1109/MAES.2016.150157 – reference: Mori, T., Scherer, S.: First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. In: International Conference on Robotics and Automation (2013) – reference: Salazar, L.R., Sabatini, R., Ramasamy, S., Gardi, A.: A novel system for non-cooperative uav sense-and-avoid. In: Proceedings of european navigation conference 2013 (ENC 2013) (2013) – reference: Degen, S.: Reactive image-based collision avoidance system for unmanned aircraft systems. Master’s thesis, Australian Research Centre for Aerospace Automation (2011) – reference: airliners.net: aircraft-data. http://www.airliners.net/aircraft-data/ (2015) – reference: NussbergerAGrabnerHGoolLVFeature article: Robust Aerial Object Tracking from an Airborne platformIEEE Aerosp. Electron. Syst. Mag.2016317384610.1109/MAES.2016.150126https://doi.org/10.1109/MAES.2016.150126 https://doi.org/10.1109/MAES.2016.150126 – reference: ZsedrovitsTZarandyAVanekBPeniTBokorJRoskaTCollision avoidance for UAV using visual detection. In: Proceedings of IEEE ISCAS 2011 (International Symposium on Circuits and Systems), pp. 2173–2176. IEEE, Rio de Janeiro201110.1109/ISCAS.2011.5938030 – reference: Forlenza, L.: Vision based strategies for implementing Sense and Avoid capabilities onboard Unmanned Aerial Systems. Ph.D. thesis, UNIVERSITÁ DEGLI STUDI DI NAPOLI FEDERICO II (2012) – reference: Fasano, G., Accardo, D., Forlenza, L., Moccia, A., Rispoli, A.: A multi-sensor obstacle detection and tracking system for autonomousuav sense and avoid. In: XX Congresso Nazionale AIDAA, Milano (2009) – reference: Speijker, L., Verstraeten, J., Kranenburg, C., van der Geest, P.: Scoping improvements to ’See And Avoid’ for general aviation (SISA). Tech. rep., European Aviation Safety Agency (EASA (2012) – reference: ZsedrovitsTBauerPPenczBJMHibaAGőzseIKisantalMNémethMNagyZVanekBZarándyABokorJOnboard visual sense and avoid system for small aircraftIEEE A&E Syst. Mag.201631182710.1109/MAES.2016.150129 – reference: Byrne, J., Taylor, C.J.: Expansion segmentation for visual collision detection and estimation. In: Proc. of IEEE International Conference on Robotics and Automation (2009) – reference: MelnykRSchrageDVolovoiVJimenezHSense and avoid requirements for unmanned aircraft systems using a target level of safety approachRisk Anal.201434101894190610.1111/risa.12200 – reference: ChoiHKimYHwangIReactive collision avoidance of unmanned aerial vehicles using a single vision sensorJ. Guid. Control. Dyn.20133641234124010.2514/1.57131https://doi.org/10.2514/1.57131 https://doi.org/10.2514/1.57131 – reference: Bauer, P., Vanek, B., Pni, T., Zsedrovits, T., Pencz, B., Zarndy, K., Bokor, J.: Aircraft trajectory tracking with large sideslip angles for sense and avoid intruder state estimation. In proceedings of 22nd Mediterranean Conference on Control and Automation (MED’14). Palermo, Italy (2014) – ident: 816_CR15 – ident: 816_CR31 doi: 10.1007/978-3-642-39402-7_2 – ident: 816_CR25 doi: 10.2514/6.2005-7179 – ident: 816_CR22 doi: 10.1109/ICPR.1992.201512 – volume: 36 start-page: 1234 issue: 4 year: 2013 ident: 816_CR8 publication-title: J. Guid. Control. Dyn. doi: 10.2514/1.57131 – volume: 31 start-page: 38 issue: 7 year: 2016 ident: 816_CR24 publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2016.150126 – ident: 816_CR11 – ident: 816_CR17 – ident: 816_CR3 doi: 10.1109/ICUAS.2017.7991371 – volume: 31 start-page: 16 issue: 7 year: 2016 ident: 816_CR19 publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2016.150155 – ident: 816_CR30 doi: 10.2514/6.2007-6865 – volume: 31 start-page: 18 year: 2016 ident: 816_CR32 publication-title: IEEE A&E Syst. Mag. doi: 10.1109/MAES.2016.150129 – volume-title: Collision avoidance for UAV using visual detection. In: Proceedings of IEEE ISCAS 2011 (International Symposium on Circuits and Systems), pp. 2173–2176. IEEE, Rio de Janeiro year: 2011 ident: 816_CR33 doi: 10.1109/ISCAS.2011.5938030 – ident: 816_CR1 – ident: 816_CR9 – ident: 816_CR5 – ident: 816_CR13 doi: 10.2514/6.2009-1881 – ident: 816_CR28 – ident: 816_CR26 – volume: 31 start-page: 6 issue: 7 year: 2016 ident: 816_CR14 publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2016.150164 – ident: 816_CR6 doi: 10.1109/MED.2014.6961553 – ident: 816_CR4 doi: 10.1109/MED.2016.7535965 – ident: 816_CR10 – ident: 816_CR27 doi: 10.1109/IVS.2013.6629605 – ident: 816_CR12 – ident: 816_CR23 doi: 10.1109/ICRA.2013.6630807 – ident: 816_CR16 – volume: 31 start-page: 28 issue: 7 year: 2016 ident: 816_CR20 publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2016.150157 – ident: 816_CR2 – volume: 39 start-page: 498 issue: 3 year: 2015 ident: 816_CR18 publication-title: J. Guid. Control. Dyn. doi: 10.2514/1.G001468 – ident: 816_CR29 doi: 10.2514/6.2012-4703 – ident: 816_CR7 doi: 10.1109/ROBOT.2009.5152487 – volume: 34 start-page: 1894 issue: 10 year: 2014 ident: 816_CR21 publication-title: Risk Anal. doi: 10.1111/risa.12200  | 
    
| SSID | ssj0009859 | 
    
| Score | 2.2474976 | 
    
| Snippet | The paper deals with monocular image-based sense and avoid assuming constant aircraft velocities and straight flight paths. From very limited two dimensional... | 
    
| SourceID | gale crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 261 | 
    
| SubjectTerms | Artificial Intelligence Control Electrical Engineering Engineering Mechanical Engineering Mechatronics Robotics Simulation methods  | 
    
| Subtitle | Motto: ’Almost Everything from Almost Nothing | 
    
| Title | Three Dimensional Intruder Closest Point of Approach Estimation Based-on Monocular Image Parameters in Aircraft Sense and Avoid | 
    
| URI | https://link.springer.com/article/10.1007/s10846-018-0816-6 | 
    
| Volume | 93 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-0409 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-0409 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AAJSJ dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-0409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009859 issn: 0921-0296 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3fS9xAEMeHqi_1wbZW8Wwr81AQKgt7yWWTfYz2_Ily1BP0KeyPBA6uSbmLvvqvO3NJqoIKPl0eks2R787ODLvzGYCf3gfcdtEL8k6xGFgthSYvJsIwZ4KZtLLgAufzC3V8NTi9jq7bOu55d9q925JcrNRPit3IV1Lqy0TlvhJqCVYipnnRJL4K0kfSbhI1gL2A8uRAq24r86Uhnjmjbkl-viG68DOHn2GtDRAxbRT9Ah_ych0-dc0XsLXFdVh9QhL8Cvdj0iTH38zqbzgbeFLWs1tPjxxMqzmt_TiqJmWNVYFpyxHHIdl3U7qI--TNvKALMvJqcTYVT_7SWoMjw8e3mMGJkxLTyczNTFHjJb0nR1N6TO-qid-A8eFwfHAs2t4KwoVBXAs7iArudm7yxGnnQpMwqd1IVcjC9h0lObbok1ShkrH2lD9HTvZNaA0FgEyg2oTlsirzLUAfFBR0UCRgjR5IrxMlfUAzw8aUKyod90B23zhzLXec219Ms0diMsuSkSwZy5KpHvz6_8i_Brrx1s27LFzGBknjOtPWFdC_Y7RVlsaU4XE5bdKDvU7brLXU-evjbr_r7m_wkUIp3Zzn_g7LpHD-g8KV2u7ASnp0czak3_3hxejPzmK6PgDZ1OKA | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Na9tAEIaHNj2kOaRtPqiTtplDINCysJbslfaopgl264RAHMht2Q8JDI5UbKXX_vXMWFLiQFvoTQdpJfTu7MywO88AHIcQcdvFIMg7JWLgtBSavJiI45wJZtLJggucLy7V6Gbw_XZ429ZxL7vT7t2W5GqlXit2I19JqS8TlftKqJfwivlVDMy_ibIn0m46bAB7EeXJkVbdVuafhnjmjLol-fmG6MrPnL-F7TZAxKxR9B28yMsdeNM1X8DWFndga40kuAu_p6RJjt-Y1d9wNnBc1ov7QI-czqslrf14Vc3KGqsCs5Yjjmdk303pIn4lbxYEXZCRV6uzqTi-o7UGrywf32IGJ85KzGYLv7BFjdf0nhxtGTD7Vc3CHkzPz6anI9H2VhA-jpJauMGw4G7nNk-99j62KZParVSFLFzfU5Ljij5JFSuZ6ED589DLvo2dpQCQCVT7sFFWZf4eMEQFBR0UCTirBzLoVMkQ0cxwCeWKSic9kN0_Nr7ljnP7i7l5IiazLIZkMSyLUT34_PjIzwa68a-bT1g4wwZJ43rb1hXQ1zHaymQJZXhcTpv24EunrWktdfn3cQ_-6-4j2BxNLyZmMr78cQivKazSzdnuD7BBaucfKXSp3afVVH0AZ8fiPg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3La9wwEIeHNoXSHtomben2OYdAoEVEa3tl6-gmWbJ9hIVuIDehhwULqR12nVz7r3dmbecBbaE3H2zZ-KfRzCDNNwC7ISTcdjEI8k65yJyWQpMXE2laMcFMOhm5wPn7iTo-zb6cTc76Pqfr4bT7sCXZ1TQwpalu9y9C3L9V-EZ-k9JgpiuPlVD34UHGnASa0KdJeUPdLSYdbC-hnDnRatjW_NMQdxzTsDzf3Rzd-JzpM3jSB4tYdupuw72q3oGnQyMG7O1yBx7fogo-h18L0qfCQ-b2d8wNnNXt6jLQIwfnzZr8AM6bZd1iE7HsmeJ4RLbelTHiZ_JsQdAFGXyzOaeKs5-07uDc8lEu5nHissZyufIrG1v8Qe-p0NYBy6tmGV7AYnq0ODgWfZ8F4dMkb4XLJpE7n9uq8Nr71BZMbbdSRRnd2FPC4-KYZEuVzHWgXHri5dimzlIwyDSql7BVN3X1CjAkkQIQigqc1ZkMulAyJDRLXE55o9L5COTwj43vGeTcCuPc3NCTWRZDshiWxagRfLx-5KIDcPzr5j0WzrBx0rje9jUG9HWMuTJlTtkel9YWI_g0aGt6q13_fdzX_3X3B3g4P5yab7OTr2_gEUVYujvm_Ra2SOzqHUUxrXu_mam_AZVD5no | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+Dimensional+Intruder+Closest+Point+of+Approach+Estimation+Based-on+Monocular+Image+Parameters+in+Aircraft+Sense+and+Avoid&rft.jtitle=Journal+of+intelligent+%26+robotic+systems&rft.au=Bauer%2C+Peter&rft.au=Hiba%2C+Antal&rft.au=Bokor%2C+Jozsef&rft.au=Zarandy%2C+Akos&rft.date=2019-02-01&rft.pub=Springer+Netherlands&rft.issn=0921-0296&rft.eissn=1573-0409&rft.volume=93&rft.issue=1-2&rft.spage=261&rft.epage=276&rft_id=info:doi/10.1007%2Fs10846-018-0816-6&rft.externalDocID=10_1007_s10846_018_0816_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-0296&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-0296&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-0296&client=summon |