Orientation of good covers
We study systems of orientations on triples that satisfy the following so-called interiority condition: $\circlearrowleft(ABD)=~\circlearrowleft(BCD)=~\circlearrowleft(CAD)=1$ implies $\circlearrowleft(ABC)=1$ for any $A,B,C,D$. We call such an orientation a P3O (partial 3-order), a natural generali...
        Saved in:
      
    
          | Published in | Discrete Mathematics and Theoretical Computer Science Vol. 27:3; no. Combinatorics; pp. 1 - 20 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Nancy
          DMTCS
    
        01.10.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1365-8050 1462-7264 1365-8050  | 
| DOI | 10.46298/dmtcs.15019 | 
Cover
| Abstract | We study systems of orientations on triples that satisfy the following so-called interiority condition: $\circlearrowleft(ABD)=~\circlearrowleft(BCD)=~\circlearrowleft(CAD)=1$ implies $\circlearrowleft(ABC)=1$ for any $A,B,C,D$. We call such an orientation a P3O (partial 3-order), a natural generalization of a poset, that has several interesting special cases. For example, the order type of a planar point set (that can have collinear triples) is a P3O; we denote a P3O realizable by points as p-P3O. If we do not allow $\circlearrowleft(ABC)=0$, we obtain a T3O (total 3-order). Contrary to linear orders, a T3O can have a rich structure. A T3O realizable by points, a p-T3O, is the order type of a point set in general position. In our paper "Orientation of convex sets" we defined a 3-order on pairwise intersecting convex sets; such a P3O is called a C-P3O. In this paper we extend this 3-order to pairwise intersecting good covers; such a P3O is called a GC-P3O. If we do not allow $\circlearrowleft(ABC)=0$, we obtain a C-T3O and a GC-T3O, respectively. The main result of this paper is that there is a p-T3O that is not a GC-T3O, implying also that it is not a C-T3O -- this latter problem was left open in our earlier paper. Our proof involves several combinatorial and geometric observations that can be of independent interest. Along the way, we define several further special families of GC-T3O's. | 
    
|---|---|
| AbstractList | We study systems of orientations on triples (that is, an assignment ... of a value from ... to each ordered triple) that satisfy the following so-called interiority condition: ... simplies ... for any A,B,C,D. Wecall such an orientation a partial 3-order, a natural generalization of a poset that has several interesting special cases. As an example, the well-known order type of a planar point set (that can have collinear triples) is a partial 3-order. In our previous paper "Orientation of convex sets" we defined a partial 3-order on pairwise intersecting convex sets that we call 3-orders realizable by convex sets. A good cover is a family of compact closed sets in the plane such that the intersection of the members of any subfamily is either contractible or empty. In this paper, we extend the partial 3-order from the previous one and define a partial 3-order on good covers having pairwise intersecting sets. If the family is non-degenerate with respect to the orientation, i.e., always ... we obtain a total 3-order. The main result of this paper is that there is a total 3-order, which is realizable by points that is not realizable by good covers, implying also that it is not realizable by convex sets. This latter problem was leftopen in our earlier paper. Our proof involves several combinatorial and geometric observations that can be of independent interest. Along the way, we regard the 3-orders realizable by various special good covers, in particular, by families of topological trees, curves, lines and Y-shapes that pairwise intersect exactly once. We study systems of orientations on triples (that is, an assignment [??] of a value from +1, -1, 0 to each ordered triple) that satisfy the following so-called interiority condition: [??](ABD) = [??](BCD) = [??](CAD) = 1 implies O(ABC) = 1 for any A, B, C, D. We call such an orientation a partial 3-order, a natural generalization of a poset that has several interesting special cases. As an example, the well-known order type of a planar point set (that can have collinear triples) is a partial 3-order. In our previous paper "Orientation of convex sets" we defined a partial 3-order on pairwise intersecting convex sets that we call 3-orders realizable by convex sets. A good cover is a family of compact closed sets in the plane such that the intersection of the members of any subfamily is either contractible or empty. In this paper, we extend the partial 3-order from the previous one and define a partial 3-order on good covers having pairwise intersecting sets. If the family is non-degenerate with respect to the orientation, i.e., always [??](ABC) [not equal to] 0, we obtain a total 3-order. The main result of this paper is that there is a total 3-order, which is realizable by points that is not realizable by good covers, implying also that it is not realizable by convex sets. This latter problem was left open in our earlier paper. Our proof involves several combinatorial and geometric observations that can be of independent interest. Along the way, we regard the 3-orders realizable by various special good covers, in particular, by families of topological trees, curves, lines and Y-shapes that pairwise intersect exactly once. Keywords: combinatorial geometry, convex sets, good covers, order types, orientations We study systems of orientations on triples (that is, an assignment [??] of a value from +1, -1, 0 to each ordered triple) that satisfy the following so-called interiority condition: [??](ABD) = [??](BCD) = [??](CAD) = 1 implies O(ABC) = 1 for any A, B, C, D. We call such an orientation a partial 3-order, a natural generalization of a poset that has several interesting special cases. As an example, the well-known order type of a planar point set (that can have collinear triples) is a partial 3-order. We study systems of orientations on triples that satisfy the following so-called interiority condition: $\circlearrowleft(ABD)=~\circlearrowleft(BCD)=~\circlearrowleft(CAD)=1$ implies $\circlearrowleft(ABC)=1$ for any $A,B,C,D$. We call such an orientation a P3O (partial 3-order), a natural generalization of a poset, that has several interesting special cases. For example, the order type of a planar point set (that can have collinear triples) is a P3O; we denote a P3O realizable by points as p-P3O. If we do not allow $\circlearrowleft(ABC)=0$, we obtain a T3O (total 3-order). Contrary to linear orders, a T3O can have a rich structure. A T3O realizable by points, a p-T3O, is the order type of a point set in general position. In our paper "Orientation of convex sets" we defined a 3-order on pairwise intersecting convex sets; such a P3O is called a C-P3O. In this paper we extend this 3-order to pairwise intersecting good covers; such a P3O is called a GC-P3O. If we do not allow $\circlearrowleft(ABC)=0$, we obtain a C-T3O and a GC-T3O, respectively. The main result of this paper is that there is a p-T3O that is not a GC-T3O, implying also that it is not a C-T3O -- this latter problem was left open in our earlier paper. Our proof involves several combinatorial and geometric observations that can be of independent interest. Along the way, we define several further special families of GC-T3O's.  | 
    
| Audience | Academic | 
    
| Author | Keszegh, Balázs Pálvölgyi, Dömötör Damásdi, Gábor Ágoston, Péter  | 
    
| Author_xml | – sequence: 1 givenname: Péter surname: Ágoston fullname: Ágoston, Péter – sequence: 2 givenname: Gábor surname: Damásdi fullname: Damásdi, Gábor – sequence: 3 givenname: Balázs surname: Keszegh fullname: Keszegh, Balázs – sequence: 4 givenname: Dömötör surname: Pálvölgyi fullname: Pálvölgyi, Dömötör  | 
    
| BookMark | eNp9kM1LAzEQxYNUsK3ePHkqeHVrPneTYylWhUIveg7TJFtSdpOabJX-9y6toILIHGYYfm94b0ZoEGJwCF0TPOUlVfLetp3JUyIwUWdoSFgpCokFHvyYL9Ao5y3GhCpeDdHNKnkXOuh8DJNYTzYx2omJ7y7lS3ReQ5Pd1Vcfo9fFw8v8qViuHp_ns2VhGK26QhkFjFLJJChFsbPESUpciYWolQW1ZhwscABrKltKboGZtXNmXYEgSmI2RsXp7j7s4PABTaN3ybeQDppgfQymj8H0MVjP3574XYpve5c7vY37FHqLmlEhuBSS4G9qA43TPtSxS2Ban42eyRJzRTnnPTX9g-rLutab_ru17_e_BHcngUkx5-Tq_71-Al27eO4 | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2025 DMTCS Copyright DMTCS 2025  | 
    
| Copyright_xml | – notice: COPYRIGHT 2025 DMTCS – notice: Copyright DMTCS 2025  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BFMQW BGLVJ CCPQU DWQXO HCIFZ L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY  | 
    
| DOI | 10.46298/dmtcs.15019 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Continental Europe Database Technology Collection ProQuest One ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics Computer Science  | 
    
| EISSN | 1365-8050 | 
    
| EndPage | 20 | 
    
| ExternalDocumentID | 10.46298/dmtcs.15019 A860492444 10_46298_dmtcs_15019  | 
    
| GeographicLocations | Hungary | 
    
| GeographicLocations_xml | – name: Hungary | 
    
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO PV9 REM RNS RSU RZL TR2 TUS XSB ~8M M~E AZQEC DWQXO PKEHL PQEST PQUKI PRINS ADTOC C1A CAG COF LO0 UNPAY  | 
    
| ID | FETCH-LOGICAL-c327t-9c9a322838a9920ed1e821e6055f9da9b34ada4aadc7d684da3cbeecb7a519803 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1365-8050 1462-7264  | 
    
| IngestDate | Mon Sep 15 10:07:04 EDT 2025 Tue Oct 07 11:13:29 EDT 2025 Wed Oct 29 16:59:49 EDT 2025 Tue Oct 28 04:06:12 EDT 2025 Wed Oct 01 05:21:05 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | Combinatorics | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c327t-9c9a322838a9920ed1e821e6055f9da9b34ada4aadc7d684da3cbeecb7a519803 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://dmtcs.episciences.org/16488/pdf | 
    
| PQID | 3255485810 | 
    
| PQPubID | 946337 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | unpaywall_primary_10_46298_dmtcs_15019 proquest_journals_3255485810 gale_infotracmisc_A860492444 gale_infotracacademiconefile_A860492444 crossref_primary_10_46298_dmtcs_15019  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20251001 | 
    
| PublicationDateYYYYMMDD | 2025-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2025 text: 20251001 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Nancy | 
    
| PublicationPlace_xml | – name: Nancy | 
    
| PublicationTitle | Discrete Mathematics and Theoretical Computer Science | 
    
| PublicationYear | 2025 | 
    
| Publisher | DMTCS | 
    
| Publisher_xml | – name: DMTCS | 
    
| SSID | ssj0012947 ssib044734695  | 
    
| Score | 2.3452337 | 
    
| Snippet | We study systems of orientations on triples that satisfy the following so-called interiority condition:... We study systems of orientations on triples (that is, an assignment [??] of a value from +1, -1, 0 to each ordered triple) that satisfy the following so-called... We study systems of orientations on triples (that is, an assignment ... of a value from ... to each ordered triple) that satisfy the following so-called...  | 
    
| SourceID | unpaywall proquest gale crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Combinatorial analysis Convex sets Convexity Geometry Interiority Mathematical research  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gHJSDH6gRRNODH6cK7W7b3YMxaiDERDRGE2_NdHdrTLBFKDH-e3dLi-DBc5u2ebMzO9N98wbgxJOIjFBme5KgTWXQtTFmsc0Uj2js-DHPuTn3Q3_wQu9evdcKDMteGEOrLGNiHqhlKsw_8g7RuS9lHnO6V-NP20yNMqer5QgNLEYryMtcYmwNaq5RxqpC7aY3fHxanCu4nAZz-jv1Xc468iMT0wudFBmlnaWN6W94rsP6LBnj9xeORkv7T38bNovE0bqeW3oHKippwFY5lMEqfLQB9fuFEOt0F1oPk_eiuyix0th6S1NpCUPbnO7BS7_3fDuwi3EItiBukNlccCRGrYYh525XSUcx11G6HvFiLpFHhKJEiihFIH1GJRIRKSWiAHWaxrpkH6pJmqgDsJhpnHZ9ZIJxyqJY28WTGl4n8rkSDmnCaYlFOJ6rXoS6WsgxC3PMwhyzJpwboELjDNkEBRacfv0WIysVXjNfVyA6g6BNaK_cqRexWL1cQh0WTjQNf03ehLMF_P9-UOv_5xzChmvm9-ZkvDZUs8lMHemkIouOi5XyA9buy7Q priority: 102 providerName: ProQuest  | 
    
| Title | Orientation of good covers | 
    
| URI | https://www.proquest.com/docview/3255485810 https://dmtcs.episciences.org/16488/pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 27:3 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: KQ8 dateStart: 19970101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: ABDBF dateStart: 20030601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: AMVHM dateStart: 20030601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044734695 issn: 1462-7264 databaseCode: M~E dateStart: 19980101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7R5AA9UCggUkrkA4-Tix9rZ_YYUEKE5FAhgsrJGu-uq4riRLEjBAd-O7P2ump7QL3YsryyV7MzO99oZ74BeJVoIowF-omOyRd6EvhUYumjkYUow7SUbW5OtkwXK_HpLDlzJEm2Fkb_bFTNO_GFcwB1d5qfsp692-hyD4ZpwqB7AMPV8nT6va-qwqDtxcpmz3iRfXyX4s5PEt0nGfhYNp1rzuf2FrwP93fVhn7_osvLaz5mfgCLfnZdasmPk11TnKg_t4gb7zD9R_DQ4Uxv2inGY7hnqkM46Hs4eM6kD2E_u-JtrZ_A0efthStGqrx16Z2v19pTNsuzfgqr-ezrh4Xvuif4Ko4mjS-VpNiS2yBJGQVGhwaj0HD4kpRSkyxiQZoEkVYTnaLQFKvCGFVMiFEdBvEzGFTryjwHD22ddZQSKpQCi5KXMdEc6oRFKo0K4xG87sWabzqSjJyDi1b8eSuSvBX_CN5amefWdpotKXIlAPwXy0KVTzHlgIUBhxjB8Y2RrPPq5ut-1XJnc3Uec3QkMMEwGMGbq5X874SO7jrwBTyIbOPfNovvGAbNdmdeMhppijHs4fzjGIbT7Nsi4_v72fL0y7iN7fma_Z2Nna7-AwST40c | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH5iOQCHllIQQynNAegpMLGdxD6girJoWGaoKpC4mRfbqSrRZDoJQvy5_rbaGWdYDtw4J7Kjz2_5XvwWgM1YI3LKeBhriiHTaTfEnOchNyJjeZTkosnN6Q-S3hU7vY6vp-BfWwvj0ipbm9gYal0q9498l1ruy3jMo-634d_QTY1yt6vtCA30oxX0XtNizBd2nJmHexvCVXsnh_a8twg5Pro86IV-ykCoKEnrUCiB1DWB4SgE6RodGU4iY2l-nAuNIqMMNTJErVKdcKaRqswYlaVo2Q_vUrvuNMwyyoQN_ma_Hw1-_JzcYxDB0nG6PUuI4Lv6T62qHUvCXGefJ47wpTtYgLm7YogP93h7-8TfHS_CO09Ug_2xZH2AKVMswft2CETgbcISLPQnjV-rj7B2Mfrtq5mKoMyDX2WpA-XSRKtluHoTYFZgpigLswoBd4XaJEGuuGA8y60cxNoeZ5QlwqiIdmCrxUIOx102pI1OGsxkg5lsMOvAVweUdMpXj1ChryGwu7g2VnKfJzbisYyFdWD92ZtWadTzxy3U0ittJR9FrAPbE_hf_aC119f5AnO9y_65PD8ZnH2CeeJmBzeJgOswU4_uzGdLaOpsw0tNADdvLaj_Ae90CgE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BcgAOpaUglkKVA6Wn0CR2suPjCoFWSDwOXYmeoontVKg0u9pkVZVfzzhxEHBAHKNYjjUPzzfKzDcAR6khQiExTI2gUJpRFFKJZYhWFbKMs1K1tTmXV9lkKi9u01tPkuR6YczfRtd8E9_5AFB3f_MztrMfc1OuwlqWMugewNr06mb8q--qwqidxcpuz3iRY3xX4s5PCv2WDHwcm86z4PP6Ct6E9WU1p___6P7-WYw534JJf7qutOTPybIpTvTDK-LGdxz_I3zwODMYd4bxCVZstQ1b_QyHwLv0NmxePvG21p9h_3px55uRqmBWBr9nMxNoV-VZ78D0_Ozn6ST00xNCLZJREyqtSDhyGySlksia2GISW05f0lIZUoWQZEgSGT0yGUpDQhfW6mJEjOowErswqGaV3YMAXZ91khFqVBKLktWYGk514iJTVsdiCN96sebzjiQj5-SiFX_eiiRvxT-E707mufOdZkGafAsAf8WxUOVjzDhhYcAhh3DwYiXbvH75utda7n2uzgVnRxJTjKMhHD9p8s0D7b934RfYSNzg37aK7wAGzWJpDxmNNMVXb4mPSu3dBQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orientation+of+good+covers&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=%C3%81goston%2C+P%C3%A9ter&rft.au=Dam%C3%A1sdi%2C+G%C3%A1bor&rft.au=Keszegh%2C+Bal%C3%A1zs&rft.au=P%C3%A1lv%C3%B6lgyi%2C+D%C3%B6m%C3%B6t%C3%B6r&rft.date=2025-10-01&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=27%3A3&rft.issue=Combinatorics&rft_id=info:doi/10.46298%2Fdmtcs.15019&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_dmtcs_15019 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |