Orientation of good covers

We study systems of orientations on triples that satisfy the following so-called interiority condition: $\circlearrowleft(ABD)=~\circlearrowleft(BCD)=~\circlearrowleft(CAD)=1$ implies $\circlearrowleft(ABC)=1$ for any $A,B,C,D$. We call such an orientation a P3O (partial 3-order), a natural generali...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Mathematics and Theoretical Computer Science Vol. 27:3; no. Combinatorics; pp. 1 - 20
Main Authors Ágoston, Péter, Damásdi, Gábor, Keszegh, Balázs, Pálvölgyi, Dömötör
Format Journal Article
LanguageEnglish
Published Nancy DMTCS 01.10.2025
Subjects
Online AccessGet full text
ISSN1365-8050
1462-7264
1365-8050
DOI10.46298/dmtcs.15019

Cover

Abstract We study systems of orientations on triples that satisfy the following so-called interiority condition: $\circlearrowleft(ABD)=~\circlearrowleft(BCD)=~\circlearrowleft(CAD)=1$ implies $\circlearrowleft(ABC)=1$ for any $A,B,C,D$. We call such an orientation a P3O (partial 3-order), a natural generalization of a poset, that has several interesting special cases. For example, the order type of a planar point set (that can have collinear triples) is a P3O; we denote a P3O realizable by points as p-P3O. If we do not allow $\circlearrowleft(ABC)=0$, we obtain a T3O (total 3-order). Contrary to linear orders, a T3O can have a rich structure. A T3O realizable by points, a p-T3O, is the order type of a point set in general position. In our paper "Orientation of convex sets" we defined a 3-order on pairwise intersecting convex sets; such a P3O is called a C-P3O. In this paper we extend this 3-order to pairwise intersecting good covers; such a P3O is called a GC-P3O. If we do not allow $\circlearrowleft(ABC)=0$, we obtain a C-T3O and a GC-T3O, respectively. The main result of this paper is that there is a p-T3O that is not a GC-T3O, implying also that it is not a C-T3O -- this latter problem was left open in our earlier paper. Our proof involves several combinatorial and geometric observations that can be of independent interest. Along the way, we define several further special families of GC-T3O's.
AbstractList We study systems of orientations on triples (that is, an assignment ... of a value from ... to each ordered triple) that satisfy the following so-called interiority condition: ... simplies ... for any A,B,C,D. Wecall such an orientation a partial 3-order, a natural generalization of a poset that has several interesting special cases. As an example, the well-known order type of a planar point set (that can have collinear triples) is a partial 3-order. In our previous paper "Orientation of convex sets" we defined a partial 3-order on pairwise intersecting convex sets that we call 3-orders realizable by convex sets. A good cover is a family of compact closed sets in the plane such that the intersection of the members of any subfamily is either contractible or empty. In this paper, we extend the partial 3-order from the previous one and define a partial 3-order on good covers having pairwise intersecting sets. If the family is non-degenerate with respect to the orientation, i.e., always ... we obtain a total 3-order. The main result of this paper is that there is a total 3-order, which is realizable by points that is not realizable by good covers, implying also that it is not realizable by convex sets. This latter problem was leftopen in our earlier paper. Our proof involves several combinatorial and geometric observations that can be of independent interest. Along the way, we regard the 3-orders realizable by various special good covers, in particular, by families of topological trees, curves, lines and Y-shapes that pairwise intersect exactly once.
We study systems of orientations on triples (that is, an assignment [??] of a value from +1, -1, 0 to each ordered triple) that satisfy the following so-called interiority condition: [??](ABD) = [??](BCD) = [??](CAD) = 1 implies O(ABC) = 1 for any A, B, C, D. We call such an orientation a partial 3-order, a natural generalization of a poset that has several interesting special cases. As an example, the well-known order type of a planar point set (that can have collinear triples) is a partial 3-order. In our previous paper "Orientation of convex sets" we defined a partial 3-order on pairwise intersecting convex sets that we call 3-orders realizable by convex sets. A good cover is a family of compact closed sets in the plane such that the intersection of the members of any subfamily is either contractible or empty. In this paper, we extend the partial 3-order from the previous one and define a partial 3-order on good covers having pairwise intersecting sets. If the family is non-degenerate with respect to the orientation, i.e., always [??](ABC) [not equal to] 0, we obtain a total 3-order. The main result of this paper is that there is a total 3-order, which is realizable by points that is not realizable by good covers, implying also that it is not realizable by convex sets. This latter problem was left open in our earlier paper. Our proof involves several combinatorial and geometric observations that can be of independent interest. Along the way, we regard the 3-orders realizable by various special good covers, in particular, by families of topological trees, curves, lines and Y-shapes that pairwise intersect exactly once. Keywords: combinatorial geometry, convex sets, good covers, order types, orientations
We study systems of orientations on triples (that is, an assignment [??] of a value from +1, -1, 0 to each ordered triple) that satisfy the following so-called interiority condition: [??](ABD) = [??](BCD) = [??](CAD) = 1 implies O(ABC) = 1 for any A, B, C, D. We call such an orientation a partial 3-order, a natural generalization of a poset that has several interesting special cases. As an example, the well-known order type of a planar point set (that can have collinear triples) is a partial 3-order.
We study systems of orientations on triples that satisfy the following so-called interiority condition: $\circlearrowleft(ABD)=~\circlearrowleft(BCD)=~\circlearrowleft(CAD)=1$ implies $\circlearrowleft(ABC)=1$ for any $A,B,C,D$. We call such an orientation a P3O (partial 3-order), a natural generalization of a poset, that has several interesting special cases. For example, the order type of a planar point set (that can have collinear triples) is a P3O; we denote a P3O realizable by points as p-P3O. If we do not allow $\circlearrowleft(ABC)=0$, we obtain a T3O (total 3-order). Contrary to linear orders, a T3O can have a rich structure. A T3O realizable by points, a p-T3O, is the order type of a point set in general position. In our paper "Orientation of convex sets" we defined a 3-order on pairwise intersecting convex sets; such a P3O is called a C-P3O. In this paper we extend this 3-order to pairwise intersecting good covers; such a P3O is called a GC-P3O. If we do not allow $\circlearrowleft(ABC)=0$, we obtain a C-T3O and a GC-T3O, respectively. The main result of this paper is that there is a p-T3O that is not a GC-T3O, implying also that it is not a C-T3O -- this latter problem was left open in our earlier paper. Our proof involves several combinatorial and geometric observations that can be of independent interest. Along the way, we define several further special families of GC-T3O's.
Audience Academic
Author Keszegh, Balázs
Pálvölgyi, Dömötör
Damásdi, Gábor
Ágoston, Péter
Author_xml – sequence: 1
  givenname: Péter
  surname: Ágoston
  fullname: Ágoston, Péter
– sequence: 2
  givenname: Gábor
  surname: Damásdi
  fullname: Damásdi, Gábor
– sequence: 3
  givenname: Balázs
  surname: Keszegh
  fullname: Keszegh, Balázs
– sequence: 4
  givenname: Dömötör
  surname: Pálvölgyi
  fullname: Pálvölgyi, Dömötör
BookMark eNp9kM1LAzEQxYNUsK3ePHkqeHVrPneTYylWhUIveg7TJFtSdpOabJX-9y6toILIHGYYfm94b0ZoEGJwCF0TPOUlVfLetp3JUyIwUWdoSFgpCokFHvyYL9Ao5y3GhCpeDdHNKnkXOuh8DJNYTzYx2omJ7y7lS3ReQ5Pd1Vcfo9fFw8v8qViuHp_ns2VhGK26QhkFjFLJJChFsbPESUpciYWolQW1ZhwscABrKltKboGZtXNmXYEgSmI2RsXp7j7s4PABTaN3ybeQDppgfQymj8H0MVjP3574XYpve5c7vY37FHqLmlEhuBSS4G9qA43TPtSxS2Ban42eyRJzRTnnPTX9g-rLutab_ru17_e_BHcngUkx5-Tq_71-Al27eO4
ContentType Journal Article
Copyright COPYRIGHT 2025 DMTCS
Copyright DMTCS 2025
Copyright_xml – notice: COPYRIGHT 2025 DMTCS
– notice: Copyright DMTCS 2025
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.46298/dmtcs.15019
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
EndPage 20
ExternalDocumentID 10.46298/dmtcs.15019
A860492444
10_46298_dmtcs_15019
GeographicLocations Hungary
GeographicLocations_xml – name: Hungary
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
M~E
AZQEC
DWQXO
PKEHL
PQEST
PQUKI
PRINS
ADTOC
C1A
CAG
COF
LO0
UNPAY
ID FETCH-LOGICAL-c327t-9c9a322838a9920ed1e821e6055f9da9b34ada4aadc7d684da3cbeecb7a519803
IEDL.DBID UNPAY
ISSN 1365-8050
1462-7264
IngestDate Mon Sep 15 10:07:04 EDT 2025
Tue Oct 07 11:13:29 EDT 2025
Wed Oct 29 16:59:49 EDT 2025
Tue Oct 28 04:06:12 EDT 2025
Wed Oct 01 05:21:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Combinatorics
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-9c9a322838a9920ed1e821e6055f9da9b34ada4aadc7d684da3cbeecb7a519803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://dmtcs.episciences.org/16488/pdf
PQID 3255485810
PQPubID 946337
PageCount 20
ParticipantIDs unpaywall_primary_10_46298_dmtcs_15019
proquest_journals_3255485810
gale_infotracmisc_A860492444
gale_infotracacademiconefile_A860492444
crossref_primary_10_46298_dmtcs_15019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20251001
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 20251001
  day: 01
PublicationDecade 2020
PublicationPlace Nancy
PublicationPlace_xml – name: Nancy
PublicationTitle Discrete Mathematics and Theoretical Computer Science
PublicationYear 2025
Publisher DMTCS
Publisher_xml – name: DMTCS
SSID ssj0012947
ssib044734695
Score 2.3452337
Snippet We study systems of orientations on triples that satisfy the following so-called interiority condition:...
We study systems of orientations on triples (that is, an assignment [??] of a value from +1, -1, 0 to each ordered triple) that satisfy the following so-called...
We study systems of orientations on triples (that is, an assignment ... of a value from ... to each ordered triple) that satisfy the following so-called...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 1
SubjectTerms Combinatorial analysis
Convex sets
Convexity
Geometry
Interiority
Mathematical research
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT8JAEJ0gHJSDH6gRRNODH6cK7W7b3YMxaiDERDRGE2_NdHdrTLBFKDH-e3dLi-DBc5u2ebMzO9N98wbgxJOIjFBme5KgTWXQtTFmsc0Uj2js-DHPuTn3Q3_wQu9evdcKDMteGEOrLGNiHqhlKsw_8g7RuS9lHnO6V-NP20yNMqer5QgNLEYryMtcYmwNaq5RxqpC7aY3fHxanCu4nAZz-jv1Xc468iMT0wudFBmlnaWN6W94rsP6LBnj9xeORkv7T38bNovE0bqeW3oHKippwFY5lMEqfLQB9fuFEOt0F1oPk_eiuyix0th6S1NpCUPbnO7BS7_3fDuwi3EItiBukNlccCRGrYYh525XSUcx11G6HvFiLpFHhKJEiihFIH1GJRIRKSWiAHWaxrpkH6pJmqgDsJhpnHZ9ZIJxyqJY28WTGl4n8rkSDmnCaYlFOJ6rXoS6WsgxC3PMwhyzJpwboELjDNkEBRacfv0WIysVXjNfVyA6g6BNaK_cqRexWL1cQh0WTjQNf03ehLMF_P9-UOv_5xzChmvm9-ZkvDZUs8lMHemkIouOi5XyA9buy7Q
  priority: 102
  providerName: ProQuest
Title Orientation of good covers
URI https://www.proquest.com/docview/3255485810
https://dmtcs.episciences.org/16488/pdf
UnpaywallVersion publishedVersion
Volume 27:3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: KQ8
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: ABDBF
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: AMVHM
  dateStart: 20030601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044734695
  issn: 1462-7264
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB7R5AA9UCggUkrkA4-Tix9rZ_YYUEKE5FAhgsrJGu-uq4riRLEjBAd-O7P2ump7QL3YsryyV7MzO99oZ74BeJVoIowF-omOyRd6EvhUYumjkYUow7SUbW5OtkwXK_HpLDlzJEm2Fkb_bFTNO_GFcwB1d5qfsp692-hyD4ZpwqB7AMPV8nT6va-qwqDtxcpmz3iRfXyX4s5PEt0nGfhYNp1rzuf2FrwP93fVhn7_osvLaz5mfgCLfnZdasmPk11TnKg_t4gb7zD9R_DQ4Uxv2inGY7hnqkM46Hs4eM6kD2E_u-JtrZ_A0efthStGqrx16Z2v19pTNsuzfgqr-ezrh4Xvuif4Ko4mjS-VpNiS2yBJGQVGhwaj0HD4kpRSkyxiQZoEkVYTnaLQFKvCGFVMiFEdBvEzGFTryjwHD22ddZQSKpQCi5KXMdEc6oRFKo0K4xG87sWabzqSjJyDi1b8eSuSvBX_CN5amefWdpotKXIlAPwXy0KVTzHlgIUBhxjB8Y2RrPPq5ut-1XJnc3Uec3QkMMEwGMGbq5X874SO7jrwBTyIbOPfNovvGAbNdmdeMhppijHs4fzjGIbT7Nsi4_v72fL0y7iN7fma_Z2Nna7-AwST40c
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH5iOQCHllIQQynNAegpMLGdxD6girJoWGaoKpC4mRfbqSrRZDoJQvy5_rbaGWdYDtw4J7Kjz2_5XvwWgM1YI3LKeBhriiHTaTfEnOchNyJjeZTkosnN6Q-S3hU7vY6vp-BfWwvj0ipbm9gYal0q9498l1ruy3jMo-634d_QTY1yt6vtCA30oxX0XtNizBd2nJmHexvCVXsnh_a8twg5Pro86IV-ykCoKEnrUCiB1DWB4SgE6RodGU4iY2l-nAuNIqMMNTJErVKdcKaRqswYlaVo2Q_vUrvuNMwyyoQN_ma_Hw1-_JzcYxDB0nG6PUuI4Lv6T62qHUvCXGefJ47wpTtYgLm7YogP93h7-8TfHS_CO09Ug_2xZH2AKVMswft2CETgbcISLPQnjV-rj7B2Mfrtq5mKoMyDX2WpA-XSRKtluHoTYFZgpigLswoBd4XaJEGuuGA8y60cxNoeZ5QlwqiIdmCrxUIOx102pI1OGsxkg5lsMOvAVweUdMpXj1ChryGwu7g2VnKfJzbisYyFdWD92ZtWadTzxy3U0ittJR9FrAPbE_hf_aC119f5AnO9y_65PD8ZnH2CeeJmBzeJgOswU4_uzGdLaOpsw0tNADdvLaj_Ae90CgE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7BcgAOpaUglkKVA6Wn0CR2suPjCoFWSDwOXYmeoontVKg0u9pkVZVfzzhxEHBAHKNYjjUPzzfKzDcAR6khQiExTI2gUJpRFFKJZYhWFbKMs1K1tTmXV9lkKi9u01tPkuR6YczfRtd8E9_5AFB3f_MztrMfc1OuwlqWMugewNr06mb8q--qwqidxcpuz3iRY3xX4s5PCv2WDHwcm86z4PP6Ct6E9WU1p___6P7-WYw534JJf7qutOTPybIpTvTDK-LGdxz_I3zwODMYd4bxCVZstQ1b_QyHwLv0NmxePvG21p9h_3px55uRqmBWBr9nMxNoV-VZ78D0_Ozn6ST00xNCLZJREyqtSDhyGySlksia2GISW05f0lIZUoWQZEgSGT0yGUpDQhfW6mJEjOowErswqGaV3YMAXZ91khFqVBKLktWYGk514iJTVsdiCN96sebzjiQj5-SiFX_eiiRvxT-E707mufOdZkGafAsAf8WxUOVjzDhhYcAhh3DwYiXbvH75utda7n2uzgVnRxJTjKMhHD9p8s0D7b934RfYSNzg37aK7wAGzWJpDxmNNMVXb4mPSu3dBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orientation+of+good+covers&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=%C3%81goston%2C+P%C3%A9ter&rft.au=Dam%C3%A1sdi%2C+G%C3%A1bor&rft.au=Keszegh%2C+Bal%C3%A1zs&rft.au=P%C3%A1lv%C3%B6lgyi%2C+D%C3%B6m%C3%B6t%C3%B6r&rft.date=2025-10-01&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=27%3A3&rft.issue=Combinatorics&rft_id=info:doi/10.46298%2Fdmtcs.15019&rft.externalDBID=n%2Fa&rft.externalDocID=10_46298_dmtcs_15019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon