A numerical solution for non-classical parabolic problem based on Chebyshev spectral collocation method

A numerical method based on Chebyshev polynomials and local interpolating functions is proposed for solving the one-dimensional parabolic partial differential equation subject to non-classical conditions. To assess its validity and accuracy, the method is applied to solve several test problem.

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 190; no. 1; pp. 179 - 185
Main Authors Golbabai, A., Javidi, M.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.07.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2007.01.033

Cover

Abstract A numerical method based on Chebyshev polynomials and local interpolating functions is proposed for solving the one-dimensional parabolic partial differential equation subject to non-classical conditions. To assess its validity and accuracy, the method is applied to solve several test problem.
AbstractList A numerical method based on Chebyshev polynomials and local interpolating functions is proposed for solving the one-dimensional parabolic partial differential equation subject to non-classical conditions. To assess its validity and accuracy, the method is applied to solve several test problem.
Author Javidi, M.
Golbabai, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Golbabai
  fullname: Golbabai, A.
  email: golbabai@iust.ac.ir
– sequence: 2
  givenname: M.
  surname: Javidi
  fullname: Javidi, M.
  email: mo_javidi@yahoo.com
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18846224$$DView record in Pascal Francis
BookMark eNp9kD1PwzAQhi0EEqXwA9iyMCac43w0YqoqvqRKLDBbl7NDXTlxZAek_nvcFjEwdPJwz_v67rli54MbNGO3HDIOvLrfZthTlgPUGfAMhDhjM76oRVpWRXPOZgBNlQoAccmuQthCBCtezNjnMhm-eu0NoU2Cs1-TcUPSOZ_ED1KyGMJhNKLH1llDyehda3WftBi0SiK82uh2Fzb6OwmjpslHmpy1jvDQ1etp49Q1u-jQBn3z-87Zx9Pj--olXb89v66W65REXk9pQ10OHeQIUCpQmLe85A0valW0QF1JrSIiJFFVQLXCoilJlKJB5CoXWIk5uzv2jhji3p3HgUyQozc9-p3ki0VR5XkRufrIkXcheN1JMtNh4XiAsZKD3HuVWxm9yr1XCVxGrzHJ_yX_yk9kHo4ZHU__NtrLQEYPpJXxUZlUzpxI_wCv4JR5
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1007_s10013_013_0007_5
crossref_primary_10_2478_mjpaa_2020_0023
crossref_primary_10_1142_S0219876215500243
crossref_primary_10_1016_j_camwa_2016_06_041
crossref_primary_10_1155_2014_849682
crossref_primary_10_1007_s10915_011_9560_9
crossref_primary_10_1088_1402_4896_abe066
crossref_primary_10_1016_j_apm_2011_07_059
crossref_primary_10_1016_j_joems_2014_06_018
crossref_primary_10_1080_10407782_2016_1173488
crossref_primary_10_1007_s10915_015_0145_x
crossref_primary_10_1007_s11075_016_0192_x
crossref_primary_10_1155_2014_636191
crossref_primary_10_1016_j_cam_2009_01_012
crossref_primary_10_1155_2014_369029
crossref_primary_10_1002_num_20409
crossref_primary_10_46300_9101_2021_15_28
crossref_primary_10_1016_j_cam_2011_05_038
crossref_primary_10_1186_s13661_015_0364_y
crossref_primary_10_4236_am_2022_132009
Cites_doi 10.1137/0916073
10.1016/0021-9991(89)90208-8
10.1007/s100120200039
10.1137/S0036142993295545
10.1155/S1024123X03111015
10.1016/j.apnum.2004.02.002
10.1016/0020-7225(90)90086-X
10.1002/num.20019
10.1090/S0025-5718-1988-0935077-0
10.1006/jcph.1995.1036
10.1016/0020-7225(93)90010-R
10.1016/S0096-3003(02)00954-2
10.1016/S0955-7997(00)00068-0
10.1137/0723002
10.1145/365723.365727
10.1016/S0096-3003(02)00479-4
10.1016/S0898-1221(98)00240-5
10.1137/S1064827501388182
10.1016/j.amc.2005.08.011
10.1016/S0377-0427(99)00200-9
ContentType Journal Article
Copyright 2007 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2007.01.033
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 185
ExternalDocumentID 18846224
10_1016_j_amc_2007_01_033
S0096300307000380
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-9cf20f02a005d0da2b1519147d4b0cf5cbdcccac3660c7da495c3539aa1d23a63
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Mon Jul 21 09:15:36 EDT 2025
Wed Oct 01 04:43:08 EDT 2025
Thu Apr 24 23:10:26 EDT 2025
Fri Feb 23 02:19:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Local interpolating functions
Parabolic problem
Chebyshev polynomials
Non-classical conditions
Chebyshev polynomial
Initial value problem
Numerical method
Polynomial method
Partial differential equation
Parabolic equation
Numerical analysis
Boundary value problem
Applied mathematics
Numerical solution
Collocation method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-9cf20f02a005d0da2b1519147d4b0cf5cbdcccac3660c7da495c3539aa1d23a63
PageCount 7
ParticipantIDs pascalfrancis_primary_18846224
crossref_citationtrail_10_1016_j_amc_2007_01_033
crossref_primary_10_1016_j_amc_2007_01_033
elsevier_sciencedirect_doi_10_1016_j_amc_2007_01_033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2007
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Don, Solomonoff (bib18) 1995; 16
Welfert (bib23) 1977; 34
Cannon, Matheson (bib8) 1993; 31
Boyd (bib16) 1989; vol. 49
Dehghan (bib4) 2005; 21
Dehghan (bib3) 2003; 145
Weideman, Reddy (bib22) 2000; 26
Cannon, van der Hoek (bib9) 1982
wang, Lin (bib11) 1990; 28
Darvishi (bib20) 2004; 15
Ang (bib13) 2006; 175
Bayliss, Class, Matkowsky (bib24) 1995; 116
Solomonoff, Turkel (bib25) 1989; 81
Ang (bib1) 2001; 25
Ang (bib2) 2002; 26
Cannon, Lin, Wang (bib7) 1990; 28
Liu (bib10) 1999; 110
Tal-Ezer (bib26) 1986; 23
Fornberg (bib21) 1988; 51
Dehghan (bib6) 2005; 52
Canuto, Quarteroni, Hussaini, Zang (bib17) 1988
Dehghan (bib12) 2003; 2
Baltensperger, Trummer (bib15) 2003; 24
Baltensperger, Berrut (bib14) 1999; 37
Trefethen (bib19) 2000
Dehghan (bib5) 2004; 149
Dehghan (10.1016/j.amc.2007.01.033_bib5) 2004; 149
Cannon (10.1016/j.amc.2007.01.033_bib9) 1982
wang (10.1016/j.amc.2007.01.033_bib11) 1990; 28
Baltensperger (10.1016/j.amc.2007.01.033_bib15) 2003; 24
Liu (10.1016/j.amc.2007.01.033_bib10) 1999; 110
Fornberg (10.1016/j.amc.2007.01.033_bib21) 1988; 51
Cannon (10.1016/j.amc.2007.01.033_bib8) 1993; 31
Solomonoff (10.1016/j.amc.2007.01.033_bib25) 1989; 81
Canuto (10.1016/j.amc.2007.01.033_bib17) 1988
Trefethen (10.1016/j.amc.2007.01.033_bib19) 2000
Weideman (10.1016/j.amc.2007.01.033_bib22) 2000; 26
Dehghan (10.1016/j.amc.2007.01.033_bib4) 2005; 21
Darvishi (10.1016/j.amc.2007.01.033_bib20) 2004; 15
Cannon (10.1016/j.amc.2007.01.033_bib7) 1990; 28
Tal-Ezer (10.1016/j.amc.2007.01.033_bib26) 1986; 23
Bayliss (10.1016/j.amc.2007.01.033_bib24) 1995; 116
Ang (10.1016/j.amc.2007.01.033_bib2) 2002; 26
Welfert (10.1016/j.amc.2007.01.033_bib23) 1977; 34
Boyd (10.1016/j.amc.2007.01.033_bib16) 1989; vol. 49
Don (10.1016/j.amc.2007.01.033_bib18) 1995; 16
Dehghan (10.1016/j.amc.2007.01.033_bib6) 2005; 52
Ang (10.1016/j.amc.2007.01.033_bib13) 2006; 175
Baltensperger (10.1016/j.amc.2007.01.033_bib14) 1999; 37
Dehghan (10.1016/j.amc.2007.01.033_bib3) 2003; 145
Ang (10.1016/j.amc.2007.01.033_bib1) 2001; 25
Dehghan (10.1016/j.amc.2007.01.033_bib12) 2003; 2
References_xml – volume: 26
  start-page: 185
  year: 2002
  end-page: 191
  ident: bib2
  article-title: A method of solution for the one-dimensional heat equation subject to nonlocal conditions
  publication-title: Southest Asian Bull. Math.
– volume: 51
  start-page: 699
  year: 1988
  end-page: 706
  ident: bib21
  article-title: Generation of finite difference formulas on arbitarily spaced grids
  publication-title: Math. Comput.
– volume: 16
  start-page: 1253
  year: 1995
  end-page: 1268
  ident: bib18
  article-title: Accuracy and speed in computing the Chebyshev collocation derivative
  publication-title: SIAM J. Sci. Comput.
– volume: 31
  start-page: 347
  year: 1993
  end-page: 355
  ident: bib8
  article-title: A numerical procedure for diffusion subject to the specification of mass
  publication-title: Int. J. Eng. Sci.
– year: 1988
  ident: bib17
  article-title: Spectral Method in Fluided Mechanics
– start-page: 527
  year: 1982
  end-page: 539
  ident: bib9
  article-title: An implicit finite difference scheme for the diffusion equation subject specification of mass in a portion of the domain
  publication-title: Numerical Solutions of Partial Differential Equations
– volume: 37
  start-page: 41
  year: 1999
  end-page: 48
  ident: bib14
  article-title: The errors in calculating the pseudospectral differentiation matrices for Chebyshev–Gauss–Lobatto point
  publication-title: Comput. Math. Appl.
– volume: 116
  start-page: 380
  year: 1995
  end-page: 383
  ident: bib24
  article-title: Roundoff error in computing derivatives using the Chebyshev differentiation matrix
  publication-title: J. Comput. Phys.
– volume: vol. 49
  year: 1989
  ident: bib16
  publication-title: Chebyshev and Fourier spectral methods
– volume: 110
  start-page: 115
  year: 1999
  end-page: 127
  ident: bib10
  article-title: Numerical solution of heat equation with nonlocal boundary conditions
  publication-title: J. Comput. Appl. Math.
– volume: 175
  start-page: 969
  year: 2006
  end-page: 979
  ident: bib13
  article-title: Numerical solution of a non-classical parabolic problem: an integro-differential approach
  publication-title: Appl. Math. Comput.
– volume: 34
  start-page: 1640
  year: 1977
  end-page: 1657
  ident: bib23
  article-title: Generation of pseudospectral differentiation matrices, I
  publication-title: SIAM J. Numer. Anal.
– volume: 25
  start-page: 1
  year: 2001
  end-page: 6
  ident: bib1
  article-title: A boundary integral equation method for the two dimensional diffusion equation subject to a nonlocal conditions
  publication-title: Eng. Anal. Bound Elem.
– volume: 149
  start-page: 31
  year: 2004
  end-page: 45
  ident: bib5
  article-title: Numerical solution of a parabolic equation subject to specification of energy
  publication-title: Appl. Math. Comput.
– year: 2000
  ident: bib19
  article-title: Spectral Methods in MATLAB
– volume: 81
  start-page: 239
  year: 1989
  end-page: 276
  ident: bib25
  article-title: Global properties of pseudospectral methods
  publication-title: J. Comput. Phys.
– volume: 145
  start-page: 185
  year: 2003
  end-page: 194
  ident: bib3
  article-title: Numerical solution of a parabolic equation with non-local boundary specification
  publication-title: Appl. Math. Comput.
– volume: 23
  start-page: 11
  year: 1986
  end-page: 26
  ident: bib26
  article-title: Spectral methods in time for hyperbolic equations
  publication-title: SIAM J. Numer. Anal.
– volume: 15
  start-page: 419
  year: 2004
  end-page: 439
  ident: bib20
  article-title: Preconditioning and domain decomposition scheme to solve PDEs
  publication-title: Int. J. Pure Appl. Math.
– volume: 28
  start-page: 573
  year: 1990
  end-page: 578
  ident: bib7
  article-title: An implicit finite difference scheme for the diffusion equation subject to mass specificaion
  publication-title: Int. J. Eng. Sci.
– volume: 52
  start-page: 39
  year: 2005
  end-page: 62
  ident: bib6
  article-title: Efficient techniques for the second order parabolic equation subject to nonlocal specifications
  publication-title: Appl. Numer. Math.
– volume: 28
  start-page: 353
  year: 1990
  end-page: 363
  ident: bib11
  article-title: A numerical method for the diffusion equation with nonlocal boundary specifications
  publication-title: Int. J. Eng. Sci.
– volume: 2
  start-page: 81
  year: 2003
  end-page: 92
  ident: bib12
  article-title: On the numerical solution of the diffusion equation with a nonlocal boundary condition
  publication-title: Math. Problem. Eng.
– volume: 26
  start-page: 465
  year: 2000
  end-page: 519
  ident: bib22
  article-title: A MATLAB differentiation matrix suite
  publication-title: Trans. Math. Software
– volume: 21
  start-page: 24
  year: 2005
  end-page: 40
  ident: bib4
  article-title: On the solution of an initial-boundary value problem that combines Neumann and integral equation for the wave equation
  publication-title: Numer. Meth. Part. Differ. Eq.
– volume: 24
  start-page: 1465
  year: 2003
  end-page: 1487
  ident: bib15
  article-title: Spectral differencing with a twist
  publication-title: SIAM J. Sci. Comput.
– volume: 16
  start-page: 1253
  issue: 4
  year: 1995
  ident: 10.1016/j.amc.2007.01.033_bib18
  article-title: Accuracy and speed in computing the Chebyshev collocation derivative
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916073
– year: 2000
  ident: 10.1016/j.amc.2007.01.033_bib19
– year: 1988
  ident: 10.1016/j.amc.2007.01.033_bib17
– volume: 81
  start-page: 239
  year: 1989
  ident: 10.1016/j.amc.2007.01.033_bib25
  article-title: Global properties of pseudospectral methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(89)90208-8
– volume: 26
  start-page: 185
  year: 2002
  ident: 10.1016/j.amc.2007.01.033_bib2
  article-title: A method of solution for the one-dimensional heat equation subject to nonlocal conditions
  publication-title: Southest Asian Bull. Math.
  doi: 10.1007/s100120200039
– volume: 34
  start-page: 1640
  year: 1977
  ident: 10.1016/j.amc.2007.01.033_bib23
  article-title: Generation of pseudospectral differentiation matrices, I
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142993295545
– volume: 2
  start-page: 81
  year: 2003
  ident: 10.1016/j.amc.2007.01.033_bib12
  article-title: On the numerical solution of the diffusion equation with a nonlocal boundary condition
  publication-title: Math. Problem. Eng.
  doi: 10.1155/S1024123X03111015
– volume: 52
  start-page: 39
  year: 2005
  ident: 10.1016/j.amc.2007.01.033_bib6
  article-title: Efficient techniques for the second order parabolic equation subject to nonlocal specifications
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.02.002
– volume: 28
  start-page: 573
  year: 1990
  ident: 10.1016/j.amc.2007.01.033_bib7
  article-title: An implicit finite difference scheme for the diffusion equation subject to mass specificaion
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(90)90086-X
– volume: 15
  start-page: 419
  issue: 4
  year: 2004
  ident: 10.1016/j.amc.2007.01.033_bib20
  article-title: Preconditioning and domain decomposition scheme to solve PDEs
  publication-title: Int. J. Pure Appl. Math.
– volume: vol. 49
  year: 1989
  ident: 10.1016/j.amc.2007.01.033_bib16
– volume: 21
  start-page: 24
  year: 2005
  ident: 10.1016/j.amc.2007.01.033_bib4
  article-title: On the solution of an initial-boundary value problem that combines Neumann and integral equation for the wave equation
  publication-title: Numer. Meth. Part. Differ. Eq.
  doi: 10.1002/num.20019
– volume: 51
  start-page: 699
  year: 1988
  ident: 10.1016/j.amc.2007.01.033_bib21
  article-title: Generation of finite difference formulas on arbitarily spaced grids
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1988-0935077-0
– volume: 116
  start-page: 380
  year: 1995
  ident: 10.1016/j.amc.2007.01.033_bib24
  article-title: Roundoff error in computing derivatives using the Chebyshev differentiation matrix
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1036
– volume: 31
  start-page: 347
  year: 1993
  ident: 10.1016/j.amc.2007.01.033_bib8
  article-title: A numerical procedure for diffusion subject to the specification of mass
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/0020-7225(93)90010-R
– start-page: 527
  year: 1982
  ident: 10.1016/j.amc.2007.01.033_bib9
  article-title: An implicit finite difference scheme for the diffusion equation subject specification of mass in a portion of the domain
– volume: 149
  start-page: 31
  year: 2004
  ident: 10.1016/j.amc.2007.01.033_bib5
  article-title: Numerical solution of a parabolic equation subject to specification of energy
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(02)00954-2
– volume: 25
  start-page: 1
  year: 2001
  ident: 10.1016/j.amc.2007.01.033_bib1
  article-title: A boundary integral equation method for the two dimensional diffusion equation subject to a nonlocal conditions
  publication-title: Eng. Anal. Bound Elem.
  doi: 10.1016/S0955-7997(00)00068-0
– volume: 23
  start-page: 11
  issue: 1
  year: 1986
  ident: 10.1016/j.amc.2007.01.033_bib26
  article-title: Spectral methods in time for hyperbolic equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0723002
– volume: 26
  start-page: 465
  year: 2000
  ident: 10.1016/j.amc.2007.01.033_bib22
  article-title: A MATLAB differentiation matrix suite
  publication-title: Trans. Math. Software
  doi: 10.1145/365723.365727
– volume: 145
  start-page: 185
  year: 2003
  ident: 10.1016/j.amc.2007.01.033_bib3
  article-title: Numerical solution of a parabolic equation with non-local boundary specification
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(02)00479-4
– volume: 37
  start-page: 41
  year: 1999
  ident: 10.1016/j.amc.2007.01.033_bib14
  article-title: The errors in calculating the pseudospectral differentiation matrices for Chebyshev–Gauss–Lobatto point
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(98)00240-5
– volume: 24
  start-page: 1465
  issue: 5
  year: 2003
  ident: 10.1016/j.amc.2007.01.033_bib15
  article-title: Spectral differencing with a twist
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501388182
– volume: 28
  start-page: 353
  issue: 3–4
  year: 1990
  ident: 10.1016/j.amc.2007.01.033_bib11
  article-title: A numerical method for the diffusion equation with nonlocal boundary specifications
  publication-title: Int. J. Eng. Sci.
– volume: 175
  start-page: 969
  issue: 2
  year: 2006
  ident: 10.1016/j.amc.2007.01.033_bib13
  article-title: Numerical solution of a non-classical parabolic problem: an integro-differential approach
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.08.011
– volume: 110
  start-page: 115
  year: 1999
  ident: 10.1016/j.amc.2007.01.033_bib10
  article-title: Numerical solution of heat equation with nonlocal boundary conditions
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00200-9
SSID ssj0007614
Score 1.9658016
Snippet A numerical method based on Chebyshev polynomials and local interpolating functions is proposed for solving the one-dimensional parabolic partial differential...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 179
SubjectTerms Chebyshev polynomials
Exact sciences and technology
Global analysis, analysis on manifolds
Local interpolating functions
Mathematical analysis
Mathematics
Non-classical conditions
Numerical analysis
Numerical analysis. Scientific computation
Parabolic problem
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Title A numerical solution for non-classical parabolic problem based on Chebyshev spectral collocation method
URI https://dx.doi.org/10.1016/j.amc.2007.01.033
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2025
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKu4AQ4inKo_LAhJTWiWPHGasKVEDtRKVukWPHUFRK1Qcjv51z7RQ60IE1sZPo7nLf2b77DqGbhBpjCJFBbhuFAR7zQALKBFxwxQxL0jC2Bc69Pu8O4schG1ZQp6yFsWmV3vc7n77y1v5Ky0uzNR2NbI1vavmirNHa8y1Yt9cAf4Soolr74anbXztkWKk7MubUpnkRWh5urtK85HtJZBg2CaV_wdP-VM5BaMZ1u_gFQfeH6MDHjrjtPu8IVYrJMdrrrYlX5yfopY0nS3cIM8alWWEITDEs8wNlQ-XVLcv4nVtKYOw7ymALZxrD4M5rYfesi0-8qsKcwWhrLB9ubw-7ltOnaHB_99zpBr6XQqBolCyCVJmIGBJJ-Os00TLKAepBEYmOc6IMU7lWoExFOScq0RLWTYoymkoZ6ohKTs9QFT60OEdYcypZAaFhwXhsIiZCJWJhIi5As1qEdURKEWbKE43bfhfjrMwoe8tA6rYBZpKRMAOp19HtesrUsWxsGxyXesk2TCUDFNg2rbGhw58XCYjBIJK5-N9zL9Fuud9LwitUXcyWxTUEKou8gXaaX2HDm-M3SIXnUQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqMgBCiKcoj-KBCSmtE8dOMlYVVYG2Uyt1ixw7hiIeVR-M_Hbu8mjpAANrYifR3cV3Z999HyE3AbfWMqacBInCwB9LR4GXcWQotbAiiFwfG5z7A9kd-Q9jMa6QdtkLg2WVxdqfr-nZal1caRbSbE4nE-zxjRAvCo0Wz7cgb9_yhRdgBtb4Wtd5QJ6eQzFHWOTFeHm0mRV5qbcSxtBtMM5_c057UzUHkdmc6-KHA-ockP0icqSt_OMOSSV9PyK7_RXs6vyYPLXo-zI_gnmlpVFRCEspJPmOxkA5u4V43wkCAtOCT4aiMzMUBrefU9yxTj9p1oM5g9FoKh_5zh7NCadPyKhzN2x3nYJJwdHcCxZOpK3HLPMU_HOGGeUl4OhBDYHxE6at0InRoErNpWQ6MAqyJs0Fj5RyjceV5KekCh-anhFqJFcihcAwFdK3nghdHfqh9WQIejWhWyOsFGGsC5hxZLt4jct6spcYpI70l0HM3BikXiO3qynTHGPjr8F-qZd4w1Bi8AF_Tatv6HD9ohAiMIhjzv_33Guy3R32e3HvfvB4QXbKnV_mXpLqYrZMryBkWST1zCS_ATRv6Bk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+solution+for+non-classical+parabolic+problem+based+on+Chebyshev+spectral+collocation+method&rft.jtitle=Applied+mathematics+and+computation&rft.au=Golbabai%2C+A.&rft.au=Javidi%2C+M.&rft.date=2007-07-01&rft.issn=0096-3003&rft.volume=190&rft.issue=1&rft.spage=179&rft.epage=185&rft_id=info:doi/10.1016%2Fj.amc.2007.01.033&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2007_01_033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon